

ibm.com/redbooks

Enterprise Security
Architecture
Using IBM Tivoli Security Solutions

Axel Buecker
Ana Veronica Carreno

Norman Field
Christopher Hockings

Daniel Kawer
Sujit Mohanty

Guilherme Monteiro

Audit and compliance, access control,
identity management, and integrity

Extensive product architecture
and component introduction

Complete coverage of
Tivoli Security solutions

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Enterprise Security Architecture
Using IBM Tivoli Security Solutions

August 2007

International Technical Support Organization

SG24-6014-04

© Copyright International Business Machines Corporation 2002, 2004, 2006, 2007. All rights
reserved. Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Fifth Edition (August 2007)

This edition applies to the following IBM Tivoli products: Access Manager for e-business 6.0,
Access Manager for Business Integration 5.1, Access Manager for Operating Systems 6.0, Access
Manager for Enterprise Single Sign-On Version 6.0, Directory Server 6.0, Directory Integrator
6.1.1, Identity Manager 4.6, Identity Manager Express Version 4.6, Federated Identity Manager
6.1, Federated Identity Manager Business Gateway 6.1, Security Operations Manager 3.1, and
Security Compliance Manager 5.1.1. Various other related IBM, Tivoli and Lotus products are
mentioned in this book.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page iii.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. iii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
developerWorks®
e-business on demand®
eServer™
iSeries®
pSeries®
z/OS®
zSeries®
AIX 5L™
AIX®
AS/400®
Cloudscape™
CICS®
DataPower®
Domino®

DB2 Universal Database™
DB2®
Everyplace®
HACMP™
Informix®
Internet Scanner®
IBM®
Lotus Notes®
Lotus®
MQSeries®
Notes®
OS/390®
OS/400®
Proventia®
Redbooks®

RACF®
RDN™
Sametime®
SecureWay®
System i™
System p™
System x™
System z™
Tivoli Enterprise™
Tivoli Enterprise Console®
Tivoli®
Update Connector™
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

PostScript, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, other countries, or both.

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaScript,
JavaServer, JDBC, JMX, JSP, JVM, J2EE, Solaris, Sun Java, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Access, Active Directory, ActiveX, Expression, Internet Explorer, Microsoft, Visual Basic, Visual Studio,
Windows NT, Windows Server, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

iv Enterprise Security Architecture Using IBM Tivoli Security Solutions

Contents

Notices . xxi
Trademarks . xxii

Preface . xxiii
The team that wrote this redbook. xxiv
Become a published author .xxvii
Comments welcome. .xxvii

Summary of changes . xxix
August 2007, Fifth Edition . xxix
September 2006, Fourth Edition . xxx
April 2006, Third Edition . xxx

Part 1. Terminology and infrastructure . 1

Chapter 1. Business context . 3
1.1 Security, risk, and compliance . 4
1.2 The BS7799 security standard . 5
1.3 Common business drivers . 8
1.4 Risk analysis and mitigation . 10
1.5 Security policies . 11

1.5.1 Security policy lifecycle . 13
1.6 Other considerations . 14

1.6.1 The human factor impact . 15
1.6.2 Legal and regulatory concerns . 16

1.7 Closing remarks . 17

Chapter 2. Common security architecture and network models 19
2.1 Common security architecture subsystems. 20

2.1.1 Common Criteria . 20
2.1.2 MASS security subsystems. 21

2.2 Common network components . 26
2.2.1 Building network boundaries . 26
2.2.2 Intrusion detection and prevention . 28

2.3 Common network models . 30
2.3.1 Localizing a global vision . 31
2.3.2 Network zones . 34
2.3.3 E-business security requirement. 36

2.4 Practical designs . 37

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. v

2.5 Additional components . 39
2.6 Access control models . 40

2.6.1 Which model . 41
2.7 Certificates . 44
2.8 Security components . 47
2.9 Conclusions . 48

Chapter 3. Directory technologies . 49
3.1 Using a centralized user repository . 50

3.1.1 Business requirements . 50
3.1.2 Functional requirements . 51
3.1.3 One or multiple repositories . 52
3.1.4 Why a directory server . 53

3.2 Directories . 53
3.2.1 General definition . 53
3.2.2 Directory versus database . 54
3.2.3 LDAP: Protocol or directory. 55
3.2.4 DSML . 56
3.2.5 Directory clients and servers. 56
3.2.6 Distributed directories . 58
3.2.7 Directory security . 59
3.2.8 Schema and namespace . 62
3.2.9 Physical architecture . 65
3.2.10 Availability and scalability . 68
3.2.11 Administration . 70

3.3 IBM Tivoli Directory Server . 72
3.3.1 Overview . 73
3.3.2 Base components . 73
3.3.3 Directory security . 74
3.3.4 Schema . 83
3.3.5 Availability and scalability . 83
3.3.6 Logging . 90
3.3.7 Administration . 90

3.4 Virtual directory versus metadirectory. 93
3.4.1 Metadirectory . 93
3.4.2 Virtual directories . 94

3.5 IBM Tivoli Directory Integrator . 96
3.5.1 Overview . 97
3.5.2 Concept of integration . 99
3.5.3 Base components . 101
3.5.4 Security capability . 125
3.5.5 Physical architecture . 126
3.5.6 Availability and scalability . 134

vi Enterprise Security Architecture Using IBM Tivoli Security Solutions

3.5.7 Logging . 141
3.5.8 Administration and monitoring. 145

3.6 Conclusions . 148

Chapter 4. Single sign-on technologies . 149
4.1 SSO delivers multiple business benefits . 150
4.2 Three classes of single sign-on . 150
4.3 Desktop single sign-on . 153
4.4 Web single sign-on. 154

4.4.1 Desktop SSO . 156
4.4.2 Back-end and portal SSO . 156
4.4.3 Three-tier SSO . 157
4.4.4 SSO to host application emulators . 157

4.5 Federated single sign-on . 158
4.6 Enjoy security management benefits beyond SSO 159
4.7 Conclusion . 159

Part 2. Managing access control . 161

Chapter 5. Access Manager core components . 163
5.1 Tivoli Access Manager family . 164

5.1.1 Access Manager for e-business . 165
5.1.2 Access Manager for Operating Systems. 165
5.1.3 Access Manager for Business Integration. 166

5.2 Architectural perspective . 166
5.2.1 Design principles. 166
5.2.2 Security subsystems . 168
5.2.3 Access control subsystem. 169

5.3 Base components. 171
5.3.1 Overview . 172
5.3.2 User registry . 173
5.3.3 Authorization database . 177
5.3.4 Policy Server . 179
5.3.5 Policy Proxy Server. 181
5.3.6 Authorization service. 182
5.3.7 The pdadmin utility and administration API. 182
5.3.8 Web Portal Manager . 183

5.4 Resource managers . 186
5.5 Interfaces . 187

5.5.1 aznAPI. 187
5.5.2 Java API for Access Manager-based authorization 187
5.5.3 Access Manager-based authorization for Microsoft .NET. 188
5.5.4 Management API . 188
5.5.5 External Authorization Service . 188

 Contents vii

Chapter 6. Access Manager for e-business . 191
6.1 Typical Internet Web server security characteristics 192
6.2 Web security requirement issues . 193

6.2.1 Typical business requirements . 193
6.2.2 Typical design objectives (technical requirements). 194

6.3 Web security architectural principles . 195
6.3.1 Principle 1 . 195
6.3.2 Principle 2 . 195
6.3.3 Principle 3 . 196

6.4 Access Manager for e-business components 196
6.4.1 WebSEAL . 196
6.4.2 Plug-in for Web servers. 205
6.4.3 Access Manager Attribute Retrieval Service. 208
6.4.4 Common Auditing and Reporting Service . 208
6.4.5 Plug-in for Edge Server. 209
6.4.6 Access Manager Session Management Server 210
6.4.7 Access Manager for Microsoft .NET applications 211
6.4.8 WebSphere Application Server integration 213
6.4.9 Access Manager for BEA WebLogic Server 214

6.5 Basic WebSEAL component interactions . 215
6.6 Basic Web Plug-in component interaction . 219
6.7 Component configuration and placement . 221

6.7.1 Network zones . 221
6.7.2 Secure communication issues . 224
6.7.3 Specific Access Manager component placement guidelines 225
6.7.4 Summarizing Access Manager component placement issues 238

6.8 Physical architecture considerations. 239
6.8.1 Access Manager components. 239
6.8.2 Other infrastructure components. 241
6.8.3 General host hardening considerations . 242

6.9 Access Manager: Part of overall security solution. 243

Chapter 7. A basic WebSEAL scenario . 245
7.1 Company profile . 246
7.2 Technology background . 246
7.3 IT infrastructure . 247

7.3.1 Data centers . 247
7.3.2 Network . 248
7.3.3 Operational plans . 249

7.4 Business requirements . 249
7.5 Security design objectives . 250
7.6 Requirements analysis . 250
7.7 Access control architecture . 252

viii Enterprise Security Architecture Using IBM Tivoli Security Solutions

7.7.1 Initial architecture approach . 252
7.7.2 Internal user access . 254
7.7.3 Connecting the pieces. 255

7.8 Building the physical architecture . 257
7.8.1 Internet DMZ . 257
7.8.2 Production network . 257

7.9 Architectural summary . 258

Chapter 8. Increasing availability and scalability. 259
8.1 Further evolution . 260

8.1.1 Business requirements . 260
8.1.2 Security design objectives. 260

8.2 Availability . 261
8.2.1 Failure situations . 261
8.2.2 Providing high availability . 264

8.3 Adding scalability . 274
8.3.1 WebSEAL scalability . 275
8.3.2 Authorization Server scalability . 275
8.3.3 Infrastructure component scalability . 275

Chapter 9. Authentication and single sign-on with Access Manager for
e-business . 279

9.1 Typical business requirements . 281
9.2 Typical security design objectives . 282
9.3 Solution architecture with WebSEAL . 283

9.3.1 Authentication and single sign-on mechanisms 284
9.3.2 Trust . 287
9.3.3 Generic authentication mechanism with Web security server. 289
9.3.4 Generic Web security server single sign-on mechanism 290

9.4 Web security server authentication mechanisms 291
9.4.1 Basic authentication with user ID and password. 292
9.4.2 Forms-based login with user ID and password 292
9.4.3 Authentication with X.509 client certificates 293
9.4.4 Authentication with RSA SecurID token . 293
9.4.5 Windows desktop single sign-on. 294
9.4.6 External Authentication Interface . 297
9.4.7 Custom authentication using the External Authentication C API . . 301
9.4.8 Entitlement service interface . 303
9.4.9 Authentication using customized HTTP headers 304
9.4.10 Authentication based on IP address . 305
9.4.11 No authentication . 305
9.4.12 MPA authentication . 305

9.5 Web security server single sign-on mechanisms 306

 Contents ix

9.5.1 Tivoli Global Single Sign-On lockbox . 307
9.5.2 Forms single sign-on. 310
9.5.3 Passing an unchanged basic authentication header. 310
9.5.4 Providing a generic password . 311
9.5.5 Supplying user and group information . 311
9.5.6 Using LTPA authentication with the Web security servers 312

9.6 Enterprise single sign-on mechanisms . 313
9.6.1 Cross Domain Single Sign-On . 314
9.6.2 e-community single sign-on . 316
9.6.3 Cross Domain Mapping Framework . 321
9.6.4 Cookie Based single sign-on. 321

Chapter 10. Access Manager authorization . 323
10.1 Authorization overview . 324

10.1.1 The Tivoli Access Manager authorization service. 325
10.1.2 Access Manager authorization components 328

10.2 Security policy . 328
10.2.1 Protected object space . 331
10.2.2 Users and groups . 332
10.2.3 ACL policy . 333
10.2.4 Protected object policies . 334
10.2.5 Authorization rules . 335
10.2.6 Authorization rules detail . 336
10.2.7 External authorization capability . 337
10.2.8 ADI . 341

10.3 Conclusion . 344
10.3.1 Guidelines for a secure protected object space 344

Chapter 11. Application integration. 347
11.1 Business requirements . 348
11.2 Security design objectives . 349
11.3 WebSphere Application Server security . 352

11.3.1 Java Authorization Contract for Containers 356
11.4 Access Manager and WebSphere integration 357

11.4.1 Shared user registry . 358
11.4.2 Single sign-on . 359
11.4.3 User mapping for WebSphere J2EE Connector Architecture 363

11.5 Access Manager and .NET Integration . 367
11.5.1 Single sign-on . 368
11.5.2 Role-based authorization in .NET . 369

11.6 C and Java application integration . 376
11.7 Conclusion . 379

Chapter 12. Access Manager for Operating Systems 381

x Enterprise Security Architecture Using IBM Tivoli Security Solutions

12.1 Overview of Tivoli Access Manager for Operating Systems 382
12.1.1 Business context . 382
12.1.2 Access Manager for Operating System integration. 384

12.2 Security architecture subsystems perspective 384
12.3 Architecture . 386

12.3.1 Authorization model . 388
12.4 Native UNIX security relationship . 389
12.5 Policy . 391

12.5.1 File policy . 392
12.5.2 Network policy. 394
12.5.3 Login policy . 396
12.5.4 Password management policy . 396
12.5.5 Surrogate policy . 396
12.5.6 Sudo policy . 397

12.6 Policy branches . 397
12.6.1 Single policy branch configuration . 397
12.6.2 Multiple policy branch configuration . 397

12.7 Runtime environment . 400
12.7.1 The pdosd authorization daemon . 400
12.7.2 The pdosauditd audit daemon. 401
12.7.3 The pdoswdd watchdog daemon . 401
12.7.4 The pdostecd Tivoli Enterprise Console daemon 401
12.7.5 The pdoslpmd login and password management daemon 401
12.7.6 The pdoslrd log router daemon . 402

12.8 Putting it all together . 402
12.9 Entitlement reports . 404
12.10 Auditing . 405

12.10.1 Auditing authorization decisions . 405
12.10.2 Auditing administrative activity . 407
12.10.3 Auditing trace events. 407
12.10.4 Audit log consolidation . 408
12.10.5 Common Auditing and Reporting Service integration 409

12.11 Conclusion . 411

Chapter 13. Access Manager for Operating Systems
business scenario. 413

13.1 Business requirements . 414
13.2 Functional requirements . 414
13.3 Designing the solution . 416
13.4 Policy design . 417

13.4.1 Administrative groups . 418
13.4.2 Policy layout . 418
13.4.3 Architecture overview . 421

 Contents xi

13.5 Integrating into an Access Manager environment 422
13.6 Conclusion . 424

Chapter 14. Access Manager for Business Integration 425
14.1 Product overviews . 426

14.1.1 IBM WebSphere MQ . 426
14.1.2 WebSphere Business Integration Message Broker 427
14.1.3 Access Manager for Business Integration. 432
14.1.4 Access Manager for WebSphere Business Integration Brokers . . 433

14.2 Architectural perspective . 433
14.2.1 Design principles. 434

14.3 Access Manager for Business Integration. 435
14.3.1 Security characteristics . 436
14.3.2 Architecture . 437
14.3.3 Components and dependencies . 438

14.4 Access Manager for WebSphere Business Integration Brokers . . . 443
14.4.1 Authorization and permission bits . 444

14.5 A distributed application at Stocks-4u.com 445

Chapter 15. Access Manager for Enterprise Single Sign-On 449
15.1 Logical component architecture . 450

15.1.1 Authentication . 451
15.1.2 Encryption . 453
15.1.3 Intelligent agent response . 455
15.1.4 Core (including storage) . 460
15.1.5 Credential synchronization . 460
15.1.6 Event logging . 464
15.1.7 Additional components . 466
15.1.8 Desktop Password Reset Adapter . 467
15.1.9 Authentication Adapter . 469
15.1.10 Provisioning Adapter . 472
15.1.11 Kiosk Adapter . 475

15.2 Physical component architecture . 477
15.2.1 Agent. 477
15.2.2 Repository and authentication. 480
15.2.3 Administrative Console . 481
15.2.4 Authentication Adapter . 484
15.2.5 Kiosk Adapter . 485
15.2.6 Desktop Password Reset Adapter . 485
15.2.7 Provisioning Adapter . 488

15.3 Conclusion . 490

Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On
scenario . 491

xii Enterprise Security Architecture Using IBM Tivoli Security Solutions

16.1 Company profile . 492
16.2 Current IT Architecture . 492
16.3 Current password management problems 495

16.3.1 Time and money related problems . 495
16.3.2 Security related problems . 496
16.3.3 Compliance with regulations . 496
16.3.4 Current single sign-on costs . 496

16.4 Business requirements . 498
16.5 Functional requirements . 498
16.6 Design approach . 499

16.6.1 Core solution deployment . 500
16.6.2 Desktop Password Reset Adapter deployment. 501
16.6.3 Authentication Adapter deployment . 503

16.7 Solution analysis . 503
16.8 Conclusion . 505

Part 3. Managing identities and credentials . 507

Chapter 17. Identity management . 509
17.1 Business drivers . 510
17.2 Issues affecting identity management solutions 510
17.3 Security policies, risk, due care, and due diligence. 511
17.4 Centralized user management . 513

17.4.1 Adapters to access controlled systems. 514
17.4.2 Password management . 515
17.4.3 Access rights accountability . 516
17.4.4 Access request approval and process automation 518
17.4.5 Access request audit trails . 519
17.4.6 Distributed administration . 520
17.4.7 User administration policy automation . 521
17.4.8 Self-regulating user administration across organizations 522

17.5 Lifecycle management . 523
17.5.1 The creation cycle . 524
17.5.2 The provisioning cycle. 525
17.5.3 The modification cycle. 525
17.5.4 The termination cycle . 525
17.5.5 Lifecycle rules . 526

17.6 Access control models . 527
17.6.1 Selection process . 527
17.6.2 Roles versus groups . 531
17.6.3 Designs . 533
17.6.4 Observations . 538

17.7 Planning the approach to the solution. 538

 Contents xiii

17.8 Implementation plan . 538
17.8.1 Definition of an identity management solution 541

17.9 Business processes and identity management 543
17.10 Conclusions . 544

Chapter 18. Identity Manager structure and components 547
18.1 IBM Tivoli Identity Manager entities . 548

18.1.1 Users, accounts, and attributes. 548
18.1.2 Identity feed. 550
18.1.3 Passwords. 550
18.1.4 Group membership . 551
18.1.5 Managed systems and applications . 551

18.2 IBM Tivoli Identity Manager management entities. 552
18.2.1 Organizational tree and roles . 553
18.2.2 Identity Manager groups and ACIs . 554
18.2.3 Policy. 554
18.2.4 Workflow . 555
18.2.5 Logs and audit. 556
18.2.6 Reports . 557

18.3 Logical component architecture . 558
18.3.1 Web User Interface layer . 559
18.3.2 Application layer . 560
18.3.3 Service Layer . 562
18.3.4 LDAP directory . 565
18.3.5 Database. 565
18.3.6 Resource connectivity . 566
18.3.7 Lifecycle example . 569

18.4 Conclusion . 571

Chapter 19. Identity Manager scenarios . 573
19.1 Basic security architecture considerations 574

19.1.1 Network considerations. 574
19.2 An Identity Manager scenario . 576

19.2.1 Business requirements . 576
19.2.2 Functional requirements . 577
19.2.3 Designing the solution. 586

19.3 Tivoli Access Manager for Enterprise Single Sign-On Provisioning
Adapter . 591

19.4 Tivoli Identity Manager high-availability . 592
19.4.1 Application server high availability . 593
19.4.2 Directory server high availability . 594
19.4.3 Relational database high availability . 595
19.4.4 Identity Manager adapters high availability 597

xiv Enterprise Security Architecture Using IBM Tivoli Security Solutions

19.4.5 Reverse password synchronization high availability 600
19.4.6 Complete scenario . 602

19.5 Importing and synchronizing user data . 603
19.6 Integrating with Access Manager . 607

19.6.1 Specialized integration tasks. 610
19.6.2 Integrated architecture with Identity Manager adapters 610

19.7 Conclusion . 611

Chapter 20. Identity Manager Express structure and components 613
20.1 Provisioning strategies for identity management. 614

20.1.1 Policy-based provisioning . 614
20.1.2 Requests-based provisioning . 615
20.1.3 Combining policy-based and request-based provisioning. 615
20.1.4 Features of IBM Tivoli Identity Manager Express 615

20.2 Management and user terminology. 616
20.2.1 Setting policies in Identity Manager Express 617
20.2.2 User categories . 617
20.2.3 Access control . 619
20.2.4 Workflow . 620

20.3 Physical component architecture . 621
20.4 Identity Manager Express security . 623
20.5 Conclusion . 631

Chapter 21. Synchronizing the enterprise . 633
21.1 Identity data management service context 634
21.2 Identity data repositories . 635
21.3 Managing identities and credentials . 635
21.4 Business value . 635
21.5 Identity data management scenarios . 637

21.5.1 Providing metadirectory services . 637
21.5.2 Accelerating Identity Manager deployments 640
21.5.3 Multiple directories and Tivoli Access Manager 643
21.5.4 Password synchronization services . 645
21.5.5 Migration services . 648
21.5.6 Enabling Web portals . 649

21.6 Conclusion . 651

Part 4. Managing federations . 653

Chapter 22. Business context for identity federation 655
22.1 The business context . 656
22.2 Business models for federated identity . 657
22.3 Federated identity . 661

22.3.1 The relationship - trust and assurance . 662

 Contents xv

22.4 The role of identity management . 664
22.4.1 Dealing with identities . 668
22.4.2 User lifecycle management. 670
22.4.3 Inter-enterprise application to application integration 672
22.4.4 Open standards. 674

22.5 Conclusion . 676

Chapter 23. Federation concepts. 679
23.1 Federation example . 680
23.2 Federated identity management architecture 683

23.2.1 Background to federation . 684
23.2.2 Architecture overview . 685
23.2.3 Roles . 688
23.2.4 Identity models . 689
23.2.5 Identity attributes. 691
23.2.6 Trust . 695
23.2.7 Federation protocol . 698

23.3 FIM standards and efforts. 698
23.3.1 SSL/TLS . 698
23.3.2 Security Assertion Markup Language . 699
23.3.3 Shibboleth . 700
23.3.4 Liberty . 700
23.3.5 WS-Federation . 700
23.3.6 WS-Trust . 702
23.3.7 WS-Security . 702
23.3.8 WS-Provisioning . 703
23.3.9 Selecting Federation standards . 703

23.4 Federated single sign-on . 705
23.4.1 Push and pull SSO . 706
23.4.2 Account linking . 707
23.4.3 Where are you from? . 708
23.4.4 Session management and access rights 709
23.4.5 Logout . 709
23.4.6 Credentials clean up . 710
23.4.7 Global good-bye . 710
23.4.8 Account delinking . 711

23.5 Web services security management . 711
23.5.1 Web services. 712
23.5.2 Web services security . 714
23.5.3 Web services gateways . 715

23.6 Federated identity provisioning . 716
23.7 Conclusion . 719

xvi Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 24. Federated Identity Manager . 721
24.1 Federated Identity Manager functionality . 722
24.2 Federation services . 723

24.2.1 HTTP point of contact . 725
24.2.2 SOAP/XML point of contact . 727
24.2.3 Single sign-on protocol services . 728
24.2.4 Trust services . 729
24.2.5 Key services (KESS). 734
24.2.6 Identity services . 734
24.2.7 Authorization services . 735
24.2.8 Provisioning services . 735
24.2.9 Management services . 736
24.2.10 Audit Services . 738

24.3 Federated single sign-on . 740
24.3.1 Architecture overview . 743
24.3.2 Trust in F-SSO . 745
24.3.3 F-SSO protocol functionality . 746
24.3.4 Point of contacts for SSO . 751
24.3.5 Federated single sign-on approaches. 753
24.3.6 InfoService . 763
24.3.7 Specified level view of F-SSO architecture 764

24.4 Web services security management . 766
24.4.1 Architecture overview . 768
24.4.2 WS-Security . 770
24.4.3 Web services gateway . 771
24.4.4 WS-Trust . 773
24.4.5 Authorization services . 774
24.4.6 Web services security management architecture approach 774

24.5 Provisioning services . 775
24.5.1 Architecture overview . 777
24.5.2 Provisioning architecture approach. 780

24.6 Conclusion . 780

Chapter 25. Cross enterprise federated single sign-on scenario 781
25.1 Business context . 782
25.2 Technical specifications . 783

25.2.1 BankWithUs Corporation. 783
25.2.2 StocksMustGain Corporation . 785
25.2.3 PointsTech Corporation . 786
25.2.4 RetireNowPlease Corporation. 787

25.3 BankWithUs engages PointsTech. 789
25.3.1 Design decisions . 789
25.3.2 Changes required . 791

 Contents xvii

25.4 BankWithUs engages RetireNowPlease . 793
25.4.1 Design decisions . 793

25.5 BankWithUs engages StocksMustGain. 794
25.5.1 Design decisions . 794
25.5.2 Changes required . 796

25.6 Benefits and challenges . 798
25.6.1 BankWithUs . 799
25.6.2 StocksMustGain . 799
25.6.3 PointsTech . 800
25.6.4 RetireNowPlease . 800
25.6.5 Customer. 800

25.7 Conclusion . 801

Chapter 26. Tivoli Federated Identity Manager patterns 803
26.1 Federated SSO architecture patterns . 804

26.1.1 Architecture approach . 804
26.1.2 Base pattern . 807
26.1.3 Plug-in pattern. 810
26.1.4 Lightweight Access Manager for e-business pattern 811
26.1.5 Highly available architecture patterns . 815
26.1.6 Multiple data center patterns. 817
26.1.7 SMB Pattern . 819

26.2 Federated Web services architecture patterns 824
26.2.1 Architecture approach . 824
26.2.2 Point-to-point pattern. 827
26.2.3 XML gateway pattern . 828

26.3 F-SSO application integration . 831
26.3.1 Attribute flow between providers . 831
26.3.2 User controlled federated lifecycle management 834
26.3.3 Customized user-managed federation management 834

26.4 Customizing F-SSO . 835
26.4.1 Customizing page templates. 836
26.4.2 Customizing Access Manager page templates 836
26.4.3 Storing aliases. 837

26.5 Solution design considerations . 837
26.5.1 Exchanging metadata with your partners 837
26.5.2 Availability of IBM Access Manager Policy Server 838
26.5.3 Key management . 839
26.5.4 Session time out . 839
26.5.5 Application logout . 840

26.6 Conclusion . 841

Part 5. Managing security audit and compliance . 843

xviii Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting
Service . 845

27.1 Business context for compliance . 846
27.2 Common Auditing and Reporting Services 847

27.2.1 Auditing . 849
27.2.2 Audit logs . 850
27.2.3 Audit infrastructure . 851
27.2.4 Reporting. 852

27.3 Scenarios . 854
27.3.1 Security incident investigation. 855
27.3.2 IT control . 855

27.4 Conclusion . 856

Chapter 28. Security Operations Manager topology and infrastructure 857
28.1 Enterprise security devices and applications 858

28.1.1 Intrusion detection and prevention systems 859
28.1.2 Firewalls . 860
28.1.3 Antivirus software . 860
28.1.4 Access and identity management systems 860
28.1.5 Vulnerability assessment and management applications 861

28.2 Logical components and architecture . 862
28.2.1 Processes . 864
28.2.2 Event Aggregation Module . 870
28.2.3 Central Management System . 877
28.2.4 The Event Archiver . 879
28.2.5 Additional logical components. 880

28.3 Physical components and architecture . 882
28.3.1 Single server deployment . 882
28.3.2 Distributed deployment . 883
28.3.3 High-availability deployment . 885
28.3.4 Network placement . 886

28.4 Conclusion . 887

Chapter 29. Building a security information event management
system . 889

29.1 Scenario profile . 890
29.1.1 Security-related problem . 891
29.1.2 Business requirements . 891
29.1.3 Business design . 892
29.1.4 Security design objectives. 892

29.2 Security Information Event Management System 893
29.2.1 SIEM system at Stocks-4U.com . 894
29.2.2 Integration of Security Operations Manager 895

29.3 Expanding security monitoring . 898

 Contents xix

29.3.1 Security Operations Manager resources. 898
29.4 Mapping the solution to the organization . 899
29.5 Summary . 900

Chapter 30. Compliance management with Tivoli Security Compliance
Manager . 903

30.1 Business context . 904
30.1.1 Introduction to compliance management 904
30.1.2 Why compliance management . 905
30.1.3 Determining the how: influencing factors 907
30.1.4 General challenges . 909
30.1.5 Some business conclusions . 910

30.2 Logical component architecture . 911
30.2.1 Data collection components . 914
30.2.2 Compliance evaluation components . 919
30.2.3 Compliance report components . 920
30.2.4 Security Compliance Manager server . 922
30.2.5 Administration components. 923

Chapter 31. Tivoli Security Compliance Manager scenarios 925
31.1 Automated security compliance management. 926

31.1.1 Company profile . 926
31.1.2 Summary. 932

31.2 Compliance and remediation . 932
31.2.1 Further evolution . 932
31.2.2 Compliance solution architecture . 934
31.2.3 Tivoli Configuration Manager . 935
31.2.4 Remediation solution architecture. 937
31.2.5 Summary. 939

31.3 Compliance, remediation, and Network Admission Control scenario939
31.3.1 Further evolution . 940
31.3.2 Solution architecture . 941
31.3.3 Summary. 945

Appendix A. Method for Architecting Secure Solutions 947
Problem statement . 950
Analysis . 950

Security-specific taxonomies, models, and methods 951
Common Criteria . 952
Summary of analysis . 953

System model for security . 954
Security subsystems . 956

Developing security architectures . 965
Business process model . 966

xx Enterprise Security Architecture Using IBM Tivoli Security Solutions

Security design objectives. 966
Selection and enumeration of subsystems . 967
Documenting conceptual security architecture . 969

Integration into the overall solution architecture. 971
Solution models. 971
Documenting architectural decisions . 971
Use cases . 972
Refining the functional design . 975
Integrating requirements into component architectures 976
Summary of the design process . 977

Conclusions . 978
Actions and further study . 978

Global MASS: An example. 979
Business view . 979
Logical view. 980
Detailed view. 982
Full architectural view . 983

Appendix B. Productivity and functional enhancements 985
Tivoli Identity Manager Adapter Development Tool . 986
Tivoli Identity Manager Graphical Configuration Editor 986
Tivoli Identity Manager Monitoring Solution . 987
Documentation Tool for Tivoli Identity Manager. 988
Tivoli Identity Manager Data Feed Reports . 988
Tivoli Access Manager Monitoring Solution . 989
Conclusion . 989

Glossary . 991

Related publications . 1009
IBM Redbooks . 1009
Other resources . 1010
Online resources . 1013
How to get IBM Redbooks . 1014
Help from IBM . 1014

Index . 1015

 Contents xxi

xxii Enterprise Security Architecture Using IBM Tivoli Security Solutions

Preface

This IBM® Redbooks® publication looks at the overall Tivoli® Enterprise™
Security Architecture, focusing on the integration of audit and compliance,
access control, identity management, and federation throughout extensive
e-business enterprise implementations. The available security product diversity
in the marketplace challenges everybody in charge of designing single-secure
solutions or an overall enterprise security architecture. With Access™ Manager,
Identity Manager, Federated Identity Manager, Security Compliance Manager,
Security Operations Manager, Directory Server, and Directory Integrator, Tivoli
offers a complete set of products designed to address these challenges.

This publication describes the major logical and physical components of each of
the Tivoli products, and it depicts several e-business scenarios with different
security challenges and requirements. By matching the desired Tivoli security
product criteria, it describes appropriate security implementations that meet the
targeted requirements.

Part 1, “Terminology and infrastructure” on page 1, introduces the foundation
needed for an enterprise-wide security architecture. We discuss the business
drivers, foundation IT technologies and the network topologies you will encounter
when designing your infrastructure. Finally, two specific components will be
explained in more detail because they belong in every IT infrastructure today: the
LDAP-based IBM Tivoli Directory Server and the IBM Tivoli Directory Integrator.

Part 2, “Managing access control” on page 161, focuses on the access control
systems of the security architecture and introduces the IBM Tivoli Access
Manager components.

Part 3, “Managing identities and credentials” on page 507, takes a closer look at
the identity and credential systems with the IBM Tivoli offerings Identity Manager
and Directory Integrator.

Part 4, “Managing federations” on page 653, takes us into the rapidly expanding
world of federated identity management and Web services security and
provisioning by introducing the IBM Tivoli Federated Identity Manager.

Part 5, “Managing security audit and compliance” on page 843, examines the
audit systems and explains how the IBM Tivoli Security Operations Manager and
IBM Tivoli Security Compliance Manager can be deployed effectively. It also
introduces the centralized IBM Tivoli Custom Auditing and Reporting Services.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. xxiii

This book is a valuable resource for security officers, administrators, and
architects who want to understand and implement enterprise security following
architectural guidelines.

The team that wrote this redbook
This IBM Redbooks publication fifth edition was produced by a team of
specialists from around the world working at the International Technical Support
Organization, Austin Center.

The team that wrote the fifth edition of this book is from left to right: Axel, Sujit, Norman,
Guilherme, Daniel, Veronica, and Chris

Axel Buecker is a Certified Consulting Software I/T Specialist at the
International Technical Support Organization, Austin Center. He writes
extensively and teaches IBM classes worldwide in the areas of software security
architecture and network computing technologies. He holds a degree in
Computer Science from the University of Bremen, Germany. He has 20 years of
experience in a variety of areas related to workstation and systems
management, network computing, and e-business solutions. Before joining the
ITSO in March 2000, Axel worked for IBM in Germany as a Senior I/T Specialist
in Software Security Architecture.

xxiv Enterprise Security Architecture Using IBM Tivoli Security Solutions

Ana Veronica Carreno is a Software Engineer in the IBM Software Group in
Colombia. She has worked at IBM for several years, specializing in IT security
solutions, helping her customers to approach their infrastructure requirements
and map them to business solutions. Ana Verónica holds a degree in Electronic
Engineering from Universidad de los Andes, Bogota Colombia.

Norman Field is an Advisory Software Engineer at IBM Software Group. He has
served as the lead interaction designer for Tivoli Federated Identity Manager
since the product's inception four years ago and is also the test lead for the Tivoli
Access Manager for Enterprise Single Sign-on. He has extensive experience
working with customers to translate business requirements into usable
technology. He has written white papers and field guides detailing how to solve
customer problems with IBM software. A resident of Santa Cruz, CA, Norman
holds a Masters of Science Degree in Applied Math from the University of
California, Los Angeles.

Christopher Hockings is a Senior IT Specialist within the IBM Software Group.
He was originally a software developer with the DASCOM company (original
creators of Tivoli Access Manager) and brought into IBM as part of that
acquisition. He is a team leader of a group that provides Tivoli Security pre-sales,
post-sales lab services, and Level 3 support for Tivoli Access Manager. He has
extensive experience working with customers in designing, deploying, and
supporting Tivoli Security products. He has published papers within the IBM
developer domain and is the moderator of the Tivoli Security discussion forum. A
resident of the Gold Coast, Australia, Christopher holds a Bachelor of Information
Technology and a Bachelor of Electronic Engineering from the Queensland
University of Technology, Brisbane, Australia.

Daniel Kawer is an IBM Software Solutions Architect working for GBM
Corporation, an IBM Alliance Company, located in San José, Costa Rica. He
holds a degree in computer science from the Costa Rica Institute of Technology.
He has a few years of experience in a variety of fields and his area of expertise is
design and architecture of enterprise security solutions.

Sujit Mohanty is a Senior Security Specialist with IBM Tivoli specializing in Tivoli
Security Operations Manager and ISS products. He has spent a number of years
in the area of information security research in a variety of areas (anti-virus, IDPS,
vulnerability scanning, and SIEM technologies). He attended the University of
Virginia for undergraduate study in systems engineering.

 Preface xxv

Guilherme Monteiro is an IT Security Architect with Companhia de Sistemas,
an IBM Business Partner in Brazil, with a strong focus on security solutions. He
has been involved with IBM security solutions since 1999, implementing
directories, access management, identity management, directory integration, risk
management, and developing custom solutions for key Brazilian private
companies. His company also has a strong position in Linux® security solutions,
with several successful implementations on this platform.

We extend our thanks to the teams who contributed to this IBM Redbooks
publication. The first edition team included:

Oleg Bascurov
Cynthia Davis
Stefan Fassbender
Mari Heiser
Rick McCarty
Guy Moins
Julien Montuelle
Jim Whitmore

The second edition team included:

Andrew Gontarczyk
Mari Heiser
Santosh Karekar
Patricia Saunders
Matteo Taglioni

The third/fourth edition team included:

Juliana Medeiros Destro
Michael Ferrell
Guilherme Monteiro
Erik Wilson

The following people helped to launch this project:

Phil Billin
David K. Jackson
Daniel Kipfer
Klaus Oberhammer
Larry Shick
Jim Whitmore

The following people contributed to the fifth edition of this redbook:

Peter Szczepankiewicz, Keith Sams, Sridhar Muppidi, Max Rodriguez, Mike
Gare, Jason Todoroff, Daniel Pitre, Ori Pomerantz
IBM U.S.

xxvi Enterprise Security Architecture Using IBM Tivoli Security Solutions

Eddie Hartman
Johan Varno
IBM Norway

Become a published author
Join us for a two-to-six week residency program! Help write an IBM Redbooks
publication dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You'll have the opportunity to team
with IBM technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xxvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

xxviii Enterprise Security Architecture Using IBM Tivoli Security Solutions

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-6014-04
for Enterprise Security Architecture Using IBM Tivoli Security Solutions
as created or updated on August 6, 2007.

August 2007, Fifth Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
We added information for the following IBM Tivoli products and components:

� Tivoli Access Manager for Enterprise Single Sign-On Version 6.0 is covered
in the following chapters:

– Chapter 15, “Access Manager for Enterprise Single Sign-On” on
page 449.

– Chapter 16, “Tivoli Access Manager for Enterprise Single Sign-On
scenario” on page 491.

� Tivoli Identity Manager Express Version 4.6 is covered in the following
chapters:

– Chapter 20, “Identity Manager Express structure and components” on
page 613.

� Tivoli Federated Identity Manager Business Gateway Version 6.1 is
introduced in the following chapter:

– The information about the new Federated Identity Manager Business
Gateway is incorporated throughout the chapters in Part 4, “Managing
federations” on page 653.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. xxix

� Tivoli Security Operations Manager Version 3.1 is covered in the following
chapters:

– Chapter 28, “Security Operations Manager topology and infrastructure” on
page 857.

– Chapter 29, “Building a security information event management system”
on page 889.

� An appendix has been added with productivity and functional enhancements
for Tivoli Identity Manager and Tivoli Access Manager.

Changed information
We updated information for the following IBM Tivoli products:

� Tivoli Security Compliance Manager Version 5.1.1
� Tivoli Directory Integrator Version 6.1.1
� Tivoli Identity Manager Version 4.6
� Tivoli Privacy Manager has been removed

We reorganized some of the chapters that discuss the Tivoli Access Manager
components in conjunction with the federated single sign-on principles.

We extended the discussion on single sign-on technologies and moved it from
the appendix to Part 1, “Terminology and infrastructure” on page 1.

September 2006, Fourth Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

Changed information
This fourth edition focuses solely on updating information pertaining to Tivoli
Access Manager for Operating Systems Version 6.0 in the following chapters:

� Chapter 12, “Access Manager for Operating Systems” on page 381.
� Chapter 13, “Access Manager for Operating Systems business scenario” on

page 413.

April 2006, Third Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

xxx Enterprise Security Architecture Using IBM Tivoli Security Solutions

New information
We added information for the following IBM Tivoli products and components:

� Tivoli Security Compliance Manager Version 5.1 is covered in the following
chapters:

– Chapter 30, “Compliance management with Tivoli Security Compliance
Manager” on page 903

– Chapter 31, “Tivoli Security Compliance Manager scenarios” on page 925

� Tivoli Federated Identity Manager Version 6.0 is introduced in the new Part 4,
“Managing federations” on page 653, which includes the following new
chapters:

– Chapter 22, “Business context for identity federation” on page 655
– Chapter 23, “Federation concepts” on page 679
– Chapter 24, “Federated Identity Manager” on page 721
– Chapter 26, “Tivoli Federated Identity Manager patterns” on page 803

� The IBM Tivoli Common Auditing and Reporting Service, which is a
component that is shipping with Tivoli Access Manager for e-business, is
introduced in Chapter 27, “Introducing IBM Tivoli Common Auditing and
Reporting Service” on page 845.

Changed information
We updated information about the new versions for the following IBM Tivoli
products:

� Tivoli Directory Server Version 6.0
� Tivoli Directory Integrator Version 6.0
� Tivoli Access Manager for e-business Version 6.0
� Tivoli Identity Manager Version 4.6

We also reorganized the chapters that discuss the Tivoli Access Manager
components.

In addition to the product specific changes, we moved the discussion about
MASS into Appendix A, “Method for Architecting Secure Solutions” on page 947,
and added a discussion about single sign-on in Appendix 4, “Single sign-on
technologies” on page 149.

 Summary of changes xxxi

xxxii Enterprise Security Architecture Using IBM Tivoli Security Solutions

Part 1 Terminology and
infrastructure

In Part 1 we introduce the business context for enterprise IT security drivers and
take a closer look at architectures and network models. We also use the
infrastructure context in this part to introduce directory technologies and discuss
the IBM Tivoli Directory Server and Directory Integrator products.

Part 1

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 1

2 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 1. Business context

An Enterprise Security Architecture is the design of the processes and
technology to achieve security. A proven methodology is important for this
design. All security architectures start with defining the business context, that
being the balance of business drivers and acceptable risk. This business context
is the result of decisions made from the analysis of internal and external factors.
Security policies are the guidelines for this business context. The resulting
architecture is a functional combination of process and technology to achieve the
business goal within boundaries of the business context. The architecture must
fit this business context for the enterprise to achieve security, and to provide legal
and regulatory compliance.

1

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 3

1.1 Security, risk, and compliance
Security is the confidence that systems are operating as expected.

Systems can be accessed and used only within the confines of the business
rules. Vulnerabilities are protected from exploit. This is commonly viewed as the
security CIA triad, as in confidentiality, integrity, and availability. Data is disclosed
only to those authorized to use it (confidentiality). Data is not modified in an
unexpected or unauthorized manner (integrity). Data is available when needed
by the system (availability). Some may add non-repudiation to this triad as a
fourth pillar of security. Non-repudiation is the ability to determine the entity that
performs an activity on the data such as the actual sender of a message. It also
extends to include that data is protected in transit. Non-repudiation is usually
implemented with some combination of encryption and digital signatures.
Though we treated these as data centric, they are also easily treated as system
or functional qualities.

Security is viewed as the boundary of acceptable risk for the organization.

The security implementation is based on the analysis of risks, and how to
mitigate them. It is important to include current business drivers and the risks
they pose in this analysis. The risk analysis determines the balance point
between risk and benefit to the business. This analysis provides the business
context.

Compliance proves that systems operate according to security expectations.

This includes operation within the boundaries of acceptable risk and within the
business context. The business context includes laws and regulations, which can
result in a potentially different definition of security and compliance for every
enterprise. The differences result from both the methods and the factors used in
analyzing the business context. The commonality is that the security policy can
be defined by determining acceptable risk, how to achieve (control, mitigate or
accept) that risk, and how to verify that the security is implemented as specified
(compliance).

The business context defines the security policies, which are usually organized
hierarchically, starting with a top level organizational security policy. This
organizational policy provides broad guidance on the organizations priorities and
concerns for security. The next level consists of more fine grained policies to
implement the top level policy, and it may consist of several layers of policies
itself. At this point the policies start to define technology requirements at a high
level. Below this level you can find procedures and practices describing the
technical and process details to implement the security policies. You can find
more details in 1.5, “Security policies” on page 11.

4 Enterprise Security Architecture Using IBM Tivoli Security Solutions

An organization’s security maturity impacts the amount of risk analysis
necessary to define the business context and design security architecture. This
maturity involves security policies and how applicable they are to the design.
Regardless of that maturity some degree of analysis is needed to determine the
risk and resulting policies, procedures, processes, and technology for the
security architecture.

Security requirements can be categorized with guidance from established
sources into a set of functions, or providing specific funtionality. These can be
used to define the components and services necessary for a security
architecture.

Many techniques exist for identifying and analyzing risks and determining
mitigation. Guidance is needed as to the areas to consider when working
towards a security policy. This guidance is often found in the British Standard
7799 (BS7799). Although there might be other ways of addressing enterprise
security, we take a closer look at BS7799 to present the enormous scope of this
task.

1.2 The BS7799 security standard
The British Standard 77991 is the most widely recognized security standard in
the world. The last major publication was in May 1999, an edition that included
many enhancements and improvements on previous versions. When republished
in December 2000, it evolved into the International Organization for
Standardization 17799 (ISO/IEC 17799). 17799 was republished again in 2005
as ISO/IES 17799:2005(E) with some revisions in areas covered.

BS7799 (ISO17799) is comprehensive in its coverage of security issues. It
contains a significant number of control requirements, some extremely complex.
Compliance with BS7799 is, consequently, a far from trivial task, even for the
most security conscious of organizations. Full certification can be even more
daunting.

It is therefore recommended that BS7799 is approached in a step-by-step
manner. The best starting point is usually an assessment of the current position
or situation, followed by an identification of the changes needed for BS7799
compliance. From here, planning and implementing must be rigidly undertaken.

This section is intended to help you understand the 10 different categories that
have to be considered when applying an overall enterprise security approach.

1 RiskServer, Security Risk Analysis, ISO17799, Information Security Policies, Audit and Business Continuity,
http://www.riskserver.co.uk/

 Chapter 1. Business context 5

http://www.riskserver.co.uk/

After the categories have been described briefly, we talk about the next step in
the implementation of a security policy. The categories are:

1. Business continuity planning

The objective of this section is to counteract interruptions to business
activities and critical business processes from the effects of major failures or
disasters.

2. System access control

The objectives of this section are:

a. To control access to information.

b. To prevent unauthorized access to information systems.

c. To ensure the protection of network services.

d. To prevent unauthorized computer access.

e. To detect unauthorized activities.

f. To ensure information security when using mobile computing and
tele-networking facilities.

3. System development and maintenance

The objectives of this section are:

a. To ensure that security is built into operational systems.

b. To prevent loss, modification, or misuse of user data in application
systems.

c. To protect the confidentiality, authenticity, and integrity of information.

d. To ensure that IT projects and support activities are conducted in a secure
manner.

e. To maintain the security of application system software and data.

4. Physical and environmental security

The objectives of this section are:

a. To prevent unauthorized access, damage, and interference to business
premises and information.

b. To prevent loss, damage, or compromise of assets and interruption to
business activities.

c. To prevent compromise or theft of information and information processing
facilities.

6 Enterprise Security Architecture Using IBM Tivoli Security Solutions

5. Compliance

The objectives of this section are:

a. To avoid breaches of any criminal or civil law; statutory, regulatory, or
contractual obligations; and security requirements.

b. To ensure compliance of systems with organizational security policies and
standards.

c. To maximize the effectiveness of and to minimize interference to and from
the system audit process.

6. Personnel security

The objectives of this section are:

a. To reduce risks of human error, theft, fraud, or misuse of facilities.

b. To ensure that users are aware of information security threats and
concerns and are equipped to support the corporate security policy in the
course of their normal work.

c. To minimize the damage from security incidents and malfunctions and
learn from such incidents.

7. Security organization

The objectives of this section are:

a. To manage information security within the company.

b. To maintain the security of organizational information processing facilities
and information assets accessed by third parties.

c. To maintain the security of information when the responsibility for
information processing has been outsourced to another organization.

8. Computer and network management

The objectives of this section are:

a. To ensure the correct and secure operation of information-processing
facilities.

b. To minimize the risk of systems failures.

c. To protect the integrity of software and information.

d. To maintain the integrity and availability of information processing and
communication.

e. To ensure the safeguarding of information in networks and the protection
of the supporting infrastructure.

f. To prevent damage to assets and interruptions to business activities.

 Chapter 1. Business context 7

g. To prevent loss, modification, or misuse of information exchanged between
organizations.

9. Asset classification and control

The objectives of this section are to maintain appropriate protection of
corporate assets and to ensure that information assets receive an appropriate
level of protection.

10.Security Policy

The objectives of this section are to provide management direction and
support for information security.

Along with general areas to consider similar to those outlined in BS7799, there
are also business drivers to consider in defining the business context.

1.3 Common business drivers
The business context is determined by identifying risks and determining the
appropriate way to mitigate these risks. Those risks come from internal and
external (or blended) business drivers. A list of some common business drivers
that impact security is found below:

� Asset value:

Asset value relates to the underlying value of the transaction in the system.
For an e-retailer these are tangible assets. To a financial services company
the asset may be the client information or other data used in transactions of
the system. These are the assets behind the system processes.

� Legal or regulatory

Legal and regulatory refers to the externally imposed conditions on the
transactions in the business system, and the company. This includes the rules
and policies imposed by regulatory and government agencies. The amount of
regulation and steps to ensure compliance are factored in this driver. This
would include privacy issues, the ability to prove the transaction initiator, and
proving compliance.

� Time to market

Time to market is an external business driver, reflecting the pressure to gain a
competitive advantage by rapid implementation of the system. A short time to
market may result in cutting corners, adding or delaying some security
controls to meet the deadline.

8 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Simple to use

Simple to use reflects the need or desire for the system to be intuitive to the
user community. This is often a driver for single sign-on or federated identity
to reduce the number of credentials required by users.

� Risk tolerance

This is a measure of the organizations tolerance for risk. A firm with a low
tolerance for risk commits to greater security around its business processes
and systems. A risk averse firm shows well defined security and data policies.

� Complex organizational environment

The complexity of an organization impacts how business decisions and
processes are structured. A complex organization results in additional paths
of communication and decision making relating to the business process and
system. The complexity impacts security decisions as well.

� Mission critical (availability)

Mission critical reflects the level of availability required for the business
system. A mission critical system requires high availability to prevent a loss of
revenue to the firm. A funds transfer system to allow float for the company’s
funds may be invisible to the average user, but highly critical to the company.
This driver leads to a system that is easy to maintain and update, and also
highly stable.

� Protect the corporate image

This driver captures the firm’s desire to protect its image, or brand(s). This
measures the desire to protect the intangible image of the firm. The less likely
the firm wants negative publicity from a security breech, the stronger this
driver.

� Complex IT environment

A complex IT environment reflects the environment on which the business
system will be placed. A standalone facility just for our system represents the
lowest complexity. A hosting facility with other systems, and other firms
represents a more complex environment. An environment with a larger
number or systems, or varied network access paths, or with complex
architecture is a complex IT environment.

� Complex system

This measure the complexity of the system itself.A complex system involves
many linked applications (or systems), many different protocols, wide
variation in user types, and access to many different classes of data.

 Chapter 1. Business context 9

� High risk IT environment

This measure the environment’s susceptibility to attacks. An environment (or
system) likely to be vulnerable to attacks would be high risk. The vulnerability
could be due to the underlying systems, track record of hackers attacking this
type of system, or insecure networks or designs.

1.4 Risk analysis and mitigation
Every organization faces risk. That risk requires involvement of top level
management to decide the major security risks for that type of business and how
to address them. Risk analysis involves assessing what could go wrong, how
likely it is to occur, and what damage results from that event. Elements to
analyze include:

� Threats: The events, forces or persons that pose the risk. This could be an
event to exploit a vulnerability.

� Probability: The likelihood this threat would occur.

� Damage: The impact of the threat being exploited. This includes loss of
service, revenue, potential revenue, and image among and other business
specific elements.

� Trade-offs: Evaluating two competing business drivers and evaluating the
advantages and disadvantages of each to reach a compromise solution. A
common technique to analyze these trade offs is a business impact analysis.

The areas from BS7799 and the business drivers present general guidance on
areas to consider when analyzing risk. The result of the analysis is a collection of
risks to the organization.

Risk mitigation is determining how to handle those risks. For each risk area, the
options are to:

� Reduce: Lower the risk through controls, or technology.

� Transfer: Offload the risk by placing it on some other entity.

� Accept: Decide the risk is acceptable based on the benefit.

� Ignore: Choose not to reduce, transfer or accept the risk. This is equivalent to
accepting the risk, but without due diligence.

The goal is to reduce, or eliminate, the risks identified. A security policy is a
mechanism to manage risks. This policy involves a combination of process and
technology to bring the risk to an acceptable level as depicted in Figure 1-1 on
page 11.

10 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 1-1 Reducing risk

In Figure 1-1 we start with the initial risk level. We see that the security policy
provides guidance on controls, processes, and technology to lower the risk. The
security policy prevents, protects from, or mitigates the risk reducing severity.
Risk is not eliminated but reduced. An organization establishes what is the
acceptable risk level, either quantitatively or qualitatively. This can be through
business impact analysis, or other techniques to balance risks and benefits. For
example, a business may choose to accept a higher risk to accommodate such
drivers as time to market and ease of use. The security policy must reduce the
residual risk to, or below the level acceptable to the organization for the security
policy to be effective. This residual risk can result from an inability to further
reduce the risk, or a conscious decision not to invest more resources to do so.

1.5 Security policies
A security policy is driven by the corporate decisions regarding risk based on the
business context. It is the result of determining what is at risk, and how to reduce
that risk. The same set of threats and risks may be viewed as less severe by a
more risk accepting organization. This means that the security policy must be
individually crafted.

A security policy is somewhat a misnomer as the policy is really a set of layers of
policies, on top of procedures and practices. These provide the framework for the

Residual Risk

Security Policy

Initial Risk
From risk analysis Process

Technology

Controls

Prevent MitigateProtect

Organization
Risk Level

Unacceptable

Acceptable

 Chapter 1. Business context 11

technical side of the security architecture. It is important that a standard and
proven methodology be used for risk identification, mitigation, and developing
security policies. This can be handled by external consultants such as IBM
Global Services.

The top layer of the security policies is the corporate security policy. It sets the
high-level direction for the organization. It’s scope is organization wide and
represents a general statement of the security goals. This corporate policy is
both static, and non-technical, being goal driven and not specifying technologies.
It provides broad guidance for the organization, leaving more dynamic and
technical details to lower policy layers. As shown in Figure 1-2 the next policy
layer is usually inscribed to standards.

Figure 1-2 Dynamics for policy, standards, practices, and procedures

Standards take the general goals and restates them in terms of specific
technology areas. Below this are practices and procedures, the most technical
and dynamic layers of policies. These represent the details needed to implement
the overall security policy. Practices are detailed steps to implement the
technology. Procedures are steps used to interface the technology with the
environment (users, operators, and so on). At this layer the procedures may
specify products and specific processes to be used.

For example, one requirement of corporate policy states that authentication must
occur only once for ease of use. A standard would state a more specific

Corporate
Policy

StandardsStandardsStandardsStandards

Procedures Practices Procedures Practices Procedures

Technical

Static

12 Enterprise Security Architecture Using IBM Tivoli Security Solutions

requirement stating that a single sign-on technology is needed across all
applications and systems. The practices and procedures would specify identity
management and access control products, as well as processes to populate and
manage users.

1.5.1 Security policy lifecycle
The lifecycle of a security policy includes five basic steps as shown in Figure 1-3
on page 14:

� Assess risk resulting from the business context for the organization. This
assessment provides the business context necessary to develop the security
policies.

� Develop security policies: This is the development of the layers of policies
(standards, practices and procedures) to put the security in place. These
policies are communicated to the organization as needed.

� Implement security policies.: Security policies are put into effect, and used to
manage normal operation.

� Manage security policies: Security policies are reviewed for effectiveness, and
currency.

� Audit security policies: Audit is used to measure both the degree to which the
policy is adhered to and identify any gaps in the policy. This is a logical
jumping off point to re-assess the business context, looping back into the risk
assessment step.

This is a common approach adopted in many methodologies. Audit results often
point back to the first step to reassess business context and risk and then refine
or revise the security policies. A proactive approach is to schedule regular review
cycles, and adjust policies accordingly. This lifecycle applies to all levels of
security policies, from the corporate level down to the practice and procedure
level.

Attention: Policy is a very common term and in many products you will find
specific policies sections. These are the product-related policies that are
covered in the practice or procedure documents. The corporate policy is not
related to products and is a high-level document.

 Chapter 1. Business context 13

Figure 1-3 The five steps in defining your IT security

1.6 Other considerations
Let us refocus one more time and state that a security policy is written to:

� Provide enterprise-wide rules.
� Highlight risks and the way to cope with it.
� Formalize the security measures that must be applied.
� Set up the expectations between the employee and the enterprise.
� Clarify the procedures to follow.
� Provide legal support in case of problems.

A security policy provides guidance to employees and the organization as to
acceptable actions and expectations relating to an organizations’s Information
Technology. To be successful these policies must be:

� Clear and not subject to interpretation. This is especially true where violation
of policies may result in legal action.

� Published and available to those impacted.

� Reviewed and updated regularly to reflect changes in business context, risk,
and regulation.

Communicate

Policies

AuditManage

RiskImplement

Develop

O
perate

As
se

ss

Review

14 Enterprise Security Architecture Using IBM Tivoli Security Solutions

It is more efficient to get the staff enforcing a policy or standard they understand
than having them fight against it. They are a key part of the global security level
of the enterprise, and when they try to bypass some policy, they put your
enterprise in danger.

1.6.1 The human factor impact
The most common source of security problems is employees making mistakes.
The actual threat from hackers and viruses is much smaller than most people
would anticipate. Figure 1-4 details the various sources.

Figure 1-4 Principal threat sources

The biggest threat comes from inside. A total of 71% of problems are directly
related to employees, with 55% not intending to cause damage.

Having policies and procedures in place helps you address your risks. However,
they will not directly cover the human factor errors. This is where technology
serves a useful role in providing security.

Managing and auditing your security enables you to perform checks and discover
some errors and correct them. However, if discovered, they could have already
been the cause of a security breach.

Another important factor in managing and implementing your procedures is in
using computer assistance with automatic verifications in order to reduce the
possibility of human errors. A good example is the management of user accounts
and access rights. Even today, communication about a new employee or one
transferring from one department to another is still being implemented using mail
or paper. These steps, with a lot of human interaction, are the most error-prone
processes, easily leading to assigning too many or wrong access rights, or even
keeping an account alive for somebody who has left the enterprise.

Human Errors

Dishonest
Employees

Disgruntled
Employees

Viruses

Outsider Attacks

 Chapter 1. Business context 15

This risk in this example, introduced by the human factor, can be partially
mitigated by using a workflow, a user management tool, or both. It will be
configured to apply the standards at all times. Some of these tools use workflow
systems that can even implement the procedures. This will not prevent all errors
but will cover a lot of them. Using a central repository also increases the global
security by avoiding discrepancies between the various access control systems.
The way your corporate policy and standards are applied has a direct impact on
the quality and the level of security.

1.6.2 Legal and regulatory concerns
Legal and regulatory concerns must be considered when determining the
business context, analyzing risk, and developing security policies. There are
several well known recent regulatory guidelines impacting differing industry
sectors:

� Gramm-Leach-Bliley Act (GLBA; also known as the Financial Services
Modernization act). Information about GLBA may be found at either of the
following Web sites:

http://banking.senate.gov/conf/
http://www.ftc.gov/privacy/privacyinitiatives/glbact.html

� Sarbanes-Oxley Act (SOX)

http://sarbanes-oxley.com

� Health Insurance Portability and Accountability Act (HIPAA)

http://www.cms.hhs.gov/hipaa

� U.K. Data Protection Act 1998

http://www.opsi.gov.uk/acts/acts1998/19980029.htm

� European Data Directive 95/46/EC

http://www.cdt.org/privacy/eudirective/EU_Directive_.html

� Basel II

http://www.bis.org/publ/bcbsca.htm

16 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.ftc.gov/privacy/privacyinitiatives/glbact.html
http://banking.senate.gov/conf/
http://sarbanes-oxley.com
http://www.cms.hhs.gov/hipaa
http://www.opsi.gov.uk/acts/acts1998/19980029.htm
http://www.cdt.org/privacy/eudirective/EU_Directive_.html
http://www.bis.org/publ/bcbsca.htm

1.7 Closing remarks
Enterprise Security Architecture is the design of processes and technology to
achieve security. It is not merely technology, nor merely process, but a mixture.
The business context sets the stage to determine risks, and developing a
security policy. The implementation of this policy determines the processes,
technology, and products that are needed.

We have not discussed specific steps to design the security architecture based
on the policy. We approach this in Chapter 2, “Common security architecture and
network models” on page 19. You need someone capable of applying a set of
rules and guides to the unique facts of your enterprise: an architect who follows a
methodology that is designed to help describe and develop a complex security
architecture. IBM has developed and uses a Method for Architecting Secure
Solutions (MASS) that reflects the current impact of thriving e-business
environments. We explore this methodology as part of Chapter 2, “Common
security architecture and network models” on page 19, and in more detail in
Appendix A, “Method for Architecting Secure Solutions” on page 947.

Network topographies play an immensely important role for the enterprise
security IT architecture, and without detailed knowledge of where to establish
perimeter security components, one cannot succeed. Section 2.2, “Common
network components” on page 26, talks about these aspects by laying a
foundation of understanding about why the network becomes more and more
critical to the overall IT infrastructure and security.

Finally, infrastructure elements are needed to provide cross-system services. A
directory is one of these components that cannot be mapped into one distinct
category but offers a broad spectrum of capabilities. Chapter 3, “Directory
technologies” on page 49, addresses these capabilities.

Note: Customers are responsible for ensuring their own compliance with
various laws and regulations such as those mentioned above. It is the
customers sole responsibility to obtain the advice of competent legal counsel
regarding the identification and interpretation of any relevant laws that may
affect the customer’s business and any actions the customer may need to take
to comply with such laws. IBM does not provide legal, accounting or auditing
advice, or represent that its products or services ensure that the customer is in
compliance with any law.

 Chapter 1. Business context 17

18 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 2. Common security
architecture and network
models

So far we have established how to develop security policies based on risk
analysis of the business context. This chapter moves us to designing the security
architecture. We have indicated that solutions vary based upon the business
context and decisions about risk for each organization. There are though
common security subsystems that can be leveraged in developing the security
architecture. There are also common network models that are used to provide
security in the infrastructure.

2

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 19

2.1 Common security architecture subsystems
Chapter 1, “Business context” on page 3, showed us that the business context,
risk analysis and mitigation, and security policies may be unique for every
organization. This does not preclude models for security. A similar model may be
used for several organizations, with differences found in configuration and
procedures around the technology to meet the unique goals of the organization’s
security policy. This makes the task of designing a security architecture
somewhat less daunting.

There also exists a set of common subsystems for providing functional security
services. These are identified in the IBM developed Method for Architecting
Secure Solutions (MASS). The MASS methodology is grounded on Common
Criteria, which is located in Appendix A, “Method for Architecting Secure
Solutions” on page 947. It represents one method for security architecture, and
its subsystems are used throughout this book.

2.1.1 Common Criteria
The MASS methodology was designed after careful evaluation of security
standards, such as BS7799, and the Common Criteria. These standards
represent internationally accepted “best practices” for design and measurement
of security, but do not specify specific technologies or products.

Common Criteria provide a taxonomy for evaluating security functionality through
a set of functional and assurance requirements. The Common Criteria include 11
functional classes of requirements:

� Security audit
� Communication
� Cryptographic support
� User data protection
� Identification and authentication
� Management of security functions
� Privacy
� Protection of security functions
� Resource utilization
� Component access
� Trusted path or channel

These 11 functional classes are further divided into 66 families, each containing
a number of component criteria. There are approximately 130 component criteria
currently documented, with the recognition that designers may add additional
component criteria to a specific design. There is a formal process for adopting

20 Enterprise Security Architecture Using IBM Tivoli Security Solutions

component criteria through the Common Criteria administrative body, which can
be found at:

http://csrc.nist.gov/cc/

While these classes and their families represent functional areas for
requirements, they do not afford the economy and reusability of specific security
subsystems offering services.

2.1.2 MASS security subsystems
A security architecture must be designed through a consistent and proven
methodology. MASS was designed to abstract the functional classes of the
Common Criteria into an aggregation that reflects a small group of security
functions, which may (and usually do) interact with other function groups.

An analysis of the 130 component-level requirements in relation to their function
within an NIS solution suggests a partitioning into five operational categories:

� Audit
� Access control
� Flow control
� Identity and credentials
� Solution integrity

A summary mapping of CC classes to functional categories is provided in
Table 2-1. Realize that this is not a one-to-one mapping—a single CC functional
class (for example, data protection) may appear in more than one MASS
functional category (for example, access control, flow control, identity/credential,
and solution integrity).

Table 2-1 Placing Common Criteria classes in functional categories

Functional category Common Criteria functional class

Audit Audit, component protection, and resource utilization

Access control Data protection, component protection, security
management, component access, cryptographic support,
identification and authentication, communication, and
trusted path/channel

Flow control Communication, cryptographic support, data protection,
component protection, trusted path/channel, and privacy

Identity/credentials Cryptographic support, data protection, component
protection, identification and authentication, component
access, security management, and trusted path/channel

 Chapter 2. Common security architecture and network models 21

http://csrc.nist.gov/cc/

These five subsystems may be meshed working interactively with each other in a
security architecture as shown in Figure 2-1. The interaction may be
communication between various products in each subsystem or processes to
link, or manage the interaction.

Figure 2-1 IT security processes and subsystems

A brief description of each of the five security subsystems is provided. A more
detailed description, along with how these subsystems aggregate the Common
Criteria functions and classes, is in Appendix A, “Method for Architecting Secure
Solutions” on page 947. Each of these subsystems may interact with the other
subsystems to provide the security solution.

Security audit subsystem
The purpose of this subsystem is to provide proof of compliance to the security
policy. A security audit subsystem is responsible for capturing, analyzing,
reporting, archiving, and retrieving records of events and conditions within a
computing solution. Security audit analysis and reporting can include real-time

Solution integrity Cryptographic support, data protection, component
protection, resource utilization, and security management

Functional category Common Criteria functional class

22 Enterprise Security Architecture Using IBM Tivoli Security Solutions

review, as implemented in intrusion detection components, or after-the-fact
review, as associated with forensic analysis in defense of repudiation claims. The
security audit subsystem provides:

� Collection of security audit data, including capture of the appropriate data,
trusted transfer of audit data, and synchronization of chronologies

� Protection of security audit data, including use of time stamps, signing events,
and storage integrity to prevent loss of data

� Analysis of security audit data, including review, anomaly detection, violation
analysis, and attack analysis using simple heuristics or complex heuristics

� Alarms for loss thresholds, warning conditions, and critical events

Solution integrity subsystem
The purpose of the solution integrity subsystem in an IT solution is to address the
requirement for reliable and correct operation of a computing solution in support
of meeting the legal and technical standard for its processes. The solution
integrity subsystem may rely on the audit subsystem to provide real-time review
and alert of attacks, outages, or degraded operations, or after-the-fact reporting
in support of capacity and performance analysis. The solution integrity
subsystem provides:

� Integrity and reliability of resources

� Physical protection for data objects, such as cryptographic keys, and physical
components, such as cabling, hardware, and so on

� Continued operations including fault tolerance, failure recovery, and
self-testing

� Storage mechanisms: cryptography and hardware security modules

� Accurate time source for time measurement and time stamps

� Prioritization of service via resource allocation or quotas

� Functional isolation using domain separation or a reference monitor

� Alarms and actions when physical or passive attack is detected

Access control subsystem
The purpose of an access control subsystem in an IT solution is to enforce
security policies by gating access to, and execution of, processes and services
within a computing solution via identification, authentication, and authorization
processes, along with security mechanisms that use credentials and attributes.
The credentials and attributes used by the access control subsystem along with
the identification and authentication mechanisms are defined by a corresponding
credential subsystem. The access control subsystem may feed event information
to the audit subsystem, which may provide real-time or forensic analysis of

 Chapter 2. Common security architecture and network models 23

events. The access control subsystem may take corrective action based on alert
notification from the security audit subsystem. The access control subsystem
provides:

� Access control enablement

� Access control monitoring and enforcement

� Identification and authentication mechanisms, including verification of
secrets, cryptography (encryption and signing), and single-use versus
multiple-use authentication mechanisms

� Authorization mechanisms, to include attributes, privileges, and permissions

� Access control mechanisms, to include attribute-based access control on
subjects and objects and user-subject binding

� Enforcement mechanisms, including failure handling, bypass prevention,
banners, timing and timeout, event capture, and decision and logging
components

Information flow control subsystem
The purpose of an information flow control subsystem in an IT solution is to
enforce security policies by gating the flow of information within a computing
solution, affecting the visibility of information within a computing solution, and
ensuring the integrity of information flowing within a computing solution. The
information flow control subsystem may depend on trusted credentials and
access control mechanisms.

This subsystem may feed event information to the security audit subsystem,
which may provide real-time or forensic analysis of events. The information flow
control subsystem may take corrective action based on alert notification from the
security audit subsystem. The information flow control subsystem provides:

� Flow permission or prevention

� Flow monitoring and enforcement

� Transfer services and environments: Open or trusted channel, open or trusted
path, media conversions, manual transfer, and import to or export between
domains

� Observe mechanisms: To block cryptography (encryption)

� Storage mechanisms: Cryptography and hardware security modules

� Enforcement mechanisms: Asset and attribute binding, event capture,
decision and logging components, stored data monitoring, rollback, and
residual information protection and destruction

24 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Identity and credential subsystem
The purpose of a credential subsystem in an IT solution is to generate, distribute,
and manage the data objects that convey identity and permissions across
networks and among the platforms, the processes, and the security subsystems
within a computing solution. In some applications, credential systems may be
required to adhere to legal criteria for creation and maintenance of a trusted
identity used within legally binding transactions.

A credential subsystem may rely on other subsystems in order to manage the
distribution, integrity, and accuracy of credentials. A credential subsystem has,
potentially, a more direct link to operational business activities than the other
security subsystems, owing to the fact that enrollment and user support are
integral parts of the control processes it contains. A credential subsystem may
include the following functional requirements:

� Single-use versus multiple-use mechanisms, either cryptographic or
non-cryptographic

� Generation and verification of secrets

� Identities and credentials to be used to protect security flows or business
process flows

� Identities and credentials to be used in protection of assets: integrity or
non-observability

� Identities and credentials to be used in access control: identification,
authentication, and access control for the purpose of user-subject binding

� Credentials to be used for purposes of identity in legally binding transactions

� Timing and duration of identification and authentication

� Lifecycle of credentials

� Anonymity and pseudonymity mechanisms

Summary of the security subsystems model
The five security subsystems described here exist within every IT solution at the
conceptual level. The subsystems are aggregations of process and technology to
achieve security functionality. A single component may perform a function, or
interface with some or all of the subsystems. A subsystem may be distributed
amongst several components in an environment. All IT solutions require security
functions related to these subsystems. Security architecture is the design,
integration, and networking of the services and mechanisms associated with
these subsystems to provide security functionality.

 Chapter 2. Common security architecture and network models 25

2.2 Common network components
Networks are the mechanism for electronic communication between systems.
Just as we have found there are common security architecture subsystems, we
see common models of networks. The view of the network and security has
changed over time. Network security used to be focused on hard boundaries,
with limited access to and from the internet. Now networks must provide a variety
of communications in and out of an organization in a carefully controlled manner.
There must be a balance between blocking malicious traffic, and allowing traffic
in a controlled manner.

Networks are the foundation for e-business. They must be functioning in a secure
manner aligned with the business context. This means the network structure
must consider risks and mitigate them through its design. The basic security
architecture methods we’ve discussed of analyzing the business context,
assessing and mitigating risks apply to network design. We will see that this
evolves to some common network models for setting the level of security in
different network zones.

2.2.1 Building network boundaries
Network boundaries are used to isolate networking zones with differing security
policies. These boundaries are created to implement restrictions on the type of
traffic that is allowed in a zone. An example might be to restrict access to only
http traffic on port 80 and HTTPS traffic on port 443 inbound from the outside to a
zone of Web servers. We use a firewall to allow this traffic and block all others. In
its simplest case, a firewall is a device that implements a policy regarding
network traffic. It creates boundaries between two or more networks and stands
as a shield against unwanted penetrations into your environment. But as in
construction terms, it is not meant to be your only line of defense, rather a
mechanism to slow the progress of an intrusion.

One method of shielding information about the network the firewall protects is
through re-addressing the packets so that outbound traffic appears to have
originated from an address associated with the firewall itself. This re-addressing
is called Network Address Translation (NAT) and its primary function is to hide
the trusted network from untrusted networks.

Firewalls may be bundled with other features such as content filtering, Virtual
Private Network (VPN) functionality, and even authentication. We will deal with
firewalls without exploring these features. The next few sections describe several
basic firewall types and how they function.

26 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Packet filter firewall
A packet filter firewall uses a rule set to decide what traffic should be allowed,
and what should be blocked. It does this by analyzing individual network packets,
and matching them to a set of predefined rules. The packet filter will either allow
or disallow communication based on the information in the packet and the
direction it is heading. Elements that are evaluated against the rules are the
physical network interface the packet arrives on, the IP address the data is
coming from, the address the data is going to, the type of transport protocol
being used (UDP, TCP, ICMP), the source port, and the destination port.

This type of firewall is very simplistic and does not look at the packet’s application
layer data and does not track the state of the connection. It allows access
through the firewall with the least amount of inspection. Because it is simplistic, it
is the fastest firewall technology available.

Circuit level firewall
Circuit level firewalls confirm that a packet is either a connection request or a
data packet belonging to a connection. To validate the connection, the circuit
level firewall examines each connection to ensure that it offers a legitimate
handshake for the protocol being used. Data packets are not forwarded until the
process is complete.

This type of firewall stores information as dynamic rules regarding that
connection. These are in the form of a virtual state table about the session at the
transport layer. All incoming packets are compared against rules on the transport
layer. If the packet meets all conditions of the circuit table and rules, it is allowed.

Application layer firewall
Application layer firewalls examine the information in network packets but
operate at the application level. They view information as a data stream and not
as a series of packets; therefore, they are able to scan information being passed
over them and ensure that the information is acceptable based on their set of
rules and logic. This allows the firewall to make some intelligent decisions about
what to do with packets that pass through it.

Application layer firewalls generally take the form of specialized software and
proxy services, allowing no traffic directly between networks. They also have the
added feature of performing logging and auditing of traffic passing through them.
This enables them to communicate with an intrusion detection system (IDS) and
log information regarding an attack.

 Chapter 2. Common security architecture and network models 27

Dynamic packet filter firewall
Also referred to as stateful inspection, dynamic packet filtering does not examine
the contents of each packet. Instead, it compares certain key parts of the packet
to a database of trusted information. Information traveling from inside the firewall
to the outside is monitored for distinctive characteristics, then incoming
information is compared to these characteristics. If the comparison yields a
reasonable match, the information is allowed through. Otherwise it is discarded.

The dynamic packet filter acts at the network layer, and tracks each connection
negotiating all interfaces of the firewall to ensure that they are valid. It also
monitors the state of the connection and compiles the information in a state table.
Because of this, filtering decisions are based not only on administrator-defined
rules (as in static packet filtering) but also on context that has been established
by prior packets that have passed through the firewall. It also has an added
security measure with which it closes off ports until connection to the specific
port is requested. This is an effective counter to port scanning.

Routers
A router is an interconnection device that links discrete networks and forwards
packets between them. A router makes decisions on whether to forward a packet
between networks based on a configuration table of routes, and addresses
information in a packet. A router may be used to isolate the networks from one
another, preventing the traffic on one from unnecessarily spilling over to the
other. Why discuss routers within the context of firewalls? The two usually work in
conjunction with each other. A solid firewall installation uses a combination of the
technologies offered by routing and filtering. Figure 2-2 outlines a basic firewall
installation.

Figure 2-2 Basic Internet boundary network configuration

2.2.2 Intrusion detection and prevention
A discussion about the network would not be complete if we did not look at
intrusion detection and prevention devices. We can regard those as necessary

Internet

Router RouterFirewall

28 Enterprise Security Architecture Using IBM Tivoli Security Solutions

components of the security audit and solution integrity subsystems. Intrusion
detection and prevention are available for both network and hosts. Here we focus
on networks, but similar technologies exist for individual hosts as well.

Network intrusion detection systems (NIDS) monitor network traffic for unwanted
or improperly formatted traffic. This unwanted traffic could be between systems
in a network zone, or from the Internet into the network. Network sensors monitor
the traffic in a passive mode, logging packet information based upon rules in the
sensor. These rules can trigger alerts when suspicious or unwanted traffic
occurs.

The major drawback with intrusion detection devices comes from the sheer
volume of data produced. Every packet flowing past the sensor may be logged.
Filters and rules may reduce this, but regardless, NIDS produce a large amount
of data. Since a network may have several of these devices, data aggregation
also becomes a problem. Another issue is to find the balance between alerts that
view normal traffic as suspicious (false positives) and viewing suspicious traffic
as normal (false negatives). Finding the balance is called “tuning” the NIDS.
NIDS have matured in recent years to provide better data aggregation, and to
help reduce the effort to for tuning.

There are two distinct types of NIDS as well, signature based and heuristic.
Signature based NIDS require individual rules to be constructed for types of
traffic to either monitor or ignore. The rules tell the NIDS how to view traffic.
Heuristic based NIDS use statistical or algorithmic techniques to determine what
is normal traffic and what is suspicious. The advantage is alerts are based on
traffic patterns, and this allows for a more dynamic configuration of what is
normal, and what is not. Many claim this provides an advantage in day zero virus
incidents as unusual traffic activity is more likely to be detected in a heuristic
based NIDS.

A growing interest is placed on extending the detection of suspicious traffic to a
method to prevent it. This is the role of network intrusion protection systems.
These devices trigger an action to eliminate suspicious traffic when detected. Of
concern is the impact if traffic viewed as suspicious is blocked, but the traffic is
actually permissible.

As mentioned above, similar technologies exist for individual hosts on the
network. These include detection through signatures or heuristics, as well as
prevention.

 Chapter 2. Common security architecture and network models 29

2.3 Common network models
There are common network models for security architectures, with the similar
security requirements being grouped into zones. We start by looking at the
business context, and the various components. Building an architectural model
that represents key components and the connections or interfaces between
components allows for a visual picture of the business needs, as shown in
Figure 2-3.

Figure 2-3 High-level architectural model including all network components

Looking at the enterprise in this manner gives you the opportunity to visualize the
relationships among your basic systems. It should also enable you to drill down
into each component for the visualization of additional relationships.

Perhaps the most important relationship, in terms of this discussion, is that
security no longer comprises simply the network but surrounds the entire
enterprise, as depicted in Figure 2-4 on page 31.

Notice that this model incorporates the client. That action opens the door to
realizing that the Web is the network of organizations, where the traditional client
server model is now multi-dimensional and the security concerns are
immediately more complex. The user population increases geometrically,
identification of users and hosts accessing data is no longer easy, and controlling
access and availability becomes a major concern. The security needed to protect
your environment must evolve as well.

C
lie

nt

Business
Applications

Data

S
ys

te
m

s
M

an
ag

em
en

t

Network

30 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 2-4 How security fits into the enterprise

Does the evolution of your security requirements mean that you abandon the
methods you have used to date? Do you simplify the components by limiting your
approach to firewalls and antivirus software? No, it simply means that you must
globalize your security and localize your approach. Adopting, installing, and
independently managing different technologies from multiple vendors in many
locations will not give you the reduced time-to-market required in the e-business
environment or cost-effective management of your enterprise.

2.3.1 Localizing a global vision
A global vision suggests that the enterprise is more than its physical boundaries.
But localizing that perspective tames the complexity of trying to install,
implement, and manage a security solution. To achieve this, you can base the
solution on an integrated, standards-based architecture. An open and adaptable
architecture helps reduce unseen flaws that can compromise the entire
infrastructure and reduce the availability of applications and information.

Adding security design objectives into your architecture creates a framework to
organize and validate the business environment and security risks. The
immediate benefit is saved time and lower costs to reach the outcome. However,
using a tried methodology gives a better-quality result with a quantitative tracking
method. Security design objectives should outline how to achieve the following:

� Deploy and manage trusted credentials.

� Control access to stored information consistent with roles, responsibilities,
and privacy policies.

S e c u r i t y

C
lie

nt

B u s in e s s
A p p l ic a t io n s

D a t a

Sy
st

em
s

M
an

ag
em

en
t

N e t w o r k

 Chapter 2. Common security architecture and network models 31

� Control access and use of systems and processes consistent with roles and
responsibilities.

� Protect stored or “in transit” information consistent with its classification,
control, and flow policies.

� Assure the correct and reliable operation of components and services.

� Defend against attacks.

� Defend against fraud.

The IBM Method for Architecting Secure Solutions (MASS), discussed more in
Appendix A, “Method for Architecting Secure Solutions” on page 947, provides
you with design objectives or, more simply put, a starting point. MASS provides a
set of security domains to help define the threats to an enterprise (including
actors and users, flow control, authorization, physical security, and so on). It
enables you to assign information assets to your security domains that become
crucial in high-level designs of your architecture. We will use the MASS
developed security zones throughout the book.

Using Figure 2-5, think of these areas as uncontrolled, controlled, restricted,
secured, and external controlled. The client utilizes the network to access
applications and data. This client can be from either within your enterprise or
outside of it. Using the concept of security domains you can translate Figure 2-5
into something more targeted, as shown in Figure 2-7 on page 37.

Figure 2-5 Applying MASS domain concepts

Q ueues

C ustom er
Application

Q ueue
M anager M C A

M Q I AP I

O AM
C hannel Ex its

M
Q

C
O

N
N

EC
T

M
Q

O
PEN

M
Q

PU
T

M
Q

G
ET

O K ?

y/n

Client

Internet

Uncontrolled

Internet
DMZ

Controlled

Restricted

"red" uncontrolled zone

"yellow" controlled zone

"green" restricted zone

"blue" secure zone

Production
Zone

Management Zone

Secured

Intranet

Controlled

32 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Let us briefly explain what these domain categories stand for:

Uncontrolled Refers to anything outside the control of an organization.
Access from the uncontrolled environment to systems in
the controlled zone could be via a wide number of
channels.

Controlled Restricts access between uncontrolled and restricted (a
traditional DMZ).

Restricted Access is restricted and controlled. Only authorized
individuals gain entrance and there is no direct
communication with external sources (Internet).

Secured Access is available only to a small group of highly trusted
users. Access to one secured area does not necessarily
give access to another.

External controlled An external zone in which data is stored by business
partners external to the systems where there is limited
trust in the protection of data (for example, credit
reporting agencies, banks, and government agencies).

Constructing your environment on this manner enables internal users to “see”
out, but external users cannot “see” in. The external users access is restricted.
The benefits of constructing security domains this way are:

� They are clear and efficient.

� They are easy to explain.

� They are easy to work with.

� They provide a complete design and implementation view, enabling you to
avoid errors.

� Fewer errors mean a lower risk of exposure and loss.

� Consistent use of recognized standards (Common Criteria, IBM Architecture
Description Standard).

MASS uses the Common Criteria definition of risk management as a framework,
identifying four steps in risk management:

� Identification of vulnerabilities
� Identification of threats or threat agents
� Determination of the risk imposed
� Identification of available countermeasures

Note: The breaks between each network zone indicate the use of a firewall
that clearly delineates each perimeter from the next.

 Chapter 2. Common security architecture and network models 33

Security risk management plays a big part in designing a secure solution, but so
does security assurance. If we define the risks to the system we must also
assure that we countermeasure those risks providing assurance for the
correctness and effectiveness of the security solution.

You will see these domain designs throughout the book. Figure 2-7 on page 37
and Figure 2-8 on page 38 have clearly marked firewalls to help you become
familiar and comfortable with the placement and domain concept.

2.3.2 Network zones
We have to consider four types of network zones and their transport
classifications in our discussion:

� Uncontrolled (the Internet)
� Controlled (an Internet-facing DMZ and the intranet)
� Restricted (a production network)
� Secure (a management network)

Internet (uncontrolled zone)
The Internet is a global network—a network of networks—connecting millions of
computers. It cannot be controlled and should not have any components in it.

Internet DMZ (controlled zone)
The Internet DMZ is generally a controlled zone that contains components with
which clients may directly communicate. It provides a “buffer” between the
uncontrolled Internet and internal networks. Because this DMZ is typically
bounded by two firewalls, there is an opportunity to control traffic at multiple
levels:

� Incoming traffic from the Internet to hosts in the DMZ
� Outgoing traffic from hosts in the DMZ to the Internet
� Incoming traffic from internal networks to hosts in the DMZ
� Outgoing traffic from hosts in the DMZ to internal networks

The transport between a controlled and an uncontrolled zone is classified as
public. The transport between a controlled and another controlled or a restricted
zone is classified as managed.

Production zone (restricted zone)
One or more network zones may be designated as restricted, that is, they
support functions to which access must be strictly controlled, and of course,
direct access from an uncontrolled network should not be permitted. As with an
Internet DMZ, a restricted network is typically bounded by one or more firewalls
and incoming/outgoing traffic may be filtered as appropriate.

34 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The transport between a restricted and a controlled zone is classified as
managed. The transport between a restricted and a secured zone is classified as
trusted.

Intranet (controlled zone)
Like the Internet DMZ, the corporate intranet is generally a controlled zone that
contains components with which clients may directly communicate. It provides a
“buffer” to the internal networks.

Management zone (secured zone)
One or more network zones may be designated as a secured zone. Access is
only available to a small group of authorized staff. Access into one area does not
necessarily give you access to another secured area.

The transport into a secured zone is classified as trusted.

Other networks
Keep in mind that the network examples we use do not necessarily include all
possible situations. There are organizations that extensively segment functions
into various networks. However, in general, the principles discussed here may be
translated easily into appropriate architectures for such environments.

Placement of various data components within network zones is both a reflection
of the security requirements in play and a choice based on an existing or planned
network infrastructure and levels of trust among the computing components
within the organization. Requirement issues often may be complex, especially
with regard to the specific behavior of certain applications. With a bit of
knowledge about the organization’s network environment and its security
policies, reasonable component placements are usually easy to identify.

Figure 2-6 on page 36 summarizes the general component-type relationships
and the transport classifications to the network zones discussed above.

 Chapter 2. Common security architecture and network models 35

Figure 2-6 Graphic representation of network zones, transport classifications, and their level of trust

2.3.3 E-business security requirement
The IBM e-business methodology fits nicely with MASS domain concepts.
E-business patterns originate in IBM product divisions and are provided as
operational models that are also based on open standards and technologies.
Notice that the principles of the “Six A’s” of e-business factor nicely into the
overall plan as well:

Authorization Allowing only users who are approved to access systems,
data, application, and networks (public and private).

Asset protection Keeping data confidential by ensuring that privacy rules
are enforced.

Accountability Identifying who did what, when.

Assurance The ability to confirm and validate the enforcement of
security.

Availability Keep systems, data, networks, and applications
reachable.

Administration Define, maintain, monitor, and modify policy information
consistently.

No components should be
deployed in an uncontrolled
network. It is also generally
unsafe for components to
communicate with one
another across an
uncontrolled network .

Possible location
for GUI servers
that service
external
customers.

The specific level of
trust in an internal
network dictates te
components which
may be deployed
within them.

Organizations may set
up specialized
restricted zones for
production systems,

Some organizations
set up special
networks to separate
various management
components from
production systems.

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

LESS SECURE MORE SECURE

Public Managed Trusted

36 Enterprise Security Architecture Using IBM Tivoli Security Solutions

In order for your network security solution to work, it must be based on
consistent, corporate-wide policies. A successful deployment requires that an
effective link be forged from the management definition of policy to the
operational implementation of that policy.

2.4 Practical designs
The DMZ, or outermost perimeter network, is the separation point between the
things that you control (your data) and the things that you do not control (the
Internet). Typically, this is the router used to separate your network from your
Internet Service Provider (ISP). In this area, you exchange information with
limited, calculated risk. Creating a DMZ involves adding firewalls for extra layers
of security. Firewalls are often used in multi-machine systems to protect the
resources that live on that private network, such as critical data, business
applications, and sensitive information. A wide variety of topographies can be
appropriate for a DMZ; however, the basic units usually look something like the
layout in Figure 2-7.

Figure 2-7 Basic DMZ design

Tip: Plan your security polices around your business model, not the other way
around. For more information about corporate policies, see 1.5, “Security
policies” on page 11.

Web Server

Web Server

Production Zone

Client

Internet
DMZInternet

Non-critical
Web server

Reverse
Proxy Server

Load
Balancer

Web Server

Uncontrolled Controlled Restricted

 Chapter 2. Common security architecture and network models 37

This design allows for the separation of the presentation material on the
non-critical Web server and the application logic on the Web servers in the
private network. The infrastructure allows secure transactions and processing in
stages, reducing the demands on systems

Most firewalls and security schemes are built to keep the Internet away from the
internal network. However, in some situations, you may want to protect parts of
the internal network from other areas of your internal network. It makes sense
that not everyone needs access to the same services, information, or security
protection. Figure 2-8 shows the segregation of the intranet client from the
production environment. Some parts of your enterprise need to be more secure
than others, such as demonstration networks (where there are often people from
outside of the organization present), Human Resources data, development
projects, financial data, and so on.

Adding the additional security of another reverse proxy to the network gives you
manageability of the internal user’s access as well. In this example, the user has
been allowed full access to one Web server (solid line), limited access to one
other Web server (broken line), and no access to the remaining server.

Figure 2-8 Segregating the intranet client

Let us take that concept one step further. in Figure 2-9 on page 39, we add an
additional zone of protection and tie the idea of load balancing, as well as high
availability, into the architecture. By moving the security management into its own
area that is physically and virtually secure, you create an area where the security
administration will be performed, and all of the necessary data is contained only
in that area.

Web Server

Web Server

Production Zone

Client

Intranet

Reverse
Proxy Server

Load
Balancer

Web Server

Internet DMZ

Controlled Restricted Controlled

38 Enterprise Security Architecture Using IBM Tivoli Security Solutions

You can undertake this type of segregation of the network for various reasons.
You could create another protected area called Human Resources, where the
applications and data would all be contained inside that specific network with
access granted only as needed. Take care when applying this type of result.
Separate the things that absolutely must be protected. Keep your solution
straightforward and easily scalable for future growth.

Figure 2-9 Management zone, high availability, and load balancing

2.5 Additional components
The discussion on practical designs in 2.4, “Practical designs” on page 37,
introduces system components into our discussion. There are several
components we will find through the remainder of this book.

Web server
A Web server is simply a server that processes http and https requests. The
requests may be for content stored on, or developed on the server itself, or the
Web server may present responses produced after the Web server has passed
requests to other systems.

Web application servers
A Web application server, or application server is a server that is running an
application. This application may be coupled with a Web server on the same

Authorization
Database
Replica

Reverse
Proxy ServerWeb Server

Web Server
ClientReverse

Proxy Server

Management
ServerUser Registry

(MASTER) Authorization
Database

Master

Authorization
Database
Replica

User Registry
(REPLICA)

Client

Internet DMZ

Reverse
Proxy Server

Reverse
Proxy Server

Authorization
Database
Replica

Load
Balancer

Authorization
Database
Replica

Internet Production
Zone

Intranet

Management ZoneUncontrolled Controlled

Restricted

Secured Controlled

 Chapter 2. Common security architecture and network models 39

system, or receive requests from a standalone Web server. The application
server and Web server, when separate, may exist in separate network zones.

Portal
A portal represents a way to provide access to a variety of applications from one
Web location. The portal represents a single location to the user, making the
transition to the various locations seamless and transparent.

Backend
The backend portion refers to the part of the system that actually processes the
requests and provides information. This often includes database and mainframe
systems that are used.

Database
A database is a collection of data stored for use by applications. The data may or
may not be related.

Messaging services
The messaging service, and messages can take many forms. At the basic level a
message is data sent between two devices. This could take several forms, from
Web services, to e-mail, to text messages in a wireless environment, to name a
few. Messaging services deal with the transport and delivery of these messages.
For our purposes the messaging service enables communications between
devices.

Service-oriented architecture
A service-oriented architecture (SOA) reflects distributed services that
communicate with each other used to meet requirements. These services are
orchestrated to process data and data requests. Each service operates
independently with it’s own state and context. Each service has a clearly defined
method to use. Most service-oriented architectures involve Web services using
SOAP and WSDL. SOAP is a method for exchanging XML messages over the
http protocol. WSDL stands for Web Services Description Language, an XML
method for describing the available Web services.

2.6 Access control models
Our security architecture design requires selection of a model for access control.
This model must match our security policy regarding how to manage access to
resources. Our selection of a model is influenced by regulations, and also by the
type of resource protection we choose. There are three main models, Role

40 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Based Access Control, discretionary access control, and mandatory access
control.

Role Based Access Control
Role Based Access Control (RBAC), as its name suggests, is the granting of
access privileges to a user based upon the work they perform within an
organization. A user can be assigned to a single or multiple roles either
automatically or manually. The membership to each role grants access to specific
resources.

Discretionary Access Control
Within the DAC model the owner of a resource decides on whether to allow a
specific person access to their resource. This system is common in distributed
environments that have evolved from smaller operations into larger ones. When it
is well managed, it can provide adequate access control, but it is very dependant
upon the resource owner understanding how to implement the security policies of
the organization, and of all the models, it is most like to be subject to
management by mood. Ensuring that authorized people have access to the
correct resource requires a good system for the tracking of leavers, joiners, and
job changes. Tracking requests for change is often paper driven, error prone, and
can be costly to maintain and audit.

Mandatory access control
The mandatory access control (MAC) model is where the resources are grouped
and marked according to a sensitivity model. This model is most commonly
found in military or government environments. One example would be the
markings of Unclassified, Restricted, Confidential, Secret, and Top Secret. Users
privileges to view certain resources will be dependant upon that individuals
clearance level.

2.6.1 Which model
All three models previously discussed have pros and cons associated with them.
Which model an organization uses will depend upon a number of factors,
including, but not limited to, externally mandated policies, maturity of existing
identity management processes, range of identity management target systems,
future requirements, number of users managed, and risk assessment and return
on investment statistics.

 Chapter 2. Common security architecture and network models 41

RBAC
The key to this model is the ability to classify users by what resources they
should be allowed to access. The following examples indicate some roles, and
the resources for each.

A new customer Alex registers with an organization by completing a form
on a Web site. As a result of doing so, Alex may be
awarded the role of “customer” by the central user
administration system that in turn populates Alex's
account to all customer-facing resources.

A new employee Betty, on starting with an organization, could be awarded
the role of “basic user” by the administrator and as a
result, her account information could be populated to the
network access system and to an e-mail system. Betty
may not yet have interacted with any of the systems, so in
this case, the administrator would have to assign the
accounts with a default password and ensure that each
system makes Betty change her password upon first
access.

A senior employee Charles would already have the “basic user” role from the
time when he joined the organization. His work now
requires that access be granted to applications that are
not included within the “basic user” role. If he now needs
access to the accounts and invoicing systems, Charles
could be awarded the “accounting” role in addition to the
“basic user” role.

A manager Dolly would already have the “basic user” role from the
time when she joined the organization and may also have
other roles. As she has been promoted to a management
post, so her needs to access other systems have
increased. It may also be, however, that her needs to
access some systems, as a result of her previous post,
are no longer appropriate in her management role. Thus if
Dolly had “basic user” and “accounting” as her roles
before promotion, it may be that she is granted the
“manager”, but has her “accounting” role rescinded. This
would leave her with the “basic user” and “manager” roles
suitable for her post.

MAC
The key to this kind of system is the ability to use background security checking
of personnel to a greater level than that which would normally be carried out in a
business or non-governmental environment. It is also key for data of different

42 Enterprise Security Architecture Using IBM Tivoli Security Solutions

sensitivity to be kept segregated. For example, a user must not be able to cut and
paste information between documents of differing sensitivities. This has
traditionally been achieved by keeping data physically separate. In this
environment, therefore, a user may have a number of different workstations; one
for restricted, one for secret, and so on, each running on completely different and
separate architectures.

Conducting identity management across multiple sensitivity silos with one central
identity management system raises a number of issues. The central system itself
must be classified at the highest level, as it holds user rights to all sensitivity
silos. Normally in this environment, this would mandate that various security
certifications and accreditation processes have been completed and also that
any cryptographic keys are in hardware storage.

As the Web portal approach matures, this kind of multiple silo approach may
change, but in the short term, this would mean that a software only solution
would not be possible.

One further approach would be to treat each sensitivity silo as a discrete identity
management problem. This would mean that there is a distinct solution for each
silo and that the best access control model could be chosen from the other two.
For example, at the lowest sensitivity silo, there are likely to be many more users
that best fit an RBAC solution, while at the top level, there are fewer users and
other (physical, procedural, personnel, and technical) more rigorous controls, so
a DAC might be more appropriate.

Despite its limitations, this type of access control model will continue to be used
in military and government environments, because it provides the solid
foundation for segregation of information based upon sensitivity. Identity
management solutions for this space are probably best focused on the lower
sensitivity silo, unless approvals can be gained to connect all silos with a highly
secure management layer that includes identity management.

DAC
Discretionary Access Control is the model that is most likely to be used as a
default or evolved decentralized access control solution. Organizations are
familiar with the concept of each application administrator or owner being
responsible for granting access to the application or system owned or
administered by them. Key features of a centralized identity management system
that allows this to continue are the ability to specify over-arching corporate
security policies, combined with the ability to delegate responsibility for account
management to individual systems. A centralized identity management system
with these features allows for a reduction in the amount of “management by
mood”, but ensures that corporate security policies can be applied, while
allowing a degree of actual and real political ownership of the target resource.

 Chapter 2. Common security architecture and network models 43

The different access control models are compared in Table 2-2.

Table 2-2 Access control model comparison and notes on desirable features

2.7 Certificates
A digital signature is a way to ensure that an electronic document or
communication is authentic. Digital certificates contains information needed to
verify the digital signature. Digital signatures rely on certain types of encryption
to ensure authentication. Encryption is the process of encoding all of the data
that one computer sends to another in a form that only the other computer will be
able to decode. Authentication is the process of verifying that information comes
from a trusted source.

Access
control
model

Pros Cons

MAC 1. Ideally suited to military and
government security
requirements.

2. Highly secure.

1. Costly to implement because
of personnel vetting and data
segregation requirements.

2. Difficult to centrally manage
all identities because of
sensitivity silos.

DAC 1. Likely to already be in use.

2. Easy to implement
centralized identity
management solution.

3. Suited to most commercial
organizations, prior to
centralized identity
management or during
conversion to RBAC.

1. Subject to management by
mood.

2. Policy enforcement and audit
costly.

3. Centralized identity
management possible but less
return on investment (ROI)
than single RBAC model.

RBAC 1. Useful for strong role
focused organizations.

2. Useful for organizations with
high staff turnover and
reliance on temporary or
casual staff.

3. Recommended for large user
populations, particularly
where users include
customers and partner
organizations.

1. RBAC design can be difficult
politically and logically.

2. Strong policies required
particularly where delegated
administration is used.

44 Enterprise Security Architecture Using IBM Tivoli Security Solutions

There are several ways to authenticate a person or information about a
computer. Two of the most frequently employed are:

� Private key encryption

With private key encryption, each computer has a secret key (code) that it can
use to encrypt a packet of information before it is sent over the network to the
other computer. This mechanism requires that you know which computers will
talk to each other in order to distribute and install the key on each one. Private
key encryption is essentially the same as a secret code that the two
computers must each know in order to decode the information.

� Public key encryption

Public key encryption uses a combination of a private key and a public key.
The private key is known only to your computer, but the public key is given to
any computer that wants to communicate securely with it.

A sender uses your public key to encrypt a message before he sends it to
you. To decode this encrypted message, your computer uses your private key.
This way the message is protected while in transit, nobody is able to decode it
but you.

Public key encryption is a technique that uses a pair of asymmetric keys for
encryption and decryption. Each pair of keys consists of a public key and a
private key. The public key is made public by distributing it widely. The private
key is never distributed; it is always kept secret. Data that is encrypted with
the public key can be decrypted only with the private key.

This technique is also being used for signing in order to prove the origin of
data. A message can be signed using the private key of the sender, and
anyone who receives the message can use the sender’s public key to verify
the origin of the message. This asymmetry is the property that makes public
key cryptography so useful.

Digital certificates are used for Secure Sockets Layer (SSL) technology, the
industry-standard method for protecting Web communications developed by
Netscape Communications Corporation. The SSL security protocol provides data
encryption, server authentication, message integrity, and optional client
authentication for a TCP/IP connection. Because SSL is built into all major Web
browsers and servers, simply installing a digital certificate turns on the browser’s
SSL capabilities.

The certificate represents a credential issued by a certificate authority, testifying
to the authenticity of the identified party. The certificate contains the identified
party’s public key, so that the recipient of messages from the party can use it to
decrypt messages encrypted using the party’s private key.

 Chapter 2. Common security architecture and network models 45

Transmitting sensitive data, such as credit card numbers and health care data,
across the Web and intranets requires authentication to ensure that the
destination of the data is legitimate, encryption to protect the data against
interception or tampering, and message integrity to ensure that the information is
not tampered with during transmission. SSL is the standard technology used to
protect information transmitted over the Web via HTTP protocol and protects
against site spoofing, data interception, and tampering.

Protecting the confidentiality and integrity of sensitive information transmitted
over the network is a crucial step to building customer confidence, securely
interacting with business partners and complying with new privacy regulations.
Because of the increasing awareness and concerns regarding confidentiality and
data integrity, the exchange of information between Web servers and clients,
server-to-server, and among other networking devices, must be protected with
cross-network security mechanisms for servers facing both the Internet and
private intranets.

Certificates, which are based on the open standard X.509, contain this
information:

� Version number (certificate format)
� Serial number (unique value from CA)
� Algorithm ID (signing algorithm used)
� Issuer (name of CA)
� Period of validity (from and to)
� Subject (user’s name)
� Public key (user’s public key & name of algorithm)
� Digital signature
� Created by CA
� Encrypted with CA’s private key

Managing certificates can be arduous. You can install your own Public Key
Infrastructure (PKI) and maintain it, or use the services of Certificate Authorities
(CAs), the digital world’s equivalent of passport offices. CAs issue digital
certificates and validate the holder’s identity and authority. They embed an
individual’s or an organization’s public key along with other identifying information
into each digital certificate and then cryptographically “sign” it as a tamper-proof
seal, verifying the integrity of the data within it and validating its use.

For more information about certificates visit:

http://developer.netscape.com/tech/security/ssl/howitworks.html

For more information about Certificate Authorities:

http://www.verisign.com/
http://www.thawte.com/

46 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://developer.netscape.com/tech/security/ssl/howitworks.html
http://www.verisign.com/
http://www.thawte.com/

2.8 Security components
There are common components used to provide the functionality of the security
architecture subsystems. A reminder that one component may provide the
function for a subsystem, or that several components may be required. Also the
components may be involved in several of the subsystems. For example, an
identity management component providing the identity or credential subsystem
may send information to the security audit subsystem. It participates in both. This
type of participation is evident in Figure 2-1 on page 22.

The remainder of this book deals with using IBM Tivoli Security Solutions to
provide functionality for the five security architecture subsystems. The specific
products involved are:

Table 2-3 IBM Tivoli Security Solutions

In the remainder of the book we use these products as components for our
security architecture subsystems, utilizing common network models to develop a
security architecture. This is based on the foundation of determining the business
context, assessment of risk and business drivers, and developing an appropriate
security policy. The components and processes relating to their implementation
will be discussed as well.

Product Product level

IBM Tivoli Identity Manager V 4.6

IBM Tivoli Identity Manager Express V 4.6

IBM Tivoli Access Manager for e-business V 6.0

IBM Tivoli Access Manager for Operating Systems V 6.0

IBM Tivoli Access Manager for Business Integration V 5.1

IBM Tivoli Access Manager for Enterprise Single Sign-On V 6.0

IBM Tivoli Directory Integrator V 6.1.1

IBM Tivoli Directory Server V 6.0

IBM Tivoli Security Compliance Manager V 5.1.1

IBM Tivoli Security Operations Manager V 3.1

IBM Tivoli Common Audit and Reporting Service V 6.0

IBM Tivoli Federated Identity Manager V 6.1

IBM Tivoli Federated Identity Manager Business Gateway V 6.1

 Chapter 2. Common security architecture and network models 47

2.9 Conclusions
We have seen that each security architecture can be different, based upon the
business context (Chapter 1, “Business context” on page 3), and yet at the same
time there is commonality in approaching their design. We can use the common
elements as a starting point for our security architecture. The choice, location,
and configuration of technologies and products, along with processes, allows
customization to meet the individual business context.

Building a secure system is not enough. Keeping it functional, testing it, and
improving and reviewing it with management and your security, network, and
development professionals is mandatory. When you deal with the Web and
network security, reviewing your procedures and policies regularly helps keep the
enterprise protected from new threats as well as old.

A question to keep in mind as you review your environment: “Will the cost of this
improvement be more or less than repairing or replacing the assets
compromised or lost?”

It is generally more cost effective to be proactive rather than reactive.

In the following chapter we take a closer look at some of the foundation
technology needed for all security architecture implementations—directories and
directory integration.

48 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 3. Directory technologies

In Chapter 2, “Common security architecture and network models” on page 19,
we introduced five different subsystems that address access control, identity and
credentials, flow control, integrity, and audit that can be used to design a security
architecture. Every subsystem provides unique functionality that can solve
specific tasks. Alternatively, there are infrastructure elements that are needed to
provide cross-subsystem services. A directory is one of these components that
cannot be mapped into one distinct category but offers a broad spectrum of
capabilities. This chapter addresses these capabilities in five distinct parts.

In the first part we explain why an organization should use a centralized directory
server as its user repository. We emphasize the need to consolidate the
definition of all of the users who have access to any resource in one or at most a
few repositories.

In the second part we introduce the concept of directory and LDAP. We show the
main features of LDAP based directory servers focusing on the architectural and
security point of view. The content of this section is independent of IBM-specific
implementations of directory servers.

In the third section we show the directory server developed by IBM: IBM Tivoli
Directory Server.

In the forth part we compare two directory integration technologies, meta
directories and virtual directories.

3

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 49

In the last section we show the directory integration product offered by IBM: IBM
Tivoli Directory Integrator.

3.1 Using a centralized user repository
Increasingly, enterprises are seeking to improve operational efficiencies and
expand their businesses by opening their internal systems to a broader
community of their systems, employees, customers, and suppliers. A consistent
and reliable identity infrastructure enables enterprises to expose their internal
processes to their supply chain, their customers, and the growing mass of
automated machine-to-machine transactions. A common user repository is a key
enabler for security and application infrastructure in an enterprise.

In the first two parts of this section we introduce the business and technical
requirements for a centralized repository.

A centralized directory server can address these requirements even if some
practical considerations are necessary regarding using one centralized or
multiple repositories, which we discuss in the third section.

Finally we discuss why a directory server is the right choice as a user repository
with respect to other technologies.

3.1.1 Business requirements
In this section we show a brief summary of the business drivers involved with a
consistent identity infrastructure. Refer to Part 3, “Managing identities and
credentials” on page 507 for a broader analysis of the issues related to this topic.

A centralized repository is meant to consolidate all user definitions into only one
data source. Most companies, while expanding their business, increase the
number of applications and platforms, each with its own format and place for
defining the enabled users. The final result is that user credentials are stored in a
number of different and disjointed places. This means that the same person
might have different, and not synchronized, accounts for different applications. In
large companies the number of these accounts may reach double-digit or even
triple-digit numbers. The main problems include:

� High costs for user management. Expenses increase proportional to the
number of repositories. Included in these costs:

– User additions, modifications, and deletions have to be repeated in each
repository.

– Password management is one of the highest costs for a company’s help
desk.

50 Enterprise Security Architecture Using IBM Tivoli Security Solutions

– Training costs. Administrators have to be skilled on different products and
platforms.

– Costs in terms of hardware resources and system administrators.

� Security

– Users have many passwords and do not protect them properly.

– Policies cannot be enforced consistently across the business.

– Effort to protect data spread in various locations.

– Longer time to deny a person access to any company’s data.

� Data integrity. Information could be inconsistent across the business.

� Higher risks related to human errors, malicious attacks, and system failures.

� Availability and scalability of the systems.

The common problems outlined above can be faced and mostly solved by
consolidating the disjointed data sources in only one manageable, available, and
scalable repository. This is one of the basic concepts of implementing centralized
security, provisioning, and Web services. It also helps define an authoritative
source of user identities and to establish clear and uniform processes to manage
user definitions.

3.1.2 Functional requirements
The business requirements introduced above turn into the following functional
requirements:

� Have all of the applications and operating systems share the same user
definitions. This implies that there is a single point of administration for all of
the company’s user accounts.

� Have identity information consistent across all repositories. For example, this
is important to secure user passwords. If users have different passwords for
every application and platform, they end up adopting easy passwords or they
record them and do not secure them properly.

� Enforce the same security policies across different applications and operating
systems.

� Avoid storing redundant data in different locations.

� Implement a small number of servers or just one highly available and easily
scalable architecture, reducing the number of clusters and replicas of data.

In order to satisfy these requirements, more than one approach is possible. One
of the most intuitive solutions is to consolidate all user definitions in one
repository and modify applications and operating systems to utilize this central

 Chapter 3. Directory technologies 51

repository. However, this operation might be very difficult, therefore more than
one repository might be necessary.

3.1.3 One or multiple repositories
Large companies develop their IT environments over many years without paying
close attention to sharing user credentials across the organization. For them it
could be extremely expensive to adopt a centralized user repository that
provided user identities to all existing applications and operating systems. In fact,
it would require modifying applications and operating system configurations, and,
in some circumstances, developing new code as well. In addition, for some
applications it would be too expensive or even impossible to perform
authentication tasks against the central repository.

It is good practice to have different applications use authentication mechanisms
that utilize a common repository. This should be implemented for new
applications, and existing applications may be modified as well. But even after
this consolidation, there could still be repositories in a large environment that
have to be maintained. There is no rule for the number of repositories that are
acceptable, but it is a good idea to reduce the number as much as possible.
However, costs and technical or user management issues could limit the
consolidation. For example, a common technical reason is the difficulty in
integrating some applications with the designed centralized repository. A user
management reason is to avoid additional education for administrators on a new
product, but to keep them working with tools and utilities they already know and
that are well-customized for the specific application.

Consolidating user credentials in a few repositories rather than in one might
simplify the adaptations necessary on applications and operating systems.
Nevertheless, in order to achieve a consistent identity infrastructure it is
necessary to integrate these repositories. This means that the effort is focused in
a different direction. In Part 3, “Managing identities and credentials” on page 507,
we introduce two solutions to integrate different data sources, one based on IBM
Tivoli Directory Integrator and the other based on IBM Tivoli Identity Manager.

A common scenario of a company that adopts different platforms and decides to
maintain multiple user repositories might include a Human Resources database,
an IBM Tivoli Directory Server, a Microsoft® Active Directory®, and an IBM
Lotus® Domino® environment. This scenario is not unusual and it is interesting
to note that three out of four repositories can be regarded as directory servers. In
the remainder of this section we explain what directories are and how they work.

52 Enterprise Security Architecture Using IBM Tivoli Security Solutions

3.1.4 Why a directory server
For our discussion we assume that the main reason for using a directory server
as a user repository is because it is a standard. This means that most
applications, operating systems, and middleware products of many vendors
come with LDAP support, where LDAP is a common protocol to access
directories. Therefore, access is allowed or denied by verifying user credentials
stored in a directory. The standardization of the access protocol is the key to
having a centralized company directory.

We also need to consider the reasons why directories and LDAP became
standard. Basically their structure and features are optimized for the purpose of a
user repository. The next sections are dedicated to explaining directory server
principles and to clarifying these reasons.

3.2 Directories
In this section we introduce the concepts of directory and LDAP. Then we
describe the main features of directory servers, focusing on architecture and
security. In particular, we describe methods for securing data within a directory
and to control access to them. Then we see how to organize data within a
directory and how to build a secure, scalable, and highly available physical
architecture integrating LDAP servers in a company network. Finally, we show
how to perform administrative tasks.

3.2.1 General definition
A directory is a listing of information about objects arranged in some order and
providing details about each object. Common examples are a city telephone
directory and a library card catalog. For a telephone directory, the objects listed
are people; the names are arranged alphabetically, and the details given about
each person are address and telephone number. Books in a library card catalog
are ordered by author or by title, and information such as the ISBN attribute of
the book and other publication information is given.

In computer terms, a directory is a specialized database, also called a data
repository, that stores typed and ordered information about objects. A particular
directory might list information about printers (the objects) consisting of typed
information such as location (a formatted character string), speed in pages per
minute (numeric), print streams supported (PostScript®, ASCII), and so on.

Directories enable users and applications to find resources that have the
characteristics needed for a particular task. For example, a directory of users can
be used to look up a person’s e-mail address or fax number. A directory could be

 Chapter 3. Directory technologies 53

searched to find a nearby PostScript color printer. A directory of application
servers could be searched to find a server that can access customer billing
information.

The terms white pages and yellow pages are particular directory applications. If
the name of an object (person, printer) is known, its characteristics (phone
number, pages per minute) can be retrieved. This is similar to looking up a name
in the white pages of a telephone directory. Or, if the name of a particular
individual attribute is not known, the directory can be searched for a list of objects
that meet a certain requirement. This is like looking up a listing of hairdressers in
the yellow pages of a telephone directory. However, directories stored on a
computer are much more flexible than the yellow pages of a telephone directory,
because they can usually be searched by a range of criteria, not just by a single
predefined set of categories.

3.2.2 Directory versus database
A directory is often described as a database, but it is a specialized database that
has characteristics that set it apart from, for example, general-purpose relational
databases. One special characteristic of directories is that in general they are
accessed (read or searched) much more often than they are updated (written).
Hundreds of people might look up an individual’s phone number, or thousands of
print clients might look up the characteristics of a particular printer. But the phone
number or printer characteristics seldom change.

Directories must be able to support high volumes of read requests, so they are
typically optimized for read access. Write access might be limited to system
administrators or to the owner of each piece of information. A general-purpose
database, on the other hand, needs to support applications such as airline
reservations and banking with high update volumes. Directories are not
appropriate for storing information that changes rapidly and frequently. For
example, the number of jobs currently in a print queue probably should not be
stored in the directory entry for a printer because that information would have to
be updated frequently to be accurate. Instead, the directory entry for the printer
could contain the network address of a print server. The print server could be
queried to learn the current queue length if desired. The information in the
directory (the print server address) is static, while the number of jobs in the print
queue is dynamic.

Another important difference between directories and general-purpose
databases is that directories may not support transactions, although IBM Tivoli
Directory Server does. Transactions are all-or-nothing operations that must be
completed in total or not at all. For example, when transferring money from one
bank account to another, the money must be debited from one account and
credited to the other account in a single transaction. If only half of this transaction

54 Enterprise Security Architecture Using IBM Tivoli Security Solutions

completes or someone accesses the accounts while the money is in transit, the
accounts will not balance. General-purpose databases usually support such
transactions, which complicates their implementation. Because directories deal
mostly with read requests, the complexities of transactions can be avoided. For
example, if two people exchange offices, both of their directory entries must be
updated with new phone numbers, office locations, and so on. It is considered
acceptable if one directory entry is updated first, and then other directory entry is
updated later, so allowing a brief period during which the directory will show that
both people have the same phone number.

In contrast to directories, general-purpose databases must support arbitrary
applications such as banking and inventory control, so they allow arbitrary
collections of data to be stored. On the other hand directories may be limited in
the type of data they allow to be stored (although the architecture does not
impose such a limitation). For example, a directory specialized for customer
contact information might be limited to storing only personal information such as
names, addresses, and phone numbers. If a directory is extensible, it can be
configured to store a variety of types of information, making it more useful to a
variety of programs.

Another important difference between a directory and a general-purpose
database is in the way information can be accessed. Most databases support a
standardized, very powerful access method called Structured Query Language
(SQL). SQL allows complex update and query functions at the cost of program
size and application complexity. Directories, on the other hand, use a simplified
and optimized access protocol that can be used in slim and relatively simple
applications.

In the following section we introduce the most common protocol to access
directories: Lightweight Directory Access Protocol (LDAP).

3.2.3 LDAP: Protocol or directory
LDAP defines a communication protocol. That is, it defines the format of
messages used by a client to access data in a directory service that listens for
and responds to LDAP requests. LDAP does not define the directory service
itself, yet people often talk about LDAP directories. Others say LDAP is only a
protocol, that there is no such thing as an LDAP directory. What is an LDAP
directory?

LDAP evolved as a lightweight protocol for accessing information in X.500
directory services. It has since become independent of X.500 and now is the
standard protocol to access directories. Directory servers that specifically
support the LDAP protocol rather than the X.500 Directory Access Protocol
(DAP) generally are called LDAP servers.

 Chapter 3. Directory technologies 55

The success of LDAP has been largely due to the following characteristics that
make it simpler to implement and use, compared to X.500 and DAP:

� LDAP runs over TCP/IP rather than the OSI protocol stack. TCP/IP is less
resource-intensive and is much more widely available, especially on desktop
systems.

� The functional model of LDAP is simpler. It omits duplicate, rarely used and
esoteric features. This makes LDAP easier to understand and to implement.

� LDAP uses strings to represent data rather than complicated structured
syntaxes such as ASN.1 (Abstract Syntax Notation One).

� LDAP provides an API (application programming interface) that enables
applications to interact easily with LDAP servers. The API can be considered
an extension to the LDAP architecture.

Refer to the IBM Redbooks Understanding LDAP - Design and Implementation,
SG24-4986, for more details about the LDAP protocol and related RFCs. In this
book, the term LDAP refers to LDAP Version 3.

3.2.4 DSML
Recently, the push for encapsulating LDAP operations within XML for use within
Web services has spawned a new language called the Directory Services
Markup Language (DSML). The most recent of the specification is DSMLv2.
DSML is an XML schema for representing directory information, it is a generic
import / export format for directory information. Directory information in DSML
can be shared between DSML-aware applications without exposing the LDAP
protocol.

XML provides an effective way to present and transfer data; Directory services
allow you to share and manage data, and are thus a necessary prerequisite for
conducting online business; DSML is designed to make directory services more
dynamic by employing XML. DSML is an XML schema for working with
directories, it is defined using a Document Content Description (DCD). Thus,
DSML allows XML programmers to access LDAP-enabled directories without
having to write to the LDAP interface or use proprietary directory-access APIs,
and provides one consistent way to work with multiple dissimilar directories.

3.2.5 Directory clients and servers
Directories are usually accessed using the client/server model of communication.
An application that wants to read or write information in a directory does not
access the directory directly. Instead, it calls a function or application
programming interface (API) that causes a message to be sent to another
process. This second process accesses the information in the directory on behalf

56 Enterprise Security Architecture Using IBM Tivoli Security Solutions

of the requesting application via TCP/IP. The default TCP/IP ports are 636 for
secure communications and 389 for unencrypted communications. The results of
the read or write action are then returned to the requesting application, as shown
in Figure 3-1.

Figure 3-1 Directory client/server interaction

The request is performed by the directory client, and the process that maintains
and looks up information in the directory is called the directory server. In general,
servers provide a specific service to clients. Sometimes, a server might become
the client of other servers in order to gather the information necessary to process
a request.

The client and server processes might or might not be on the same machine. A
server is capable of serving many clients. Some servers can process client
requests in parallel. Other servers queue incoming client requests for serial
processing if they are currently busy processing another client’s request.

An API defines the programming interface that a particular programming
language uses to access a service. The format and contents of the messages
exchanged between client and server must adhere to an agreed-upon protocol.
LDAP defines a message protocol used by directory clients and directory
servers. There are also associated LDAP APIs for C and Java™ languages, and
ways to access the directory from a Java application using Java Naming and
Directory Interface™ (JNDI). The client is not dependent on a particular
implementation of the server, and the server can implement the directory
however it chooses.

Application Client Directory Server

Request Message
Reply Message

Application

TCP/IP

Directory Client

Request Reply

TCP/IP

Receive Message
Access Directory
Return Reply

Directory

API

 Chapter 3. Directory technologies 57

3.2.6 Distributed directories
The terms local, global, centralized, and distributed are often used to describe a
directory. These terms mean different things in different contexts. In this section,
we explain how these terms apply to directories.

In general, local means nearby, and global means that something is spread
across the universe of interest. The universe of interest might be a company, a
country, or the Earth. Local and global are two ends of a continuum. That is,
something may be more or less global or local than something else. Centralized
means that something is in one place, and distributed means that something is in
more than one place. As with local and global, something can be distributed to a
greater or lesser extent.

The information stored in a directory can be simultaneously local and global in
scope. For example, a directory that stores local information might consist of the
names, e-mail addresses and so on of members of a department or workgroup.
A directory that stores global information might store information for an entire
company. Here, the universe of interest is the company.

The clients that access information in the directory can be local or remote. Local
clients may all be located in the same building or on the same LAN. Remote
clients might be distributed across the continent or planet.

The directory itself can be centralized or distributed. If a directory is centralized,
there may be one directory server at one location or a directory server that hosts
data from distributed systems. If the directory is distributed, there are multiple
servers, usually geographically dispersed, that provide access to the directory.

When a directory is distributed, the information stored in the directory can be
partitioned or replicated. When information is partitioned, each directory server
stores a unique and non-overlapping subset of the information. That is, each
directory entry is stored by one and only one server. One of the techniques to
partition the directory is to use LDAP referrals. LDAP referrals enable users to
refer LDAP requests to a different server. When information is replicated, the
same directory entry is stored by more than one server. In a distributed directory,
some information may be partitioned while some may be replicated.

The three dimensions of a directory—scope of information, location of clients,
and distribution of servers—are independent of each other. For example, clients
scattered across the globe can access a directory containing only information
about a single department, and that directory can be replicated at many directory
servers. Or, clients in a single location can access a directory containing
information about everybody in the world that is stored by a single directory
server.

58 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The scope of information to be stored in a directory is often given as an
application requirement. The distribution of directory servers and the way in
which data is partitioned or replicated often can be controlled to affect the
performance and availability of the directory. More details about this topic are
shown in 3.2.10, “Availability and scalability” on page 68.

3.2.7 Directory security
The security of information stored in a directory is a major consideration.
Directories are used for different scopes, both for Internet and intranet users, but
in all cases any user should not necessarily be able to perform any operation.
Directories should be placed in restricted access zones, but security control must
be performed by the directory server itself.

For example, any intranet user should be able to look up an employee’s e-mail
address, but only the employee themselves or a system administrator should be
able to change it. Members of the personnel department might have permission
to look up an employee’s home telephone number, but their co-workers might
not. Depending on the confidentiality of the data, information may have to be
encrypted before being transmitted over the network. A security policy defines
who has what type of access to what information, and is defined by the
organization that maintains the directory.

A directory should support the basic capabilities needed to implement a security
policy. The directory in this case is one of the components by which security is
provided to the whole network. It is also one of the network resources that needs
to be protected.

Directory security covers the following four aspects:

� Authentication
� Integrity
� Confidentiality
� Authorization

Authentication
Authentication is the verification of the identity claimed by the requester
(machine or person). This can be realized in several methods:

No authentication This is the simplest authentication method, one that
obviously does not need to be explained in much detail.
This method should only be used when data security is
not an issue and when no special access control
permissions are involved. This could be the case, for
example, when your directory is an address book
browsable by anybody. No authentication is assumed

 Chapter 3. Directory technologies 59

when you leave the password and DN fields empty in an
LDAP operation. The LDAP server then automatically
assumes an anonymous user session and grants access
with the appropriate access controls defined for this kind
of access (not to be confused with the SASL anonymous
user).

Basic Authentication (BA)
When using basic authentication with LDAP, the client
identifies itself to the server by means of a DN and a
password which are sent in the clear over the network
(some implementations may use Base64 encoding
instead). The server considers the client authenticated if
the DN and password sent by the client match the
password for that DN stored in the directory. Base64
encoding is defined in the Multipurpose Internet Mail
Extensions (MIME) LDAP standard (RFC 1521). It is a
relatively simple encryption, and therefore it is not hard to
break once one has captured the data in the network.

Simple Authentication and Security Layer (SASL)
SASL is a framework for adding additional authentication
mechanisms to connection-oriented protocols. It has been
added to LDAP Version 3 to overcome the authentication
shortcomings of Version 2. It is a proposed Internet
standard defined in RFC 2222.

In SASL, connection protocols, like LDAP, IMAP, and so
on, are represented by profiles; each profile is considered
a protocol extension that allows the protocol and SASL to
work together. A complete list of SASL profiles can be
obtained from the Information Sciences Institute1 (ISI).
Each protocol that intends to use SASL needs to be
extended with a command to identify an authentication
mechanism and to carry out an authentication exchange.
Optionally, a security layer can be negotiated to encrypt
the data after authentication and so ensure confidentiality.
LDAP Version 3 includes a command (ldap_sasl_bind())
to encrypt the data after authentication.

SSL/TLS SSL/TLS supports server authentication (client
authenticates server), client authentication (server
authenticates client), or mutual authentication. In addition,
it provides for privacy by encrypting data sent over the

1 Refer tothe following Web site for more information:
http://www.isi.edu/

60 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.isi.edu/

network. SSL/TLS uses a public key method to secure the
communication and to authenticate the counterparts of
the session. This is achieved with a public/private key
pair. They operate as reverse functions to each other,
which means data encrypted with the private key can be
decrypted with the public key and vice versa. The
assumption for the following considerations is that the
server has its key pair already generated. This is usually
done when setting up the LDAP server.

Integrity
Integrity is the assurance that the information that arrives is really the same as
what was sent.

Confidentiality
Confidentiality is assuring, through data encryption, that information reaches only
those for whom it is intended. For example, sensitive data such as passwords
can be stored encrypted in the directory, or network transmissions can be
protected using SSL. See 2.7, “Certificates” on page 44 for more about SSL.

Authorization
Authorization is the verification that someone is really allowed to do what he is
requesting to do. This is usually checked after user authentication by verifying
ACLs. An ACL is a list of authorizations such as read, write, and delete that is
given to a subject who may be attached to objects and attributes in the directory.
An ACL lists the type of access to an object that each user or a group of users is
allowed or denied. In order to make ACLs shorter and more manageable, users
with the same access rights are often put into security groups. Table 3-1 shows
an example ACL for an employee’s directory entry.

Table 3-1 Example ACL for an employee’s directory entry

In the following section we explain how to organize data within a directory.

User or group Access rights

owner read, modify (but not delete)

administrators all

personnel read all fields

all others read restricted

 Chapter 3. Directory technologies 61

3.2.8 Schema and namespace
Structuring data is done by designing a schema, choosing a directory suffix,
branching the directory tree and, finally, creating a naming style for the directory
entries. We explain these activities in the sections that follow.

Directory schema
A directory entry usually describes an object such as a person, a printer, a
server, and so on. Information is stored into entries that are described by
attributes. An object class consists of a set of mandatory and optional attributes.
A schema is the collection of attribute-type definitions and object class
definitions. Every entry in the directory has an object class associated with it.
Thus, every entry in the directory contains a set of mandatory and optional
attributes based on the entry’s object class and that object class definition.
Attributes are typed in the form of <type>=<value> pairs in which the type is
defined by an object identifier (OID) and the value has a defined syntax.
Attributes can be single-valued or multi-valued. The allowed set of characters for
object and attribute names is defined in the Attribute Syntax Definitions RFCs of
LDAP protocol (v3). For more details about LDAP Version 3 RFCs refer to the
IBM Redbook Understanding LDAP - Design and Implementation, SG24-4986.

When deciding on the design of the schema, there are a few things to consider.
LDAP specifications provide a standard schema for a broad range of applications
including, of course, standard schemas to define users. Vendors ship schemas
with their LDAP-enabled directory server products that also may include some
extensions to support special features they feel are common and useful to their
client applications.

Another important issue is to use a consistent schema within the directory server
because LDAP-enabled application clients locate entries in the directory by
searching for object classes or attributes and their associated values. If the
schemas are inconsistent, then it becomes virtually impossible to locate
information in the directory tree efficiently.

Namespace
Each entry has a name called a distinguished name (DN) that uniquely identifies
it. The DN consists of a sequence of parts called relative distinguished names
(RDNs), much as a file name consists of a path of directory names in many

Attention: Standard schemas should not be modified. If a standard schema
proves to be too limiting for the intended use, it can be extended to support
other requirements. Standard schema elements, however, should not be
deleted. Doing so can lead to interoperability problems between different
directory services and LDAP clients.

62 Enterprise Security Architecture Using IBM Tivoli Security Solutions

operating systems such as UNIX® and Windows®. Entries are organized into a
tree-like structure based on their distinguished names. This tree of directory
entries is called the Directory Information Tree (DIT). The root DN of a directory
tree is called suffix. Entries whose distinguished name contains the DN of
another entry as a parent are considered to reside under the latter entry in the
hierarchy (that is, the namespace is hierarchical). The namespace definition
determines where you should place your objects and attributes. This then
determines the DN of your entries. Entries are named according to their position
in the DIT. Figure 3-2 shows an example of a DIT.

Figure 3-2 Example of a Directory Information Tree (DIT)

DNs are read from leaf to root as opposed to file system names, which usually
are read from root to leaf. Each RDN™ is constructed from an attribute (or
attributes) of the entry it names.

The DN cn=John Doe,ou=Marketing,o=ABC,c=US,dc=YourCompany,dc=com is
constructed by adding the RDN cn=John Doe to the DN of the ancestor entry
ou=Marketing,o=ABC,c=US,dc=YourCompany,dc=com. Note that CN=John Doe is an
attribute in cn=John Doe Doe,ou=Marketing,o=ABC,c=US,dc=YourCompany,dc=com.
The DN of an entry is specified when it is created. It is legal, though not intuitive,

dc=YourCompany,dc=com

Attribute Definitions
dc: Domain Component
c: Country
o: Organization
ou: Organizational Unit
cn: Common Name

c=DE c=GB c=US

o=ABC

ou=Marketing ou=IT

cn=John Doe cn=Printercn=Patty
Smith

cn=John Doe

 Chapter 3. Directory technologies 63

to create the entry with the DN
mail=jdoe@mail.com,ou=Marketing,o=ABC,c=US,dc=YourCompany,dc=com. In the
example we can see that two cn=John Doe entries can exist in the same directory
if they have different parent DNs.

The design of the namespace strongly depends on an organization’s
characteristics and requirements. For example, the choice of creating one or
more suffixes can be related to the intent to partition the directory. However,
there are some general considerations, as we will discuss.

The flexibility to accommodate changes within the organization is one of the
single most important tasks in implementing a directory service. This helps save
time and money as the directory service grows. This is the reason why the DIT
should be reasonably shallow unless there are strong reasons to design deep
branching levels down the directory tree. Even a DIT in which all entries are
placed under the same parent DN could be a good solution in many
organizations, especially small ones. However, branching could be required for
management and performance purposes, so try for a branching methodology
that is flexible and that still reflects enough information about the organization.

Because the structure of organizations often changes considerably over time, the
aim should be to branch the tree in such a way as to minimize the number of
necessary changes to the directory tree once the organization has changed.
Note that renaming a top-level entry, for example, has the effect of requiring a
change of the DNs of all entries below its branch point. This has an undesirable
impact on the service.

Criteria that may be considered when branching the directory tree include:

� Separation of internal (for example, employees) and external (or Internet)
users

� Organizational structure, such as departments

� Geographical locations

� Management responsibilities

These first criteria are probably the most intuitive. However these all can lead to
a large administrative overhead if the organization is very dynamic and changes
often. Other criteria include:

� Performance and system characteristics

Although it should not be the primary design goal to analyze and meet the
strengths and circumvent weaknesses of a specific server (as they may
change with new software releases or other vendor products), it is good
practice to have some characteristics of the implementation in mind when
branching a DIT.

64 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Human or machine clients

If users manually type in search criteria, the DIT should provide the
information in an intuitive manner.

Remember that the method of storage for the DIT of the directory is
implementation-dependent and hidden from the user of that directory. For
example, the IBM Tivoli Directory Server uses DB2® as its data store, but no
DB2 constructs are externalized to LDAP.

Naming style
The first goal of naming is to provide unique identifiers for entries. Other major
goals should be:

� Have user-friendly object and attribute names.

� Let querying of the directory tree be intuitive.

� Allow a user (directory designer, exploiter, or application programmer) to
easily understand the conventions used to name the objects.

� Allow a user to adopt the same conventions for naming new schema for his or
her own applications.

3.2.9 Physical architecture
Although a directory server can be used for different services, as discussed in
3.2.1, “General definition” on page 53, in this book we refer to it mainly as a user
repository.

In this section we show where to place directory servers with respect to security
domains. Figures in this section show only the directory components. For a
discussion of the physical network zones, see 2.3.1, “Localizing a global vision”
on page 31, and 2.3.2, “Network zones” on page 34.

We begin with a simple scenario and then we move to more complete topologies.

A directory server can be accessed from many different clients. Many current
applications have an embedded LDAP module to support LDAP authentication.
For example, common LDAP clients are HTTP servers, application servers,
operating systems, Access Manager WebSEAL, and customized applications
that use an API.

The directory server, which is the user registry, should be in a restricted access
zone, such as a production zone, to which access may be strictly controlled.
Firewall configurations should prevent direct access to the user registry from

 Chapter 3. Directory technologies 65

uncontrolled zones such as the Internet. A simple placement of the directory
server is shown in Figure 3-3.

Figure 3-3 Simple architecture with one directory server

Access for ports 389 and 636, or other LDAP ports if not using the LDAP
standard ports, should be closed by an Internet-facing firewall, and outgoing
LDAP port access should be allowed from the Internet DMZ to another zone only
if initiated by specific servers such as WebSEAL, for example.

Now we add one consideration to the simple architecture described above.
Because LDAP clients usually require read access to the user registry, it makes
sense to use replicas to increase security by separating the read functions of the
registry from the write functions. This can be done by creating a registry replica
used for read-only access (such as authentication) and leaving the registry
master only for making updates. Normal applications need access only a replica
server, while the master is accessed solely for administrative tasks. In this
configuration the master could be placed in the production zone as well, or it
might be placed in the intranet if this is considered secure enough.

In 2.3.2, “Network zones” on page 34, we showed that a management secure
zone might be introduced to increase security. In this case the read-only replica
should be placed in the production zone, while the master should be placed in
the management zone. The resulting architecture is shown in Figure 3-4 on
page 67.

389/636389/636

Production zoneInternet
DMZ

Controlled Restricted

Internet

Uncontrolled

Intranet

Controlled

LDAP Client LDAP Client

389/636

Port Access
Configuration

Port Open
Port Closed

Client

LDAP-enabled
Directory Server

Client

66 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 3-4 Architecture with LDAP master in a management secure domain

Both Figure 3-3 on page 66 and Figure 3-4 use port 389 and 636 together. You
could allow only SSL communication, port 636 by default, between Internet DMZ
and production zone. You might also consider opening only port 389 between the
intranet and the production zone. This has the benefit of relying on firewalls to
deny communications on the same port between the Internet DMZ and the
intranet. However, the firewall only allows communications from the Internet
DMZ to the production zone when the requests come from specified hosts. This
approach has the disadvantage of allowing non-encrypted LDAP
communications within the intranet. There is no best solution, because it all
depends on the actual level of security required in each zone.

Other architectures are also possible according to the namespace structure. In
“Namespace” on page 62 we introduced different criteria to choose suffixes and
branching. One criteria is to keep Internet and intranet users separated. An
Internet or external user can be, for example, anyone who has access to a
company’s application available on the Internet. Intranet or internal users are
employees and in general people who work for the company. We have already
discussed whether it is better to have one user registry or to split the namespace
into multiple trees. If an organization decides to have a directory server
dedicated to internal users, this could be placed in the intranet. The resulting
architecture is shown in Figure 3-5 on page 68. Note that in this topology, the
LDAP ports can be closed between the intranet and the production zone. Of
course, an additional replica server for the internal users can be used inside the
production zone to allow applications to access read-only LDAP information.

389/636389/636

Production zoneInternet DMZ

Controlled

Restricted

Internet

Uncontrolled

Intranet

Controlled

LDAP Client LDAP Client

389/636

Port Access
Configuration

Port Open
Port Closed

Management zone Secured

Client

LDAP Replica

LDAP Master

Client

 Chapter 3. Directory technologies 67

Figure 3-5 Architecture with different internal and external users repository

In addition, an intranet restricted zone separated from the rest of the intranet
could be created to have even more security. In this case the LDAP master
server for intranet users could be placed there.

An architecture intermediate between those shown in Figure 3-4 on page 67 and
Figure 3-5 can be set up by using only one LDAP master in the management
zone and replicating different subtrees to different security zones. The subtree
with external users is replicated to a server in the production zone, while the
subtree with internal users is replicated to a server in the intranet.

We have just introduced the idea of replication by subtree. In the following
section we describe the characteristics of replication and partitioning. The use of
these methods leads to setting up more complex architectures, but also
introduces high availability and scalability.

3.2.10 Availability and scalability
As we introduced in 3.2.6, “Distributed directories” on page 58, the two main
methods for improving availability and scalability are replication and partitioning.

Replication
Replication is based on a master-slave replication model. LDAP refers to the
master as master server and to the replica as replica server. The database of
every replica server contains an exact copy of the master server’s directory data.
There is no limit to the number of replicas that can be configured, but replicas
can only be read, not updated. A replica server can be promoted as master

Port Access
Configuration

Port Open
Port Closed

Production zoneInternet DMZ

Controlled

Restricted

Internet

Uncontrolled

Intranet

Controlled

LDAP Client

LDAP Client

389/636

Management zone Secured

389/636 389/636

Client

LDAP Replica

LDAP Master

LDAP Master

Client

68 Enterprise Security Architecture Using IBM Tivoli Security Solutions

server if required (for example, if the master server is out of service for an
extended period of time) in order to allow write operations to the directory during
this time. Replication has two main benefits:

� Performance: Provides a service from multiple machines in order to satisfy a
search as quickly as possible.

� Availability: If one server is temporarily down, the directory service continues
to be available from a replicated server.

In distributed environments replicas are also often considered in a geographical
perspective. A copy of the data is replicated to each site of a spread company.
This local replica protects LDAP services in case of network problems.

Partitioning
Benefits of partitioning a directory tree and distributing it to multiple LDAP
servers at multiple locations include:

� Scalability: More data can be accommodated by the directory because the
tree information is stored on a collection of servers, not just one. This
provides for a (theoretically) indefinite size of namespace.

� Availability: Spreading the directory information into subtrees reduces the
possibility of a single point of failure.

However, a drawback to this approach is that the probability of failure can
increase as more systems are involved and depending on how the directory
information is accessed. If requests are primarily being handled (and
eventually forwarded to other servers) by a single server, the service still
depends on a single machine (unless other provisions are in place).

� Performance: The workload of the actual data retrieval can be spread among
the servers.

� Manageability: Each location can manage its own part of the directory tree on
the local machine. Alternatively, management can also be done centrally.

A technique for partitioning a directory tree is to use LDAP referrals, which point
to a different partition of a namespace stored on a different (or the same) server.
For example, if your main directory server is located in New York and you want to
redirect all requests for <ou=Austin,o=Your_ORG,c=US> to a directory server
located in Austin, you can specify this with a referral entry in the main directory
tree in the following format:

ldap://<hostname:port>/ou=Austin,o=Your_ORG,c=US

A referral is a pointer to another portion (partition) of a directory. It is returned by
the server to a client and it is then up to the client to follow such a referral.

 Chapter 3. Directory technologies 69

Scalability and performance can be increased easily by combining replica and
referral. Also, high availability in read mode can be reached easily using replicas,
but replicas do not provide availability in write mode, because only masters can
be updated. Two methods for providing availability for the master are:

� Install the master in a clustered environment (for example, using HACMP™
for AIX).

� Use an LDAP server product that allows a topology with more than one
master. For an example, see the IBM Tivoli Directory Server peer replication
topology in 3.3.5, “Availability and scalability” on page 83.

In Figure 3-6, we show an example of a highly available and scalable LDAP
multiple master environment. This figure only considers access from the Internet.
For intranet access the consideration made in the previous section can be
repeated.

Figure 3-6 Highly available and scalable LDAP multiple master environment

3.2.11 Administration
In this section we show the tools for administering the directory, then we present
a brief reflection about who should perform administrative tasks.

The LDAP specifications contained in the pertinent RFCs include functions for
directory data management. These include functions to create and modify the
directory information tree (DIT) and to add, modify, and delete data stored in the
directory.

Production zoneInternet DMZ

Controlled

Restricted

Internet

Uncontrolled

LDAP Client

Management zone Secured

Load
Balancer

Client

LDAP Replica

LDAP Master LDAP Master

LDAP Replica

LDAP Replica

70 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Vendor products, however, most likely include additional tools for configuring and
managing an LDAP server environment. These include such functions as:

� Server setup (initial creation)
� Configuring a directory information tree
� Content management
� Security setup
� Replication and referrals management
� Access control management
� Logging and log file management
� Resource management and performance analysis tools

Depending on specific needs and preferences, LDAP directory administration
can be performed several ways. Different vendors offer different administration
tools. Although not all vendors provide tools for all methods, in general there are
three tools to manage LDAP directories:

� Graphical administration tools
� Command line utilities
� Custom-written applications

Graphical tool features are specific to each vendor, when provided. In 3.3.7,
“Administration” on page 90, we describe the IBM Tivoli Directory Server Web
Administration Tool.

Command line tools are based on the LDAP Software Development Kit (SDK),
which is mainly a set of libraries and header files. Depending on vendors, most
SDKs come with a set of simple command line applications, either in source
code or as ready-to-use executable programs. These tools were built using the
LDAP API functions and thus can serve as sample applications. They enable you
to do basic operations, such as searching the directory and adding, modifying, or
deleting entries within the LDAP server. Each basic operation is accomplished
with a single program such as ldapsearch or ldapmodify. By combining these
tools using, for example, a scripting language such as Perl, you can easily build
up more complex applications. In addition, they are easily deployable in
Web-based CGI programs.

As an alternative to using the administration utilities, custom-written
administration tools can be used. A developer has several options for accessing
LDAP. API library for both for C and Java languages are available. Another
approach for custom-written tools is to use the Java Naming and Directory
Interface (JNDI) client APIs. Such administration tools might be desirable when
typical data administration, such as adding or modifying employee data, is done
by non-technical staff. Writing directly to the API layer may also be necessary for
applications that need to control the bind/unbind sequence, or, perhaps, want to
customize the referral behavior. This is a more difficult approach because the
developer must deal with the conversion of the data to the structures that are

 Chapter 3. Directory technologies 71

sent over the LDAP protocol. Additionally, the developer must be aware of a
particular security setup, such as SSL.

Centralized and distributed administration
The directory administrator (the user with the root DN) is, by default, the only
person who can administer information in the directory. At times, it will be
necessary to allow other users to have administrative privileges on all or portions
of the directory. The Directory Information Tree can be divided into administrative
areas. Using ACLs, the directory administrator can give other distinguished
names full privileges to manage some subsection of the directory. In order to
grant a user administrative permission to a subtree, that user DN must be
specified in the entry owner attribute of the root of the subtree. The
administrative domain will be delimited by the value of an owner inheritance
attribute (OwnerPropagate); if it is set to FALSE, the scope of the administrator
will be the single entry on which the owner was set, and if OwnerPropagate is set
to TRUE, the administrative domain will be the entire subtree unless a new entry
owner is specified in a descendant entry. ACLs also allow granting limited
administrative privileges to a DN on a subtree or on a specific directory entry. For
more details about ACL, refer to 3.2.7, “Directory security” on page 59.

3.3 IBM Tivoli Directory Server
In this section we describe the IBM directory product, IBM Tivoli Directory Server,
formerly known as IBM Directory Server or IBM SecureWay® Directory. We refer
to the latest version, Version 6.0, but many features are common to the previous
versions. New features with respect to the previous versions are clearly stated at
the beginning of the IBM Tivoli Directory Server Release Notes, SC32-1682.

The IBM Tivoli Directory Server implements the LDAP V3 specifications as
defined by the Internet Engineering Task Force (IETF). Therefore, all general
LDAP features described in 3.2, “Directories” on page 53 are implemented in
IBM Tivoli Directory Server. We do not go into detail about the LDAP protocol,
client-server architecture, or network placement, because these topics have
already been generally addressed.

IBM Tivoli Directory Server also includes enhancements in functional and
performance areas added by IBM. In this section we focus on the main features,
especially from the architectural and security points of view. For more details
always refer to the IBM Tivoli Directory Server Information Center for all current
documentation, which is available online in Portable Document Format (PDF) or
Hypertext Markup Language (HTML) format at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.I
BMDS.doc/toc.xml

72 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.IBMDS.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.IBMDS.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.IBMDS.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.IBMDS.doc/toc.xml

3.3.1 Overview
The main features of IBM Tivoli Directory Server include:

� Reliable IBM DB2 Universal Database™ V8.1 engine provides scalability to
tens of millions of entries, as well as groups of hundreds of thousands of
members.

� Broad platform support: Windows, AIX, Linux (IBM eServer™ System x™,
zSeries®, pSeries®, and iSeries®), Solaris™, and Hewlett-Packard UNIX
(HP-UX) operating system platforms.

� Robust replication capability with many different topologies, which include
cascaded replication and peer-to-peer replication with many master servers.

� Ease of management and usability with Web Administration GUI and features
such as Dynamic and Nested Groups, along with Sorted and Paged Search
Results.

� Tight integration with IBM operating systems, WebSphere® middleware, and
Tivoli identity management and security products.

The product can be downloaded from the IBM Tivoli software products Web site:

http://www.ibm.com/software/tivoli/products/directory-server/

It is available for all supported platforms and includes all of its base components.

3.3.2 Base components
The base components of IBM Tivoli Directory Server are:

� IBM DB2 as the backing store to provide per-LDAP operation transaction
integrity, high-performance operations, and online backup and restore
capability. IBM Tivoli Directory Server Version 6.0 currently ships with DB2
UDB v8.1.

� The server executable: idsslapd.

� Tools to administer and configure the directory. These tools rely on the
directory administration daemon (idsdiradm), which runs on each server
machine and also enables remote management. See 3.3.6, “Logging” on
page 90 for a description of the available tools. The main tools are:

– Web Administration Tool. This is a J2EE™ compliance application
installable on IBM WebSphere Application Server and in its Express
version, which is provided with IBM Tivoli Directory Server.

– GUI for configuring the directory and the database: Configuration Tool
(idsxcfg).

– Command line server utilities.

 Chapter 3. Directory technologies 73

http://www.ibm.com/software/tivoli/products/directory-server/

� IBM Tivoli Directory Server Client SDK, which provides the tools required to
develop LDAP applications. It includes:

– Client libraries that provide a set of C-language APIs

– C header files for building and compiling LDAP applications

– Documentation that describes the programming interface and the sample
programs

– Sample programs in source form

– Command line client utilities

Applications utilizing the LDAP protocol access an LDAP-enabled directory
according to the client-server architecture we introduced in the previous section.
It is important to secure both client-server communication and administrative
tasks as it is necessary to guarantee data integrity and confidentiality. The next
sections explain how IBM Tivoli Directory Server implements security.

3.3.3 Directory security
In 3.2.7, “Directory security” on page 59, the main concepts about directory
security (authentication, integrity, confidentiality, and authorization) were
introduced. IBM Tivoli Directory Server supports all three authentication methods
described in that section. Here, we focus on secure communications and data
encryption, which are key elements for providing secure authentication, data
integrity, and confidentiality. In the last part of this section we show how to
manage authorization through the use of ACLs.

Authentication
IBM Tivoli Directory Server supports both server and client authentication:

� For server authentication, the IBM Tivoli Directory Server supplies the client
with the IBM Tivoli Directory Server’s X.509 certificate during the initial
handshake. If the client validates the server’s certificate, then a secure,
encrypted communication channel is established between the IBM Tivoli
Directory Server and the client application. For server authentication to work,
the IBM Tivoli Directory Server must have a private key and an associated
server certificate in the server’s key database file.

� Server and client authentication provides for two-way authentication between
the LDAP client and the directory server. With client authentication, the LDAP
client must have a digital certificate (based on the X.509 standard). This
digital certificate is used to authenticate the LDAP client to the IBM Tivoli
Directory Server.

74 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Data encryption can be performed by Secure Sockets Layer (SSL) security,
Transaction Layer Security (TLS), or both. In the following paragraph we
describe the two mechanisms. They provide secure authentication as well as
integrity and confidentiality.

The default TCP/IP ports are those used for LDAP: 636 for SSL encrypted
communications and 389 for unencrypted or TLS communications.

Transaction Layer Security
Transaction Layer Security (TLS) is a protocol defined in RFC 2830 that ensures
privacy and data integrity in communications between client and server.

TLS is composed of two layers:

� The TLS Record Protocol, which provides connection security with data
encryption methods such as the Data Encryption Standard (DES) or RC4
without encryption. The keys for this symmetric encryption are generated
uniquely for each connection and are based on a secret negotiated by the
TLS Handshake Protocol. The Record Protocol can also be used without
encryption.

� The TLS Handshake Protocol, which enables the server and client to
authenticate each other and to negotiate an encryption algorithm and
cryptographic keys before data is exchanged. TLS is invoked by using the -Y
option from the client utilities.

Secure Sockets Layer
The IBM Tivoli Directory Server has the ability to protect LDAP access by
encrypting data with Secure Sockets Layer (SSL) security. When using SSL to
secure LDAP communications with the IBM Directory, both server authentication
and client authentication are supported.

Attention: In case you use self-signed certificates for server authentication,
you must distribute the server certificate to each client. For server and client
authentication using self-signed certificates you also must add the certificate
for each client to the server’s key database.

When using some Certification Authority to sign those certificates, they only
need to be valid and the other part has to trust the CA certificate.

Attention: TLS and SSL are not interoperable. Issuing a start TLS request
(the -Y option) over an SSL port causes an operations error.

 Chapter 3. Directory technologies 75

With server authentication, the IBM Tivoli Directory Server must have a digital
certificate (based on the X.509 standard). This digital certificate is used to
authenticate the IBM Tivoli Directory Server to the LDAP client application.

Certificates
When using server and client authentication in your SSL settings, the server can
be configured to check for revoked or expired certificates. When a client sends
an authenticated request to a server, the server reads the certificate and sends a
query to an LDAP-enabled directory server with a list that contains revoked
certificates. If the client certificate is not found in the list, communications
between the client and server are allowed over SSL. If the certificate is found,
communications are not allowed.

To conduct commercial business on the Internet, you might use a widely known
Certification Authority (CA), such as VeriSign, to get a high-assurance server
certificate. If you are using the IBM Tivoli Directory Server in an intranet-only
environment, you can use a self-signed server certificate without purchasing a
VeriSign high-assurance server certificate.

Kerberos
IBM Tivoli Directory Server supports Kerberos Version 1.4 servers, such as the
IBM Network Authentication Service for AIX servers and AIX 64-bit clients. More
information about the IBM Network Authentication Service is in the IBM Redbook
AIX 5L Version 5.2 Security Supplement, SG24-6066.

When utilizing the IBM Network Authentication Service, a client (generally either
a user or a service) sends a request for a ticket to the Key Distribution Center
(KDC). The KDC creates a ticket-granting ticket (TGT) for the client, encrypts it
using the client’s password as the key, and sends the encrypted TGT back to the
client. The client then attempts to decrypt the TGT, using its password. If the
decryption is successful, the client retains the decrypted TGT, indicating proof of
the client’s identity.

The TGT, which expires at a specified time, permits the client to obtain additional
tickets that give permission for specific services. The requesting and granting of
these additional tickets does not require user intervention.

The Network Authentication Service negotiates the authenticated, and optionally
encrypted, communication between two points on the network. It can enable
applications to provide a layer of security that is not dependent on which side of a

Note: You must have a Kerberos client installed to use Kerberos
authentication.

76 Enterprise Security Architecture Using IBM Tivoli Security Solutions

firewall either client is situated. Because of this, Network Authentication Service
can play a vital role in the security of your network.

You need to create an LDAP server servicename in the KDC using the principal
name ldap/<hostname>.<mylocation>.<mycompany>.com.

The IBM Tivoli Directory Server can be used to contain Kerberos account
information to serve as the backing store for a KDC.

SASL mechanisms
Clients can also authenticate using one of the following Simple Authentication
and Security Layer (SASL) mechanisms: CRAM-MD5 and DIGEST-MD5. When
a client uses Digest-MD5 (see RFC 2831 for details), the password is not
transmitted in clear text and the protocol prevents replay attacks.

Integrity
Data integrity is provided by the whole architecture and in particular by IBM DB2
reliability and the LDAP secure communication protocols we described in the
previous section.

Confidentiality
Confidentiality is the protection of information disclosure by means of data
encryption to those who are not intended to receive it. The most sensitive
resource in a user repository is the user password. Besides secure
authentication, IBM Tivoli Directory Server provides other functions to increase
confidentiality.

Password encryption
IBM Tivoli Directory Server enables you to prevent unauthorized access to user
passwords. The administrator may configure the server to encode the
userPassword attribute values in either a one-way encoding format or a two-way
encoding format. Using one-way encryption formats, user passwords may be
encrypted and stored in the directory, which prevents clear passwords from
being accessed by any users including the system administrators.

The following one-way encryption options are available:

� UNIX crypt
� SHA (Secure Hash Algorithm)

For applications that require retrieval of clear passwords, such as middle-tier
authentication agents, the directory administrator needs to configure the server

Note: If the UNIX crypt method is used, only the first 8 characters are
effective.

 Chapter 3. Directory technologies 77

to perform either a two-way encryption or no encryption on user passwords. In
this instance, the clear passwords stored in the directory are protected by the
directory ACL mechanism.

The Advanced Encryption Standard (AES) is a two-way encryption option. It is
provided to allow values of the userPassword attribute to be encrypted in the
directory and retrieved as part of an entry in the original clear format. It can be
configured to use 128-, 192-, and 256-bit key lengths. Some applications such as
middle-tier authentication servers require passwords to be retrieved in clear text
format, however, corporate security policies might prohibit storing clear
passwords in a secondary permanent storage. This option satisfies both
requirements.

IBM Tivoli Directory Server provides the following encryption selections:

None No encryption. Passwords are stored in the clear text format.

crypt Passwords are encrypted by the UNIX crypt encrypting algorithm
before they are stored in the directory.

SHA-1 Passwords are encrypted by the SHA-1 encrypting algorithm
before they are stored in the directory.

AES128 Passwords are encrypted by the AES128 algorithm before they
are stored in the directory and are retrieved as part of an entry in
the original clear format.

AES198 Passwords are encrypted by the AES198 algorithm before they
are stored in the directory and are retrieved as part of an entry in
the original clear format.

AES256 Passwords are encrypted by the AES256 algorithm before they
are stored in the directory and are retrieved as part of an entry in
the original clear format.

In addition to userPassword, values of the secretKey attribute are always
“AES256” encrypted in the directory. Unlike userPassword, this encrypting is
enforced for values of secretKey. No other option is provided. The secretKey
attribute is an IBM defined schema. Applications may use this attribute to store
sensitive data that need to be always encrypted in the directory and to retrieve
the data in clear text format using the directory access control.

Password policy
IBM Tivoli Directory Server enables enforcement of a password policy, which is a
set of rules that controls the way passwords are used and administrated in the
IBM Tivoli Directory Server. These rules are made to ensure that users change
their passwords periodically, and that the passwords meet the organization’s
syntactic password requirements. These rules also can restrict the reuse of old
passwords and ensure that users are locked out after a defined number of failed

78 Enterprise Security Architecture Using IBM Tivoli Security Solutions

attempts. All users except the directory administrator and the members of the
administrative group are forced to comply with this password policy.

Authorization
ACLs are attributes attached to a directory entry. Administrators use ACLs to
restrict or allow access to different parts of the directory, or specific directory
entries. When dealing with ACL the terms object and subject are commonly
used. Object is the directory entry that the ACL is applied to, while subject is the
directory entry that is given permission or restriction to perform operations on the
object. In this section we show more details about how to deal with access
control attributes, subjects, objects, and rights. In the last part of the section we
describe how access is evaluated.

Access control model attributes
Each object contains its distinguished name as well as a set of attributes and
their corresponding values.

The access control model defines two sets of attributes:

� The entryOwner information
� The Access Control Information (ACI)

In conformance with the LDAP model, the ACI information and the entryOwner
information is represented as attribute-value pairs.

The entryOwner information controls which subjects can define the ACIs. An
entry owner also acquires full access rights to the target object. The attributes
that define entry ownership are:

� entryOwner - Explicitly defines an entry owner.

� ownerPropagate - Specifies whether the permission set is propagated to the
subtree descendant entries.

The entry owners have complete permissions to perform any operation on the
object regardless of the aclEntry. Additionally, the entry owners are the only ones
who are permitted to administer the aclEntries for that object. EntryOwner is an
access control subject. The directory administrator and administration group
members are the entryOwners for all objects in the directory by default, and this
entryOwnership cannot be removed from any object.

The Access Control Information specifically defines a subject’s permission to
perform a given operation against certain LDAP objects. The aclPropagate

 Chapter 3. Directory technologies 79

attributes determine whether an ACI is applied to just a particular entry or to an
entry and its subtree. There are two types of ACI:

� Non-filtered ACLs. This type of ACL applies a permission set explicitly to the
directory entry that contains them, but may be propagated to none or all of its
descendant entries. The default behavior of the non-filtered ACL is to
propagate.

� Filtered ACLs. Filter-based ACLs differ in that they employ a filter-based
comparison, using a specified object filter, to match target objects with the
effective access that applies to them.

Filter-based and non-filter-based attributes are mutually exclusive within a single
directory entry.

Subject
A subject is the entity requesting access to operate on an object. It consists of
the combination of a DN (distinguished name) type and a DN. The valid DN types
are: access ID, group, and role. The DN identifies a particular access ID, role, or
group.

Both groups and roles are a collection of names and are similar in
implementation, but they are conceptually different. When a user is assigned to a
role, there is an implicit expectation that the necessary authority has already
been set up to perform the job associated with that role. With group membership,
there is no built-in assumption about what permissions are gained (or denied) by
being a member of that group.

In addition, pseudo DNs can be specified as subjects. IBM Tivoli Directory Server
contains several pseudo DNs, which are used to refer to large numbers of DNs
that share a common characteristic, in relation to either the operation being
performed or the object on which the operation is being performed.

Three pseudo DNs are supported by LDAP Version 3:

� Access ID: cn=this. When specified as part of an ACL, this DN refers to the
bindDN, which matches the object on which the operation is performed. For
example, if an operation is performed on the object cn=personA, ou=IBM,
c=US, and the bindDn is cn=personA, ou=IBM, c=US, the permissions granted
are a combination of those given to cn=this and those given to
cn=personA,ou=IBM, c=US.

� Group: cn=anybody. When specified as part of an ACL, this DN refers to all
users, even those that are unauthenticated. Users cannot be removed from
this group, and this group cannot be removed from the database.

80 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Group: cn=Authenticated. This DN refers to any DN that has been
authenticated by the directory. The method of authentication is not
considered.

Access targets
Permissions can be applied to the entire object (add child entry, delete entry), to
an individual attribute within the entry, or to groups of attributes (Attribute Access
Classes) as described in the following.

Attributes requiring similar permissions for access are grouped together in
classes. Attributes are mapped to their attribute classes in the directory schema
file. These classes are discrete; access to one class does not imply access to
another class. Permissions are set with regard to the attribute access class as a
whole. The permissions set on a particular attribute class apply to all attributes
within that access class unless individual attribute access permissions are
specified.

IBM Tivoli Directory Server defines five attribute classes that are used in
evaluation of access to user attributes: normal, sensitive, critical, system, and
restricted. As examples, the attribute commonName belongs to the normal class,
and the attribute userPassword belongs to the critical class. Refer to IBM Tivoli
Directory Server product manuals to see how attributes are classified within the
five classes.

Access rights
Directory access rights applied to an access target are discrete. One right does
not imply another right. The rights may be combined together to provide the
desired rights list following a set of rules discussed later. Rights can be of an
unspecified value, which indicates that no access rights are granted to the
subject on the target object. The rights consist of three parts:

� Action: Defined values are grant or deny. If this field is not present, the default
is set to grant.

� Permission: There are six basic operations that may be performed on a
directory object. From these operations, the base set of ACI permissions are
taken. These are: add an entry, delete an entry, read an attribute value, write
an attribute value, search for an attribute, and compare an attribute value.
The possible attribute permissions are: read (r), write (w), search (s), and
compare (c). Additionally, object permissions apply to the entry as a whole.
These permissions are add child entries (a) and delete this entry (d).

� Access target that we described in the previous section.

By default, the directory administrator, administration group members and the
master server get full access rights to all objects in the directory except write
access to system attributes. Other entryOwners get full access rights to the

 Chapter 3. Directory technologies 81

objects under their ownership except write access to system attributes. By
default all users have read access rights to normal, system, and restricted
attributes.

Access evaluation
Access for a particular operation is granted or denied based on the subject’s bind
DN for that operation on the target object. Processing stops as soon as access
can be determined.

The checks for access are done by first checking for entry ownership, and then
by evaluating the object’s ACI values. If the requesting subject has
entryOwnership, access is determined by the above default settings and access
processing stops. If the requesting subject is not an entryOwner, then the ACI
values for the object entries are checked.

Refer to the IBM Tivoli Directory Server Administration Guide, SC32-1339, for
more details about the rules used to calculate access rights based on an object’s
ACLs and requesting DN.

In the following subsection we show an additional feature.

Proxy authorization group
The proxy authorization is a special form of authentication. By using the proxy
authorization mechanism, a client application can bind to the directory with its
own identity but is allowed to perform operations on behalf of another user to
access the target directory. A set of trusted applications or users can access the
Directory Server on behalf of multiple users.

The members in the proxy authorization group can assume any authenticated
identities except for the administrator or members of the administrative group.

As an example, a client application, client1, can bind to the Directory Server with
a high level of access permissions. UserA with limited permissions sends a
request to the client application. If the client is a member of the proxy
authorization group, instead of passing the request to the Directory Server as
client1, it can pass the request as UserA using the more limited level of
permissions. What this means is that instead of performing the request as
client1, the application server can perform only those actions that UserA is able
to access or perform. It performs the request on behalf of or as a proxy for
UserA.

Note: The audit log records both the bind DN and the proxy DN for each
action performed using proxy authorization.

82 Enterprise Security Architecture Using IBM Tivoli Security Solutions

3.3.4 Schema
A schema is a set of rules that governs the way that data can be stored in the
directory. As we described in 3.2.8, “Schema and namespace” on page 62, the
schema defines the type of entries allowed, their attribute structure, and the
syntax of the attributes.

The IBM Tivoli Directory Server schema is predefined, but it can be modified in
case of additional requirements.

IBM Tivoli Directory Server supports standard directory schema as defined in the
following:

� The Internet Engineering Task Force (IETF) LDAP Version 3 RFCs, such as
RFC 2252 and 2256

� The Directory Enabled Network (DEN)

� The Common Information Model (CIM) from the Desktop Management Task
Force (DMTF)

� The Lightweight Internet Person Schema (LIPS) from the Network Application
Consortium.

IBM also provides a set of extended common schema definitions that other IBM
products share when they exploit the LDAP directory. They include:

� Objects for white-page applications such as ePerson, group, country,
organization, organization unit and role, locality, state, and so forth.

� Objects for other subsystems such as accounts, services and access points,
authorization, authentication, security policy, and so forth.

3.3.5 Availability and scalability
IBM Tivoli Directory Server enables the use of replica and partitioning to
implement high availability and scalability. In this section we focus on the replica
mechanism that provides two main benefits: redundancy of information and
faster searches (because search requests can be spread among several
different servers). However, partitioning is also supported. It can be used as
described in 3.2.10, “Availability and scalability” on page 68.

Through replication, a change made to one directory is propagated to one or
more additional directories. In effect, a change to one directory shows up on
multiple different directories. The IBM Tivoli Directory Server supports an
expanded master-replica replication model. IBM Tivoli Directory Server allows

 Chapter 3. Directory technologies 83

several replication topologies that can fit different requirements. These
topologies include:

� Master - replica topology
� Cascading topology
� Peer-to-peer topology
� Gateway topology
� Distributed directory topology using directory proxy server

The expanded model changes the concept of master and replica. These terms
no longer apply to servers, but rather to the roles that a server has regarding a
particular replicated subtree. A server can act as a master for some subtrees and
as a replica for others. The term, master, is used for a server that accepts client
updates for a replicated subtree. The term, replica, is used for a server that only
accepts updates from other servers designated as a supplier for the replicated
subtree.

In addition, the following features are common to all the topologies:

� Replicating by subtrees. A replica does not have to replicate an entire
directory, but can replicate only a part of it. Specific entries in the directory are
identified as the roots of replicated subtrees. Each subtree is replicated
independently.

� Assignment of server role by subtree. A server can act as a master for some
subtrees and as a replica for others.

� Replication scheduling. Updates to other servers can be immediate or
scheduled at a desired time.

Master - replica replication
This is the simplest topology, and it enables:

� Increasing performance by spreading requests on multiple servers
� Obtaining high availability in read-only mode
� Scaling the directory server

The terms master and replica apply to the roles that a server has regarding a
particular replicated subtree. The term master is used for a server that accepts
client updates for a replicated subtree. The term, replica, is used for a server that
only accepts updates from other servers designated as a supplier for the
replicated subtree. It is also possible designate that part of a replicated subtree
not be replicated. A master server can have several replicas. Each replica can
contain a copy of the master's entire directory, or a subtree of the directory. A
simple topology with four replicas is shown in Figure 3-7 on page 85.

84 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 3-7 Master-replica topology

Updates can be requested on a replica server, but the update is actually
forwarded to the master server by returning a referral to the client. If the update is
successful, the master server then sends the update to the replicas. Until the
master has completed replication of the update, the change is not reflected on
the replica server where it was originally requested. If the replication fails,
changes are queued up and resubmitted even if the master is restarted.
Changes are replicated in the order in which they are made on the master.
However administrators can decide to skip specific changes. This can be useful
to avoid blocking all replication processes if one update fails, but administrators
must remember to fix the problem with the failing update in order to keep the
directories synchronized.

The replication process implies that the master binds to the replica using a DN
created for that purpose and stored in the Replication Agreement. Three
authentication methods are supported:

� Simple bind
� SSL
� Kerberos authentication

Refer to 3.3.3, “Directory security” on page 74 for explanations about these
methods.

Cascading replication
This topology adds one element to the previous one, the cascading server. A
cascading server, also known as a forwarding server, is a replica server that
replicates all changes sent to it. This contrasts to a master server in that a master
server only replicates changes that are made by clients connected to that server.
A cascading server can relieve the replication workload from the master servers
in a network which contains widely dispersed replicas.

Master
dc=ibm,dc=com

replica-1
ou=austin,dc=ibm,dc=com

replica-2
dc=ibm,dc=com

replica-3
dc=ibm,dc=com

replica-4
ou=groups,dc=ibm,dc=com

 Chapter 3. Directory technologies 85

The use of cascading servers implies that the master replicates to a small
number of forwarders, which in turn replicate to other servers. This enables
implementation of cascading replication, as shown in Figure 3-8.

Figure 3-8 Cascading replication

Peer-to-peer replication
In addition to the three benefits pointed out for a master - replica topology, the
introduction of peer servers enables setting up multiple master servers. Peer
replication can improve performance and master availability. Performance is
improved by providing another server to handle updates. For example, this may
be useful for setting up a local master in a widely distributed network. Availability
is improved by providing a backup master server ready to take over immediately
if the primary master fails.

Peer replication topology allows multiple master servers, with each master
responsible for updating other master servers and replica servers. A master
server is called peer server when there are multiple masters for a given subtree.
A peer server does not replicate changes sent to it from another master server; it
only replicates changes that are originally made on it. A topology with two peer
servers and four replicas is shown in Figure 3-9 on page 87.

Master
dc=ibm,dc=com

forwarder-1
dc=ibm,dc=com

forwarder-2
dc=ibm,dc=com

replica-1
ou=austin,dc=ibm,dc=com

replica-2
dc=ibm,dc=com

replica-3
dc=ibm,dc=com

replica-4
ou=groups,dc=ibm,dc=com

86 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 3-9 Peer replication

Peer and forwarding replication can be combined. For example, two forwarder
servers could be added to the topology shown in Figure 3-9.

Conflict resolution is required in peer-to-peer replication to avoid inconsistencies
in the directory data. IBM Tivoli Directory Server uses a time stamp on add and
modify operations to mitigate this. The entry with the most recent modify time
stamp on any server in a multi-master replication environment is the one that
takes precedence. Replicated delete and rename requests are accepted in the
order received without conflict resolution. When a replication conflict is detected
the replaced entry is archived for recovery purposes is the Lost and Found log
(see 3.3.6, “Logging” on page 90 for more information).

Gateway replication
The introduction of gateway replication enables reduction of network traffic. This
is particularly useful in a distributed environment with at least few servers in
different locations.

Gateway servers are master servers used to collect and distribute replication
information effectively across a replicating network. A gateway server has two
functions:

� Collects replication updates from the peer/master servers in the replication
site where it resides and sends the updates to all other gateway servers
within the replicating network.

Load balancer

Load balancer Reads

Updates

Peer-1
dc=ibm,dc=com

replica-1
ou=austin,dc=ibm,dc=com

replica-2
dc=ibm,dc=com

replica-3
dc=ibm,dc=com

replica-4
ou=groups,dc=ibm,dc=com

Peer-2
dc=ibm,dc=com

 Chapter 3. Directory technologies 87

� Collects replication updates from other gateway servers in the replication
network and sends those updates to the peers/masters and replicas in the
replication site where it resides.

Figure 3-10 shows a gateway topology with four sites and four gateway servers.

Figure 3-10 Gateway replication

Distributed directory with directory proxy server
IBM Tivoli Directory Server has the ability to be configured either as a standard
directory server or as a directory proxy server. A proxy server is a special type of
IBM Tivoli Directory Server that provides request routing, load balancing, fail
over, distributed authentication, and support for distributed/membership groups
and partitioning of containers. Most of these functions are provided in a new
backend, the proxy backend. The proxy server does not have an RDBM backend
and cannot take part in replication.

A directory proxy server sits at the front-end of a distributed directory and
provides efficient routing of user requests thereby improving performance in
certain situations, and providing a unified directory view to the client. It can also
be used at the front-end of a server cluster for providing fail over and load
balancing. The proxy server also provides data support for groups and ACLs that
are not affected by partitioning and support for partitioning of flat namespaces.

The proxy server is configured with connection information to connect to each of
the backend servers for which it is proxying. The connection information
comprises of host address, port number, bind DN, credentials and a connection
pool size. Each of the back-end servers is configured with the DN and
credentials that the proxy server uses to connect to it. The DN must be a

G1 G2

G3 G4

M1

M2

M3

M4

M5

R1 R2

R4R3

Network 1

Network 2

Network 3
Network 4

88 Enterprise Security Architecture Using IBM Tivoli Security Solutions

member of the back-end server's (local) administration group or local
administrator. Finally, the proxy server is configured with its own schema. You
need to ensure that the proxy server is configured with the same schema as the
back-end servers for which it is proxying. The proxy server must also be
configured with partition information.

Figure 3-11shows a distributed directory using a directory proxy server.

Figure 3-11 Distributed directory with directory proxy server

In this setup, three servers have their data split within a container (under some
entry in the directory tree). Because the proxy server handles the routing of
requests to the appropriate servers, no referrals are used. Client applications
need only be aware of the proxy server. The client applications never have to
authenticate with servers A, B, or C.

Data is split evenly across the directories by hashing on the RDN just below the
base of the split. In this example the data within the subtree is split based on the
hash value of the RDN. Hashing is only supported on the RDN at one level in the
tree under a container. Nested partitions are allowed. In the case of a compound
RDN the entire normalized compound RDN is hashed. The hash algorithm
assigns an index value to the DN of each entry. This value is then used to
distribute the entries across the available servers evenly.

Note: In a distributed directory scenario, each server excluding the directory
proxy server may have one or more peers and replicas.

Load balancer

Directory Server C
dc=ibm,dc=com

Hash = 3

Directory Server B
dc=ibm,dc=com

Hash = 2

Directory Server A
dc=ibm,dc=com

Hash = 1

Directory

Proxy

Server

Directory

Proxy

Server

 Chapter 3. Directory technologies 89

3.3.6 Logging
The IBM Tivoli Directory Server provides several logging utilities that can be
viewed either through the Web Administration Tool or the system command line.
Different types of logs are available. They can be configured and activated
separately at different levels. Log types include:

� Error log
� Audit log
� Lost and Found log
� DB2 error log
� Bulkload error log
� Administration daemon error log
� Administration daemon audit log

These logs can be used for troubleshooting or for audit purposes.

Additionally, the Changelog can be activated. This is a subtree of the directory in
which all changes to the directory are recorded. This is very useful for queuing up
changes for replication purposes or when the data stored in the directory has to
be integrated with other sources. IBM Tivoli Directory Integrator (see 3.5, “IBM
Tivoli Directory Integrator” on page 96) uses the Changelog to individuate the
data modifications that have to propagate to other repositories.

3.3.7 Administration
Administration tools are one of the outstanding features of IBM Tivoli Directory
Server. The main benefits are:

� Remote administration: Administration tools and IBM Tivoli Directory Server
can run on different machines.

� Centralized administration: Any directory server can be managed by a single
point of control.

� A large number of administrative tasks are available.

� Tools are user friendly and intuitive to use.

Administration tools rely on the directory administration daemon, which must be
running continuously on every machine on which IBM Tivoli Directory Server is
installed. The directory administration daemon accepts requests by way of LDAP
extended operations and supports starting, stopping, restarting, and status
monitoring of the IBM Tivoli Directory Server. By default, the IBM Tivoli Directory
Server administration daemon listens on two ports (port 3538 for non-SSL
connections and port 3539 for SSL connections) if SSL communication is
enabled.

90 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Although APIs can be used to develop custom applications to administer
directories, the administration tools allow all normally required administrative
tasks to perform. As introduced in 3.3.2, “Base components” on page 73, the two
main tools are the Web Administration Tool graphical user interface (GUI) and the
command line utilities. In addition, the idsxcfg utility is useful for performing the
initial directory configuration and for managing the DB2 database.

Web Administration Tool
This is a J2EE compliance application installable on an application server, such
as the embedded version of IBM WebSphere Application Server - Express
included with the IBM Tivoli Directory Server. This application provides a console
that can be used to administer all the configured LDAP servers, so only one Web
Administration application is required within an organization. As this is a Web
application, it can be accessed by a browser without the need any other client.

This application enables administration of several types of LDAP servers.
Supported directories are: IBM Tivoli Directory Server 6.0, IBM Tivoli Directory
Server 5.2, IBM Directory Server 5.1, IBM Directory Server 4.1, IBM SecureWay
Directory 3.2.2, OS/400® V5R3, and z/OS® R4.

Console users
Users accessing the console select a server and provide a user name and a
password when logging in. The console administrator, rather than accessing a
directory server, can access the console administration interface. From this
interface the console administrator can manage only the console, which means
that he can perform the following operations:

� Add, modify, or delete a directory server from the list of servers that the
console can administrate.

� Define how the console accesses a server by selecting the TCP/IP port and
enabling SSL (or not).

� Manage console properties such as security settings.

This console administrator does not have to be defined in any directory.
Therefore he has no rights on the servers administered by the console.

All users other than the console administrator can access a directory server by
providing a defined user name and password. When logged in, users are
authorized to perform tasks according to their permissions as set in the directory
ACLs. As shown when we described ACLs in 3.3.3, “Directory security” on
page 74, ACLs can be set to allow different administrators to perform tasks with
equal or different rights on different or the same directory subtrees. Therefore,
there can be several levels of administrators, beginning with the directory
administrator, who is owner of every entry. For example, there can be a local

 Chapter 3. Directory technologies 91

administrator for each subtree if the DIT has been split on a geographical base. A
regular user may only have read permission on his data.

To facilitate management of administrators, IBM Tivoli Directory Server allows
the use of the Administration Group. This is a group of users who are given most
of the same directory access as is granted to the IBM Tivoli Directory Server
administrator. However, some access to the configuration back end may be
restricted from administration group members in order to maintain some security
control over administrative users. Members of the Administration Group cannot:

� Modify the Administrator Group itself by adding or deleting members
� Clear or modify the audit logs’ settings

Console functions
As stated before, the Web Administration Tool enables an extremely wide range
of tasks, such as:

� Basic server administration tasks

� Setting server properties

� Configuring security settings

� Managing the IBM Tivoli Directory Server schema

� Managing replication

� Managing logs

� Managing directory entries

� Managing access control lists

� Managing group, roles, and proxy authorization group

� Performing user-specific tasks

Command line utilities
Server and client command line utilities enable directory server administration
without the use of the Web interface. In fact, IBM Tivoli Directory Server provides
executables that can perform all of the basic tasks shown in the previous section.
For some tasks, administrators can choose to use either the graphical tool or
these command line utilities, but some administrators find that more complex
tasks can be performed more easily with the Web tool (for example, setting
replication topologies and agreements and modifying schemas). Performing
certain operations with command line utilities requires more steps and deep
knowledge of the directory.

92 Enterprise Security Architecture Using IBM Tivoli Security Solutions

3.4 Virtual directory versus metadirectory
With the growing number of data sources within a corporation’s IT environment,
new technologies have developed to provide a single, consistent view of identity
data. Two of these technologies are the metadirectory and the virtual directory.

3.4.1 Metadirectory
Due to the complexity of these requirements, custom scripting or application
development is not usually affordable or maintainable. It is viable only for
solutions that involve only a few point-to-point data flows with minimal
requirements for event handling, attribute mappings and minimal logging and
error handling capabilities. Meta directories are tools that have emerged to
provide a complete set of services tailored to handling these issues. They enable
integrators to quickly develop, deploy and maintain, and extend a solution for
integrating identity data for infrastructure components and applications.

A metadirectory is not another user directory. It is a toolkit that provides graphical
tools systems integrators use to work with information about where data is
located, how it can be accessed, how the entries in one store are linked with
entries in another, and how the data should flow between different directories
and databases. Metadirectory run-time services include connectors (agents) for
collecting information from many operating system and application specific
sources to integrate the data into a unified namespace.

Meta directories also enforce business rules that specify the authoritative source
for attribute values, handle naming and schema discrepancies, and provide data
synchronization services between information sources. One of the benefits of a
metadirectory is that it can create and maintain a central repository consisting of
entries and attributes that are joined or aggregated from many other sources.
However, a central store for data other than the metadata is not required for a
metadirectory to provide synchronization services.

 Chapter 3. Directory technologies 93

Figure 3-12 illustrates the concept of a meta directory.

Figure 3-12 Metadirectory

3.4.2 Virtual directories
Virtual directories implement a relatively new, but closely related and
complementary to metadirectory, technology with similar services. They provide
applications with virtual views of the data contained in a variety of data stores.
These views can be tailored to the requirements of the application. An
application that prefers to use LDAP protocol to access its data can do so, even
though the data may be stored in a relational database. Virtual directories are
essentially brokers that enable a single query to reference information in multiple
data sources dynamically.

A virtual directory could assemble information from multiple sources, perhaps
using attributes in a directory as pointers, and then present it to a client
application in response to an LDAP query against a virtual directory tree that is
defined in the virtual directories metadata. A virtual directory provides a layer of
abstraction between the applications accessing data and the various repositories
where it is stored and managed.

HR Data LDAP
Directory

CSV
File

DB2Legacy Data

Metadirectory

Client

Metadata

94 Enterprise Security Architecture Using IBM Tivoli Security Solutions

A potential advantage of a virtual directory over a metadirectory, when data
access is primarily read-only and there is no need to synchronize data at the
various sources, is that data is not moved between sources in order to compose
and permanently store an aggregate view. Instead, the data is aggregated as
required by the applications that access it. Virtual directories could be
appropriate when this is the fundamental requirement, rather than data
synchronization, especially for large amounts of data that is mostly read and
infrequently written.

In many situations the advantage of a virtual directory can be very difficult to
achieve. Directories and databases achieve high performance for portals and
security systems that must perform hundreds of authentications and other
queries on directory data per second by caching data. Since they control all
access to the data, the directory server or database engine can manage a cache
efficiently by discarding or replacing cached data when updates are made.
Virtual directories can also cache data, of course, but a highly efficient caching
strategy is more difficult for them because they do not see updates to the
underlying data stores by applications that bypass them and write directly to the
data store. When the virtual directory must store cached data persistently due to
memory limitations on the server hardware or to provide quick restarts of the
server, the distinction between virtual directories and metadirectories is blurred.

Since virtual directories synthesize views of information that can physically
reside in several stores with different schemas, they will include most of the
functionality of a metadirectory. For this reason, it is likely that metadirectories
will evolve to provide some virtual directory services over time. It is likely that
over the long term, both metadirectory and virtual directory approaches will have
a role in directory integration.

 Chapter 3. Directory technologies 95

Figure 3-13 illustrates how data is retrieved using a virtual directory.

Figure 3-13 Virtual directory

3.5 IBM Tivoli Directory Integrator
There is a need within corporations to create an identity infrastructure consistent
across the entire company. It is not important if you only have one repository,
many copies of the same repository, or different repositories with redundant
data. What is really important is to have consistent and synchronized data
throughout the whole organization. Different applications can use data stored in
different formats and in different locations, such as LDAP directories, relational
databases, flat files, and so on.

The main point is that if one logical object (for example, a user) is defined with
some common attributes in more than one place, we want those attributes to
have the same values in every place and to be kept synchronized automatically
by an integration process flow. The user password is a simple example and is the
starting point for implementing a single sign-on solution. The key element for the
integration process flows is to clearly define the authoritative data source for
each piece of data within the company.

HR Data LDAP
Directory

CSV
File

DB2Legacy Data

Virtual Directory

Client

96 Enterprise Security Architecture Using IBM Tivoli Security Solutions

IBM Tivoli Directory Integrator enables you to integrate data from different
repositories in an easy and flexible way and can also be used to provide a
metadirectory or a virtual directory services.

In this section we focus on Tivoli Directory Integrator’s capability to integrate and
synchronize identity data across multiple repositories. Nevertheless, do not be
deceived by the word directory in its name. IBM Tivoli Directory Integrator
enables integration of data from different formats and from different types of
repositories, not only from directories. For more detailed technical information,
refer to the product manuals, which are available at the following Web site:

http://www.ibm.com/software/tivoli/products/directory-integrator/

In the following sections we first introduce an overview, the main concepts and
the main components of IBM Tivoli Directory Integrator, and then focus on
security and architecture. Finally we show the logging, monitoring, and
administration features.

In this book we refer to IBM Tivoli Directory Integrator version 6.1.1. However,
the general concepts and many features are common to the previous releases.

3.5.1 Overview
In 3.1, “Using a centralized user repository” on page 50 we talked about the
benefits of a centralized user repository. Nevertheless, we point out that in many
circumstances companies prefer (or are obliged) to maintain more than one user
repository. This is because it is hard to consolidate all user accounts into only
one directory. In fact, the traditional approaches to directory infrastructures might
no longer handle the growing volume of users, organizations, and resources in
an enterprise. Companies are deploying department-specific applications, each
with its own application-specific user repository, resulting in many individual
repositories. These repositories can be LDAP directories, relational database
(Oracle®, DB2) tables, flat files in different formats (CSV, XML), operating
systems, and other.

Companies that decide to maintain more than one user repository and to
leverage existing data and tools in order to build a consistent identity and data
infrastructure have to integrate them by implementing an identity and data
management solution. IBM Tivoli Directory Integrator is designed to fit this
requirement.

IBM Tivoli Directory Integrator provides an authoritative, enterprise-spanning
identity and data infrastructure critical for security and for provisioning
applications, such as portals. It enables integration of a broad set of information
into the identity and resource infrastructure. There is virtually no limitation on the
type of data or system with which Tivoli Directory Integrator is able to work. It has

 Chapter 3. Directory technologies 97

a number of built-in connectors to directories, databases, formats, and protocols,
as well as an open-architecture Java development environment to extend
existing connectors or create new ones, and tools to configure connectors and
apply logic to data as it is processed.

In addition to integrating data between applications or directories, IBM Tivoli
Directory Integrator can be helpful for other reasons such as:

� Eliminate the need for an inflexible centralized database.

� Capability for distributed data management.

� Supply of a non-intrusive integration. Business and security rules can be
introduced to manage flow, ownership, and structure of information between
different systems.

� Supply of a modular, flexible, and scalable solution. This is possible because
any integration task is divided into simple pieces, which are then linked
together. This approach enables introduction of Directory Integrator starting
with a portion of the overall solution and then expanding to the whole
enterprise. Easy and rapid modifications of the designed solution are always
possible.

� Capability of both timed and real-time integration. With the event-driven
engine, data flow can be triggered by many types of events such as database
or directory change, e-mail arrival, file creation or modification, or HTTP calls.

� Capability to intercept password changes and to propagate the new password
to multiple accounts.

� Rapid development, testing, deployment, and maintenance with the graphical
interface.

� Support of most standard protocols, transports, APIs and formats such as
JDBC™, LDAP, JMS, JNDI, XML, SNMP, and JMX™.

� Support of JavaScript™ for scripting.

� Easy integration with other IBM products such as the WebSphere family and
other Tivoli security products such as Access Manager and Identity Manager.

� Wide platform support. Tivoli Directory Integrator can run on UNIX (AIX®,
HP-UX, Solaris), Windows, and Linux (RedHat, SUSE, and United Linux on
Intel®, IBM System p™, IBM System i™ and IBM System z™). Refer to the
IBM Tivoli Directory Integrator: Administrator Guide, and the IBM Tivoli
Directory Integrator: Release Notes for more information about the supported
platforms, versions, and requirements.

Figure 3-14 on page 99 shows a general example of an enterprise architecture
using IBM Tivoli Directory Integrator. In the following section, we introduce the

98 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Tivoli Directory Integrator’s concept and show how information is synchronized
and exchanged between the various systems.

Figure 3-14 A general data integration environment

3.5.2 Concept of integration
The IBM approach is to simplify a large integration project by breaking it into
individual small components, then solve it one piece at a time. Integration
problems typically can be broken down into three basic parts:

� The systems and devices that have to communicate with each other
� The flows of data among these systems
� The events triggered when the data flows occur

These constituent elements of a communications scenario can be described as
follows.

Data sources
These are the data repositories, systems, and devices that talk to each other,
such as the Human Resources (HR) database, an enterprise directory, the
enterprise resource planning (ERP) system, a customer relationship
management (CRM) application, the office phone system, a messaging system

WebSphere MQ

AIX

Active
Directory

Main-
frame

Linux

Directory
Integrator

Directory

.net

Web
Services
Web

Services
Database

Directory
Integrator

File

Lotus
Domino

Directory
Integrator

 Chapter 3. Directory technologies 99

with its own address book, or maybe an access database with a list of company
equipment and to whom the equipment has been issued.

Data sources represent a wide variety of systems and repositories, such as
databases (for example, IBM DB2, Oracle, Microsoft SQL Server), directories
(such as Sun Java™ System Directory Server, IBM Tivoli Directory Server, Lotus
Domino, Novell eDirectory, and Microsoft ActiveDirectory), files (for example,
Extensible Markup Language (XML), LDAP Data Interchange Format (LDIF), or
SOAP documents), specially formatted e-mail, or any number of interfacing
mechanisms that internal systems and external business partners use to
communicate with information assets and services.

Data flows
These are the threads of communications and their content and are usually
drawn as arrows that point in the direction of data movement. Each data flow
represents a dialogue between two or more systems.

However, for a conversation to be meaningful to all participants, everyone
involved must understand what is being communicated. But data sources likely
represent their data content in different ways. One system might represent a
telephone number as textual information, including the dashes and parentheses
used to make the number easier to read. Another system might store it as
numerical data.

If these two systems are to communicate about this data, the information must
be translated during the conversation. Furthermore, the information in one
source might not be complete and might have to be augmented with attributes
from other data sources. In addition, only parts of the data in the flow might be
relevant to receiving systems.

Therefore, a data flow must also include the mapping, filtering, and
transformation of information, shifting its context from input sources to that of the
destination systems.

Events
Events can be described as the circumstances that dictate when one set of data
sources communicates with another. One example is whenever an employee is
added to, updated within, or deleted from the HR system.

An event can also be based on a calendar or a clock-based timer (for example,
starting communications every 10 minutes or at 12:00 midnight on Sundays). It
can also be a manually initiated one-off event, such as populating a directory or
washing the data in a system.

100 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Events are usually tied to a data source and are related to the data flows that are
triggered when the specified set of circumstances arises.

In the following section we show how each of these elements is handled by IBM
Tivoli Directory Integrator using its base components.

3.5.3 Base components
IBM Tivoli Directory Integrator architecture is based on a set of Java applications,
each one with a specific role. Figure 3-15 shows the Tivoli Directory Integrator
architecture.

Figure 3-15 Tivoli Directory Integrator architecture overview

Following are the main components:

� Config Editor (CE)

This program is an Integrated Development Environment (IDE) that provides
a graphical interface to create, test, and debug the integration solutions. The
Config Editor (CE) creates a configuration file (called a config), which is
stored as a highly structured XML document and is executed by the run-time
engine. The CE is launched by the ibmditk script. In 3.5.8, “Administration
and monitoring” on page 145 we describe some features of this interface.

� Run-time Server

Using a configuration file you created with the Config Editor, the Run-time
Server powers the integration solution. This application is called ibmdisrv,
and you can deploy your solution using as many or as few server instances
as you want. There are no technical limitations.

Files

LDAP directories

JDBC databases

JMS / MQ queues

Web Services

HTTP, TCP

more..

AssemblyLines

Execution / RT
environment

Logging, tracing

API & JMX

SystemStore

SystemQueue

Functions, delta,
libraries, pooling,

tombstones

Java VM

Directory Integrator
runtime

XML, LDIF,
DMSL, CSV

Windows, Linux, AIX, zOS, Sun, HP

Graphical
Integrated

Development
Environment

Web
Administration
and Monitoring

Action Manager
Monitor, control
and log Service

CommandLine
Interface

ComponentsServices

 Chapter 3. Directory technologies 101

From a logical point-of-view the Directory Integrator architecture is divided into
the following two parts:

� The services system, where most of the system’s functionality is provided.
Tivoli Directory Integrator services handles log files, error detection,
dispatching, and data flow execution parameters. This is also where
customized configuration and business logic is maintained. The
Administration and Monitoring Console (AMC) is the interface for working
with these core functionalities. Because it is a Web console, administration
can be done remotely using a Web browser, without the need to physically log
on to the Directory Integrator server. AMC is described in more detail in 3.5.8,
“Administration and monitoring” on page 145.

� The components, which serve to provide an abstraction layer for the technical
details of the data systems and formats that you want to work with. The two
main types of components are Connectors and Parsers, and because each is
wrapped by core functionality that handles things such as integration flow
control and customization, the components themselves can remain small and
lightweight. For example, if you want to implement your own Parser, you only
have to provide two functions: one for interpreting the structure of an
incoming bytestream, and one for adding structure to an outgoing one.

This core/component design allows easy extensibility. It also means that you can
rapidly build the framework of your solutions by selecting the relevant
components and clicking them into place. Components are interchangeable and
can be swapped out without affecting the customized logic and configured
behavior of your data flows. This means that you can build integration solutions
that are quickly augmented and extended while keeping them less vulnerable to
changes in the underlying infrastructure.

The key elements of the integration solution are the AssemblyLines. The arrows
drawn in Figure 3-14 on page 99 can each represent an AssemblyLine. Each
AssemblyLine implements a single unidirectional data flow. A bidirectional
synchronization between two or more data sources is implemented by separate
AssemblyLines, one for each direction.

AssemblyLines
Real-world industrial assembly line are made up of a number of specialized
machines that differ in both function and construction, but have one significant
attribute in common: They can be linked to form a continuous path from input
sources to output.

An assembly line generally has one or more input units designed to accept
whatever raw materials are needed for production (fish fillets, cola syrup, car
parts). These ingredients are processed and merged. Sometimes by-products

102 Enterprise Security Architecture Using IBM Tivoli Security Solutions

are extracted from the line along the way. At the end of the production line, the
finished goods are delivered to waiting output units.

If a production crew gets the order to produce something else, they break the line
down, keeping the machines that are still relevant to the new order. New units
are connected in the right places, the line is adjusted, and production starts
again. IBM Tivoli Directory Integrator AssemblyLines work similar to real-world
industrial assembly lines.

The general philosophy of an AssemblyLine is that it processes data (for
example, entries, records, items, objects) from one data source, transforms and
combines it with data from others sources, and finally outputs it to one or more
targets.

Figure 3-16 shows an example of an AssemblyLine.

Figure 3-16 AssemblyLine

Let us take a closer look as to what goes on inside an AssemblyLine.

 Chapter 3. Directory technologies 103

As shown in Figure 3-17 an AssemblyLine may consist of many components.
The generic part of the component, called the AssemblyLine component,
provides kernel functionality like attribute maps, Link criteria, Hooks and so on.
The data-source specific part of the component, called the component interface,
is connected to some system or device, and has the intelligence to work with a
particular API or protocol. These component interfaces are interchangeable.

This AssemblyLine wrapper makes components work in a similar and
predictable fashion. It enables AssemblyLine components to be linked together,
as well as providing built-in behaviors and control points for customization.

Figure 3-17 AssemblyLine components

How data is organized can differ greatly from system to system. For example,
databases typically store information in records with a fixed number of fields.
Directories, on the other hand, work with variable objects called entries, and
other systems use messages or key-value pairs. As shown in Figure 3-18 on
page 105 IBM Tivoli Directory Integrator simplifies this issue by collecting and
storing all types of information in a powerful and flexible Java data container
called a work entry. In turn, the data values themselves are kept in objects called
attributes that the entry holds and manages. The work entry object is passed
between AssemblyLine components that in turn perform work on the information
it contains, for example, joining in additional data, verifying content, computing
new attributes and values, as well as changing existing ones, until the data is
ready for delivery to one or more target systems. Additional scripts can also be
added to perform these operations.

As a result, attribute mapping, business rules, and transformation logic do not
have to deal with type conflicts.

104 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 3-18 Entry objects and Attributes

In addition to the work entry object used by the AssemblyLine to move data down
the flow, Figure 3-18 also shows an additional Java bucket nestled in each of the
Connectors. These local storage objects are used to cache data during read and
write operations. A Connector’s local Entry object is called its conn object, and
exists only within the context of the Connector. When a Connector reads in
information, it converts the data to Java objects and stores it in the local conn
object. During output, the Connector takes the contents of its conn, converts this
data to native types and sends it to the target system.

However, since each conn object is only accessible by its Connector, an
additional mechanism is needed to move data from these localized caches to the
shared work entry object after Connector input - and the other direction for output
Connectors. Figure 3-18 shows an arcing arrow that illustrates this movement of
Attributes between the Connectors’ local conn Entries and the AssemblyLines
work entry object. This process is called Attribute Mapping and is described in
more detail in “Attribute Map components” on page 119. Suffice to say that
Attribute Maps are your instructions to a Connector on which Attributes are
brought into the AssemblyLine during input, or included in output operations.

An AssemblyLine is designed and optimized for working with one item at a time,
such as one data record, one directory entry or one registry key. However, if you
want to do multiple updates or multiple deletes (for example, processing more
than a single item at the time) then you must write AssemblyLine scripts to do
this. If necessary, this kind of processing can be implemented using JavaScript,

 Chapter 3. Directory technologies 105

Java libraries and standard IBM Tivoli Directory Integrator functionality (such as
pooling the data to a sorted datastore, for example with the JDBC Connector,
and then reading it back and processing it with a second AssemblyLine).

AssemblyLines should contain as few Connectors as possible (for example, one
per data source participating in the flow), while at the same time including
enough components and script logic to make them as autonomous as possible.
The reasoning behind this is to make the AssemblyLine easy to understand and
maintain. It also results in simpler, faster, and more scalable solutions.

Connectors
Connectors are like puzzle pieces that click together, while at the same time link
to a specific data source.

There are basically two categories of Connectors:

� The first category is where both the transport and the structure of data
content is known to the Connector (that is, the schema of the data source can
be queried or detected using a well known API such as JDBC or LDAP).

� The second category is where the transport mechanism is known, but not the
content structuring. This category requires a Parser (see “Parsers” on
page 117) to interpret or generate the content structure in order for the
AssemblyLine to function properly.

Each Connector is characterized by two properties, type and mode. The type is
related to the data sources that the Connector links to the AssemblyLine. The
mode identifies the role of the Connector in the data flow, and controls how the
automated behavior of the AssemblyLine drives the Component. Connectors can
be in one of the following eight modes.

1. Iterator
2. Lookup
3. AddOnly
4. Update
5. Delete
6. CallReply
7. Server
8. Delta

Each Connector mode determines the behavior of a specific Connector, and not
all Connectors support all modes of operation. For example, the File System
Connector supports only a single output mode, AddOnly, and not Update, Delete
or CallReply. When you use a Connector you must first consult the
documentation for this component for a list of supported modes. Connectors in
Iterator or Server mode are automatically placed in the Feed section of the

106 Enterprise Security Architecture Using IBM Tivoli Security Solutions

AssemblyLine Detail window, Connectors in other modes end up in the Flow
section. Each of the connector modes is explained in detail in the next section.

You can change both the type and mode of a Connector whenever you want in
order to meet changes in your infrastructure or in the goals of your solution. If
you planned for this eventuality, the rest of the AssemblyLine, including data
transformations and filtering, will not be affected. That is why it is important to
treat each Connector as a black box that either delivers data into the mix or
extracts some of it to send to a data source. The more independent each
Connector is, the easier your solution will be to augment and maintain.

After a connector is configured for the company environment, it can be
transferred to the Connector Library so that any other integration with that
specific system or data inherits the configuration of this specific connector in the
Connector Library. This saves time and reduces mistakes. Tivoli Directory
Integrator also allows usage of external properties to define connector properties
and configurations. Connector inheritance and external properties allow ease
and consistent changes, reducing system migration impacts and permitting
staging of the AssemblyLines in development, QA, and production.

Whenever you need to include new data to the flow, simply add the relevant
Connector to the AssemblyLine. In the example of Figure 3-19, there are three
connectors: two input connectors to an RDBMS, an LDAP Directory, and one
output to an XML document.

Figure 3-19 AssemblyLine with connectors, parsers, and data sources

Let us examine the different Connector modes.

 Chapter 3. Directory technologies 107

Connector modes
This section describes in detail each of the eight connector modes.

� Iterator mode

Connectors in Iterator mode scan a data source and extract its data. The
Iterator Connector actually iterates through the data source entries, reads
their attribute values, and delivers each Entry to the other AssemblyLine
components for processing. A Connector in Iterator mode is referred to as an
Iterator.

AssemblyLines (except those called with an initial work entry) typically
contain at least one Connector in Iterator mode. Iterators (Connectors in
Iterator mode) supply the AssemblyLine with data. If an AssemblyLine has no
Iterator, it is often useless unless it gets data from another source (for
example, the script or process that started the AssemblyLine, or data created
in a Prolog script).

AssemblyLine Connectors that appear in the Feeds section of the component
list are driven by the built-in behavior of the AssemblyLine, in order from the
top-down. Work Entries fed into the AssemblyLine (from a Feeds Iterator, or
passed in from an external system) are passed to the components in the Flow
section, executing from the top-down with the Work Entry carrying data down
the flow. After the End-of-Cycle is reached, either when the last Flow
component has completed or a special call is made like system.skipEntry() or
system.exitFlow(), then control is passed back to the top of the AssemblyLine
again and the cycle repeats as long as there is more data.

Multiple Iterators in an AssemblyLine: This has two possible behaviors
depending if the Connector in Iterator mode is inside the feed or flow section.
If you have more than one Connector in Iterator mode inside the Feed
section, these Connectors are stacked in the order in which they appear in
the Config (and the Connector List in the Config Editor, in the Feeds section)
and are processed one at a time. So, if you are using two Iterators, the first
one reads from its data source, passing the resulting work Entry to the first
non-Iterator, until it reaches the end of its data set. When the first Iterator has
exhausted its input source, the second Iterator starts reading in data.

Note: It does not matter exactly what the data source is (database, LDAP
directory, XML document, and so forth) and how its data is actually stored.
Each Connector presents an abstract layer over the particular data source
and you access and process data through instances of the Entry and
Attribute classes.

108 Enterprise Security Architecture Using IBM Tivoli Security Solutions

An initial work entry is treated as coming from an invisible Iterator processed
before any other Iterators. This means an Initial work entry is passed to the
first Flow section component in the AssemblyLine, skipping all Iterators during
the first cycle. This behavior is visible on the AssemblyLine Flow page and
Connector mode flowcharts in the product documentation.

Assume you have an AssemblyLine with two Iterators inside the feed section,
ItA preceding ItB. The first Iterator, ItA, is used (the AssemblyLine ignoring
ItB) until ItA returns no more entries. Then the AssemblyLine switches to ItB
(ignoring ItA). If an initial work entry is passed to this AssemblyLine, then both
Iterators are ignored for the first cycle, after which the AssemblyLine starts
calling ItA.

But if there is a Connector in Iterator mode inside the Flow section, the
Iterator will work in the same way as it does in the Feeds, being initialized
(including building its result set with the selectEntries call) during
AssemblyLine startup, and will retrieve one Entry on each cycle of the
AssemblyLine. However, an Iterator in the Flow section will not drive the
AssemblyLine flow itself, as it does in the Feeds section.

Sometimes the initial work entry is used to pass configuration parameters into
an AssemblyLine, but not data. However, the presence of an initial work entry
causes Iterators in the AssemblyLine to be skipped during the first cycle. If
you do not want this to happen, you must empty out the work entry object by
calling the task.setWork(null) function in a Prolog script. This causes the first
Iterator to operate normally.

� Lookup mode

Lookup mode enables you to join data from different data sources using the
relationship between attributes in these systems. A Connector in Lookup
mode is often referred to as a Lookup Connector. In order to set up a Lookup
Connector you must tell the Connector how you define a match between data
already in the AssemblyLine and that found in the connected system. This is
called the Connector’s Link Criteria, and each Lookup Connector has an
associated Link Criteria tab where you define the rules for finding matching
entries.

� AddOnly mode

Connectors in AddOnly mode (AddOnly Connectors) are used for adding new
data entries to a data source. This Connector mode requires almost no
configuration. Set the connection parameters and then select the attributes to
write from the work entry.

 Chapter 3. Directory technologies 109

� Update mode

Connectors in Update mode (Update Connectors) are used for adding and
modifying data in a data source. For each entry passed from the
AssemblyLine, the Update Connector™ tries to locate a matching entry from
the data source to modify with the entry’s attributes values received.

As with Lookup Connectors, you must tell the Connector how you define a
match between data already in the AssemblyLine and that found in the
connected system. This is called the Connector’s Link Criteria, and each
Update Connector has an associated Link Criteria tab where you define the
rules for finding matching entries. If no such entry is found, a new entry is
added to the data source. However, if a matching entry is found, it is modified.
If more than one entry matches the Link Criteria, the Multiple Entries Found
Hook is called so you can script what to do in these cases. Furthermore, the
Output Map can be configured to specify which attributes are to be used
during an Add or Modify operation.

When doing a Modify operation, only those attributes that are marked as
Modify (Mod) in the Output Map are changed in the data source. If the entry
passed from the AssemblyLine does not have a value for one attribute, the
Null Behavior for that attribute becomes significant. If it is set to Delete, the
attribute does not exist in the modifying entry, thus the attribute cannot be
changed in the data source. If it is set to NULL, the attribute exists in the
modifying entry, but with a null value, which means that the attribute is
deleted in the data source.

An important feature that Update Connectors offer is the Compute Changes
option. When turned on, the Connector first checks the new values against
the old ones and updates only if and where needed. Thus you can skip
unnecessary updates which can be really valuable if the update operation is a
heavy one for the particular data source you are updating.

� Delete mode

Connectors in Delete mode (Delete Connectors) are used for removing data
from a data source. For each entry passed to the Delete Connector, it tries to
locate matching data in the connected system. If a single matching entry is
found, it is deleted; otherwise, the On No Match Hook is called if none were
found or the On Multiple Entries Hook if more than a single match was found.
As with Lookup and Update modes, Delete mode requires you to define rules
for finding the matching entry for deletion. This is configured in the
Connector’s Link Criteria tab.

110 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� CallReply mode

CallReply mode makes requests to data source services (such as Web
services) that require you to send input parameters and receive a reply with
return values. Unlike the other modes, CallReply gives access to both Input
and Output Attribute Maps.

� Server mode

The Server mode, available in a select number of Connectors, handles
events that need to send back a reply message to the system originating the
event, providing functionality for building real-time integration solutions.

These components connect to target systems either polling or subscribing to
event notification services.

On event detection, the Server mode Connector then either proceeds with the
Flow section of this AssemblyLine, or if an AssemblyLine Pool has been
configured for this AssemblyLine then it contacts the Pool Manager process
to request an available AssemblyLine instance to handle this event.

Once the Server mode Connector has been assigned the AssemblyLine
instance it needs to continue, it spawns an instance of itself in Iterator mode,
tied to the channel/session/connection that will deliver the event data. This
Iterator worker object then operates as any normal Iterator does, including
following the standard Iterator Hook flow, reading the event entries one at a
time and passing them to the other Flow components for processing until
there is no more data to read. At this time, the worker Iterator is cleared away,
and if necessary, the Pool Manager is informed that this AssemblyLine
instance is now available again.

When an AssemblyLine with a Server mode connector uses the
AssemblyLinePool, the AssemblyLinePool will execute AssemblyLine
instances from beginning to end. Before the AssemblyLine instance in the
AssemblyLinePool closes the Flow connectors, the AssemblyLinePool
retrieves those connectors into a pooled connector set that will be reused in
the next AssemblyLine instance created by the AssemblyLinePool
(AssemblyLinePool uses tcb.setRuntimeConnector method).

There are two system properties that govern the behavior of connector
pooling:

– com.ibm.di.server.connectorpooltimeout: This property defines the
time-out in seconds before a pooled connector set is released.

– com.ibm.di.server.connectorpoolexclude: This property defines the
connector types that are excluded from pooling. If a connector’s class
name appears in this comma separated list it is not included in the
connector pool set.

 Chapter 3. Directory technologies 111

When a new AssemblyLine instance is created by the AssemblyLinePool, it
will look for an available pooled connector set, which, if present, is provided to
the new AssemblyLine Instance as runtime provided connectors. This
ensures proper flow of the AssemblyLine in general in terms of hook
execution and so on. Note that connectors are never shared. They are only
assigned to a single AssemblyLine instance when used.

� Delta mode

The Delta mode is designed to simplify the application of delta information
(make the actual changes) in a number of ways. It provides more optimal
handling of delta information generated by either the Iterator Delta Store
feature (Delta tab for Iterators), or Change Detection Connectors like the
TDS/LDAP/AD/Exchange Changelog Connectors, or the ones for RDBMS
and Lotus/Domino changes.

The Delta features in Tivoli Directory Integrator are designed to facilitate
synchronization solutions. You can look at the system’s Delta capabilities as
divided into two sections: Delta Detection and Delta Application.

– Delta Detection

Tivoli Directory Integrator provides a number of change (delta) detection
mechanisms and tools:

• Delta Store: This is a feature available to Connectors in Iterator mode.
If enabled from the Iterator’s Delta tab, the Delta Store feature uses the
System Store to take a snapshot of data being iterated. Then on
successive runs, each entry iterated is compared with the snapshot
database to see what has changed.

• Change detection: These components leverage information in the
connected system to detect changes, and are either used in Iterator or
Server mode, depending on the Connector. For example, Iterator mode
is used for many of the Change Detection Connectors, like those for
LDAP, Exchange and ActiveDirectory Changelog, as well as the
RDBMS and Domino/Notes Change Connectors. Let us now discuss a
few features of change detection connectors.

Note: A Connector in Delta mode needs to be paired with another
Connector which provides Delta information, otherwise the Delta mode has
no delta information to work with.

112 Enterprise Security Architecture Using IBM Tivoli Security Solutions

• Iterator State Store feature: This feature uses the System Store to
keep track of the starting point for a Change Detection Connector (for
example, the changenumber of a directory changelog).

It keeps track of the next change to be processed, even between runs
of the AssemblyLine. The value of the Iterator State Store parameter
must be globally unique, so that if you have multiple assembly lines
that use Change Detection Connectors, they will each have their own
Iterator state data.

• Change notification feature: Where supported a Change Detection
Connector registers with the data source for change notifications,
receiving a signal whenever a change is made. If this parameter is set
to false the Connector will poll for new changes. If this parameter is set
to true then after processing all unprocessed changes the Connector
will block through the Server Search Notification Control and get
notified by the datasource when a change occurs. The Connector will
not sleep and time-out when the notification mechanism is used. Other
Connectors have to poll the connected system periodically looking for
new changes. Those that rely on polling also provide a Sleep interval
option to define how often polling occurs.

• Batch retrieval feature: Where supported specifies how searches are
performed in the changelog. When set to false the Connector will
perform incremental lookup (backward compatible mode). When set to
true a query of type changenumber>=some_value will be executed for
batch retrieval of all modified entries with optional retrieving on pages.

The System Store based Delta Store feature reports specific changes all
the way down to the individual values of attributes. This fine degree of
change detection is also available when parsing LDIF files. Other
components are limited to simply reporting if an entire Entry has been
added, modified, or deleted.

This delta information is stored in the work entry object, and depending on
the Change Detection component/feature used may be stored as an
Entry-Level operation code, at the Attribute-Level or even at the Attribute
Value-Level.

– Delta Application (Connector Delta Mode)

The Delta mode is designed to simplify the application of delta information
in a number of ways.

Firstly, Delta mode handles all types of deltas, adds, modifies and deletes.
This reduces most data sync AssemblyLines to two Connectors, One
Delta Detection Connector in the Feeds section to pick up the changes,
and a second one in Delta mode to apply these changes to a target
system.

 Chapter 3. Directory technologies 113

Furthermore, Delta mode will apply the delta information at the lowest
level supported by the target system itself. This is done by first checking
the Connector Interface to see what level of incremental modification is
supported by the data source. If you are working with an LDAP directory,
then Delta mode will perform Attribute value adds and deletes. In the
context of a traditional RDBMS (JDBC), then doing a delete and then an
add of a column value does not make sense, so this is handled as a value
replacement for that Attribute.

This is dealt with automatically by the Delta mode for those data sources
that support this functionality. If the data source offers optimized calls to
handle incremental modifications, and these are supported by the
Connector Interface, then Delta mode will use these. On the other hand, if
the connected system does not offer intelligent delta update mechanisms,
Delta mode will simulate these as much as possible, performing
pre-update lookups (like Update mode), change computations and
subsequent application of the detected changes.

Connector states
The state of a Connector determines its level of participation in the operation of
the AssemblyLine. In general terms, an AssemblyLine performs two levels of
Connector operation:

� Powering up the Connector at the start of AssemblyLine operations and
closing its connection when the AssemblyLine completes.

� Driving the Connector during AssemblyLine operation according to the
Connector mode.

There are three resulting connector states from these operations:

� Enabled state

Enabled is the normal Connector state. In the Enabled state, a Connector is
powered up and closed, as well as being processed during AssemblyLine
operation.

Note: The only Connector that supports incremental modification is the
LDAP Connector, since LDAP directories provide this functionality.

114 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Passive state

Passive Connectors (Connectors in Passive state) are powered up and
closed just like Enabled Connectors. However, they are not driven by the
AssemblyLine automated behavior. However, Connectors in passive state
can be invoked by script code from any of the control points for scripting
provided by Directory Integrator. For example, if you have a Passive
Connector in your AssemblyLine called myErrorConnector then you could
invoke it’s add() operation with the following script code:

var err = system.newEntry(); // Create new Entry object
err.merge(work); // Merge in attributes in the work Entry
// This next line sets an attribute called Error
err.setAttribute ("Error", "Operation failed");
myErrorConnector.add(err) // Add new err Entry;

� Disabled state

In Disabled state, the Connector is not initialized (and closed) or operated
during normal AssemblyLine activation. If you want to use it in your scripts,
then you must initialize it yourself.

The name of a disabled Connector is registered but pointing at null, so you
can write conditional code like the following example to handle the situation
where you plan on setting myConnector to disabled state.

if (myConnector != null)
myConnector.connector.aMethod();

This state is often used during troubleshooting in order to simplify the solution
while debugging, helping to localize any problems.

Directory Integrator provides a library of Connectors to choose from, such as
LDAP, JDBC, Microsoft Windows NT4 Domain, Lotus Notes®, and
POP3/IMAP. If you cannot find the one you need, you can extend an existing
Connector by overriding any or all of its functions using JavaScript. You can
also create your own, either with a scripting language inside the Script
Connector wrapper or originate with Java.

Furthermore, Directory Integrator supports most transport protocols and
mechanisms, such as TCP/IP, FTP, HTTP, and Java Message Service
(JMS)/message queuing (MQ). It also supports secure connections and
encryption mechanisms as shown in 3.5.4, “Security capability” on page 125.

Table 3-2 on page 116 summarizes the more relevant built-in connectors.
However, this list can change with the product version. For more information
about available connectors, scripting languages, and how to create your own,
see the IBM Tivoli Directory Integrator: Reference Guide.

 Chapter 3. Directory technologies 115

Table 3-2 Main available connectors

Connector Pooling
AssemblyLines can have multiple connectors to the same data source, which
can lead to performance problems especially when multiple connectors are being
initialized and even more when an AssemblyLine is started on a scheduled basis.

The Connector Pooling feature of Tivoli Directory Integrator creates a number of
instances of a single connector, so there is no performance hit when
AssemblyLines are initiated or started when they are configured to use
connectors residing in pools.

Applications PeopleSoft®, SAP®, Siebel® ERP, IBM Tivoli Access
Manager.

Databases (using
ODBC, JDBC)

Oracle, Microsoft Access and SQL Server, IBM DB2, IBM
Informix® and any other database with a valid JDBC
driver.

Directories (using
LDAP)

CA eTrust, Critical Path, IBM Tivoli Directory Server,
iPlanet, Microsoft Active Directory and Exchange, Nexor,
Novell eDirectory, OpenLDAP, Oracle, Siemens and any
other directory server supporting the ldapV3 protocol.

Directories (using
DSMLv2)

IBM Tivoli Directory Server, Novell eDirectory and any
other directory server supporting the DSMLv2 protocol.

Files, Streams and
Internet Protocols

CSV, XML, DSML, HTTP, LDIF, SOAP, DNS, POP, IMAP,
SMTP, SNMP.

Specific Technologies
and APIs

Microsoft ADSI, CDO, and other COM; Microsoft NT
domains; Lotus Domino directory and databases; Java
APIs; system commands.

Messaging Services IBM MQ, Sonic MQ, and other JMS-compliant systems.

Web Services Direct with SOAP over HTTP. Note that SOAP over other
protocols can be easily addressed using the SOAP Parser
or SOAP Function components.

Command Line Execute commands locally to the execution runtime
environment.

Remote Command Line Execute commands remotely through SSH or RSH
protocols.

Changes & Deltas LDAP Changelog, Active Directory changes, NT/AD
Password sync, TCP connections, HTTP gets and posts.

AssemblyLine
connector

Runs another AssemblyLine as a connector. It‘s operation
mode depends on the AssemblyLine being called.

116 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Connector Pools are defined with a minimum and maximum size and they grow
on-demand until the maximum size. If the connector is not used anymore, the
pool shrinks back to the minimum size configured based, in an also configured
amount of time.

If connectors loose their connection with the back end, they are reconnected
through the reconnect feature, as discussed in “Automatic connection reconnect”
on page 134.

Parsers
Even unstructured data, such as text files and bytestreams coming over an IP
port, is handled quickly and simply by passing the bytestream through one or
more Parsers. The system is shipped with a variety of Parsers, including LDIF,
Directory Services Markup Language (DSML), XML, comma-separated values
(CSV), SOAP, and fixed-length field. As with Connectors, you can extend and
modify these, as well as create your own.

In the example in Figure 3-19 on page 107, a Parser is used to interpret and
translate information from an LDIF file. The extracted information is converted
into a Java object with a canonical data format so that the LDIF Connector can
work with this object and dispatch it along the AssemblyLine.

Now that we introduced the main components of an AssemblyLine, we can show
how to customize the AssemblyLine in order to add business rules and logic.

Hooks
Hooks enable developers to describe certain actions to be executed under
specific circumstances or at any desired points in the execution of an
AssemblyLine. For example, Hooks can be placed before or after a Connector,
or in consequence of a specific event such as an update failure or a read
success. Directory Integrator automatically calls these user-defined functions as
the AssemblyLine runs.

The majority of the scripting in Directory Integrator takes place in the Hooks. For
example, Hooks can be used to build custom logic, to handle Global Variables,
and to set specific error processes and logs in Hooks.

Scripts
A key capability of IBM Tivoli Directory Integrator is the ability to extend virtually
all of its integration components, functions, and attributes through scripts or
Java. Scripting can occur anywhere in the system to add or modify the

Attention: When the connect or pool maximum size is reached, a new
AssemblyLines will fail to start the connector.

 Chapter 3. Directory technologies 117

components of an AssemblyLine. Connectors, Parsers, Functions, and Hooks
can be customized in order to perform requested tasks. Scripts are commonly
used to map attributes, transform data, access libraries (for example to call Java
classes), handle errors, control data flow, and in general to add business logic.

Directory Integrator supports JavaScript plug-in scripting language and extensive
script libraries.

Function components
An Function component is an AssemblyLine wrapper around some function or
discreet operation, allowing it to be dropped into an AssemblyLine as well as
instantiated/invoked from script. The idea behind Function components is to
allow complex components (for example, the Web Services connector) to be split
into smaller logical units and then strung together as needed, as well as to
provide more visual helper objects where custom scripting was necessary
before. Function components also offer other functionality like launching
AssemblyLines, invoking Parsers, and so on. As with all Directory Integrator
components, the user can easily create their own Scripted Function components,
turning custom logic into a library of reusable AssemblyLine components.

Function components are similar to Connectors in CallReply mode in that they
have both Input and Output maps. The Output Map is used to pass parameters
to the Function component, while the Input Map lets you retrieve and manipulate
return data.

myFunction.callreply(work)

The above example is invoking the AssemblyLine Function called myFunction.
Note that calling the AssemblyLine Function method callreply() will cause
Attribute Maps and the normal Function Component Hook flow to be executed.

Like the other components, Function Components have a library folder in the
Config Browser where you can configure and manage your Function Component
library. These can be then dragged into AssemblyLines or chosen from the
selection drop-down that appears when you press the Add Component button
under the AssemblyLine Connector List.

Also like the other components, Function Components have an Interface part
(like the Connector Interface or Parser Interface, in the case of Function
Components called the Function Interface) that implements the function logic.
When an Function Component is dropped into an AssemblyLine, it is wrapped in
an AssemblyLine Function object which provides the generic functionality
necessary for the AssemblyLine to manage and execute it.

Also like Connectors, Function components have a State which can be set to
Active, Passive or Disabled. State behavior is identical with that of Connectors.

118 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Since Function components are registered as script variables (beans) when the
AssemblyLine starts up, you can access them directly from your script using the
name given them in the AssemblyLine.

Attribute Map components
This component lets you define Attribute transformations as freestanding
Attribute maps that can be stored in your component Library and dropped into
your AssemblyLine.

Adding new Attributes to the work Entry and other data manipulation can be
quickly performed using the Attribute Map component, which defines a mapping
from the work entry to itself, allowing you to create new Attributes as well as
change existing ones. And all Attributes defined in Attribute Map components are
displayed in the work entry list as well, easing maintenance and support for the
configuration.

Controlling AssemblyLine Flow
Tivoli Directory Integrator provides flow components that allows you to define
alternate routes in an AssemblyLine. These components act as programming
statements, which means AssemblyLines do not need to be simple,
unidirectional flows.

Branch components
Branches allow the user to define alternate routes in an AssemblyLine like IF,
ELSE, and ELSE IF statements. The Branch provides an interface that allows
you to define Simple Conditions based on Attributes in the work Entry object.
Multiple Conditions are ANDed or ORed, depending on the Match Any check box
setting.

After Simple Conditions are processed, there is a script editor window at the
bottom of the Branch details page where you can create your own Condition in
JavaScript. The condition is to write in JavaScript language and you must
populate ret.value with either a true or false value in order to control the outcome
of Condition evaluation. Scripted Conditions can be combined with Simple ones,
or used exclusively.

If a Condition evaluates to true then all components attached to the Branch are
executed.

After Branch component execution is complete, control is passed to the first
component appearing in the AssemblyLine Component List after the Branch.

 Chapter 3. Directory technologies 119

In Figure 3-20 an AssemblyLine with two branches is shown. In this example, the
AssemblyLine will do the following:

� Read a set of users from an XML file. For each user it will execute the
following flow:

– Lookup the LDAP Directory to check if the user exists. If user exists it will
map its ldap entry distinguished name in the work object entry with the
value ‘true‘.

– If the user exists (IF branch)

• Update the user entry

– If the user does not exist (ELSE branch)

• Add the user entry to the LDAP Directory

• Create the user Badge to enter the company

Figure 3-20 AssemblyLine flow using IF and ELSE branches

Switch and Case components
AssemblyLine Switch and Case components allow you to implement switch and
case statements as with computer languages that support it.

The Switch component is always on top of Case components and can do switch
statements for a Work Attribute, AssemblyLine Operations, Work entry
operations for the delta entry and any user defined specific value/expression.

The Case component always follows the Switch component and has any set of
components below it.

In Figure 3-21 on page 121 an AssemblyLine with a Switch and the necessary
Case components is shown. In this example, the AssemblyLine will do the
following:

� Read a set of users from an XML file. In this case it has the Delta enabled as
explained in “Delta mode” on page 112.

120 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Switch the Work entry operation for each changed user received from the
iterator:

– Case Work entry operation is ADD

• Add the user entry to the LDAP Directory

• Create the user Badge to enter the company

– Case Work entry operation is MODIFY

• Update the user entry

Figure 3-21 AssemblyLine flow using Switch and Case components

AssemblyLine Operations
AssemblyLine Operations allow you to implement any number of distinct
functions to be performed by an AssemblyLine. Each Operation has an
associated set of Input and Output Maps for defining both parameter values
passed in when an Operation is called, as well as Attributes returned after the
called AssemblyLine Operation is finished.

After you define Operations for an AssemblyLine, the Switch-Case constructs let
you easily implement the logic in the AssemblyLine to deal with them.
Furthermore, both the AssemblyLine Function (FC) and the AssemblyLine
Connector support AssemblyLine Operation calls. AssemblyLines with
Operations can be published as “Adapters”, using the AssemblyLine Publishing
feature. These Adapters show up as Connectors and can easily be added to
other AssemblyLines or Config Connector Libraries.

For example, if you drop the Web Service Receiver Server Connector into an
AssemblyLine, it can generate the WSDL for the AssemblyLine based on its
Operations and the associated Attributes.

AssemblyLine Operations are also accessible through API calls. As a result, the
Command Line Interface for Tivoli Directory Integrator and the Administration
and Monitoring Console both offer features for calling specific AssemblyLine
operations and for passing Attribute values between the calling and the called
AssemblyLine.

 Chapter 3. Directory technologies 121

Loop components
The Loop component provides functionality for adding cyclic logic within an
AssemblyLine. Loops can be configured for three modes of operation:

� Conditional

Here you can define Simple and/or Scripted Conditions that control looping.
The details window for this type of Loop construct is the same as for the
Branch component described in the previous section.

� Connector

This method lets you set up a Connector for Iterator or Lookup mode, and will
cycle through your Loop flow for each Entry returned. This is the preferred
way of dealing with Multiple Entries found for a Lookup. The Details pane of
this type of Loop will contain the Connector tabs necessary to configure it,
connect and discover attributes and set up the Input Map.

Note that you have a parameter called Init Options where you can instruct the
AssemblyLine to either

– Do Nothing, which means that the Connector will not be prepared in any
way between AL cycles.

– Initialize and Select/Lookup, causing the Connector to be re-initialized for
each AL cycle.

– Select/Lookup Only, to keep the Connector initialized, but redo either the
Iterator select or the Lookup, depending on the Mode setting.

Note also there is a Connector Parameters tab which functions similar to an
Output Map in that you can select which Connector parameters are to be set
from work Attribute values.

� Attribute Value

By selecting any Attribute available in the work entry, the Loop flow will be
executed for each of its values. Each value is passed into the Loop in a new
work entry attribute named in the second parameter. This option allows you to
easily work with multi-valued attributes, like group membership lists or e-mail.

System Store
The System Store addresses the various needs of Tivoli Directory Integrator for
persistent storage. It uses, by default, the DB2Java (CloudScape) RDBMS as its
underlying storage technology. Other relational databases, like IBM DB2, can be
used to hold the System Store.

The System Store can be shared by multiple instances of Tivoli Directory
Integrator servers if the CloudScape database runs in networked mode, or if a
multi-user relational database system is used. If CloudScape runs embedded in

122 Enterprise Security Architecture Using IBM Tivoli Security Solutions

an IBM Tivoli Directory Integrator server, it cannot be shared simultaneously with
other servers.

The system store implements three types of persistent stores for IBM Tivoli
Directory Integrator components:

� The User Property Store

� The Delta Tables

� The Checkpoint/Restart Tables (deprecated)

Each store offers its own set of features and built-in behavior, as well as a
callable interface that users can access from their scripts, for example, to persist
their own data and state information.

User Property Store
The User Property Store is a System Store table used for maintaining serialized
Java objects associated with a key value. This is where persistent component
parameters and properties (such as the Iterator State Store) are maintained, as
well as data you store.

For example, when you set the Iterator State Store parameter for the Active
Directory Changelog Connector, you are specifying the key value that the
Connector uses to save and restore Iterator state. If you want the Iteration to
start with the first (or last) change entry, simply delete the Iterator State Store
entry in the User Property Store.

You can persist your own objects in the User Property Store; however, you can
also create and use your own stores using the Store Factory.

Any object to be persisted in the User Property store must be serialized.

Delta Store
The Delta Store is found under the Delta Tables folder in the System Store
Browser. Each table represents one Delta Store parameter setting (in the Delta
tab of an Iterator). There are a number of classes and methods for working
directly with the Delta Store, although this is not recommended.

 Chapter 3. Directory technologies 123

Password synchronization
The password synchronization feature, which is more a module than a
component, can be very useful when designing an AssemblyLine that has the
goal to synchronize passwords.

Password synchronization can be accomplished by treating passwords as any
other attributes and using Connectors as shown in the previous sections.
However, this module provides enhanced security for this critical data. The
password intercept module is available only for certain platforms, such as
Microsoft Active Directory, IBM Lotus Domino, and RACF®.

When a user attempts to change a password using the traditional tools, this
module intercepts password changes before they are completed. While the
password change to the target repository is completed with the native methods,
the intercepted new password is temporarily stored in a repository such as an
LDAP server or an MQ queue. Then Directory Integrator uses an EventHandler
to propagate the new password to other repositories that contain user accounts.
Because the password is intercepted before it is actually changed, error handling
is possible.

Figure 3-22 on page 125 shows what happens when a user changes the
Windows Domain password. The password synchronization module hooks an
exit provided by the Windows Operating System to intercept and validate
password changes. The module stores the two-way-encrypted new password in
the LDAP directory in the ibmDIKey attribute for the user’s entry. If no entry for
the user exists in the container, one will be created. The LDAP Changelog Event
Handler listens to the TDS Changelog and starts an AssemblyLine when a
change notification is received.

Tip: It is common to have dozens of AssemblyLines in a company. A central
system store with high availability can ease your Tivoli Directory Integrator
management.

124 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 3-22 Password interception with Active Directory

Security is a strong point of password synchronization modules: The password
interceptor encrypts the new password with a two-way algorithm before sending
it to the data store. Furthermore, SSL can be added to this communication. In
general, IBM Tivoli Directory Integrator provides high security in this module and
in all of its parts. In IBM Tivoli Directory Integrator multiple password
synchronization plugins can share the same MQ queues simplifying setup and
maintenance of multi-domain password synchronization solutions.

3.5.4 Security capability
Directory Integrator supports distributed environments through a wide range of
communication modes, including TCP/IP, HTTP, LDAP, JDBC, and Java
Message Service (JMS)/message queuing (MQ). SSL and other encryption
mechanisms can be added to any of these methods to secure the information
flow. Additionally, the Tivoli Directory Integrator server and the AMC are
ssl-enabled by default, so communications between the browser and AMC or
between the Tivoli Directory Integrator Configuration Editor and Tivoli Directory
Integrator server are encrypted. The Java Cryptography Extension (JCE) opens
a wide range of security capabilities, such as encrypting information in
communications and storage, X.509 certificate, and key management to
integrate with PKI efforts in the enterprise.

The AMC supports client certificate authentication and access rights to the
Directory Integrator configuration can be defined per user. The configuration file

password
catch

Directory
Integrator

LDAP
EventHandler

AssemblyLine

Active Directory modify
password process

Active
Directory
password

store

LDAP
password

store

Target
Directory

Target
File

Target
Database

 Chapter 3. Directory technologies 125

can optionally be encrypted by Directory Integrator server using server
certificate. Config Editor accesses such configurations in remote mode.

In the previous sections we introduced the base components and showed that a
wide range of data sources is supported. We just saw that communication
between different systems can be encrypted. With these elements, hundreds of
different solutions can be set up to fit different requirements. In the following
section we show some architectural concepts and some examples.

3.5.5 Physical architecture
IBM Tivoli Directory Integrator can be presented through a number of use cases
that can illustrate the technical capabilities and some of the solutions that can be
architected, but we cannot show all possible architectures with all of the different
data sources and data flows. So we introduce some general considerations
about the use of an enterprise directory and some basic structures of data flow,
not as a comprehensive list, but as frameworks or some mental structures to the
creative mind for further development.

Combination with an enterprise directory
There are two major Metadirectory models or approaches to integrating existing
enterprise data stores and building an authoritative source for identity information
that exist:

� Metaview, which introduce one main central directory store where all data is
aggregated and then synchronize and publish data from there back to all
other authoritative repositories.

� Point-to-Point synchronization, to avoid the central repository and configure
events driven automatic data flow and reconciliation between the repositories,
based on business rules and technical requirements.

Metadirectories are often used to accomplish the following goals:

� Create a single enterprise view of users from attributes stored in network
services.

� Enforce business rules that define the authoritative source for attribute
values.

� Handle naming and schema discrepancies.

� Provide data synchronization services between information sources.

� Enable network and security administrators to manage large, complex
networks.

� Simplify the management of user access to corporate resources.

126 Enterprise Security Architecture Using IBM Tivoli Security Solutions

As the foundation for a Metadirectory solution, IBM Tivoli Directory Integrator
supports both solutions and provides a means of managing information that is
stored in multiple directories. It provides Connectors for collecting information
from many operating system and application specific sources and services, as
well as for integrating the data into a unified namespace. It can provide a central
enterprise directory, as well as integrate distributed directories directly.

By design IBM Tivoli Directory Integrator seems especially suited for the second
approach. As a Metadirectory, it extends the directory with services for managing
information that is stored in multiple directories. It acts as the hub for making
changes between the disparate systems, and it has a number of facilities that
enable it to act as the agent for change on these disparate systems. A scenario
based on this architecture is shown in Figure 3-14 on page 99. The important
design decision is on the authoritative data repository; after that it is a matter of
defining the data flows for each AssemblyLine.

There are two possibilities for the implementation of a centralized enterprise
directory. The architecture can have one directory with different authoritative
data sources for different identity information as shown in Figure 3-23 on
page 128, or you can define your central directory as the authoritative data
source. In this case, all of the data flows have to be configured in a way such that
the central directory server is the prime source for all identity information within
the integrated environment.

For our scenario depicted in Figure 3-23 on page 128 we would have to change
the arrows to allow data flows only from the enterprise directory to the other
repositories. This means that data is essentially managed only on one directory
server, and then IBM Tivoli Directory Integrator propagates any changes to the
other repositories.

 Chapter 3. Directory technologies 127

Figure 3-23 Scenario with an enterprise directory

The choice between the solutions depends on the company requirements and
structures. There are no technical issues that favor one or the other approach.
Mainly it is a matter of choosing the authoritative source for your identity
information and considering management, security, privacy, economic, and risk
issues.

Regardless of the choice you make, the basic element for identity data
integration is data flow. To architect an integrated and reliable identity
infrastructure, several data flows must be implemented. Therefore in typical
solution design you must determine:

� How does information flow between systems?

� When does information flow between systems?

� What data and schema transformations are required?

In the next section we discuss different topologies available for data flows.

Base topologies
In this section we present some topologies that can be used to architect more
complex solutions. For every topology, we identify a data source, a flow, and a
destination. In the following examples, each element is drawn in separate boxes.
This is just a logical separation. From the physical point of view some of these
elements might reside on the same machine. For instance, it is quite common to

Appl.
Specific
Directory

NT
Domain
Directory

Notes
NAB

HR
Database

Enterprise directory

Bidirectional
entry and
attribute
flows

Emp No:1234
Last Name: Kent
First Name: Clark
Title: Reporter
Tel: 555-5555
City: Metropolis
…..

User Name: Clark Kent/Metropolis
Domain: DailyPlanet
MailServer: DPXXXX
Mail:kclark@dailyplanet.com
……

UserID: clarkk
Password: jf!9
serverID: yy01
Group: reporter
….

ID: ckent
Password: jf!9
Role: user

Last Name: Kent
First Name: Clark
Title: Reporter
Reports to: Perry White
Tel: 555-5555
City: Metropolis
notesID: Clark Kent/Metropolis
Mail: kclark@dailyplanet.com
Password: jf!9
…..

128 Enterprise Security Architecture Using IBM Tivoli Security Solutions

place a IBM Tivoli Directory Integrator server on the same machine as its data
source. The decision of whether to use different servers depends only on
performance and availability.

One-to-one
We begin with the easiest scenario shown in Figure 3-24. Data exists in a file that
must be synchronized, transformed, and maintained in a directory. This file could
be updated regularly by an HR application or other enterprise systems.

Figure 3-24 One-to-one integration

A wide range of file formats can be accommodated for the input file. The
selection on the file format is defined in the input connector, mostly configured in
iterator mode. Different ways are available to manipulate and filter the input data
stream, such as using the parser or different scripting methods. A separate
output connector is established to the directory. IBM Tivoli Directory Integrator
discovers the attributes in the file and enables mapping to attributes in the
directory as well as applying transformation rules to modify the content of the
incoming data.

The file can be read at regular intervals, or read whenever IBM Tivoli Directory
Integrator discovers that it’s available. The outside application may also trigger
IBM Tivoli Directory Integrator to read the file at its own leisure.

Many-to-one
The second scenario is shown in Figure 3-25. Data exists in multiple related
systems that have to be synchronized, transformed, and maintained in a
directory. Different attributes of data must be joined before an update to the
directory can take place.

Figure 3-25 Many-to-one integration

DirectoryDirectory
IntegratorFile

Directory

File

Database

e-mail
Directory

Directory
Integrator

 Chapter 3. Directory technologies 129

Connections are established to each data source using input connectors.
Schemas in databases are automatically detected. Rules may be created that
describe how attributes from one source are used with attributes from other
systems to create the desired results. Information from the data sources can be
combined in any way and mapped to the directory. Administrators can select the
authoritative source for each piece of information. Data from one system may be
used to look up information in another.

IBM Tivoli Directory Integrator can detect changes in real-time within certain
directories, allowing immediate update of other connected systems. Connections
may be configured to lookup only data that has been modified within a certain
time frame, or data sets that conform to a specific search criteria.

One-to-many
A one-to-many scenario is the opposite of that described in the previous
example. Information updated in one source is propagated to many destinations.
IBM Tivoli Directory Integrator can perform exactly the same write, update,
delete, and create modifications on all connected systems as it does for
directories. The rules are simply adapted for the context. Now all systems can
share the common authoritative data set.

In this third scenario, presented in Figure 3-26 on page 131, we introduce
bidirectional flows. Bidirectional flows can be configured such that there is either
only one authoritative data source for each piece of information or concurrent
authoritative sources for the same data. In the second case the data in the
directory is provisioned from multiple connected systems as well as from
possible modifications done by applications connected to the directory. The
connected systems could have great interest in this data, especially when IBM
Tivoli Directory Integrator ensures that they always operate on the correct
information by updating them whenever the authoritative data changes.

By configuring the connectors, using hooks and scripting, administrators can
apply rules to define and monitor the flows. However, we recommend being
careful with multiple data sources for the same piece of information. A good idea
is to have only one point where specific data can be modified. This is not a
technical issue, because IBM Tivoli Directory Integrator easily allows multiple
data sources. It is a matter of implementing clear processes and data flows. On
the other hand, it is common and often advisable to have sources for specific
data on different systems.

130 Enterprise Security Architecture Using IBM Tivoli Security Solutions

For example, in Figure 3-26, users could modify their e-mail address or
preferences only in the e-mail database, while they could change their password
only with an application that directly interacts on the Directory.

Figure 3-26 One-to-many integration

Other data resources
There are many reasons why data flows through channels such as message
queuing, HTTP, e-mail, FTP and Web Services. Data might need to pass through
firewalls that block protocols like LDAP and database access. Security,
high-availability, transactions control and desire for asynchronous or
synchronous data transfer are other reasons.

It’s important to understand that IBM Tivoli directory Integrator can both send and
receive with these mechanisms. This creates a wide scope of solution
opportunities, too wide to describe in simple use cases. Some examples are
illustrated in Figure 3-27.

Figure 3-27 Other data sources integration

Directory

File

Database

e-mail
Directory Directory

Integrator

MQ

Main-
frame

AIX

Directory
Main-
frame

Linux

Directory

.net

Web
Services
Web

Services

DatabaseDirectory
Integrator

Directory
Integrator

 Chapter 3. Directory technologies 131

Multiple servers
In the scenarios shown so far, there is only one IBM Tivoli Directory Integrator
server. In this section we present some topologies with multiple server instances.

Distributed
In a distributed architecture, a single point of integration is often undesirable, for
reasons such as distance, financial, security, availability or governance.

All of the mechanisms described previously, such as IP, HTTP, Web Services,
e-mail, MQ and others can be used to communicate between instances of IBM
Tivoli Directory Integrator.

In Figure 3-28 the arrows indicate use of such communications mechanisms in
two examples. In first example the input stream is too fast compared to the
business rules that IBM Tivoli directory Integrator has to execute and multiple
instances can operate of a queue. In the second example two-way architecture
propagates updates in the directory to the rest of the enterprise and consolidates
local modifications back to the central directory.

Figure 3-28 Distributed integration

Federated
While similar to the distributed scenario, federated implies that control and
management is not entirely centralized. This could be business units or entities
that cooperate, but want to retain local control over how and what information is
shared with others.

By sharing certain parts of the Directory Integrator configuration, Directory
Integrator servers have access to shared transports, formats and business rules

MQ

Source
Source

Source

Source

Directory

Source

Directory
Integrator

Directory
Integrator

Directory
Integrator

Directory
Integrator

Directory
Integrator

Directory
Integrator

132 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Example scenario shown in Figure 3-29 could be that different business units
want to retain local control over information shared with others. Local
configuration allows administrators to set restrictions on the data sets that are
exposed, the attributes that are sent and received, as well as any local
transformation rules that need to be applied to the data going to or coming from
the other participants.

If a company is spread across multiple sites, it could be beneficial to have an IBM
Tivoli Directory Integrator server in each location and then to have data flows
only between these servers.

Figure 3-29 Federated integration

The main message in this section is that IBM Tivoli Directory Integrator enables
you to use any topology and different transport mechanisms to integrate data
stored in various formats on multiple disparate systems.

In the following section we introduce another level of complexity by using multiple
servers to implement high availability and increase performance.

Source

Source

Directory

Source
IP, HTTP, FTP, e-mail,
MQ, Web services

Enterprise
single sign-on

Applications Portals

Federated
identity solutions

Directory
Integrator

Directory
Integrator

Directory
Integrator

Directory
Integrator

 Chapter 3. Directory technologies 133

3.5.6 Availability and scalability
High availability means that the IT service is continuously available to the
customer, as there is little downtime and rapid service recovery. The achieved
availability can be indicated by metrics. The availability of the service depends on
the following:

� Complexity of the infrastructure architecture

� Reliability of the components

� Ability to respond quickly and effectively to fault

There are several high availability mechanisms inside IBM Tivoli Directory
Integrator on various levels from Connectors and AssemblyLines to Server itself.
Let’s take a brief look at some of them starting from lower level.

Automatic connection reconnect
AssemblyLines need to access remote servers. Ideally, those remote servers
should be online and available for the entire time the AssemblyLine is running. In
the real world, however, server and network failures are common.

IBM Tivoli Directory Integrator has an automatic reconnect feature. This is
sufficient for short term outages, where the AssemblyLine can just try to
reconnect until it succeeds. You do this in the Connector’s Reconnect sub-tab as
shown in Figure 3-30.

Figure 3-30 Automatic connection reconnect

134 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The parameters you need to provide are:

Auto Retry to Connect on Initialize
Enable reconnection, even in the first connection try.

Auto Reconnect on Connection Loss
Enable reconnection during connector operation.

Number of retries The number of times the Connector will try to
re-establish the Connection, after it fails. The default is
1. When the number of retries is exceeded, an
exception is thrown.

Delay between retries The number of seconds to wait (in seconds) between
successive retry attempts. The default is 10 seconds.

Built-in Reconnection Rules
Display the events that trigger a reconnection attempt.
Each connector implementation has its own
reconnection rules, if any.

This also means that AssemblyLine Connectors have a .reconnect() method that
can be called from script as needed.

If a connection is lost, control passes to the On Connection Failure Hook if
enabled. This Hook is available in all Connector Modes. Once the Hook
completes (or skipped if not enabled) the system then checks if Auto Reconnect
has been enabled for this Connector. If it is, then this feature is invoked,
otherwise control is passed to the Error Hooks as normal.

Typical use of the On Connection Failure Hook is to write some message to the
log, or even change Connector parameters — for example, pointing it some
backup data source. However, since reconnect may not be implemented for a
Connector you are using, you can simulate reconnect yourself in the On
Connection Failure Hook by terminating and then re-initializing the Connector
with script code.

AMC Action Manager
The Action Manager (AM) is a standalone Java(TM) application that allows you
to monitor multiple Tivoli Directory Integrator Servers and AssemblyLine
execution using user-defined rules, triggering conditions and actions defined in

Note: If you do not want the Connector to Auto Reconnect after invoking the
On Connection Failure Hook, you must either disable Auto Reconnect or
redirect flow by throwing an exception (with calls like system.retryEntry() or
system.skipEntry()) or by stopping the AL itself with
system.abortAssemblyLine (message).

 Chapter 3. Directory technologies 135

the AMC. The Administration and Monitoring Console (AMC) has an AM
Configuration panel that allows users to configure various Action Manager rules.

A rule is a combination of a Trigger type and a set of associated actions. A rule
specifies that when a Triggering condition is detected, then the associated set of
actions must be executed. The following describes the various trigger types
available in AMC:

� No trigger

A rule with this triggering type has no triggering condition, and hence will
never get triggered by itself. The only way this rule can be executed is if some
other rule executes this rule.

� On AssemblyLine termination

A rule with this triggering type will get triggered when the Action Manager
receives an AssemblyLine termination event for this particular AssemblyLine.

� Time since last execution

A rule with this triggering type will get triggered when the Action Manager
detects that the specified AssemblyLine has not run for the specified period.

� On query AssemblyLine result

A rule with this triggering type is triggered when the last work entry of the
specified AssemblyLine, contains the specified Attribute matching the given
condition and value. This condition will be checked only when the Action
Manager receives a Stop AssemblyLine event.

� On server API failure

A rule with this triggering type will be triggered when the Action Manager is
unable to connect to the remote server using the Server API. No details
required.

� On received Event

A rule with this triggering type will be triggered when the Action Manager
receives an event that satisfies the criteria mentioned.

� On Property

A rule with this triggering type will get triggered when the specified property
meets the specified condition. The Action Manager periodically checks for this
property.

136 Enterprise Security Architecture Using IBM Tivoli Security Solutions

When a rule gets triggered, the Actions associated with the rule are executed by
the Action Manager sequentially. Following are the various types of Actions that
are available in AMC:

� Start AssemblyLine

This action starts the specified AssemblyLine of the specified config file on
the specified Tivoli Directory Integrator server. The Config field should
mention the complete path of the configuration on the remote server.

� Stop AssemblyLine

This action stops the specified AssemblyLine of the specified configuration on
the specified Tivoli Directory Integrator Server.

� Enable/Disable AM Rule

This action will Enable or Disable the chosen AM rule.

� Execute AM Rule

This action will cause the execution of the specified rule, which will in-turn
imply execution of all the actions specified in that particular rule.

� Notify Event

This action will cause the Action Manager to emit an event with the specified
details to the Server associated with the current config view.

� Modify Property

This action will cause the Action Manager to modify the selected property
based on the specified operation.

� Copy Property Value

This action will cause the Action Manager to copy the value of the Source
property to the Destination property.

� Write to Log

This action will cause a log of the specified Severity/Message/Description to
be logged into the Action Manager logs and the AMC database. The same log
is shown in the AM Results table. It is advised to always have at least one Log
action (containing descriptive text) in every rule.

Rules that are configured for Config views in AMC, are stored in AMC's
Cloudscape™ Database. When the Action Manager is run, it connects to the
AMC database in network mode, reads the Action Manager-related tables, and
creates threads in memory for every AM rule specified. Each of these threads
listens and polls for its respective triggering conditions. The moment any thread
detects the occurrence of its respective triggering condition, it queries the
database for the set of actions associated with the rule, and executes them
sequentially.

 Chapter 3. Directory technologies 137

The Action Manager runs the following threads in addition to the rule threads that
are listening for trigger conditions:

� HealthAssemblyLine

The HealthAssemblyLine thread periodically triggers the
HealthAssemblyLines for querying the status of the solutions, and logging the
status back into the AMC database.

� ServerStatusListener

The ServerStatusListener thread is created for every server registered with
AMC. This server checks for the server accessibility. If the server has become
inaccessible, all rules threads created for the server are terminated (except
for those with triggering type On Server API failure). Similarly, if the server
becomes accessible, rule threads are created for any rules associated with
this server.

� ConfigLoadReloadListener

The ConfigLoadReloadListener thread is created for every running server
registered with AMC. It is registered to the remote server for any config load
or unload events. Rule threads are appropriately terminated, created, or
refreshed depending on the config event.

� ServerModificationListener

The ServerModificationListener thread checks for any updates to the set of
servers registered in AMC. Depending on the type of change (added,
removed, and so forth), rule threads are terminated, created, or refreshed.

� ActionManagerStatusUpdate

The ActionManagerStatusUpdate thread updates AMC on whether the Action
Manager is currently running or not.

� DatabaseModificationListener

This database listener thread continuously monitors addition, modification, or
deletion of rules. Whenever any changes in the rules are detected, the AM
threads are added and recreated appropriately at runtime.

The Action Manager also updates the AMC database with its run details.
Whenever an Action Manager rule is triggered, Action Manager logs an entry into
the AMC database, registering the rule name that got triggered, and the
triggering time. Also, if any AM Log action is configured for the AM rule, then that
also gets logged into the AMC database. These database entries show the
appropriate status in Monitor Panels of AMC.

138 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Automatic high availability
The basic concept of high availability is to have at least two servers capable of
performing the same job and a failover mechanism to switch from one server to
the other if one of the servers fails.

IBM Tivoli Directory Integrator does not provide such failover mechanism
out-of-the-box. Therefore, one way to provide automatic high availability is to
implement architecture as shown on Figure 3-31, where one IBM Tivoli Directory
Integrator Server instance is configured to watch the other just-in-case and can
take over if the second one fail to respond.

Figure 3-31 Just-in-case high availability

The other possible way of high available automatic fail over mechanism is to
install the server in a cluster environment such as HACMP for AIX as shown on
Figure 3-32.

Figure 3-32 Clustering

However, remember that all AssemblyLine definitions and configurations are
stored within one highly structured XML file called Config. Therefore, if one
server fails, it is sufficient to start a separate server with the same Config file in
order to continue the service. IBM Tivoli Directory Integrator’s main goal is to
perform data integration, not real-time services. This means that a short period of

TargetSource

Directory
Integrator

Directory
Integrator

TargetSource

Directory
Integrator

Directory
Integrator

 Chapter 3. Directory technologies 139

unavailability (for example, for maintenance reasons) can be tolerated in most
cases.

A failover mechanism must be configured between the two servers, depending
on functional requirements of the data integration environment.

Scalability is a strong feature of IBM Tivoli Directory Integrator. There is virtually
no limit to the number of servers that can be added. As it was already shown on
Figure 3-28 on page 132, different servers can work on different data flows or on
different data of the same data flow.

Considering the AssemblyLine mechanisms, no additional effort is required to
integrate multiple servers. Each AssemblyLine is designed to work on different
data. Different AssemblyLines integrate different data sources regardless of
whether these AssemblyLines reside on the same server or on multiple servers.

AssemblyLine Pool
With AssemblyLine Pool you can build high performance solutions that won’t
incur a thread and connection cost for each processed event. You can configure
Pool options from the Show Dialog button next to Define ALPool Options on the
Config tab of AssemblyLine as shown on Figure 3-33

Figure 3-33 AL Pool

The parameters you need to provide are:

Number of prepared instances How many instances of the Flow part of this
AL to instantiate, power up and then keep in
the Pool, ready for use.

Maximum concurrent instances What is the maximum number of current
Flow instances that you want created at any
one time.

140 Enterprise Security Architecture Using IBM Tivoli Security Solutions

See the IBM Tivoli Directory Integrator: Users Guide for more ALPool details.

3.5.7 Logging
IBM Tivoli Directory Integrator enables you to customize and size logs and
outputs. It relies on log4j as a logging engine. Log4j is a very flexible framework
that lets you send your log output to a variety of different destinations, such as
files, the Windows EventLog, UNIX Syslog or a combination of these. It is highly
configurable and supports many different types of log appenders and can be
tuned so it suits most needs. It can be a great help when you want to
troubleshoot or debug your solution. In addition to built-in logging, script code
can be added in AssemblyLine to log almost any kind of information. If the
logging functionality will not suffice, the there are additional tracing facilities.

The log scheme for the server (ibmdisrv) is described by the file log4j.properties
and elements of the Config file, while the console window you get when running
from the Config Editor (ibmditk) is governed by the parameters set in
executetask.properties. Logging for the Config Editor program itself is configured
in the file ce-log4j.properties.

You can create your own appenders to be used by the log4j logging engine by
defining them in the log4j.properties file. Additional log4j compliant drivers are
available on the Internet, for example drivers that can log using JMS or JDBC. In
order to use those, they need to be installed into the IBM Tivoli Directory
Integrator installation jars directory after which appenders can be defined using
those additional drivers in log4j.properties.

Configuring the logging of IBM Tivoli Directory Integrator is done globally using
the files log4j.properties and/or External Properties or specifically, using the
ibmditk tool, for each AssemblyLine, EventHandler or Config File as a whole.
Logging for individual AssemblyLines and EventHandlers is applied in addition to
any specification done at the Config level.To provide this level of flexibility and
customization, the Java Log4J API is used.

All log configuration windows operate in the same way: For each one you can set
up one or more log schemes. These are active at the same time, in addition to

Note: Pooling is only available if you have a Server Mode Connector in the
Feeds section of your AssemblyLine.

Note: Any of the aforementioned properties files can be located in the
Solutions Directory, in which case the properties listed in these files override
the values in the file in the installation directory.

 Chapter 3. Directory technologies 141

whatever defaults are set in the log4j.properties and executetask.properties files.
In Figure 3-34 you can see an example of the Syslog scheme, which enables
IBM Tivoli Directory Integrator to log on UNIX Syslog.

Figure 3-34 Syslog scheme

See the IBM Tivoli Directory Integrator: Administrator Guide, for more details on
schemes configuration.

Key data is logged from the Directory Integrator engine, from its components
(Connectors, Parsers, and so on), as well as from user’s scripts. Almost every
Connector has a debug parameter called Detailed Log, with which you can turn
on and off the Connector’s output to the log file. Seven log levels range from ALL
to OFF for sizing the output. ALL logs everything. DEBUG, INFO, WARN,
ERROR and FATAL have increasing levels of message filtration. Nothing is
logged on OFF.

In order to augment the IBM Tivoli Directory Integrator built-in logging, you can
create your own log messages by adding script code in your AssemblyLine.
Different information can be dumped, such as the content of an Object or
Attribute, the state of a Connector, or any desired text. This means that you can
indicate to the log file or to the console any state of the custom logic of your

Note: IBM Tivoli Directory Integrator logmsg() calls log on INFO level by
default. This means that setting loglevel to WARN or lower silences your
logmsg as well as all Detailed Log settings. However, the logmsg() call also
has a level parameter that can be used to override the log level for individual
logmsg() calls.

142 Enterprise Security Architecture Using IBM Tivoli Security Solutions

AssemblyLines. See the IBM Tivoli Directory Integrator: Users Guide, for more
logging details and examples.

Tombstones
Tivoli Directory Integrator can keep track of configurations or AssemblyLines that
have terminated. Thus you can tell when your AssemblyLines last ran, without
going into the log of each one.

This is accomplished by Tivoli Directory Integrator's Tombstone Manager that
creates tombstones for each AssemblyLine and configuration as they terminate.
They contain exit status and other information that can later be requested
through the Server API. This also enables the following:

� A status panel in AMC that displays the status of an entire Tivoli Directory
Integrator configuration.

� Functionality within Action Manager to ensure repeated runs of
AssemblyLines, for example every 24 hours.

� Provision of status information to Server API clients about AssemblyLines
that they run asynchronously.

Debugging
In addition, IBM Tivoli Directory Integrator offers you a Flow Debugger (not to be
confused with a script debugger). The Flow Debugger lets you step through your
AssemblyLines and examine and change variables and/or run script directly. An
example of Flow Debugger usage is shown in Figure 3-35 on page 144.

Note: Errors from Attribute Map Components do not show the name of the
Attribute Map Component, only the name of the AssemblyLine, and often
(depending on the error), the name of the attribute being mapped. The
message will often contain the name of the attribute that is mapped, which
should give you a hint as to which Attribute Map it is that fails.

 Chapter 3. Directory technologies 143

Figure 3-35 Flow Debugger

The debugger is started from the Config Editor by selecting one of the debugging
options before clicking the Run button from the AssemblyLine. After the selected
task is started, the Debugger pauses, processing at specified breakpoints. It can
also be configured to pause at every step. Whenever execution is paused, you
can use the Table and Statistics buttons to display information about run a script.
There is also an Edit watch list button that offers you the same option, however
the resulting watch-list is remembered and evaluated at each breakpoint. One
example of a variable you might want to watch is work (the work Entry object). By
entering work in the Evaluate dialog, or adding it to your watch-list, you can see
work serialized to the Output pane of the debugger.

Tracing
In addition to the user-configurable logging functionality described in previous
section, IBM Tivoli Directory Integrator is instrumented throughout its code with
tracing statements, using the JLOG framework, a logging library similar to log4j,
but which is used inside Directory Integrator specifically for tracing and First
Failure Data Capture (FFDC). To which extent this becomes visible to you, the
user, depends on a number of configuration options in the global configuration
file jlog.properties, and the Server command line option -T.

Note: If you evaluate (or watch) the script task.dumpEntry(work), then the
work Entry is dumped to the log output pane instead, just as though you had
this code in your solution.

144 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Tracing is done in using JLOG’s PDLogger object. PDLogger or the Problem
Determination Logger logs messages in Logxml format (a Tivoli standard), which
IBM Support understands and for which they have processing tools.

See the IBM Tivoli Directory Integrator: Administrator Guide for more tracing
details, configuration, and parameters.

3.5.8 Administration and monitoring
Config Editor is a program that gives you a graphical interface to create, test, and
debug any AssemblyLines with all of the components and the optional scripting.
It is an Integrated Development Environment (IDE), introduced in 3.5.3, “Base
components” on page 101, used to create a configuration file that describes your
solution and is powered by the runtime Server. This configuration is called a
Config, hence the name Config Editor.

The Config Editor is started by initiating the ibmditk batch-file or script, which sets
up the Java VM environment parameters and then starts the Config Editor. It
enables you to work with multiple Configs at the same time. Configs are stored
as highly structured XML documents and can be encrypted. When you start the
Config Editor, either from your system’s launch interface or from the command
line with the ibmditk command, you will see the Main Panel.

In the default layout the left navigation pane provides a tree view of the current
configuration, as well as all the current AssemblyLines, Connectors, and so forth
as shown in Figure 3-36 on page 146. AssemblyLines can be created easily by
selecting components. The Attributes definition in the connected elements is
automatically discovered and mapping can be done simply by dragging or
renaming attributes.

Note: Normally, you should be able to troubleshoot, debug and support your
solution using the logging options. However, when you contact IBM Support
for whatever reason, they may ask you to change some parameters related to
the tracing functionality described here to aid the support process.

 Chapter 3. Directory technologies 145

Figure 3-36 Config editor main panel

See the IBM Tivoli Directory Integrator: Users Guide, for more details on the
Config Editor.

When the AssemblyLines are ready and the integration solution is deployed,
administration and monitoring can be performed.

After the integration solution is in maintenance mode, operators need to be able
to run AssemblyLines manually. One option is to give operators access to the
Config Editor. However, since operators should not modify AssemblyLines, this
option violates the principle of least privilege. Another possibility is to let
operators run AssemblyLines from the command line. However, unless they
need shell access for a different reason, this also violates the principle of least
privilege. Tivoli Directory Integrator bundles a Web-based Administration and
Monitoring Application (AMC). The AMC can be used to remotely start, stop, and
manage Tivoli Directory Integrator Configs and AssemblyLines, which allows

146 Enterprise Security Architecture Using IBM Tivoli Security Solutions

operators to only perform the actions they are allowed to do, and to do so from a
user friendly Web browser environment.

AMC is a Java Web-based application that uses the Tivoli Directory Integrator
Remote Server API. In addition to AssemblyLines monitoring, Config
Administration, Property Stores Administration, Log files cleanup, Console users
and groups management, you may also set up connections to multiple IBM Tivoli
Directory Integrator server instances and configuration files running on them.

AMC communicates with IBM Tivoli Directory Integrator servers over SSL using
the Java Security Extensions. It is pre-configured to work with the server that it is
bundled with. In order to use AMC with servers that use other certificates than
the one they were shipped with, the server certificates need to be added to the
AMC truststore, and the AMCs certificate needs to be added to the server
truststores.

An important concept introduced in the AMC is the Config View. The Config View
gives users access to information in a configuration file without granting them the
ability to edit the configuration file directly. Administrators can use a Config View
to filter a configuration file for specific information such as properties and
AssemblyLines so that only certain information within the configuration file is
displayed.

You can create multiple Config Views for each Config. Each view can expose
different information contained in the configuration file, while also allowing you to
hide unnecessary information from the user.

AMC permissions are assigned per Config. This enables IBM Tivoli Directory
Integrator to enforce a separation of roles even when the same server is used for
multiple purposes in the organization. For example, a server might be used to
synchronize both user accounts and office supply information. If you put all the
AssemblyLines related to users in one Config and all the AssemblyLines related
to office supplies in another, then operators can have permissions to one but not
the other.

There are three permission levels in AMC:

Read This means read-only permission. The user cannot change anything
or run anything. This level is useful for auditors and operators in
training.

Note: The principle of least privilege states that users should only be given
those permissions they need to do their jobs. For example, operators who do
not need to change IBM Tivoli Directory Integrator AssemblyLines should not
be allowed to do it.

 Chapter 3. Directory technologies 147

Execute This level allows users to execute AssemblyLines and
EventHandlers, and view and delete the resulting logs. However,
users with execute permissions are not allowed to modify or delete
any components or component properties. This permission level is
for operators.

Admin This level allows full control of IBM Tivoli Directory Integrator, similar
to the control available through the Config Editor.

See the IBM Tivoli Directory Integrator: Administrator Guide for more details
about AMC files, setup, and configuration.

3.6 Conclusions
In this chapter we discussed the need for a centralized user repository with a
single point of administration. Then we introduced the concepts of the directory
server and LDAP. LDAP servers are a solution that fit these requirements
perfectly.

However, in complex organizations it is sometimes very difficult to consolidate all
user definitions in only one repository. This is because some pre-existing
applications might be hard to migrate using a single LDAP server. Therefore it
might be necessary to maintain multiple repositories, which can be directory
servers, databases, flat files, or other. In this kind of environment it is necessary
to synchronize these disparate data sources in order to have a consistent identity
infrastructure.

We examined virtual directories and meta directories, two technologies for
integrating data sources across the enterprise. We examined the benefits and
drawbacks to each approach.

We also introduced IBM Tivoli Directory Integrator, a powerful tool to integrate
and reconcile data across multiple repositories on different platforms. This
product focuses on data rather than on users and it solves the complex
integration challenge by breaking it into separated, modular, and scalable pieces.

IBM Tivoli Directory Integrator enables you to create a consistent infrastructure
of enterprise identity data, while permitting local administrators to manage users
on each platform and environment with their traditional tools.

Chapter 21, “Synchronizing the enterprise” on page 633, takes a best-practice
look at different real-world scenarios and describes the solutions that are based
on a mix of Identity Manager, Directory Integrator, and Access Manager.

148 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 4. Single sign-on technologies

The term single sign-on (SSO) has been bandied about for so long that it has lost
much of its initial power. SSO held such power because of its promise to relieve
companies of the heavy information technology costs required to maintain
security in their information technology enterprise. Despite the best efforts of
software vendors, including IBM with its Global Sign-on and Distributed
Computing Environment technologies, the goal of each user logging into their
computer once and securely accessing all corporate services remained elusive.

When technology failed to live up to consumer expectations, the software
vendors decided to lower the expectations by changing the terminology. Single
sign-on was dubbed reduced sign-on or simplified sign-on. While this may have
reduced consumer expectations, the fact remained that companies were still
investing heavily in supporting the user community, which had to keep track of
many login names and passwords.

IBM takes a divide and conquer approach to this intractable problem and
addressed different classes of SSO with different technologies. The three
classes of SSO are:

� Web single sign-on
� Desktop single sign-on
� Federated single sign-on.

Addressing each of these separately is technically feasible and allows for the
realization of true single sign-on.

4

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 149

By surveying the different types of SSO and the benefits of each, you will be in a
good position to clearly articulate your company's SSO requirements and to
identify a solution that can deliver a full range of SSO capabilities.

4.1 SSO delivers multiple business benefits
To be an on demand business, a company frequently requires SSO capabilities.
By providing users with the ability to log in once across the applications and
operating systems that they need to access, a business drives both quantifiable
and qualitative benefits, including:

� Reduced administration costs

When users must log in multiple times, they are more likely to forget
passwords, which in turn leads to greater Help Desk costs. SSO can
significantly reduce these calls and their resulting costs.

� Greater user productivity and experience

SSO allows users to access business systems faster, which enables them to
get more done. And users who can sign in once feel better about their
transaction experience than users who must log in multiple times with many
different IDs and passwords.

� Faster application deployment

When companies deploy a superior SSO and security system that allows
application developers to call out to external security services, security no
longer has to be coded into each application. As a result, a company can get
new applications to market quickly, and can later update application business
logic and enhance security much more efficiently.

The benefits of SSO grow as it is applied against an expanded pool of IT
environments. As computing models have evolved from distributed client/server
systems to Web-based applications—and now even to federated SSO
configurations often involving emerging standards such as Security Assertion
Markup Language (SAML), Liberty Alliance, and Web Services Federation
Language (WS-Federation)—businesses are able to realize increasingly
significant value from SSO solutions particular to each model.

4.2 Three classes of single sign-on
Let us consider SSO in the context of the evolution of computing models as
shown in Figure 4-1 on page 151.

150 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 4-1 Evolution of computing models

As the computing models evolve from the insular client-server model to the open
Web services model, the importance of security increases dramatically. The
following table (see Table 4-1) demonstrates how this evolution is impacting user
authentication.

Table 4-1 Single sign-on models and their authentication characteristics

The client-server model achieves a certain level of security through the fact that it
operates within the corporate network and communicates over a propriety

Model Network
exposure

Communication
protocol

Authentication

Client-Server Private Proprietary Authenticates user against
an application-specific
repository. User population
contained within the
enterprise.

Web Private/Public Standards-based Authenticates user against
an application-specific or
enterprise repository. User
population expands to the
Internet.

Federated/
Web Services

Public Standards-based Authenticates user against
enterprise repository. Also
authenticates users and
other network entities (for
example, Web services)
originating from foreign
companies. User population
expands to the Internet and
other enterprises.

WebClient-Server Federated/
Web Services

We are here, and
we are moving
this way

 Chapter 4. Single sign-on technologies 151

protocol. However, being a network-based architecture, the client-server model
requires client authentication. In this model, each application tends to have its
own user repository. This requires users to keep track of separate accounts for
separate applications.

The Web model is just a special case of the client-server model that uses a
standard client and communications protocol (HTTP/S). Companies find this
model more cost effective, since only one client needs to be deployed to the
corporate desktops. Many traditional Web applications were developed (like the
client-server model) using their own user repository. In addition to having the
same sign-on problem as the client-server model, the Web model compounds
the problem by exposing corporate applications directly to the customers through
the Internet. This means that companies face a large increase in the number of
users needed to be supported. Also, these users are not the traditional corporate
users, but rather customers who the company must vet before assigning
accounts.

The emergence of the Web as the platform of choice for corporate applications
and the exposure of the corporate applications to the end-users created the
opportunity for services to be linked between corporations over the Internet. For
example, a corporate Web portal may link off to the health benefits provider and
the financial services partner. These links lead to an external Web site that
requires authentication. Thus, the user is once again faced with additional
account data to manage. The federated model requires identity information to be
carried securely over the Internet so that users may consume services at various
companies.

Each of the three computing models have single sign-on requirements and IBM
applies different technologies to meet each of the SSO requirements. These
techologies are implemented in the following products:

� Tivoli Access Manager for Enterprise Single Sign-on

Addresses the desktop SSO problem by deploying an agent on the desktop,
which intercepts authentication requests by applications and automatically
fills in the login data with credentials stored on the local machine.

� Tivoli Access Manager for e-business

Addresses the Web SSO problem by placing a reverse Web proxy in front of
the enterprise Web applications. Tivoli Access Manager user accounts are
stored in an enterprise directory and users need only authenticate to the Tivoli
Access Manager server in order to access all of the existing Web applications
configured behind the reverse proxy.

152 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Tivoli Federated Identity Manager and Tivoli Federated Identity Manager
Business Gateway

Address the federated SSO problem by implementing all of the industry
standard federated SSO protocols. These are SAML (all versions), Liberty ID
FF (all versions), and WS-Federation. It supports arbitrary identity
transformations based on XSLT so that credentials can be converted to a
format compatible with the local environment.

Figure 4-2 shows a logical diagram depicting how these products fit together in a
solution that addresses all three types of the SSO.

Figure 4-2 IBM Tivoli SSO technologies

The rest of this chapter discusses these SSO technologies in more detail.

4.3 Desktop single sign-on
Although few, if any, of the more modern computing solutions being developed
today use the client/server model, many existing legacy client/server applications
can still benefit from Desktop SSO. While many companies successfully
addressed the SSO problem for Web applications, end users still must log into
their Windows desktop, log into their mail client, log into corporate chat
applications, log into human resources systems, and the list goes on. A complete
SSO solution must address desktop SSO.

Tivoli Access Manager for Enterprise Single Sign-On is designed to be an
easy-to-deploy solution to automate user authentication to desktop applications.
It provides single sign-on by introducing a secure middle layer that authenticates

 Chapter 4. Single sign-on technologies 153

the user once and then automatically detects and handles subsequent requests
for user credentials. Specifically, it uses patented client-side intelligence to
respond to requests for user credentials (username/ID, password, and so on)
from any Windows, Web, or Mainframe/Host application. Tivoli Access Manager
for Enterprise Single Sign-On supports authentication from any authenticator (for
example, Passwords, Biometrics, Tokens/Smart Cards) and authentication
service (for example, Windows, Entrust PKI, RSA Keon PKI, LDAP directory).

The benefits of desktop SSO are depicted in Figure 4-3.

Figure 4-3 Benefits of desktop SSO

The next section discusses how Web SSO plays a crucial role in an enterprise
SSO solution.

4.4 Web single sign-on
The predominant computing model today is the Web model, involving
HTTP/HTTPS transactions with applications on Web servers, application
servers, or both. Many legacy client-server applications are being converted over
to the Web model and virtually all new applications are Web-based. With the
rapid introduction of new Web applications, each requiring user authentication,
companies must adopt a login management strategy or risk overwhelming their
user population and consequently reducing security.

Sign on to
Desktop

Sign on to
Desktop

Windows
Domain

Controller

Desktop
Login here

Web
applications
running on

MS IIS

Provides
SSO
here

But
not
here

• UNIX
• Mainframe
• Novell
• Linux

TAMeb

Windows
Domain

Controller

Desktop
Login here

Provides
SSO

here

Web applications
running on all

targets

Sign on to
Desktop

Sign on to
Desktop1

2

3
4

1

2

3

Web applications
running on:

154 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Tivoli Access Manager for e-business takes a reverse Web proxy approach to
solving this problem. The reverse proxy is called WebSEAL and it intercepts Web
traffic destined for the corporate Web applications as shown in Figure 4-4.

Figure 4-4 Tivoli Access Manager for e-business Web SSO solution

Before users can access the desired Web application, they must first
authenticate to the WebSEAL reverse proxy. After they are authenticated,
WebSEAL checks its policy database to verify whether the user is allowed to
access the requested resource. If granted, the user is presented with the
originally requested back-end resource without any further authentication.

When a Web application is secured through WebSEAL, it should be configured to
allow Web traffic only from the WebSEAL server. With this network security in
place, legacy applications may disable authentication and remove the original
user accounts from the Web servers. This means that users no longer have to
remember the login for that Web application and administrators do not have to
manage those accounts anymore.

When all corporate Web applications are brought behind the WebSEAL server,
users will only have to remember one login for all corporate Web applications.

To facilitate browser/Web server interactions, Tivoli Access Manager for
e-business supports the following:

� Web trust configurations—using IBM WebSphere Application Server SSO
capabilities and others

� Basic authentication SSO

 Chapter 4. Single sign-on technologies 155

� Forms-based SSO

� Lightweight third-party authentication (LTPA) SSO

� Passing user information in the HTTP header

Because customers have used Tivoli Access Manager for e-business and its
precursors to solve Web SSO issues since the early 1990s, there have been
many additions to its Web SSO capabilities, addressing a wide variety of
business needs. Consequently, Tivoli Access Manager for e-business can be
used to address desktop SSO, back-end and portal SSO, three-tier SSO, SSO to
host application emulators, and federated SSO. Only a robust Web SSO solution
addresses all of these areas.

4.4.1 Desktop SSO
For companies not using Tivoli Access Manager for Enterprise Single Sign-On,
Tivoli Access Manager for e-business can be used to integrate desktop sign-on
with Web sign-on. A user logging onto Windows is automatically logged onto
Tivoli Access Manager for e-business and consequently has access to all
secured Web applications without further need to sign on. This is sometimes
called Kerberizing Tivoli Access Manager for e-business because the technology
is based on the Kerberos protocol that Microsoft uses in its Simple and Protected
GSSAPI Negotiation Mechanism (SPNEGO) and Microsoft Windows NT® LAN
Manager (NTLM) implementations.

4.4.2 Back-end and portal SSO
It is not uncommon for companies to implement a so-called SSO solution for a
portal only to find that they still get many password prompts. This is because
inferior SSO solutions handle the link between the Web browser and the portal
but not those between the portal and its portlets, which connect to other
applications that need ID and password combinations. But with Tivoli Access
Manager for e-business, user information can be passed to an application server
or portal server, and that information can be used to build a credential
appropriate to the back-end application environment.

To extend SSO to back-end applications and portals, Tivoli Access Manager for
e-business includes the following:

� Java Authentication and Authorization Services (JAAS) standardized support
for programmatic security.

� J2EE standardized support for declarative security.

156 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� A technology preview that enables programmatic and declarative security for
.NET applications.

� Special support integrated with the WebSphere Portal credential vault to
extend SSO support to the portal's back-end applications.

4.4.3 Three-tier SSO
Mainframe applications protected by IBM RACF are widely appreciated for their
high degree of security. Many businesses have Web-enabled these applications
to extend their value, but not every SSO solution can manage authentication with
mainframe applications. Tivoli Access Manager for e-business works in concert
with WebSphere software, RACF, and J2EE Connector Architecture (JCA)
capabilities to map user information for use in each environment that is involved
in a user's request for data as shown in Figure 4-5.

Figure 4-5 Three-tier SSO

Because such transactions involve browsers, middle-tier servers and enterprise
servers, they are typically called three-tier transactions.

4.4.4 SSO to host application emulators
Another set of applications that have had their value extended by Web
enablement are emulation applications running on zSeries, iSeries, and
DEC/UNIX. The integration of Tivoli Access Manager for e-business with IBM
WebSphere Host Access Transformation Services and IBM WebSphere Host
On-Demand enables clients to provide SSO to these emulation applications.

z/OS

CICS
app

WebSphere Application Server
on distributed platform

JCA

RACF

Application

JAAS
Subject

AuthenticateAuthenticateUser

CTG

Access Manager
for e-business

LDAP

AuthenticateAuthenticate

• User signs on once
• Credential transformed (TAMeb WAS RACF)

CTG = CICS Transaction Gateway

Access Manager
for e-business

 Chapter 4. Single sign-on technologies 157

4.5 Federated single sign-on
Many businesses are moving toward federated configurations to cost-effectively
introduce partner-hosted capabilities into their customers' Web experiences.
These environments typically involve a business that has partner relationships,
where the partner is not necessarily using the same software as the business
itself. Consequently, it is essential that federated software supports the latest
interoperability standards used in SOA-based environments: SAML, Liberty
Alliance, and WS-Federation.

Federated single sign-on protocols like SAML define methods for securely
transferring a user’s identity between security domains over the Internet. This
typically involves a pair of companies who have formed a business relationship in
which one company is consuming a service from the other. This transferring of
the identity means that a service provider need not manage passwords and the
user can access external services without having to authenticate again. This is
what is known as federated single sign-on.

The powerful IBM solution for addressing federated SSO is Tivoli Federated
Identity Manager, which includes Tivoli Access Manager for e-business.
Together, these technologies provide robust management of identities involved in
business-to-business SSO transactions. A key aspect of Tivoli Federated Identity
Manager is its support of three key federated SSO interoperability standards:
SAML, Liberty Alliance, and WS-Federation. This is important because in
business-to-business exchanges you cannot always be sure which protocol your
partner can support.

For companies, who want to test the waters of federated SSO, but do not want to
invest in a full-blown enterprise solution, the Tivoli Federated Identity Manager
Business Gateway (see Figure 4-2 on page 153) implements the SAML SSO
protocol and provides a push button installation. It can be used by small and
large companies alike to get quickly up and running with a business partner.

Customers looking to leverage federated configurations to expand their business
with relatively minor investments can now do so with great security, thanks to the
combination of Tivoli Federated Identity Manager and Tivoli Access Manager for
e-business.

158 Enterprise Security Architecture Using IBM Tivoli Security Solutions

4.6 Enjoy security management benefits beyond SSO
Tivoli Access Manager for e-business not only delivers substantial SSO value, it
also provides a number of additional security management benefits, including:

� Authorization for Web applications, enabling uniform application of policies
that specify who can and who cannot access sets of resources.

� Reverse proxy, protecting intranet, Web and application servers from Internet
access (and, optionally, from intranet access).

� Front-end authentication for applications:

– Out-of-the-box support for multiple authentication mechanisms (including
user identities and passwords, certificates and tokens), without requiring
modification of back-end applications to support these technologies.

– Switch user capability (where an administrator can take over a user's
session), and authentication step-up and forced reauthentication (for
accessing highly sensitive target data and applications), essential
authentication options for some businesses.

� Audit capabilities, when combined with the clear, unified access-control policy,
can be a key enabler of audit readiness and compliance with such regulations
as Sarbanes-Oxley. Tivoli Access Manager for e-business is designed to help
companies maintain and certify the validity of their records and disclosures of
pertinent information.

In addition to its federated SSO capabilities, Tivoli Federated Identity Manager
extends the Web services security function of WebSphere and WebSphere Web
Services Gateway by:

� Expanding support for security token types, which allows out-of-the-box use
of SAML and Liberty tokens.

� Mapping user identities received from another domain to identities
understood locally, and then mapping and adding attributes as necessary.

� Authorizing local identities for access to requested Web services, ensuring
only legitimate use of the Web services.

4.7 Conclusion
In this chapter, we saw that by dividing the SSO problem into three separate
classes (desktop, Web, and federated), IBM has been able to provide SSO
technologies that successfully address each area.

Tivoli Access Manager for e-business delivers SSO in the area where its need is
most prevalent today—the Internet. Additionally, the software works with Tivoli

 Chapter 4. Single sign-on technologies 159

Federated Identity Manager to address federated and Web services SSO.
Finally, Tivoli Access Manager for Enterprise Single Sign-On addresses existing
legacy client/server configurations to close the loop on the single sign-on
problem.

160 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Part 2 Managing access
control

In Part 2, we discuss the Tivoli solutions that address the access control domain
of the overall security architecture. Access control information, which generally
evolves around authentication and authorization mechanisms, is handled mainly
by IBM Tivoli Access Manager and its resource managers. Access Manager
handles a multitude of integration aspects with all sorts of IT infrastructures and
application environments, which are detailed throughout this part of the book.

Part 2

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 161

162 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 5. Access Manager core
components

In this chapter we introduce the family of access control products offered by Tivoli
and how they relate to each other. The focus of the chapter, however, is to
introduce the core components of IBM Tivoli Access Manager.

The following products make up the Access Manager family:

� Access Manager for e-business
� Access Manager for Business Integration
� Access Manager for Operating Systems

The components that make up Access Manager are discussed to provide the
foundation for introducing the elements of the Access Manager architecture.
There are three types of Access Manager components:

� Base components, which are generally common to all Access Manager
installations.

5

Note: Although Tivoli Access Manager for Enterprise Single Sign-On bears
the same naming of the components mentioned above, it does not share the
same core components. The components for Access Manager for Enterprise
Single Sign-On are discussed in Chapter 15, “Access Manager for Enterprise
Single Sign-On” on page 449.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 163

� Resource managers, which support authorization for specific application
classes.

� Interface components, which permit application programs to directly interact
with Access Manager functions.

Before we start addressing these major components, we introduce the IBM Tivoli
Access Manager family.

5.1 Tivoli Access Manager family
IBM Tivoli Access Manager (Tivoli Access Manager) is an authentication and
authorization solution for corporate Web, client/server, and existing applications.
Tivoli Access Manager enables you to control user access to protected
information and resources. By providing a centralized, flexible, and scalable
access control solution, Tivoli Access Manager enables you to build secure and
easily managed network-based applications and e-business infrastructure. Tivoli
Access Manager supports authentication, authorization, audit and logging, data
security, and resource management capabilities.

Tivoli Access Manager provides:

� Authentication framework

Tivoli Access Manager provides a wide range of built-in authenticators and
supports external authenticators. The wide range of available authentication
mechanisms are discussed in Chapter 9, “Authentication and single sign-on
with Access Manager for e-business” on page 279.

� Authorization framework

The Tivoli Access Manager authorization service, accessed through a
standard authorization application programming interface (authorization API),
provides permit and deny decisions on access requests for native Tivoli
Access Manager servers and other applications.

The authorization service, together with resource managers, provides a
standard authorization mechanism for business network systems.

Tivoli Access Manager can be integrated into existing and emerging
infrastructures to provide secure, centralized policy management capability.

More about the authorization framework is discussed in Chapter 10, “Access
Manager authorization” on page 323.

164 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Some existing Access Manager resource managers include:

� IBM Tivoli Access Manager for e-business

As part of Access Manager for e-business, WebSEAL manages and protects
Web-based information and resources.

� IBM Tivoli Access Manager for Operating Systems

Access Manager for Operating Systems provides a layer of authorization
policy enforcement on Linux and UNIX systems in addition to that provided by
the native operating system. Existing applications can take advantage of the
Tivoli Access Manager authorization service as well as provide a common
security policy for the entire enterprise. Refer to Chapter 12, “Access
Manager for Operating Systems” on page 381 for more information.

� IBM Tivoli Access Manager for Business Integration

Access Manager for Business Integration provides a security solution for IBM
MQSeries® and IBM WebSphere MQ messages and is discussed further in
Chapter 14, “Access Manager for Business Integration” on page 425.

5.1.1 Access Manager for e-business
Tivoli Access Manager for e-business provides robust, policy-based security to a
corporate Web environment. This means several things. Authentication of users,
control of access privileges, auditing, single sign-on, high availability, and logging
are all essential elements of any security management solution. The control of
access privileges is expansive, with WebSEAL or the Plug-in for Web servers
component able to manage access control to Web servers. For application
integration, Access Manager for e-business provides several plug-ins such as
Microsoft .NET and BEA WebLogic. These provide advanced capabilities to
manage access control at the application level.

5.1.2 Access Manager for Operating Systems
Tivoli Access Manager for Operating Systems provides a layer of authorization
policy enforcement in addition to that provided by the native operating system for
Linux and UNIX-based systems. An administrator defines additional
authorization policies by applying fine-grained access controls that restrict or
permit access to key system resources. Controls are based on user identity,
group membership, the type of operation, time of the day or day of the week, and
the accessing application. An administrator can control access to specific file
resources, login and network services, and changes of identity. These controls

Note: Access Manager for Operating Systems and Access Manager for
Business Integration are sold as separate products.

 Chapter 5. Access Manager core components 165

can also be used to manage the execution of administrative procedures and to
limit administrative capabilities on a per-user basis.

In the context of legal and regulatory compliance, strong mechanisms are
provided to audit authorization decisions as well as granted and denied access to
system resources.

5.1.3 Access Manager for Business Integration
Tivoli Access Manager for Business Integration operates in conjunction with IBM
Tivoli Access Manager for e-business. Together, these software applications
provide a security solution for IBM WebSphere MQ products.

With Tivoli Access Manager for Business Integration you can:

� Secure sensitive or high-value messages processed by IBM WebSphere MQ.

� Control which users have access to specific queues.

� Detect and remove rogue or unauthorized messages before they are
processed by a receiving application.

� Generate detailed audit records showing which messages were expressly
authorized and encrypted.

� Define authorization and data protection policies centrally for IBM WebSphere
MQ resources (getting and putting messages to queues) using a Web
browser or command line.

� Provide integrity and privacy protection for your data as it flows across the
network and while it is in a queue.

� Secure existing off-the-shelf and customer-written applications for IBM
WebSphere MQ.

5.2 Architectural perspective
To illustrate the value of the Access Manager solution, we describe the product
in terms of a greater enterprise architecture. Throughout this book references
from 2.1, “Common security architecture subsystems” on page 20 are used to
place the Tivoli Security products within an overall architecture perspective.

5.2.1 Design principles
The design of any architecture must be based on clearly defined and articulated
principles that form a foundation for the design process. That is, the principles
describe the objectives of the solution. Whenever in doubt about a design

166 Enterprise Security Architecture Using IBM Tivoli Security Solutions

decision, the principles should be used to map a path forward and to justify the
overall design.

Some key principles can be applied to an access control solution:

� The security solution must have a central point of authority for security-related
information. This authority must support both centralized and distributed
management.

– Motivation: This principle drives the need for one source of authoritative,
security-related policy within an organization. It enables a consistent policy
to be applied across applications, systems, and throughout the
organization while providing a flexible administration framework that fits
into and enhances an organization’s operation capabilities.

– Implication: This principle implies a high degree of integration, broad
coverage, and flexibility required from the products that are chosen to
support it. Integration is one of the greatest challenges.

� Access decisions must be evaluated where and when they are required, not
at the beginning of a transaction. Gated controls should be employed
throughout the solution. Putting all controls at the front door puts too much
emphasis on the concept of trust (that is, I have let you into my house and
now you can do whatever you like), creating an inherently less secure system.

– Motivation: The drivers for this principle are increased security and
performance:

• Increased security through more checks of a user’s or transaction’s
authority to perform a function.

• Increased performance as decisions get made when a user requires
something, meaning that unnecessary decisions about a user’s
potential activity will not be made up front.

– Implication: Requires good integration capability to enable a common
security service to permeate an environment. The majority of applications
must be able to use the security services.

� Sufficient logging is required to capture all authentication and access control
decision events and logs. The level of logging should be based on business
and security requirements, hence the security solution should provide
comprehensive and flexible logging coverage, allowing it to be customized.

– Motivation: Because no security solution is foolproof, it is essential to keep
good records of the transactions performed by the security system. An
easily manageable method of dealing with these records is essential.

– Implications: Strong integration is required to provide logging across
multiple systems. Mechanisms must be in place to collect, filter, analyze,
and report on audit data.

 Chapter 5. Access Manager core components 167

These principle are not intended to be comprehensive, but to highlight some core
objectives of the security solution.

One of the core implications of the principles just listed is that integration
throughout the security solution will always be a huge issue within an enterprise
context. Access Manager offers virtually full security coverage when it comes to
access control for Web-based applications, addressing both the depth (Access
Manager for Operating Systems) and breadth (Access Manager for Business
Integration) of enterprise access control security solutions.

The Access Manager family supports all of these principles. The Access
Manager family of products, when integrated throughout an environment,
provides a comprehensive access control capability. The breadth of the Access
Manager solution, along with its open architecture and interfaces, means that it is
a perfect solution to provide the majority of an enterprise’s access control
capabilities.

Access Manager provides the core security functions for Web-based enterprise
solutions. Integrated with Tivoli Identity Manager, Tivoli Directory Integrator, and
Tivoli Security Operations Manager, the Tivoli security products provide the
access control, identity management, and threat management capabilities
required for any enterprise.

5.2.2 Security subsystems
As discussed in 2.1, “Common security architecture subsystems” on page 20
there are common subsystems used in a security solution. Access Manager is
primarily an access control solution, addressing two of the common subsystems:

� Access control: Access Manager is used to authenticate users and to enforce
security policy at an application and system level.

� Auditing: The Access Manager components and infrastructure provide a
comprehensive logging framework that can be integrated with any threat
management system.

Access Manager utilizes all the subsystems, but these two are fundamental to
the position of Access Manager within an overall Enterprise Architecture.

From an Enterprise Architecture perspective, other products will be required to
satisfy other solution requirements. One product cannot be everything to

Tip: When defining design principles it is important to specify the motivations
and implications of each principle. This gives background as to why the
principle was accepted and developed and, more important, it describes the
consequences of adopting a particular principle.

168 Enterprise Security Architecture Using IBM Tivoli Security Solutions

everyone. However, the Access Manager family provides a comprehensive,
integrated security solution that is powerful in its coverage, scalability, and
reliability.

5.2.3 Access control subsystem
An access control subsystem is responsible for data and component protection
by providing mechanisms for identification and authentication as well as
authorizing component access. In addition to these major functions, it also
provides security management and cryptographic support.

Figure 5-1 on page 170 shows a use case model of an access control
subsystem. The physical view shows the systems involved in the transaction.
The component view depicts the information flow control function that examines
messages being sent and, based on a set of rules, will allow valid messages to
flow. Invalid messages are rejected and recorded. The logical view breaks down
the access control process into distinct functions.

 Chapter 5. Access Manager core components 169

Figure 5-1 Access control subsystem

The Resource Manager is the major component involved in an access control
decision. It is positioned between two security domain boundaries, so every
transaction or information request has to be routed through this component.

If the sending component has not yet been authenticated, the Resource Manager
involves the Authentication Manager and Credential Validator service in order to
verify the requester and issue a credential package that will be returned to the
Resource Manager. If the requester could not be authenticated successfully, the

CREDENTIAL
VALIDATOR

Application Server

SENDING
COMPONENT

RECEIVING
COMPONENT

AUTHENTICATION
MANAGER BINDING

ENABLER

ERROR
HANDLER

CREDENTIAL
VALIDATOR

PHYSICALVIEW

COMPONENT VIEW

ACCESS CONTROL SUBSYSTEM
LOGIC VIEW

ACCESS
CONTROL
RULESET

USER
REPOSITORY

ACCESS
CONTROL INTERFACE

SECURITY
DOMAIN
BOUNDARY

SECURITY
DOMAIN

BOUNDARY

Reverse Proxy

STATE
MANAGER

AUDIT
SYSTEM

INTERFACE

AUDIT
LOG

ACCESS
POLICY

EVALUATOR

RESOURCE
MANAGER

170 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Error Handler will be involved, and the Audit System Interface writes an entry
into the Audit Log.

If the sending component has already been authenticated, the Resource
Manager sends the authorization requests to the Access Policy Evaluator, which
first uses the State Manager to verify the current status of the session.

If the session is still active and everything proves valid, the Access Policy
Evaluator proceeds with the evaluation of the request by applying access control
rules from the Access Control Ruleset database.

If access is granted, the Access Policy Evaluator updates the information in the
State Manager and hands the task over to the Binding Enabler. If configured, the
Binding Enabler might ask the Audit System Interface to write a positive log entry.

If access is not granted, the Access Policy Evaluator updates the information in
the State Manager and hands the task over to the Error Handler, which writes a
log entry. It then informs the Binding Enabler of the negative decision, which in
return informs the requester of the denied access.

This example use case flow demonstrates what sort of components are required
within an Access Control system and how they relate to each other. Use cases
are generally used to describe real solution component interactions and form a
very valuable tool when determining the best possible design.

In the following sections and chapters, the Access Manager family of products is
described from an architectural perspective. The functional components that
make up the products are described and real world examples are used to
illustrate the products applications.

5.3 Base components
Access Manager provides several components that support basic product
functionality. The Access Manager base consists of a small set of architectural
core components and management facilities that generally are required to
support and administer the environment. The components are common across
the Access Manager family of products.

 Chapter 5. Access Manager core components 171

5.3.1 Overview
Access Manager’s base functions are provided through a set of core components
and various management components.

Underlying components
Access Manager is based on two components:

� A user registry

� An Authorization Service consisting of an authorization database and an
authorization engine

These components support the core functionality that must exist for Access
Manager to perform its fundamental operations, which are:

� Knowing the identity of who is performing a particular operation (users)

� Knowing the roles associated with a particular identity (groups)

� Knowing what application entities a particular identity may access (objects)

� Knowing the authorization rules associated with application objects (policies)

� Using this information to make access decisions on behalf of applications
(authorization)

� Auditing and logging all activity related to authentication and authorization

In summary, a user registry and an Authorization Service are the fundamental
building blocks upon which Access Manager builds to provide its security
capabilities. All other Access Manager services and components are built on this
base.

Management components
The Access Manager environment requires certain basic capabilities for
administrative control of its functions. Management facilities are provided through
the following base components:

� The Policy Server, which supports the management of the authorization
database and its distribution to Authorization Services.

� A Policy Proxy Server, which provides a mechanism for resource managers to
access Policy Server functionality without a direct connection to the master
Policy Server.

� The pdadmin utility, which provides a command line capability for performing
administrative functions such as adding users or groups.

� The Web Portal Manager, which provides a browser-based capability for
performing most of the same functions provided by the pdadmin utility.

172 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� The administration API, on which the pdadmin utility and the Web Portal
Manager are built, enables performance of program initiated level
administration tasks and queries.

5.3.2 User registry
Access Manager requires a user registry to support the operation of its
authorization functions. Specifically, it provides:

� A database of the user identities that are known to Access Manager

� A representation of groups in Access Manager that may be associated with
users

� A data store of other metadata required to support authorization functions

Identity mapping
While it can be used in authenticating users, this is not the primary purpose of
the user registry. An application can authenticate a user via any mechanism it
chooses (ID/password, certificate, and so on), and then map the authenticated
identity to one defined in the user registry. For example, consider a user John
who authenticates himself to an application using a certificate. The application
then maps the DN in John’s certificate to the Access Manager user named
john123. When making subsequent authorization decisions, the internal Access
Manager user is john123, and this identity is passed between the application and
other components using various mechanisms, including a special credential
known as a Privilege Attribute Certificate (PAC).

 Chapter 5. Access Manager core components 173

User registry structure
The user registry contains three types of objects:

� User objects, which contain basic user attributes.

� Group objects, which represent roles that may be associated with user
objects.

� Access Manager metadata objects, which contain special Access Manager
attributes that are associated with user and group objects. The metadata
includes information that helps link an Access Manager user ID to its
corresponding user object.

Tivoli Access Manager has altered the way it stores a user’s metadata objects in
the directory. It has migrated to a minimal model that minimizes the disruption to
an existing DIT structure. All data for Tivoli Access Manager can now be stored
under a separate secAuthority=Default suffix leaving any existing suffixes to
coexist in the directory. Figure 5-2 on page 175 illustrates how Tivoli Access

Note: One of the primary goals of the authentication process is to acquire
credential information describing the client user. The user credential is one of
the key requirements for participating in the secure domain.

Access Manager distinguishes the authentication of the user from the
acquisition of credentials. A user’s identity is always constant. However,
credentials, which define the groups or roles in which a user participates, are
variable. Context-specific credentials can change over time. For example,
when a person is promoted, credentials must reflect the new responsibility
level.

The authentication process results in method-specific user identity
information. This information is checked against user account information that
resides in the Access Manager user registry. Access Manager maps the user
name and group information to a common domain-wide representation and
format known as the Privilege Attribute Certificate (PAC).

Method-specific identity information, such as passwords, tokens, and
certificates, represent physical identity properties of the user. This information
can be used to establish a secure session with the server.

The resulting credential, which represents a user’s privileges in the secure
domain, describes the user in a specific context and is valid only for the
lifetime of that session.

Access Manager credentials contain the user identity and groups where this
user has membership.

174 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Manager data can be added to a directory already containing user and group
information without impacting the pre-existing suffix.

Figure 5-2 Tivoli Access Manager LDAP directory storage of metadata

The default user registry is LDAP-based, and Access Manager consolidates its
registry support around a number of LDAP directory products.

Note: The minimal data model is optional and is used for new Access
Manager configurations by default. The data model used by previous versions
of Access Manager (called the standard data model) is still supported and
should be chosen if there will be any previous versions of Access Manager
components or resource managers in the enterprise, since previous versions
will not recognize or support the minimal model. For existing Access Manager
configurations, which upgrade to version 6.0, the current standard data model
will remain and can be used unchanged, no migration is required.

Directory Server

dc=YourCompany,dc=com secAuthority=Default

ou=usersou=groups

cn=John Doe cn=Administrators

All Tivoli Access
Manager metadata is

stored here

 Chapter 5. Access Manager core components 175

Access Manager can use the following directory products for its user registry:

� IBM Tivoli Directory Server
� Novell eDirectory
� Sun ONE Directory Server
� Sun Java System Directory Server
� Microsoft Active Directory
� Lotus Domino Server
� IBM z/OS Security Server LDAP Server

The IBM Tivoli Directory Server is included with Access Manager and is the
default LDAP directory for implementing the user registry. For the latest list of
supported user registries refer to the IBM Tivoli Access Manager for e-business
Version 6.0 Release Notes, SC32-1702.

Access Manager components support the use of directory replicas, peer-to-peer
(multi-master) replication, and directory partitioning. It is recommended that a
directory architecture be completed to ensure the directory environment will
perform as expected with Tivoli Access Manager and any other applications that
may want to participate in directory services. Minimal recommendations for the
directory in regards to Tivoli Access Manager are a master-replica topology. For
a more detailed discussion on directory technology refer to Chapter 3, “Directory
technologies” on page 49.

Directory schema
To support its critical and private registry data, Access Manager requires certain
support in the directory schema. Certain object classes and attributes are
specific to Access Manager and are configured as needed during product
installation. Access Manager, however, only adds new subclasses to existing
directory objects (for example, inetOrgPerson).

176 Enterprise Security Architecture Using IBM Tivoli Security Solutions

5.3.3 Authorization database
Separate from the user registry, Access Manager uses for its authorization
functions a special database containing a virtual representation of resources it
protects. Called the protected object space, it uses a proprietary format and
contains object definitions that may represent logical or actual physical
resources. Objects for different application types may be contained in different
sections of the object space, and the object space may be extended to support
new application types as required.

The security policy for these resources is implemented by applying appropriate
security mechanisms to the objects requiring protection. Security mechanisms
are also defined in the authorization database, and include:

� Access control list (ACL) policy templates

ACLs are special Access Manager objects that define policies identifying user
types that can be considered for access, and specify permitted operations. In
the Access Manager model, ACLs are defined separately from and then
attached to one or more protected objects. So an ACL has no effect on
authorization until it becomes associated with a protected object.

Access Manager uses an inheritance model in which an ACL attached to a
protected object applies to all other objects below it in the tree until another
ACL is encountered.

� Protected object policy (POP) templates

A POP specifies additional conditions governing the access to the protected
object, such as privacy, integrity, auditing, and time-of-day access.

POPs are attached to protected objects in the same manner as ACLs.

Attention: While it might seem relevant to inquire about the details of the
directory schema that Access Manager uses, such information is not
necessarily useful (and in fact may be undesirable to have). It is important to
keep in mind that Access Manager components are the exclusive users of
these special object classes and attributes. The schema definitions and their
usage can change from release to release. As such, application components
should not assume any knowledge of Access Manager-specific schema
definitions or how they are used. Instead, application interaction with registry
information or functions should only be performed using published Access
Manager interfaces.

 Chapter 5. Access Manager core components 177

� Extended attributes

Extended attributes are additional values placed on an object, ACL, or POP
that can be read and interpreted by third-party applications (such as an
external Authorization Service).

� Authorization rules (Rules)

Authorization rules are defined in XSL (eXtensible Stylesheet Language) to
specify further conditions that must be met before access to a resource is
permitted. Rules enable you to make authorization decisions based on the
context and the request environment, as well as who is attempting the access
and what type of action is being attempted. These conditions are evaluated as
a Boolean expression to determine whether the request should be allowed or
denied.

Figure 5-3 depicts the relationships between the protected object space, ACLs,
POPs, and Rules. The different security mechanisms are discussed in detail in
Chapter 10, “Access Manager authorization” on page 323.

Figure 5-3 Relationship between the protected object space, ACLs, POPs, and Rules

Successful implementation of a security policy requires that the different content
types are logically organized (and that the appropriate ACL, POP, and Rule
policies are applied). Access control management is simplified by structuring the
protected resources in such a way as to minimize the number of ACL, POP, and

Rule Rule

178 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Rule attachments required to implement the security policy, and thus gaining
maximum benefit from the sparse ACL model that we implement.

5.3.4 Policy Server
The Access Manager Policy Server maintains the master authorization database
for the secure domain. This server is key to the processing of access control,
authentication, and authorization requests. It also is responsible for distributing
and updating all authorization database replicas and maintaining location
information about other Access Manager servers in the secure domain.

Multi-Domain Policy Server
There can only be a single Policy Server in an Access Manager domain. There
can, however, be multiple secure domains contained within a single Policy
Server. Each domain has its own authorization database, resource managers,
administrative users and groups, and Global Sign-On (GSO) information. In
addition, domains can either share users and groups or each have their own set
of users and groups. Management tools may also be shared between domains or
allocated on a per domain basis. Figure 5-4 illustrates the relationship between
Access Manager components in a multi-domain environment.

Figure 5-4 Access Manager components in a multi-domain environment

In a single domain environment, the default domain is the only domain used. In a
multi-domain environment, the default domain becomes the management

User

Group

User Registry

Policy Server

User

Group

Administrative
User

User

Group

Management
Tools

Domain A Domain B
Authorization

Database
Authorization

Database

G
SO

 D
ataG

S
O

 D
at

a

Administrative
Groups

Administrative
User

Administrative
Groups

Access Manager
Resource Managers

Access Manager
Resource Managers

 Chapter 5. Access Manager core components 179

domain. The Policy Server will always belong to this domain. All domains are
created and deleted from the management domain.

Figure 5-5 illustrates the relationship between the Policy Server, multiple
domains and their corresponding authorization databases.

Figure 5-5 Multiple domains with multiple authorization databases

There are many valid reasons why an enterprise might consider the multiple
domain model when developing their security architecture. One of the main
reasons is the need to segment security completely while still sharing the same
user base. When using multiple domains, completely separate policies can be
set up for each domain. There is no possibility that a security policy from one
domain can conflict with a security policy of another. Also, since the
administrative functionality is completely separated, an administrator from one
domain has absolutely no power in another domain. Real world examples of this
would be a conglomeration of companies that want to use Access Manager and
has different policies (and perhaps even laws that regulate them) that prevent
them from using the same security model. Another would be a development
environment on which each development organization is given their own domain
to prevent conflicts during the development cycle.

Standby Policy Server
To provide the redundancy for the shared data and for the functions that are
provided by the Tivoli Access Manager policy server, you can install and
configure a primary policy server and a standby policy server. The standby

Policy Server

Domain B

Domain A

Dom2 Domain

Dom1 Domain

Domain A

Domain B Default

Default Domain

Default DomainDomain A

Domain B

Access
Manager

Application

Access
Manager

Application

Access
Manager

Application

180 Enterprise Security Architecture Using IBM Tivoli Security Solutions

server takes over policy server functions in the event of a system or primary
policy server failure. The standby policy server acts as the primary policy server
until the original primary policy server is up and running again with the standby
server back to serving as the failover server. This is further discussed in 8.2,
“Availability” on page 261.

5.3.5 Policy Proxy Server
The Policy Proxy Server enables Access Manager applications and authorization
servers to connect to a Policy Proxy Server rather than the Policy Server. The
addition of a Policy Proxy Server enables an architecture to be created where the
only incoming SSL sessions to the Policy Server come from physical Policy Proxy
Servers. This facilitates increased security because a firewall protecting the
Policy Server only has to allow inbound connections from the Policy Proxy
Server(s) rather than from all Tivoli Access Manager applications or authorization
servers. The SSL session from Access Manager applications to the Policy Proxy
Server(s) is independent from the SSL session from the Policy Proxy Server to
the Policy Server.

The only exception to this rule is if you are using an application that uses the
administration API. Because administration API applications use the SSL
protocol to communicate with the Tivoli Access Manager Policy Server you have
to allow direct communication between these applications and the Policy Server.

Figure 5-6 Communication flows using the Policy Proxy Server

Figure 5-6 shows the connections (and the direction of flow) between the Policy
Server, a Policy Proxy Server and an Access Manager application or
authorization server.

All requests inbound to the Policy Server go via the Policy Proxy Server, except
for applications using the administration API. All requests outbound from the real
Policy Server go directly to the Access Manager application.

ACL database update notification

DB pull DB pull

Access Manager
Policy Server

Access Manager
application or
authorization

server
Access

Manager
Policy Proxy

Server

Server task commands
(includes objectspace query)

Admin API application

 Chapter 5. Access Manager core components 181

ACL database caching
In addition to providing a simple proxy service, the Policy Proxy Server can also
offload database replication tasks from the Policy Server by caching the ACL
databases that it serves to Access Manager applications. If several Access
Manager applications make requests for the same database, then the database
is only transferred from the Policy Server to the Policy Proxy Server one time.

The ACL databases are cached in memory for security. There is no ACL policy
database stored on the disk of the Policy Proxy Server that could be read (or
modified) if the Policy Proxy Server were compromised.

The currency of the ACL database in the Policy Proxy Servers cache is checked
every time a replication request is made so that there is no chance of an Access
Manager application receiving an out-of-date cached version of the ACL
database.

5.3.6 Authorization service
The foundation of Access Manager is its authorization service, which permits or
denies access to protected objects (resources) based on the user’s credentials
and the access controls placed on the objects.

The Policy Server provides an authorization service that may be leveraged by
applications and other Access Manager components that use the Authorization
Application Programming Interface (aznAPI), described in 5.5.1, “aznAPI” on
page 187. Optionally, additional Authorization Servers may be installed to offload
these authorization decisions from the Policy Server and provide for higher
availability of authorization functions. The Policy Server provides updates for
authorization database replicas maintained on each Authorization Server.

The Access Manager authorization service can also be embedded directly within
an application. In this case, the functions of an Authorization Server are
contained in the application itself.

5.3.7 The pdadmin utility and administration API
pdadmin is a command-line utility that supports Access Manager administrative
functions. The pdadmin utility is built on the administration API, as is the Web
Portal Manager (WPM) described next. The administration API provides the core

Note: The Policy Proxy Server does not perform any Policy Server functions; it
simply forwards requests to the Policy Server. This means that the Policy
Server is still the authoritative source for ACL database and user repository
updates.

182 Enterprise Security Architecture Using IBM Tivoli Security Solutions

interface into Access Manager for administrative functions. It enables the CLI and
WPM interfaces and allows for program-initiated administrative functions and
queries.

5.3.8 Web Portal Manager
The Access Manager Web Portal Manager provides a browser-based graphical
user interface (GUI) for Access Manager administration.

A key advantage of the Web Portal Manager over the pdadmin command line
utility is the fact that it is a browser-based application that can be accessed
without installing any Access Manager-specific client components or requiring
special network configuration to permit remote administrator access. In fact, the
authorization capabilities of WebSEAL (described in 6.4.1, “WebSEAL” on
page 196) can be used to control access to the Web Portal Manager. This means
greater flexibility for administrators’ locations with respect to the physical systems
they are managing.

Administrative functionality
The Web Portal Manager was designed to be an alternative to the pdadmin
command line interface (CLI) for many administrative functions. However, not all
pdadmin functions are supported (such as the retrieval of server statistics) and
the command line interface will still be required in certain cases. In other cases,
such as exporting Access Manager authorization data, Web Portal Manager is
required. Web Portal Manager also offers some key functional benefits over
pdadmin such as cloning and cut/paste functionality.

Migration of data
Web Portal Manager allows for the migration of data from one Access Manager
environment to another. Data is exported from the master authorization database
and placed into an XML file with optional encryption. It can then be transported to
a new Access Manager environment and imported.

This functionality allows for the exportation of one or more of the following items:

� Access control lists (ACLs)

� Protected Object Policies (POPs)

� Authorization Rules (Rules)

� Objects and Objectspaces including attached ACLs, POPs, and Rules

The exportation of data ensures a smooth transition from one Access Manager
environment to another such as migrating from staging to production.

 Chapter 5. Access Manager core components 183

Delegated administration
The Web Portal Manager also provides a delegated user administration
capability. This enables an Access Manager administrator to create delegated
user groups and assign delegate administrators to these groups.

The initial aim of the Web Portal Manager delegate function is to enable multiple
independent enterprises to manage their own user population in a single Access
Manager secure domain. This functionality could be used when a service
provider that uses Access Manager to provide access control to Web resources
wants to allow its customers to define and manage their own user population.

Depending on their assigned roles, the delegate administrators can perform a
subset of the administration functions aligning the security administration with
different organization and business relationships, such as:

� Departments
� Dealerships
� Branch offices
� Partnerships
� Suppliers
� Distributors

There are four different levels of administration in Access Manager with the basic
fields of action shown in Table 5-1.

Table 5-1 Delegated administration roles in Access Manager

Action/role Domain
admin

Senior
admin

Admin Support Any other

View user X X X X X

Reset password X X X X

Add existing Access Manager user
as an administrator

X X X

Create domain user X X

Remove user X X

Domain control X

184 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Architecture
The Web Portal Manager is built using Java Server Pages (JSP™), which
support the various administrative functions. It uses a Web application server
servlet engine; WebSphere Application Server 6.0.2 is provided with Access
Manager to support this capability. Figure 5-7 provides an architectural view of
how the Web Portal Manager works.

Figure 5-7 Web Portal Manager architecture

Note: Domains referenced in the above table do not correspond to Access
Manager secure domains. Domains in the delegate function of Web Portal
Manager are simply groups of users and functionality and have nothing to do
with the separation of security policy between groups of Access Manager
servers.

Web Server

JSP
Engine

AM Java Admin API

AMJRTE

JSP Pages
Browser

Administrative API uses
Access Manager Java
Runtime Environment

Interfaces to communicate
with the Policy Server

AM Runtime Environment
passes the administrative
request to the Policy Server
using the internal SSL-based
communication protocol.

Policy
Server

Java Servlets invoke
Access Manager

Administrative API

Java Server
Page retrieved

and forwarded to
JSP engine

User submits
administrative

request via WPM
browser interface

 Chapter 5. Access Manager core components 185

Other issues
Other issues that should be kept in mind when deploying Web Portal Manager:

� There is no limit to the number of Web Portal Manager instances that may be
deployed.

� It is possible to provide access to the Web Portal Manager via a WebSEAL
junction.

5.4 Resource managers
Resource managers are components that provide Access Manager authorization
support for specific application types. The resource manager is responsible for
the enforcement of the security policy within an Access Manager environment.
The resource manager uses the policy enforcer to call the Tivoli Access
Manager authorization service with the credentials of the user making the
request, the type of access desired, and the object to be accessed. The resource
manager takes the recommendation of the authorization service, performs any
additional verification actions, and ultimately either denies the request or permits
the request to be processed.

Figure 5-8 illustrates the interaction between the client, resource manager,
authorization service, and resource.

Figure 5-8 Resource Manager component interaction

Authenticated Client

Authorization
Service

Resource Manager

Policy
Enforcer

Request for
Resource

Authorization
Check Yes or No

Resource

186 Enterprise Security Architecture Using IBM Tivoli Security Solutions

5.5 Interfaces
Access Manager supports a number of programming interfaces that permit direct
application interaction with its components. While these interfaces support a rich
set of functionality and are useful in many situations, it is important to point out
that there is substantial product function that does not require their use. Initially,
many organizations do not need to utilize these interfaces, allowing rapid
deployment of security components such as WebSEAL. However, as the needs
of the organization evolve, these interfaces allow for a high level of security
integration and customization.

5.5.1 aznAPI
The Access Manager aznAPI provides a standard programming and
management model for integrating authorization requests and decisions with
applications. Use of the aznAPI enables applications to utilize fined-grained
access control for application-controlled resources.

Application-specific resources may be individually defined and added to the
protected object space and maintained in the authorization database in the same
manner that WebSEAL and other standard Access Manager blades define their
respective resources. ACLs, POPs, and authorization rules may be attached to
these application objects, and aznAPI calls may then be used to access the
Access Manager Authorization Service to obtain authorization decisions.

In Access Manager 6.0, a new credential entitlement service has been added
that allows for user policy information to be gathered from the LDAP directory
and added to the user’s credential. This builds upon previous functionality
provided in the registry entitlement service which pulls information out of an
LDAP directory and places it in the credential.

Also, Access Manager 6.0 provides two credential modification services, one for
modifying attributes in a credential and another for modifying group membership
within a credential.

5.5.2 Java API for Access Manager-based authorization
A powerful feature is to use Access Manager as an authentication and
authorization back-end inside the Java 2 security model.

The Access Manager Authorization Java Classes provide an implementation of
Java security code that is fully compliant with the Java 2 security model and the
Java Authentication and Authorization Services (JAAS) extensions. More
detailed information about this topic can be found in section 11.4, “Access
Manager and WebSphere integration” on page 357.

 Chapter 5. Access Manager core components 187

5.5.3 Access Manager-based authorization for Microsoft .NET
Access Manager provides integration and support for implementing authorization
for Microsoft .NET applications. Access Manager APIs are exposed at the .NET
Common Language Runtime level. This exposes the functionality to all .NET
languages such as Managed C++, C#, and Visual Basic® .NET. More detailed
information about this topic is in section 6.4.7, “Access Manager for Microsoft
.NET applications” on page 211, and Chapter 11, “Application integration” on
page 347.

5.5.4 Management API
Also known as the administration API, the Management API provides C language
bindings and Java admin classes to the same functions supported by the
pdadmin command line utility. It may be used by custom applications to perform
various Access Manager administrative functions.

5.5.5 External Authorization Service
The External Authorization Service (EAS) interface provides support for
application-specific extensions to the authorization engine. This enables system
designers to supplement Access Manager authorization with their own
authorization models.

An EAS is accessed via an authorization “callout,” which is triggered by the
presence of a particular bit in the ACL that is attached to a protected object. The
callout is made directly by the Authorization Service.

In the current release of Access Manager, the EAS interface is supported via a
simple Authorization Service plug-in capability. This allows an EAS to be
constructed as a loadable shared library. The EAS architecture is summarized in
Figure 5-9 on page 189.

188 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 5-9 EAS architecture

After introducing the Access Manager core components we now take a closer
look at Access Manager for e-business.

Resource
Manager

Authorization
Engine

EAS Shared
Library

Interface
EAS Module

Custom
Authorization
Engine/Logic

The EAS shared library provides the
application programming interface to
support the custom authentication
functions

The custom EAS Module provides the
authentication-method-specific functions
to interface with the authentication target
system or registry.

The user sends a request for a resource
To Resource Manager

The authorization subsystem forwards
the access request for the resource to
the custom EAS module

Resource Manager asks the authorization
engine whether the user is permitted to
access the requested resource

Client

 Chapter 5. Access Manager core components 189

190 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 6. Access Manager for
e-business

Web presence has become a key consideration for the majority of businesses
and other organizations. Almost all organizations see the Web as an essential
information delivery tool. Increasingly, however, the Web is being seen as an
extension of the organization itself, directly integrated with its operating
processes. As this transformation takes place, security grows in importance.

This chapter introduces the elements of the Access Manager architecture in a
Web-centric environment. It describes and compares the use of the WebSEAL
and Access Manager Web server plug-in resource managers and covers key
architectural issues associated with any Access Manager deployment, and
provides a foundation for the architectural discussions in later chapters.

6

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 191

6.1 Typical Internet Web server security characteristics
Perhaps the best place to begin the discussion of Access Manager architecture
is with the issues typically encountered by organizations as they address Web
security requirements.

It is generally accepted practice for organizations to place Internet-facing Web
servers in a protected zone (also known as a demilitarized zone or DMZ), which
is generally firewalled and separated from the Internet. The DMZ can provide an
buffer between the external untrusted public networks of the Internet and a
trusted internal corporate network. The DMZ concept enforces the defense in
depth principle of network design, which adopts an onion skin approach. Each
layer of the onion is analogous to a network zone trust level: The more sensitive
the data and applications, the closer to the center of the onion they should be
deployed, hence providing layers of protection from less trusted networks. Refer
to 2.3.1, “Localizing a global vision” on page 31, and 2.3.2, “Network zones” on
page 34.

Direct uncontrolled Internet access to such components presents a significant
security exposure. For this reason, back-end components are often placed in an
internal network firewalled from the Internet DMZ, leaving only the Web server
component exposed to direct browser access, as illustrated in Figure 6-1. This
double-firewall architecture has become common, not only for Internet
application access, but increasingly for internal organization access to critical
computing resources as well.

Figure 6-1 Typical advanced Web application architecture

Internal Network

Data/
Application

Server

F
ir

ew
al

l

Web Server

Internet DMZ

F
ir

ew
al

l

Internet

 Browser

Network Firewall,
often specialized
hardware, such
as Cisco PIX.

Web servers provide
static content and
support application
"front-end" functions.

Often a software
firewall, such as IBM
Firewall or CheckPoint
Firewall-1.

Databases, such as IBM
DB2 or application
servers, such as IBM
WebSphere Application
Server.

192 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Such architectures successfully address security from a network perspective, but
they do not address a larger set of concerns, including:

� Security sensitive information may reside in the static content of Web servers
(for example, Human Resources, sales, and personal information).

� Authentication/authorization may be driven by platform-specific mechanisms.

� Authentication, authorization, and audit functions may not be centralized.

� Managed security policies may be inconsistent and vary from server to server
(access policies controlled by many different individuals or groups).

In such environments, there may be sensitive functions and content which, if
compromised, could represent a significant business risk.

Access Manager is capable of addressing these issues. Combined with an
appropriate network architecture, an organization can deploy Web content and
applications with a high degree of assurance that the environment is secure and
that the security functions and policies may be consistently applied.

In the following sections, we introduce the elements of Access Manager
architecture, using the deployment of WebSEAL and the Tivoli Access Manager
Web Plug-in as a focal point.

6.2 Web security requirement issues
The use of Tivoli Access Manager, and in particular WebSEAL and the Web
Plug-in, is driven by key business requirements, which are reflected in specific
design objectives, or technical requirements as outlined in the common security
architecture subsytems approach discussed in 2.1, “Common security
architecture subsystems” on page 20.

6.2.1 Typical business requirements
Several commonly encountered business requirements tend to drive Web
security solutions such as those using WebSEAL:

� Different back-end and Web content hosting systems require users to
authenticate multiple times, causing a negative user experience.

In order to improve customer satisfaction, a method for a single user
authentication has to be implemented.

 Chapter 6. Access Manager for e-business 193

� The Web-based functions of the business extend into content and
applications, which increasingly require sophisticated security management.

Almost all businesses that are on the Web encounter this. Beyond basic,
static informative content, the inadequacies in simple security mechanisms
typically present in many Web servers become clear. The enforcement of
Web security across the enterprise cannot be successful without something
more sophisticated and manageable at the enterprise level.

� Web security policies must be consistently applied across the business.

Without a common security infrastructure, Web content and application
security policies tend to be applied differently by various parts of the business.
This results in a hodge-podge of differing security mechanisms that enforce
policy in different ways, often to the point where one cannot easily understand
what the organization’s overall security policies are.

� The costs of Web security management must be predictable.

Security requirements evolve with the business. Ultimately, the costs of a
commonly leveraged solution that is reliable and scalable to the needs of the
business will be far more predictable than other approaches.

� Threats of inadvertent security compromises or hacker attacks represent
significant risks to business operations and company goodwill.

The direct costs of investigation and recovery after a security incident may be
significant, but the indirect costs may be even greater. Especially when doing
business on the Web, a perception that security is inconsistent and may be
compromised can cause substantial revenue loss.

� Competitors are leveraging security solutions to explicitly generate user trust.

Even if threats are minimal, it still may be essential to maximize the trust that
users have in the business’s ability to protect itself from compromise.
Competitors who can successfully present a solid, secure image may have an
advantage over a business that does not.

6.2.2 Typical design objectives (technical requirements)
In conjunction with the business requirements that drive the need for a Web
security solution, the following design objectives (technical requirements) are
often encountered:

� There is a need to apply security policy independent of application logic.

� A common security control point for Web infrastructure is needed.

� Security policy management must be operating system platform independent.

� Single sign-on (SSO) for access to Web content and applications is needed.

194 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Authorization policy management and enforcement mechanisms must be
consistent across applications.

� Exposure of Web content and applications to potential attack must be
minimized.

� There must be a common audit trail of accesses to all Web applications.

These are only examples of some of the possible design objectives that might
drive Web security solutions, such as those utilizing WebSEAL. Applying
common security architecture subsystems and network models 2.1, “Common
security architecture subsystems” on page 20 to individual scenarios will
generate fine-grained design objectives that can be applied within the solution.

6.3 Web security architectural principles
The most common Access Manager scenarios involve management of access to
Web content using WebSEAL and the Web Plug-in. Our approach to these
architectures is based on three principles, consistently applied.

6.3.1 Principle 1

Web security must begin at the front gate.

This means that, first, there should be a logical Web “front gate” to your content
and applications. Side and back gates create vulnerabilities. Second, you must
control access at this point, because after someone gets inside, there are many
more available channels through which vulnerabilities may be exploited. Your
Web front gate is also the initial “choke point” for auditing access attempts.

WebSEAL is the Access Manager component that provides this logical Web front
gate. Its authentication capabilities and integration with the Access Manager
authorization services enable us to know who a user is and make appropriate
access decisions before exposing any additional Web infrastructure.

6.3.2 Principle 2

Minimize the number of direct paths to each component.

Ideally, we should have only one HTTP/HTTPS path to our Web servers from a
browser. To enforce this, we can utilize the stateful packet filtering capabilities of
firewalls to allow or prevent certain traffic.

This can protect us from certain types of attack, unless the firewall itself is
compromised. The attacker then may be able to launch a multitude of direct

 Chapter 6. Access Manager for e-business 195

attacks on the Web server in an attempt to gain direct access to sensitive content
and control of applications. By interposing a reverse proxy such as WebSEAL,
the range of possible attack scenarios in the event of a firewall compromise is
lessened.

6.3.3 Principle 3

Keep critical content and application functions away from hosts that directly
interface to Web clients (that is, browsers).

The further away components are from a potential attacker, the easier it is to
minimize the number of available direct paths to exploit them.

6.4 Access Manager for e-business components
In addition to the core components of Access Manager described in Chapter 5,
“Access Manager core components” on page 163, Access Manager for
e-business has several resource managers that build upon the core infrastructure
to provide access control to Web-based applications. These resource managers
are described in this section.

6.4.1 WebSEAL
WebSEAL is a high-performance, multi-threaded reverse proxy, that sits in front
of back-end Web services. It applies a security policy to a protected object space
(which is defined in the authorization database, described in 5.3.3, “Authorization
database” on page 177). WebSEAL can provide SSO solutions and incorporate
back-end Web application server resources into its security policy. Being
implemented on an HTTP server foundation, it listens to the typical HTTP and
HTTPS ports.

More details about positioning Access Manager components, especially
WebSEAL, within an Internet-centric environment can be found in 6.5, “Basic
WebSEAL component interactions” on page 215.

Junctions
The back-end services to which WebSEAL can proxy are defined via junctions,
which define a set of one or more back-end Web servers that are associated with
a particular URL.

Traditional junctions
Traditional WebSEAL junctions are created by defining a new point in the URI
space that indicates to WebSEAL which server to direct the request to.

196 Enterprise Security Architecture Using IBM Tivoli Security Solutions

For example, suppose a junction on the WebSEAL host www.abc.com is defined
such that a request for any URL specifying the path /content/xyz (relative to the
Web space root, of course) is to be proxied to the back-end Web server
def.internal.abc.com. /content/xyz is the junction point, which can be thought of
in a loose sense as being similar in concept to a file system mount point.

A user at a browser then makes a request for
http://www.abc.com/content/xyz/myhtmlfiles/test.html. WebSEAL examines the
URL and determines whether the request falls within the Web space for the
/content/xyz junction point. It then proxies the request to def.internal.abc.com
and forwards the resulting response back to the browser.

From the perspective of the browser, the request is processed by www.abc.com.
The fact that it is actually handled by the target server def.internal.abc.com is not
known to the user. To support this, WebSEAL performs various transformations
on the response sent to the browser to assure that the back-end server names
are not exposed. This exemplifies one of the powerful capabilities provided by
WebSEAL junctions (that is, the “virtualization of the Web space”). Junctions may
be defined to the individual Web spaces on various back-end servers, yet from
the browser’s point of view, there is only one single Web space.

Figure 6-2 illustrates traditional WebSEAL junctions.

Figure 6-2 WebSEAL traditional junctions

With the above scenario, WebSEAL is surveying all Web traffic to ensure that the
junction name is included in the request, constantly filtering all HTTP responses
to ensure that all links are properly constructed. The junction name must be
added to every Web address to ensure proper routing of the requests. In simple
Web environments, this is not an issue. However, in existing and complex
environments, alterations become much more complex. Thus the need for a
non-invasive method of supplying connections to Web servers becomes
apparent.

Junction Point

Web
Server

Web
Server

Web
Server

Browser

WebSEAL
Reverse Proxy

www.abc.com

User Requests:
www.abc.com/content/xyz/myhtmlfiles/test.html

/content/xyz

/myhtmlfiles/test.html

Web Content

 Chapter 6. Access Manager for e-business 197

Virtual host junctions
WebSEAL provides two methods for accomplishing this through the use of
Virtual Host junctions and transparent path junctions. Virtual Host junctions
preserve the traditional Web addresses that may already exist within a
corporation. For example, a company may have www.myhr.com for their HR
system and www.mypayroll.com for their payroll system. Since these applications
already exist and their Web addresses are known throughout the user
community, the application of the traditional WebSEAL junction method would not
benefit the corporation. Instead, resolving www.myhr.com and
www.mypayroll.com to WebSEAL’s IP address and allowing it to decipher which
server to direct traffic to would be the most beneficial.

Figure 6-3 illustrates Virtual Host junctions.

Figure 6-3 WebSEAL Virtual Host junctions

In the above scenario, no filtering of content transmitted from the backend server
is performed or required.

Junction Point

Web
Server

Web
Server

Web
Server

Browser

WebSEAL
Reverse Proxy

www.myhr.com
www.mypayroll.com

User Requests:
www.mypayroll.com

www.myhr.com

User Requests:
www.myhr.com

Host name: server1
HTTP Server name: www.myhr.com

www.mypayroll.com

Host name: server2
HTTP Server name: www.mypayroll.com

Note: Virtual Host junctions may only be used if the same protocol is used
throughout the entire transaction. The connection from the browser to
WebSEAL must be over the same protocol and port as the connection from
WebSEAL to the backend server.

Also, Virtual Host junctions introduce unique challenges for performing SSO
and session management which are discussed later.

198 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Transparent path junctions
In order to combine the benefits of both a single URL space for session
management and SSO without the problems of path filtering, Access Manager
for e-business is using the concept of transparent path junctions. Transparent
path junctions remove the need for the junction name such as /content/xyz to be
included in the Web address. Instead, transparent path junctions are part of the
existing URI space located on the backend server. In the example of
www.abc.com, the transparent junction would simply be /myhtmlfiles. There is no
need to add an extra junction name.

Figure 6-4 illustrates transparent path junctions.

Figure 6-4 WebSEAL transparent path junctions

WebSEAL does not need to filter server relative links in HTTP responses like it
does with traditional junctions. WebSEAL simply matches part of the URI after
the WebSEAL address. Filtering is still required on all absolute URLs to ensure
they point to WebSEAL and not the backend server.

Junction Point

Web
Server

Web
Server

Web
Server

Browser

WebSEAL
Reverse Proxy

www.abc.com

User Requests:
www.abc.com/myhtmlfiles/test.html

/myhtmlfiles

/myhtmlfiles/test.html

Web Content

Note: Transparent path junctions require that the backend URI exists on only
one server. For example, server 1 has a backend URI space of /path1/xxx and
server 2 has a backend URI space of /path1/yyy. This will cause a problem in
terms of transparent path junctions if the junction was equal to /path1. To
resolve this, it is necessary to further define the junction down to a level in the
URI space that is unique. For our example junctions of /path1/xxx and
/path1/yyy would be sufficient. However, if both servers had identical URI
spaces it would only be possible to use transparent path junctions if two
distinct WebSEALs were used in order to avoid conflicts. It is best in this type
of situation to consider using virtual host junctions.

 Chapter 6. Access Manager for e-business 199

Common junction features
More than one target server may be defined for a given junction point. For
example, the server ghi.internal.abc.com could be defined as an additional target
for the /content/xyz junction point. In this case, WebSEAL can load-balance
among the servers, and if a back-end server is unavailable, WebSEAL can
continue forwarding requests to the remaining servers for the junction.
Load-balancing is available for all WebSEAL junctions including traditional,
virtual host, and transparent.

WebSEAL can also throttle requests and turn off requests to all servers on a
particular junction or an individual server. This enables a server to be taken out of
the Web space for maintenance without affecting end users.

For situations in which it is important that subsequent requests for a particular
user continue going to the same back-end server, WebSEAL is capable of
supporting this via what are called stateful junctions. By default, WebSEAL will
always route requests to the same stateful junction server, even if that system
fails, but it is possible to configure WebSEAL to route requests to a new stateful
junction server if the original fails. See Chapter 8, “Increasing availability and
scalability” on page 259, for more information about high-availability with
junctions.

WebSEAL security functions
One of WebSEAL’s key functions is to protect access to Web content and
applications. To do this, it uses Access Manager’s Authorization Services. The
Authorization Service must know which Web objects (that is, URLs) require
protection, and what level(s) of access to these objects is permitted for the
Access Manager users and groups defined in the user registry.

The protected object space is defined in the Access Manager authorization
database. It can be populated using a special CGI program that runs on each
back-end junctioned Web server. This program, named query_contents, is run by
the Web Portal Manager and scans the Web directory hierarchy on the server. It
populates the authorization database with representations of the various objects
it finds. ACLs, POPs, and authorization rules can be “attached” to these objects,
and WebSEAL can then use Access Manager’s authorization engine to make
access decisions about requests for various URLs.

Note: Query_contents can be customized to deal with different application
types on different operating platforms, and it is not necessary for the object
space to be populated in order to attach policy to objects. The population is for
presentation convenience, it is not a prerequisite for being able to apply policy.

200 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Of course, the authorization engine cannot make access decisions without being
told something about the identity of the user. WebSEAL supports the ability to
authenticate a user and assign an Access Manager identity for use when making
authorization decisions. Whenever a URL is requested that is not accessible by
an unauthenticated user, WebSEAL attempts to authenticate the user by issuing
an authentication challenge to the browser (it supports multiple authentication
mechanisms, which are discussed in section 9.4, “Web security server
authentication mechanisms” on page 291). Upon establishment of an
authenticated “session,” the authorization engine is then consulted to determine
whether the user may access the content specified by the requested URL. This
WebSEAL session is maintained until the user exits the browser or explicitly logs
off, or until the session times out or is terminated by an administrator.
Subsequent URL requests for this session continue to be checked to determine
whether access is permitted.

The access control granularity that is provided can range from a coarse-grained
protection of particular directories (containers) in the Web space to specific,
fine-grained protection of individual Web objects (for example, an individual
HTML file). Additionally, URL “patterns” may be defined that represent dynamic
URLs. For example, application parameters are often defined in URLs and may
differ across invocations. By defining a pattern to Access Manager’s Web object
space that matches such a URL, it is possible to accommodate these situations.

Administrative support
As an added functionality, WebSEAL supports a switch user function. It enables
administrators to log on to Access Manager as a user without having to supply a
password. This aids help desk administrators with customer support issues. It
can also be used by administrators to easily troubleshoot and verify the correct
functionality of access control lists without the need to create test users.

Authentication to back-end servers
Often it is necessary to provide special authentication information to junctioned
Web servers to verify the identity of the WebSEAL server, provide the identity of
the logged-in user, or both. WebSEAL provides a number of mechanisms to
support such authentication requirements. This is the typical representation for
SSO, and more information can be found in section 9.3.1, “Authentication and
single sign-on mechanisms” on page 284.

WebSEAL authentication
If necessary, WebSEAL can authenticate itself to a junctioned server using either
server certificates, forms-based authentication, HTTP basic authentication, or by
sending its server name in configurable HTTP headers. When using a Secure
Sockets Layer (SSL) communication channel for this junction, WebSEAL and the
junctioned server can also mutually authenticate each other. This is very

 Chapter 6. Access Manager for e-business 201

important in order to establish the trust relationships between WebSEAL and
back-end Web application servers.

Single sign-on
WebSEAL supports several mechanisms for supplying a junctioned server with
the identity of the logged-in user, including:

� Providing the user’s identity via HTTP header values, which can be read and
interpreted by the junctioned server.

� Insertion of an HTTP basic authentication header to provide the junctioned
server with login information for the user, including a password. Optionally,
this basic authentication header can permit login to the junctioned server with
a different identity from the one for the user who is logged in to WebSEAL.

� For junctions that support it (for example, WebSphere Application Server and
Domino), insert a Lightweight Third-Party Authentication (LTPA) cookie
identifying the user into the HTTP stream that is passed to the junctioned
server.

� For junctions that support it, (WebSphere Application Server), the use of a
Trust Association Interceptor Plus (TAI++) to forward Tivoli Access Manager
credential information and establish trust between WebSEAL and backend
application server.

WebSEAL-delegated authentication capabilities are discussed more in 9.5, “Web
security server single sign-on mechanisms” on page 306.

Replicated WebSEALs
It is possible to replicate WebSEAL servers for availability and scalability
purposes. There are specific configuration requirements for creating WebSEAL
replicas, and a front-end load balancing capability must be used to distribute
incoming requests among the replicas. Also, since each WebSEAL replica, by
default, maintains active session states for its own authenticated users, it is
recommended that the Session Management Server (SMS) be used to maintain
state and avoid limitations for policy enforcement, management, security, and
the user experience. The Session Management Server is described in more
detail in 6.4.6, “Access Manager Session Management Server” on page 210.
The use of WebSEAL replicas is discussed and illustrated in Chapter 8,
“Increasing availability and scalability” on page 259.

Virtual hosting
Multiple instances of WebSEAL can be created on a single machine using the
WebSEAL configuration/unconfiguration utility. Also, a single WebSEAL instance
can listen to multiple interfaces and multiple ports. Different IP and SSL

202 Enterprise Security Architecture Using IBM Tivoli Security Solutions

configuration information can be associated with each interface. This is
necessary to support Virtual Host Junctions.

Communication protocols
WebSEAL can communicate with the clients and back-end servers with both
encrypted (HTTPS) and unencrypted (HTTP) protocols. The supported
encryption types are SSLv1, SSLv2, SSLv3, and TLSv1.

Secure Sockets Layer hardware acceleration support
For performance improvement, WebSEAL supports SSL hardware acceleration.
Utilizing the functionality of GSKit7, hardware acceleration can minimize the CPU
impact of SSL communications, improving the overall performance of the system.

This support applies to any SSL session that WebSEAL is involved in, but the
performance impact visible to users is exclusive to the browser-WebSEAL
session. The performance advantage provided by the SSL hardware acceleration
card is the initial SSL handshaking between two communicating parties. When
an SSL tunnel is set up, the card does not help any more. In other words, the
card provides benefits only for the RSA or PKCS11 public key authentication part
(happening in the initial SSL handshaking), but not for the DES encryption part
used in normal data transmission afterwards. Some SSL sessions are built
during the configuration time or the junction setup time and will be reused, so we
will not see performance improvement from SSL hardware acceleration for these
sessions. The browser-to-WebSEAL SSL session is built whenever a browser
first connects to WebSEAL. The customer value is the improved performance in
browser-WebSEAL SSL session setups and the higher numbers of users who
can be supported due to the off-loading of work from the WebSEAL host’s
processor to the card. For more information about SSL hardware acceleration
support, look “Cryptographic hardware for encryption and key storage” in the IBM
Tivoli Access Manager for e-business Version 6.0 WebSEAL Administration
Guide, SC32-1687.

Other WebSEAL functionality
WebSEAL supports an e-community SSO functionality that enables Web users
to perform an SSO and move seamlessly between WebSEAL servers in two
separate secure domains.

WebSEAL also supports a capability that permits failover of logged-on users to
another replica in the same domain in the event that their assigned WebSEAL

Note: Even though it is possible for WebSEAL to support multiple DNS
names, the functionality is only intended for use in conjunction with virtual host
junctions. See “Virtual host junctions” on page 198 for more information.

 Chapter 6. Access Manager for e-business 203

server becomes unavailable. This failover cookie feature is also supported by the
Plug-In for Edge Server, which is discussed in 6.4.5, “Plug-in for Edge Server” on
page 209.

Architecture
The WebSEAL architecture is summarized in Figure 6-5. The WebSEAL server
directly interacts with the browser and proxies requests to junctioned Web
servers, determining which junction to pass the request to by examining various
components of the HTTP request.

Before passing the request, WebSEAL also uses the authorization engine to
check the URL against the Web objects. If the URL is not protected, the request
is simply proxied to the appropriate junction. If the URL is protected, an access
control check must first be made. If the user is not yet authenticated, an
authentication challenge is sent to the browser, and WebSEAL uses its
authentication services to validate the user’s claimed identity and map it to an
appropriate Access Manager identity in the user registry. Access to the object is
then checked against this identity and, if allowed, the request is proxied.

Figure 6-5 WebSEAL architecture

Authentication
Services

Junctions

HTTP/HTTPS
Requests

HTTP/HTTPS
Responses

Authorization
Engine

Web
Server

Web
Server

Web
Server

Browser

Access Manager
User Registry

WebSEAL
Reverse Proxy

Authorization
Database

204 Enterprise Security Architecture Using IBM Tivoli Security Solutions

6.4.2 Plug-in for Web servers
The Web server plug-in architecture provides a solution where the customer has
decided to deploy a Web plug-in architecture for his solution architecture rather
than a reverse proxy approach.

Table 6-1 summarizes the capabilities that are provided by this implementation
based on a WebSEAL comparison.

Table 6-1 Plug-In for Web server functionalities

Authentication support

Authentication based on client IP address Supported

User name/password (basic authentication and
forms-based), certificate, and SecureID
authentication

Supported

Step-up authentication Supported

External authentication C API Supported

Interoperability with WebSEAL failover cookies Supported

Web SSO (basic authentication and forms-based
authentication)

Supported

SSO from plug-in Web server to back-end BEA
WebLogic Server (BEA WLS) or WebSphere
Application Server

Supported

e-community SSO (requires a WebSEAL Master
Authentication Server (MAS)

Supported

SSO from WebSEAL to plug-in Supported

Forms-based SSO Supported

Password policy support, including password
strength, password expiration, extensible
password policy native implementation of “N
strikes out password policy”

Supported

Junction from WebSEAL to plug-in Supported; will accept
WebSEAL-to-WebSEAL
junctions

Authorization support

ACL and POP policies Supported

Tag/value support Supported

 Chapter 6. Access Manager for e-business 205

PD_PORTAL support Supported

Pass user/groups/creds in HTTP header Supported

Failover (same as authentication failover) Supported

Platform support

Note: One Web server per host is assumed.

IIS 6.0 � IIS 6.0

� Windows 2003 Server (Not
supported on Windows 2003
Datacenter)

Sun ONE Web server 6.0 � Sun ONE Web server 6.0
SP7

� Solaris 8 and 9 (SPARC)
� AIX 5.1 and 5.2

Sun Java System Web server � Sun Java System Web server
6

� Solaris 8 and 9 (SPARC)
� AIX 5.1 and 5.2

Apache 1.3.27 � Apache 1.3.27
� Solaris 8 and 9 (SPARC)
� Linux on zSeries (Red Hat 3

and 4 or SLES 8 and 9)

Apache 2.0.48 � Apache 2.0.48
� AIX 5.2
� Solaris 10
� Linux on zSeries (Red Hat 3

and 4 or SLES 9)

IBM HTTP Server 1.3.26 � IBM HTTP Server 1.3.26
� AIX 5.1 and AIX 5.2
� Solaris 8 and 9 (SPARC)
� Linux Intel (Red Hat 3 and 4

or SLES 8)
� Linux on zSeries (Red Hat 3

and 4 or SLES 8)

Authentication support

206 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 6-6 shows an architectural overview of the Web server plug-in
implementation.

Figure 6-6 Access Manager Web server plug-in architecture

IBM HTTP Server 2.0.47 � AIX 5.2 and 5.3
� Solaris 10 (SPARC)
� Linux Intel (Red Hat 3 and 4

or SLES 9)
� Linux on zSeries (Red Hat 3

and 4 or SLES 9)

Other

Directory support: IBM Tivoli Directory Server, Sun
Java System Directory, Microsoft Active Directory,
and Lotus Domino

Supported

Virtual hosting Provided by the host Web server

Install/configure/uninstall Simple and intuitive

URL and HTTP protocol transparency Supported

Globalization-languages supported Same as Access Manager Base,
except bi-directional languages
will not be supported

Authentication support

PDMGRD

ACL DB
Master

LDAP
Plug-in Auth Server

P
D

R
T

E

Web Server Instance

Plug
In

Web Server Instance

Plug
In

Web Server Instance

Plug
In

Web Server Instance

Plug
In ACL DB

ReplicaIPC

P
D

R
T

E

 Chapter 6. Access Manager for e-business 207

In most Web server environments, there are multiple server threads in operation
on the machine. These might be different threads of the same Web server
instance or threads of different Web server instances. Having a distinct
authorization engine for each thread would be inefficient, but would also mean
that session information would have to be shared between them somehow.

The architecture used contains two parts:

� Interceptor

This is the real plug-in part of the solution. Each Web server thread has a
plug-in running in it that gets to see and handle each request/response that
the thread deals with. The interceptor does not authorize the decisions itself;
it sends details of each request (via an interprocess communication interface)
to the Plug-In Authorization Server.

� Plug-In Authorization Server

This is where authorization decisions are made and the action to be taken is
decided. There is a single Plug-In Authorization Server on each machine and
it can handle requests from all plug-in types. The Plug-In Authorization Server
is a local aznAPI application that handles authentication and authorization for
the plug-ins. The Authorization Server receives intercepted requests from the
plug-ins and responds with a set of commands that tell the plug-in how to
handle the request.

6.4.3 Access Manager Attribute Retrieval Service
The Access Manager Attribute Retrieval Service allows for Authorization Rules
(Rules) to be written that require Authorization Decision Information (ADI) that is
not available in any information that the Tivoli Access Manager authorization
service has access to. This retrieval can be performed real-time by a dynamic
ADI entitlement retrieval service. The attribute retrieval service currently provided
with WebSEAL is one type of entitlement retrieval service.

6.4.4 Common Auditing and Reporting Service
IBM Tivoli Access Manager for e-business 6.0 has the ability to utilize the IBM
Tivoli Common Auditing and Reporting Service to collect audit data in a central
location, run reports against the audit data, and archive audit data. More
information about the Common Auditing and Reporting Service is in Chapter 27,
“Introducing IBM Tivoli Common Auditing and Reporting Service” on page 845.

208 Enterprise Security Architecture Using IBM Tivoli Security Solutions

6.4.5 Plug-in for Edge Server
The Access Manager Plug-In for Edge Server is a plug-in for the Edge Server
Caching Proxy component of the IBM WebSphere Edge Server. It adds Access
Manager authentication and authorization capabilities to the proxy, and in certain
scenarios it provides an alternative to WebSEAL for managing access to Web
content and applications.

While the Plug-In for Edge Server shares many of the same capabilities as
WebSEAL, its configuration is different. However, architecturally, it fits into most
Access Manager scenarios in the same manner as WebSEAL.

Among other differences are two key differentiators between the plug-in and
WebSEAL:

� Use of the plug-in with the Edge Server Caching Proxy provides direct
support for virtual hosting.

� The plug-in can be used in both forward and reverse proxy configurations
(WebSEAL only supports a reverse proxy).

The plug-in also integrates with the WebSphere Everyplace® Suite and supports
forms-based login and Access Manager WebSEAL failover cookies.

Architecture
Figure 6-7 on page 210 provides a simplified view of the Plug-In for Edge Server
architecture used as a reverse proxy (a forward proxy scenario is virtually
identical, except that the proxy operations are to the outside rather than back-end
servers). It should be noted that while this architecture is similar to that for
WebSEAL (Figure 6-5 on page 204), the specific functionality and configuration
of various components does differ.

 Chapter 6. Access Manager for e-business 209

Figure 6-7 Plug-in for Edge Server architecture

6.4.6 Access Manager Session Management Server
Access Manager Session Management Server (SMS) is an optional Tivoli
Access Manager component that runs as an IBM WebSphere Application Server
service. It manages user sessions across complex clusters of Tivoli Access
Manager security servers, ensuring that session policy remains consistent
across the participating servers. Using the Session Management Server allows
Access Manager WebSEAL and Access Manager Plug-in for Web servers to
share a unified view of all current sessions and permits an authorized user to
monitor and administer user sessions. The Session Management Server permits
the sharing of session information and also makes available session statistics
and provides secure and high-performance failover and SSO capabilities for
clustered environments.

The Session Management Server provides a user interface from which
authorized persons can administer and monitor user sessions. Administration of
the Session Management Server is performed using either the pdadmin
command line utility or using the Session Management Server Web-based
graphical user interface that is run from within the Access Manager Web Portal
Manager.

Figure 6-8 on page 211 shows how multiple security servers can achieve a single
session by using a common Session Management Server that provides a unified

Browser

Edge Server
Caching Proxy

Authentication
Services

Backend
servers

HTTP/HTTPS
Requests

HTTP/HTTPS
Responses

Authorization
Engine

Access
Manager User

Registry

Authorization
Database

Web
Server

Web
Server

Web
Server

Edge
Server
Plug-in

210 Enterprise Security Architecture Using IBM Tivoli Security Solutions

backing store for session data. Each Web security server maintains a local copy
of the session data in its own session cache for performance reasons. A backup
or master copy is also maintained on the Session Management Server and this
data can be accessed by other Web security servers when necessary. The Web
security servers work with the Session Management Server to create, retrieve,
and update the shared session data. The Session Management Server provides
updates to Web servers that are participating in a given user session - alerting
them to urgent changes in the session data such as a user logging out.

Figure 6-8 Access Manager Session Management Server

Through the use of the Session Management Server, it is now possible to
present a consistent user experience across all Web security servers as well as
providing the ability to strictly enforce security policy such as maximum number
of sessions.

6.4.7 Access Manager for Microsoft .NET applications
Tivoli Access Manager exposes the APIs at the .NET Common Language
Runtime (CLR) level. This allows Access Manager functionality to be available to
all .NET languages such as Managed C++, C#, and Visual Basic .NET.

Access Manager for Microsoft .NET provides SSO from Tivoli Access Manager
Web security servers (WebSEAL and plug-in for Web servers) to ASP .NET
applications. Put simply, the .NET application can accept an Access Manager
user ID or credential and authenticate traffic origin.

www.abc.com

Load Balancer

WebSEAL replicas

replica1.abc.com

Session DataSession Cache:

replica2.abc.com

Session Cache:

sales.abc.com

Session Cache:

Session Management Server
(SMS)

sales
replica2

Session
Data

participating servers

replica1

create

retrieve

update
Browser

Session Data

Session Data

 Chapter 6. Access Manager for e-business 211

Figure 6-9 illustrates how Access Manager provides SSO in a Microsoft .NET
environment.

Figure 6-9 Access Manager for .NET SSO

In addition, role membership is evaluated using Tivoli Access Manager policy in
one of two ways:

� Declarative role security where the ASP .NET container enforces roles
declared by the application

� Programmatic role security where the application makes an API call to
determine whether a user possesses a particular role.

No changes are required to any code in order to use Access Manager
authorization provided that the application is using either the declarative security
model or the programmatic security model. Access Manager will use one of two
approaches to determine if the user possesses a given role:

� User-to-role mapping via the user’s group membership

� User-to-role mapping via an Access Manager authorization check of an object
in the Access Manager protected objectspace that represents the role

Note: While the user-to-role mapping via group membership is the simpler of
the two models, it does have some limitations. Advanced authorization policy
such as Protected Object Policies (POPs) and Authorization Rules (Rules)
cannot be used. Also, any change to a policy will not be effective until the next
time the user logs in. If a more advanced and dynamic security policy is
required, the user-to-role mapping via an Access Manager authorization
check should be used.

Windows Server OS

TAM Authentication Module

ASP.NET App

ASP.NET 1.1

IIS

Access
Manager

Web Security
Server

(WebSEAL or
Web Plug-In)

Legend

User

Access
Manager

Policy
Server

Access
Manager
Directory

User ID
or

Credential

IBM Tivoli

Tivoli Access Manager Authentication
Module

Access Manager
IPrincipal

(in context)

Tivoli Access Manager Authorization
Assembly

Microsoft Customer

212 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Access Manager for Microsoft .NET also provides for Web services security in
one of two ways:

� Client-side authorization and identity propagation via HTTP headers

� Server-side authentication and authorization via HTTP header or SOAP
WS-Security header (Username Token)

There are two APIs that are exposed to .NET applications:

� .NET Assembly for Tivoli Access Manager Administration Services

� .NET Assembly for Tivoli Access Manager Authorization Services

Access Manager for Microsoft .NET allows for a user to change their role
dynamically without restarting the user’s session or the application. In addition,
Access Manager can use any directory for the security information that is
supported by the core components. More details can be obtained in 11.5,
“Access Manager and .NET Integration” on page 367.

6.4.8 WebSphere Application Server integration
Starting with WebSphere Application Server 5.1.1 and above, WebSphere
Application Server ships with all the Access Manager Java Runtime Environment
and .jar files required for integration into an Access Manager secure domain.
This is not a separate product, but an integration point between Access Manager
and WebSphere that can be used to centralize security for J2EE applications in
one location using Access Manager. In addition, a J2EE-to-Access Manager
user/role migration utility is provided to assist customers in populating the Access
Manager policy database with users and roles.

This enables enterprises to leverage a common security model across
WebSphere and non-WebSphere resources leveraging common user identity
and profiles, Access Manager-based authorization, and using Access Manager’s
Web Portal Manager to leverage a single point of security management across
J2EE and non-J2EE resources.

The integration is transparent to the J2EE applications because no coding or
deployment changes are needed at the application level. More details can be
obtained in 11.3, “WebSphere Application Server security” on page 352 and
11.4, “Access Manager and WebSphere integration” on page 357.

 Chapter 6. Access Manager for e-business 213

6.4.9 Access Manager for BEA WebLogic Server
Tivoli Access Manager for WebLogic Version provides a full security framework
for BEA WebLogic Server using the Security Service Provider Interface (SSPI).

BEA WebLogic Server provides SSPI for third-party security providers, such as
Tivoli Access Manager for WebLogic, to seamlessly integrate their security
functions into the BEA WebLogic Server architecture.

Access Manager Security Service Provider Interface components
Tivoli Access Manager for WebLogic replaces the default security realm created
with each BEA WebLogic Server secure domain and provides the following BEA
WebLogic Server Security Providers:

� Authentication Provider
� Authorization Provider
� Role Mapping Provider

Tivoli Access Manager for WebLogic uses the default BEA WebLogic Server
Credential Mapping security provider and the default keystore.

Each of the providers listed above also contains a Management Bean (MBean)
that enables configuration editing through the WebLogic console. The sections
below detail the functionality supplied by each of these providers and MBeans.

Tivoli Access Manager provides the following integration points with BEA
WebLogic Server:

� Authentication Provider

The Tivoli Access Manager for WebLogic Authentication Provider implements
BEA WebLogic Server simple authentication. In simple authentication, a user
attempts to authenticate to a BEA WebLogic Server with a user name and
password combination. This user name and password are checked by Tivoli
Access Manager using the Tivoli Access Manager Java runtime component.

Tivoli Access Manager for WebLogic also provides its own Login Module that
is used to provide WebSEAL or Tivoli Access Manager Plug-in for Web
servers SSO functionality.

� Authorization Provider

Authorization Providers supply an interface between BEA WebLogic Server
and the external authorization service. The Authorization Provider determines

Note: Check the IBM Tivoli Access Manager for e-business Version 6.0
Release Notes, SC32-1702 for the supported version(s) of the BEA WebLogic
Server.

214 Enterprise Security Architecture Using IBM Tivoli Security Solutions

whether access should be granted or denied to BEA WebLogic Server
resources. The access decision is made using the PDPermission classes that
are distributed with the Tivoli Access Manager Java runtime component.

� Role Mapping Provider

Role Mapping Providers are used to supply an interface between BEA
WebLogic Server and the external authorization service that is being used to
manage roles. The Role Mapping Provider focuses on roles rather than on
policy, which is the responsibility of the Authorization Provider.

Policy and role deployment
Policy and roles can be defined in deployment descriptors or created through the
WebLogic console. Upon deployment of J2EE applications, roles and policy
defined within the application deployment descriptors are exported to the Tivoli
Access Manager protected object space.

Although possible, it is not expected that policy creation will be performed using
the Tivoli Access Manager administrative utility, pdadmin, or the Tivoli Access
Manager Web Portal Manager. Before starting a BEA WebLogic Server that is
using Tivoli Access Manager for WebLogic, some default policy must be created
in Tivoli Access Manager. This is performed during configuration of Tivoli Access
Manager for WebLogic.

Resources and roles
BEA WebLogic Server defines a number of different resource types, all of which
are supported by Tivoli Access Manager for WebLogic. All resource types are
considered the same within Tivoli Access Manager for WebLogic, so new
resource types, created for future releases of BEA WebLogic Server, will be
supported automatically.

The policies and roles defined for all resource types are stored in the Tivoli
Access Manager protected object space in a uniform way.

More information about the BEA WebLogic integration can be found in the IBM
Tivoli Access Manager for e-business BEA WebLogic Server Integration Guide
Version 6.0, SC32-1688.

6.5 Basic WebSEAL component interactions
As discussed in Chapter 5, “Access Manager core components” on page 163, all
Access Manager architectures share a common set of base components.
Specifically, all Access Manager deployments have a User Registry and a Policy
Server. WebSEAL interacts with these components to provide its security
functions, as shown in Figure 6-10 on page 216.

 Chapter 6. Access Manager for e-business 215

The Policy Server, while a part of the overall architecture, is not a constant
required component. WebSEAL is designed to function disconnected from the
Policy Server, hence the local replica copy of the authorization database. While
WebSEAL itself cannot make changes to policy, it can continue to read from its
local copy of the authorization database making security decisions until a newly
updated copy of the database is received from the Policy Server.

Figure 6-10 WebSEAL interaction with other Access Manager components

WebSEAL

HTTP/HTTPS
Requests

HTTP/HTTPS
Responses

Access Manager
User Registry

Access Manager
Policy Server

WebSEAL authenticates the
user and maps to an Access
Manager identity in the user

registry

The User Registry provides Access
Manager identity information and may

also be used as an authentication target

The Policy Server manages
authorization database and provides

updates to changes in policy

Cache
Browser

Master

Authorization DB

Replica

Authorization DB

216 Enterprise Security Architecture Using IBM Tivoli Security Solutions

In the most basic of WebSEAL architectures, as shown in Figure 6-11, a user at
a Web browser contacts WebSEAL with a URL request, and then WebSEAL
directly serves the content itself. (Recall that while it functions as a reverse proxy,
WebSEAL is also a Web server with the ability to use locally stored content.)

Figure 6-11 Direct serving of Web content from WebSEAL

While illustrative of WebSEAL capabilities, such a scenario may not be terribly
interesting, given the evolution of Web-based application architectures that
employ significant back-end infrastructure. Also, while directly serving
non-sensitive content may be acceptable, when sensitive content is involved, it is
generally better to serve it via proxy. Such environments are, in fact, ones where
WebSEAL proves to be an ideal solution.

Web applications may involve significant back-end infrastructure, and there are
advanced Access Manager scenarios in which direct security integration with
such components is important. However, even in complex scenarios, the basic
elements of Access Manager architecture still apply.

IBM

Browser

WebSEAL

HTTP/HTTPS
Requests

HTTP/HTTPS
Responses

Web Content
Directory

Web Server Host System

 Chapter 6. Access Manager for e-business 217

With WebSEAL junctions, a browser user does not directly interact with the target
Web server. Instead, WebSEAL takes care of initial user authentication as
required and performs appropriate authorization checks on URL requests.
Authorized requests are then proxied via the appropriate junction. Figure 6-12
shows the basic flow involved in processing such a request.

Figure 6-12 Basic WebSEAL proxy functionality

IBM

Browser

WebSEAL
http://junction 1

IBM

Web Content
Directory

Web Server

Web Proxy Host System

Web Server Host Systems

User at browser sends HTTP/HTTPS request to WebSEAL.
WebSEAL checks the requested URL against the authorization database, and
authenticates the user if necessary.
If the access is authorized, WebSEAL determines which junction serves the
requested content and forwards the request to that server.
The Web server returns the response for the response to WebSEAL.
WebSEAL adjusts URLs in the response to reflect the correct external Web site
name and then sends the HTML response to the browser.

IBM

Web Content
Directory

Web Server

IBM

Web Content
Directory

Web Server

Browser

Browser

http://junction 3

http://junction 2

Junction 3

Junction 2

Junction 1

218 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The flow in Figure 6-12 on page 218 represents the common architecture for all
WebSEAL deployments. The differences can include the way components are
combined or distributed among host systems, junction configurations, and
back-end authentication issues. However, WebSEAL deployments are built from
the same basic architectural elements.

At this point, we have not yet introduced the role of the network into an Access
Manager WebSEAL architecture. Obviously, as we discussed earlier in 6.1,
“Typical Internet Web server security characteristics” on page 192, network
configuration does play a role, and it is important to understand how WebSEAL
and other Access Manager components fit into typical secure network
infrastructures.

6.6 Basic Web Plug-in component interaction
Tivoli Access Manager Plug-in for Web servers provides the WebSEAL
authentication and authorization capabilities directly to existing Web servers
without the need for an additional reverse proxy infrastructure, as is the case with
WebSEAL.

The plug-in operates as part of the same process as your Web server,
intercepting each request that arrives, determining whether an authorization
decision is required, and providing a means for user authentication if necessary.
The plug-in can provide SSO solutions and incorporate Web application
resources into its security policy.

Two basic architectural components make up Tivoli Access Manager Plug-in for
Web servers: the plug-in component and the authorization server. The plug-in
component operates with Web server threads sending details of each request,
via an Inter-Process Communication (IPC) interface, to the authorization server.
The authorization server performs the authentication and authorization of
incoming requests. The authorization server is a local mode aznAPI application
that accepts and processes requests from the plug-in and responds, telling the
plug-in how to handle each request. The component configuration is depicted in
Figure 6-13 on page 220.

 Chapter 6. Access Manager for e-business 219

Figure 6-13 Basic Web server plug-in components

The authorization server determines which virtual host the request is addressed
to (if virtual hosts are present on the Web server) and whether the request
requires authorization. Requests that do not require authorization are passed
directly to the Web server for processing. Requests that require authorization are
processed by the authorization server in the following way:

1. Session and authentication information is extracted from requests that have
been authenticated previously.

2. If required, an authentication interaction is initiated with the user.

3. A Tivoli Access Manager credential is created.

4. The resources the user can access are identified and these resources
mapped to the corresponding Tivoli Access Manager protected object name.
A protected object name represents an electronic entity such as a secure part
of a Web site or an application that only certain users are permitted to access.

5. Whether the request or response requires modification is determined.

6. Responses required by the plug-in or the host Web server are generated by
adding cookies or headers to the request or response or by generating a
response (for example, an authenticated response or an unauthorized
response).

IBM

Web Server

ACL DB
Replica

Client browser
Plug-in

Authorization
Server

R
un tim

e
environm

ent

User Registry

ACL DB
Master

Access Manager
Policy Server

R
un tim

e
environm

ent

220 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Architecturally, the main difference between the Tivoli Access Manager Web
server plug-in and WebSEAL is the lack of reverse proxy capabilities, as shown
in Figure 6-14. Tivoli Access Manager for e-business 5.1 provides virtually all of
the same authentication and authorization functionality with the plug-in as with
WebSEAL.

Figure 6-14 Plug-in logical architecture

6.7 Component configuration and placement

Obviously, it is possible to deploy Access Manager components within a single
network. While this kind of architecture may be reasonable for a lab or
development environment, it generally is not for a production setting. Most
Access Manager deployments must fit within the context of network security
requirements.

In this section, we discuss the ways various Access Manager components relate
to the network configuration and provide recommendations for their distribution in
a typical architecture.

6.7.1 Network zones
In Chapter 2, “Common security architecture and network models” on page 19,
we discussed network zones and their relationship to security. Here, we discuss
these zones in the specific context of Access Manager architecture.

IBM

Web Server

http://
www.url.com

Access Manager
Plug-in

Browser

IBM

Application
data

Application
server

 Chapter 6. Access Manager for e-business 221

We have to consider four types of network zones in our discussion of Access
Manager component placement:

� Uncontrolled (the Internet)
� Controlled (an Internet-facing DMZ and the intranet)
� Restricted (a production network)
� Secured (a management network)

Because we will not place any components in an uncontrolled zone, we look at
the remaining three zones.

Internet DMZ (controlled zone)
The Internet DMZ is a controlled zone that contains components with which
clients may directly communicate. It provides a buffer between the uncontrolled
Internet and internal networks. Because this DMZ typically is bounded by two
firewalls, there is an opportunity to control traffic at multiple levels:

� Network: IP addresses, NATs, and so on
� Protocol: HTTP(S), FTP, SMTP, and so on
� Application: Application proxy, terminal services, and so on

WebSEAL or a Web server plug-in (with no data content) fits nicely into such a
zone, and in conjunction with the available network traffic controls provided by
the bounding firewalls, it provides the ability to deploy a highly secure Web
presence without directly exposing components that may be subject to attack by
network clients.

Production network (restricted zone)
One or more network zones may be designated as restricted, meaning that they
support functions to which access must be strictly controlled, and of course,
direct access from an uncontrolled network should not be permitted. As with an
Internet DMZ, a restricted network is typically bounded by one or more firewalls,
and incoming and outgoing traffic may be filtered as appropriate.

These zones typically contain replicated information of user registries and
access control information in order to provide this information as close to the
decision-seeking applications as possible.

Management network (secured zone)
One or more network zones may be designated as a secured zone. Access is
available only to a small group of authorized staff. Access into one area does not
necessarily give you access to another secured area. The transport into a
secured zone is classified as trusted.

222 Enterprise Security Architecture Using IBM Tivoli Security Solutions

These zones typically contain back-end Access Manager components that do not
directly interact with users.

Other networks
Keep in mind that the network examples we are using do not necessarily include
all possible situations. There are organizations that extensively segment
functions into various networks. Some do not consider the intranet a controlled
zone and treat it much like the Internet, placing a DMZ buffer between it and
critical systems infrastructure contained in other zones. However, in general, the
principles discussed here may be easily translated into appropriate architectures
for such environments.

Placement of various Access Manager components within network zones is both
a reflection of the security requirements in play and a choice based on existing or
planned network infrastructure and levels of trust among the computing
components within the organization. Requirement issues often may be complex,
especially with regard to the specific behavior of certain applications, but
determination of an Access Manager architecture that appropriately places key
components usually is not difficult. With some knowledge of the organization’s
network environment and its security policies, reasonable component
placements are usually easily identifiable.

 Chapter 6. Access Manager for e-business 223

Figure 6-15 summarizes the general Access Manager component type
relationships to the network zones discussed previously.

Figure 6-15 Network zones

6.7.2 Secure communication issues
All communication among Access Manager components is configurable to be
secured using SSL, which addresses the issues of privacy and integrity of
communication among components. It does not deal with other types of security
exposures that are inherent in the physical placement of components within the
network infrastructure, such as system hardening and application security.

The choice to use SSL among certain components should be primarily based on
the trust relationships that exist within and between the network zones in which
they operate. While trust may influence the placement of various Access
Manager components within different network zones, the use of SSL itself does
not govern such placements.

No Access Manager
component should be
deployed in an uncontrolled
network. It is also generally
unsafe for Access Manager
components to
communicate with one
another across an
uncontrolled network
without using secure
communication
mechanisms (such as SSL).

Usually, only
WebSEAL or other
Access Manager
resource
managers (such as
the Web Server
Plug-in) should be
placed in a
controlled network
zone.

The specific level of
trust in an internal
network dictates what
Access Manager
components may be
deployed within them.

Organizations may set
up specialized
restricted zones for
production systems,
which could include
Web and application
servers, and various
Access Manager
components, such as
the User Registry, the
SMS, Proxy Policy
Servers, or internally
used WebSEALs.

Some organizations
set up special
networks to separate
various management
components from
production systems.
The Access Manager
Policy Server and the
Master LDAP server
might be installed in
such a network.

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

LESS SECURE MORE SECURE

Public Managed Trusted

224 Enterprise Security Architecture Using IBM Tivoli Security Solutions

6.7.3 Specific Access Manager component placement guidelines
Now that we have discussed the basic issues involved in component placement,
we can go into greater detail regarding specific components typically found in a
Access Manager Web-based architecture.

Policy Server
The Access Manager Policy Server should always be placed in a secured (or at
least a restricted) zone. Figure 6-16 summarizes the guidelines for placement.

In the case of using the Policy Proxy Server it should be placed in a more trusted
zone adjacent to the location of the Access Manager applications. For example,
in Figure 6-16 assume that a WebSEAL is located in the Internet DMZ and the
Policy Server is in the management network. It might be a good idea to use the
Policy Proxy Server within the intranet so that no direct connections are allowed
from the Internet DMZ to the management network.

Figure 6-16 Policy Server placement guidelines

Never placed here.

Never placed here.

May be placed here if
production and/or

management networks
do not exist.

Could deploy Proxy
Policy Server here. Logical, secondary, placement point

when this zone is present in the
network architecture. Could deploy

Proxy Policy Server here.

When this zone is
present, this is the first

placement point.

Access Manager
Policy Server

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

 Chapter 6. Access Manager for e-business 225

User Registry
As previously discussed, WebSEAL interacts with the Access Manager User
Registry to perform some of its functions. This means that the registry must be
accessible to WebSEAL. However, it probably should not be accessible to
general users, especially from the Internet.

The registry should be in a restricted zone to which access may be strictly
controlled. Firewall configurations should disallow any possibility of access to the
User Registry from the uncontrolled zones such as the Internet (for example, port
389 access might be disallowed by an Internet-facing firewall, and outgoing port
389 accesses only allowed to pass from the Internet DMZ to another zone if
initiated by a WebSEAL server).

Note: Using the Policy Proxy Server as described is based on the same
principle as the use of WebSEAL in the DMZ for inbound Internet connections.
This is called defense in depth. In the Internet instance, WebSEAL acts as a
reverse proxy (buffer) between the less-trusted Internet and the more-trusted
production network. The Policy Proxy Server acts as a buffer between the
less-trusted DMZ and the more-trusted management network.

226 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 6-17 summarizes network zone placement guidelines for the User
Registry.

Figure 6-17 User Registry placement guidelines

User Registry
(LDAP)

Never placed here.

Never placed here.

May be placed here with
sufficient trust and/or

communication integrity (SSL).

Logical placement point when this zone
is present in the network architecture.

If registry master is in a separate
management zone, this zone may

contain replicas.

If zone exists, may be a
logical placement point
for registry master only.

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

 Chapter 6. Access Manager for e-business 227

Figure 6-18 shows an example of User Registry placement using network
filtering rules to limit access.

Figure 6-18 Restricting network access to User Registry

Additionally, it may make sense to separate the read functions of the registry that
are needed by WebSEAL from the write functions that are required by Access
Manager management components. This can be done by creating a registry
replica used for read-only access (such as authentication) and leaving the
registry master only for making updates. If there is a special management zone
into which all management components must be placed, such a configuration
may be appropriate. Figure 6-19 on page 229 shows an example of this.

Production
Network Intranet

Fi
re

wa
ll

Fi
re

wa
ll

User
Registry

389/636 389/636

Fi
re

wa
ll

389/636

Untrusted network
access to LDAP ports is
disallowed.

DMZ host access to LDAP
services is enabled. With
locked down source and
destination IP addresses

Access to LDAP services
from intranet is

disallowed.

Internet DMZInternet

Port Access
Configuration

Port Open
Port

Closed

Tip: When deploying WebSEAL or Web server plug-in nodes, the user registry
should be as near as possible to these to provide maximum performance and
authentication speed. This implies that, generally, a replica of the user registry
will be required in the more-trusted zone adjacent to that where the WebSEAL
or Web server plug-in nodes are deployed.

228 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 6-19 Separating User Registry read and write functions

Web Portal Manager
The Web Portal Manager should always be placed in a restricted zone (or at
least a trusted zone). If a separate Management DMZ is used, there may be
issues in how best to structure the configuration of the Web Portal Manager in
such an environment.

Because the Web Portal Manager’s functions are accessed via HTTP/HTTPS,
access to it can be configured via a WebSEAL junction. If this is done, special
consideration should be given to its placement and how access should be
controlled.

WebSEAL

User Registry
Master

Access
Manager

Policy Server

User Registry
Replica

User Authentication

Only the replica is used
for authentication

Registry updates are
distributed to the

replica by the master

Registry updates
go to the master

Production Network

Management Network

 Chapter 6. Access Manager for e-business 229

Figure 6-20 summarizes placement guidelines for the Web Portal Manager.

Figure 6-20 Web Portal Manager placement guidelines

WebSEAL
WebSEAL should always be the sole HTTP/HTTPS contact point for a Web
server from an Internet client. When using WebSEAL in an intranet setting, this is
usually desirable as well.

Internet
Based on our discussion so far, it should be clear that WebSEAL servers
accessible via the Internet should be placed in a DMZ. WebSEAL in such a
setting should generally be in a network zone separate from those that contain
other Access Manager components upon which it relies, and from the Web
servers to which it is junctioned.

In general, the DMZ network boundaries are best secured through firewalls, and
appropriate traffic filters are used for strict control of the flows into and among

Never placed here.

Never placed here.

May be placed here
with sufficient trust and/

or communication
integrity (SSL).

Logical placement point when this zone
is present in the network architecture.

When this zone is
present, it may be the
right placement point.

Web Portal
Manager

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

230 Enterprise Security Architecture Using IBM Tivoli Security Solutions

components. In this case, the Internet-facing firewall should be configured to
make ports 80/443 accessible only through WebSEAL, as shown in Figure 6-21.

Figure 6-21 Restricting HTTP/HTTPS network traffic paths

This approach has several advantages:

� It focuses all Web traffic through a single path.
� Secured Web content is not directly accessible.
� Compromise of the Internet-facing firewall results in limited security exposure.

This illustrates a key WebSEAL strength: As a reverse proxy, it provides security
capabilities that cannot be supported by any other approaches, such as plug-ins.

WebSEAL minimizes the numbers of hosts that must be placed in an Internet
DMZ. In addition to the security benefits for businesses that utilize hosting
services to support their DMZs, this may enable them to reduce costs by moving
substantial amounts of Web infrastructure back into their internal networks,
leaving WebSEAL hosts as the key component in their hosted environments.

Internet DMZ

F
ir

ew
al

l

80/443 80/443

F
ir

ew
al

l

WebSEAL

Standard HTTP/HTTPS ports
are allowed for client

comunication with WebSEAL.

Production network cannot
be accessed via standard
HTTP/HTTPS ports.

Port Access
Configuration

Port Open
Port Closed

Production
Network

Internet

 Chapter 6. Access Manager for e-business 231

Intranet user access via WebSEAL
WebSEAL may also be used to serve Web content to internal clients. Certain
issues must be addressed when using it in this manner.

It may seem reasonable to simply force internal clients to use the same
WebSEAL hosts that are serving Internet clients. However, such an approach
may not be best because a security compromise of the Internet DMZ could
create direct attack paths to internal clients.

An alternative approach is to dedicate a separate WebSEAL server for internal
uses and place it in an appropriate internal network zone. Depending on the level
of trust and other configuration factors, the following choices exist for placement
of an internal WebSEAL server:

� Place the WebSEAL server in the same network zone as other Access
Manager components.

� Place the WebSEAL server in an internal DMZ that is separated from other
Access Manager components (essentially, mirror the Internet DMZ scenario
internally).

Given a sufficient level of trust internally, it may be reasonable to choose the first
approach and put the internal WebSEAL in the same zone as other components.
This approach is often chosen when architecting WebSEAL solutions for internal
user access.

For environments in which the internal trust is insufficient to justify placing
WebSEAL into a common zone with other components, the second approach
may be more appropriate.

232 Enterprise Security Architecture Using IBM Tivoli Security Solutions

WebSEAL placement summary
Figure 6-22 summarizes the guidelines for WebSEAL placement.

Figure 6-22 WebSEAL placement guidelines

Never placed here.

Usually placed here,
especially for Internet

access.

May be placed here for
internal user access with

sufficient trust and/or
communication integrity (SSL).

Logical WebSEAL placement point for
internal user access when this zone is

present in the network architecture.

Never placed here.

WebSEAL

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

 Chapter 6. Access Manager for e-business 233

Junctioned Web servers
In a WebSEAL configuration, it is recommended that junctioned Web servers not
reside in an Internet DMZ. WebSEAL does not restrict Web server placement in
any way, but the further away one can move critical resources from uncontrolled
zones, the better.

Ideally, Web servers should be in a special, restricted zone, but could also be
placed in a more open yet trusted network zone if appropriate configuration steps
are taken, such as utilizing SSL for communication with WebSEAL and
configuring the Web server so that it will accept only connections from a
WebSEAL host). Figure 6-23 summarizes the zone placement guidelines for
Web servers that are junctioned via WebSEAL.

Figure 6-23 Web server placement guidelines

Never placed here.

Could be placed here, though a
WebSEAL configuration permits
servers to be moved from this zone.
It is recommended that Web servers
be moved to a more secure zone not
directly facing an untrusted zone..

May be placed here
with sufficient trust and/
or communication
integrity (SSL).

Logical placement point when this zone
is present in the network architecture.

Not generally placed
here, unless the server
has a specific
management function.

Web Server

Internet

Uncontrolled
Zone

Internet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

234 Enterprise Security Architecture Using IBM Tivoli Security Solutions

It may be a good idea to configure junctioned Web servers to use ports other
than 80/443 (for example, 81/1443). This enables the Internet DMZ firewall
configuration to be structured such that port 80/443 access can only be made to
the Internet DMZ, and the internal-facing firewall can be configured to disallow
ports 80/443 and only allow these alternate ports into the restricted/trusted zone.
Such a configuration is exemplified in Figure 6-24.

Figure 6-24 Limiting network access to Web servers

Production
Network

Fi
re

wa
ll

Fi
re

wa
ll

81/1443 81/1443

Fi
re

wa
ll

81/1443

Web Server*

*Web server configured to use non-standard ports. (81: HTTP, 1443: HTTPS)
Port Access

Configuration
Port Open

Port
Closed

Untrusted network access to
Web server ports is
disallowed.

DMZ host access to Web
server is enabled.

Access to Web server from
intranet is disallowed.

IntranetInternet DMZInternet

 Chapter 6. Access Manager for e-business 235

Web server plug-in
Based on the previous discussion it is easy to understand how the Web server
plug-in fits into the current architectural discussion. When utilizing a WebSEAL
architecture the Web servers normally reside within either the production network
or the intranet (depending on the overall environment and security requirements).
Further, from a security standpoint, it is possible to run the Web servers on the
same physical nodes as the application servers.

When WebSEAL is not used, the Web servers must be moved into the DMZ to
provide the first point of contact for client connections. This also implies that it will
not be possible to run the application servers and Web servers on the same
node, as it is not advisable to run application servers in the DMZ. Figure 6-25
shows how this architecture could be implemented.

The architectural discussions in previous sections about the core Tivoli Access
Manager components (such as the user registry, ACL database, and Policy
Server) are still valid when using the Tivoli Access Manager Web server plug-in.

Figure 6-25 Plug-in architecture

IntranetProduction
Network

F
ir

ew
al

l

F
ir

ew
al

l

HTTP(S)
80/443

IIOP/SSL
443

F
ir

ew
al

l

443

Port Access
Configuration

Port Open
Port Closed

Untrusted network
access to Web server
ports

DMZ web server
connectivity to application

server over SSL

Direct access to application
server from intranet is
disallowed.

Internet DMZInternet

Web Server*
Application

Server

Access
Manager Plug-in

236 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Note that there is no layer of protection for the Web servers. At an application
level, the authentication and authorization capabilities are provided by Tivoli
Access Manager with all of the added advantages of centralized management,
common authorization services, and audit. However, at a system and network
level, Internet users have direct access to the Web servers. This exposes the
Web servers to all of the inherent threats that originate from the Internet.

Putting it all together
Now that we have discussed the placement of the various components in a
WebSEAL configuration, we put it all together in a typical architecture. Assume
that the following network zones exist:

� An uncontrolled Internet zone
� A controlled Internet DMZ zone
� A restricted Production Network zone

Without discussing the specific requirements of the organization, let us assume a
basic WebSEAL configuration for both Internet and internal user access. One
possible architecture could be as depicted in Figure 6-26 on page 238.

Important: The previous sections are intended to help the reader understand
the architectural difference between the use of WebSEAL and Tivoli Access
Manager Web Plug-ins. Careful consideration must be given to which
approach an organization should adopt.

Issues such as risk appetite, infrastructure and operational cost, security
policy, and business drivers and strategy must be addressed and balanced by
a qualified architect to enable the appropriate organizing decision to be made.

 Chapter 6. Access Manager for e-business 237

Figure 6-26 A sample Access Manager WebSEAL architecture

It should be clear that by simply following the guidelines, many Access Manager
WebSEAL architectures are relatively straightforward. The real complexities
often come into play when addressing things other than the overall architecture
itself, which are normal issues involved in enterprise systems deployment. This
includes such things as configuration, deployment plans, capacity requirements,
operational policies and procedures, and specific application integration issues.

6.7.4 Summarizing Access Manager component placement issues
In the previous discussion, it must be emphasized that, to a large extent, the
placement of Access Manager components represents a set of choices. Nothing
in Access Manager itself dictates what kind of network configuration is required.
The component placement guidelines are actually related more to overall

Internet

WebSEAL

Web Server

 Browser

Access
Manager

Policy Server

Data/
Application
Server(s)

User
Registry

Web Server

WebSEAL
Junctions

F
ir

ew
al

l

F
ir

ew
al

l

389/636 389/636

80/443

81/1443

80/443

81/1443

Web servers
configured to use
ports 81 and 1443
instead of the
standard ones.

Access
Manager Web
Portal Manager

Internet DMZ

Port Access
Configuration

Port Open
Port Closed

Production Network

238 Enterprise Security Architecture Using IBM Tivoli Security Solutions

security principles than to any particular Access Manager need. In fact, in a
WebSEAL deployment such as we have discussed in this chapter, Access
Manager actually offers greater component placement flexibility than many other
approaches to Web security.

This said, keep in mind that you cannot simply separate network configuration
issues from Access Manager. While Access Manager components perform their
duties extremely well, good sense dictates that they must operate in an
environment that prevents them from being bypassed and protects them from
undue exposure to other forms of attack. With any security solution, not just
Access Manager, this must be kept in mind.

6.8 Physical architecture considerations

In our discussion of WebSEAL architecture so far, we have focused primarily on
the logical relationships among software components and not necessarily on
specific system configurations upon which they are installed.

6.8.1 Access Manager components
It should be clear from our earlier discussion that, at least for Internet scenarios,
WebSEAL should reside on a separate host from other Access Manager
components.

However, where other (back-end) components should go is not as clear. There
are no “rules” regarding this. Where these components should be placed is
dependent on a number of factors, including:

� The specific network configuration within which Access Manager is installed

� The capacity and capability of the host systems on which these components
are installed

� The amount of flexibility required for future expansion of the security
infrastructure

� Specific security or operational policies that may dictate certain Access
Manager configurations

 Chapter 6. Access Manager for e-business 239

It is possible to place all required back-end Access Manager components on a
single host system. However, other than in a very simple WebSEAL deployment
or a lab setting, this may not be the best approach. For example, a common way
to break things out would be to place the management functions on one host and
the User Registry on another. Figure 6-27 shows a physical system layout
mapping of the example architecture shown previously in Figure 6-26 on
page 238. Keep in mind that this is simply an example and it does not represent
the only way in which components may be combined on host systems.

Figure 6-27 A sample physical component layout

Internet DMZ

IBM

WebSEAL

WebSEAL Host
System

IBM

Web
Server

Web Server
Host System

IBM

Web
Server

Web Server
Host System

IBM

Access
Manager Web
Portal Manager

Access Manager
Services Host

System

IBM

Access Manager
Services Host

System

User
Registry

Access
Manager

Policy Server

Internet

WebSEAL

Web Server

 Browser

Access
Manager Policy

Server

Data/
Application
Server(s)

User
Registry

Web Server

F
ir

ew
al

l

F
ir

ew
al

l

389/636 389/636

80/443

81/1443

80/443

81/1443

Access
Manager Web

Portal Manager

Internet DMZ Production Network

Production Network

240 Enterprise Security Architecture Using IBM Tivoli Security Solutions

6.8.2 Other infrastructure components
In addition to Access Manager components themselves, other components are a
natural part of the infrastructure in most typical environments, including:

� Domain Name Service (DNS) or other, similar naming services

� Time services, such as Network Time Protocol (NTP)

� Host configuration services, such as Dynamic Host Configuration Protocol
(DHCP)

� Mail transport agents (MTAs), such as sendmail

� File transfer services, such as FTP

Domain Name Service
In general, Access Manager components themselves should avoid the use of
naming services for address resolution. It is usually best to directly configure host
addresses locally, both for availability and security reasons.

In cases where access to a name service is needed by a Access Manager host,
consideration should be given to installing a DNS secondary on the host itself or
in close proximity to the host in an appropriately protected network zone. In no
case should the security infrastructure share DNS services with the general user
community, either internal or external.

Another note regarding the use of DNS in an Internet WebSEAL setting. It is
recommended that a split-level DNS configuration or other approach be
employed to ensure that external clients have no IP address resolution visibility
beyond the WebSEAL hosts themselves.

Time services
Time services are required when more advanced configurations of Access
Manager for e-business are used such as the Session Management Server. If a
robust solution is not implemented, it is still a good idea, if for no other reason
than to assure that audit logs contain consistent time stamps. Network Time
Protocol (NTP) is the recommended choice for time synchronization, and an
appropriate implementation should be available on all platforms on which Access
Manager runs.

Host configuration services
Host configuration services, such as DHCP, should never be used by any host
running Access Manager components. IP addresses should be statically
configured. It is also recommended that DHCP services not be provided by hosts
that are running Access Manager components.

 Chapter 6. Access Manager for e-business 241

Mail transport agents
Mail transport agents, such as sendmail, are often present within the network
infrastructure to route mail both internally and externally. Such mail gateways
should not be configured on Access Manager hosts, as their use may affect
system performance characteristics substantially and diminish performance
predictability.

Additionally, a WebSEAL host, especially one that is accessible via the Internet,
should not respond to SMTP (port 25) connection requests.

File transfer services
File transfer services, such as anonymous FTP, are often present within the
network infrastructure to support access to program archives or other
information. It is recommended that such services should not be configured on
Access Manager hosts, as their use may substantially affect the performance
characteristics of the system and diminish performance predictability.

Additionally, a WebSEAL host, especially one that is accessible via the Internet,
should not respond to FTP (port 20) connection requests.

6.8.3 General host hardening considerations
In addition to the recommendations given so far, it may make sense to harden
certain hosts that participate in an Access Manager configuration. This may be
especially true for Internet-facing WebSEAL hosts.

While the specifics of hardening an operating system are beyond the scope of
this book, the following items are representative of the types of issues
addressed:

� The number of incoming paths through which it may be accessed is
minimized (for example, turning off certain network services that are not
necessary for system operation).

� The number of outgoing paths from the system to other hosts is minimized
(for example, limiting the system’s knowledge of other hosts to those
absolutely necessary for proper operation).

� Appropriate system auditing functions are enabled to assure traceability of
accesses.

� The set of users that may access the system is minimized to a level that is
necessary for system operation, and clear roles and responsibilities are
defined for those users (and, where possible, enforced).

Additionally, certain network firewall configurations may be employed to enforce
the restrictions of a hardened environment.

242 Enterprise Security Architecture Using IBM Tivoli Security Solutions

6.9 Access Manager: Part of overall security solution

It would be a mistake to assume that deployment of WebSEAL or the Web
Plug-in alone is sufficient to fully address all security requirements. Access
Manager provides key functionality, which is essential for Web security, but it
cannot cover all contengencies. As should be evident from the discussion of
other topics in this book, other security considerations should be addressed in
conjunction with Tivoli Access Manager.

We have not discussed other security components that may work in conjunction
with Tivoli Access Manager and other Access Manager components to address
broader security concerns. In particular, Identity Manager and Security
Operations Manager, which are discussed in Part 3, “Managing identities and
credentials” on page 507 and Part 5, “Managing security audit and compliance”
on page 843, provide functionality complementary to Access Manager and can
be of substantial value as components of an overall security solution.

 Chapter 6. Access Manager for e-business 243

244 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 7. A basic WebSEAL scenario

Our earlier discussion of Access Manager has been helpful in describing the
basic elements of architecture for deployment. At this point, we apply those
guidelines to a simple Web scenario for a fictional organization with a typical set
of requirements.

In our discussion, we deliberately avoid certain issues, including availability
considerations and specific issues relating to application integration. These
areas are discussed in later chapters.

Also, while host machine configuration and capacity is touched upon in this
chapter, we deliberately avoid providing much in the way of specifics. This is
because without appropriate capacity planning activities, which consider
simulated/real loads of the actual application, accurate determinations can be
difficult to make.

7

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 245

7.1 Company profile
Stocks-4u.com is a wholly owned United States subsidiary of a major brokerage
company, Medvin, Lasser & Jenkins (ML&J). Until now, ML&J’s online presence
has been limited, consisting mainly of informational Web content. Online trading
has not been a priority. The clientele traditionally has been major accounts with
assets greater than US$5 million, and transactions are almost exclusively done
via direct contact with a broker. While the company, a privately held corporation,
has maintained solid profitability over the past several years, largely due to a
stable client base, the company’s growth has stagnated, remaining at
approximately the same revenue levels since 1995.

Market trends have forced a rethinking of ML&J’s approach to business. The
individual investor community has increased substantially in recent years, and
the company has not shared in that growth. Consequently, the company’s market
share has eroded. Also, the rise of online trading has begun to affect a portion of
ML&J’s client base. In the past year, there has been a net outflow of investment
funds cutting across approximately 10% of all client accounts. Research has
shown that 95% of these outflows are being redirected to online brokerages. This
trend, if it continues, threatens to affect the long-term viability of the business.

An online component to complement ML&J operations has been judged a
necessity. Stocks-4u.com was started with assets recently acquired from a failed
Internet startup. Additional capital has been provided to fund completion of the
company, which recently began full production operation ramp-up.
Stocks-4u.com services the online trading requirements of ML&J’s current clients
while focusing on developing additional clients who are primarily online traders
with trading capital in excess of $250,000.

7.2 Technology background
Stocks-4u.com has been deployed as a Web-based online trading system with
capabilities similar to those found at other online trading sites. This software
consists of a number of underlying applications, all of which perform functions
based on the each user’s privileges. For example, only users who have paid for
Level II quotes may access that application.

In concert with the ongoing application development activities, the company has
been examining alternatives for providing secure access to their Web site.
Originally, a master application was developed that provided a single access

Note: As of April 2007, our fictitious domain name Stocks-4u.com was not
reserved by anyone.

246 Enterprise Security Architecture Using IBM Tivoli Security Solutions

point for providing user authentication and authorization utilizing the underlying
capabilities of the operating system.

Following initial deployment, additional requirements became apparent. It
became clear that the level of effort required to fully address all functional
requirements was cost-prohibitive. The tie-in to the operating system security
mechanisms began to limit certain deployment options. The CIO felt that this
approach was locking them in architecturally to an in-house solution that would
require long-term sustaining and support services. After examining marketplace
alternatives in a proof-of-concept (POC) setting, a decision was made to deploy
an Access Manager security capability, leading with Web security.

The company wants to transition its user base from the in-house Web security
system to a WebSEAL-based system over the next few months. Initially, they
want to deploy adequate capacity to address their anticipated loading over six
months, and then incrementally add more as needed.

7.3 IT infrastructure
The Stocks-4u.com concerns for becoming an integral part of the ML & J IT
infrastructure fall into three major categories:

� Data centers
� Network
� Operational plans

7.3.1 Data centers
Stocks-4u.com has two major data centers. One is located in San Diego,
California, and the other is in Savannah, Georgia. At this time, all Internet
application access and key internal application access is provided through the
San Diego center, in which the company’s IT Operations (OPS) group is based.
The Savannah center currently supports a few other internally used applications
and houses the company’s IT Architecture, Development, and Deployment
Support (ADDS) business unit.

Stocks-4u.com considered hosting its Web servers through a third-party provider,
but it was decided that all subsidiaries would deploy its servers in-house.
However, they have not ruled out migrating certain Web operations to a hosting
provider in the future. This could bring additional data centers into play.

 Chapter 7. A basic WebSEAL scenario 247

7.3.2 Network
The data centers are connected by redundant T3 (45mbps) access. At this time,
Internet connectivity is provided through the San Diego center, with multiple T3
lines from three different providers. The diagram depicted in Figure 7-1 shows
the national Stocks-4u.com network.

Figure 7-1 Stocks-4u.com data network

Within the San Diego center, all Internet access is channeled through Web
servers residing in a demilitarized zone (DMZ). These Web servers provide
front-end application logic, including presentation services. Back-end application
logic is hosted on systems residing behind the DMZ in an internal production
network.

The Savannah center has no direct Internet access. It has a production network
for internal application systems.

In addition to the specific network capabilities at each of the sites, there is also a
general company intranet shared across all corporate locations. This network is
not considered secure and is not authorized for hosting production systems.

San Diego
IT Center

Savannah
IT Center

T1 (1.54
Mbps)

T1 (fractional,
768Mbps)

T1 (1.54Mbps)

T3 (redundant,
multi-carrier,
3x45Mbps)

T3 (redundant,
multi-carrier,
2x45Mbps)

T1 (fractional,
512Mbps)

T1 (1.54
Mbps)

New York
(ML&J HQ
and backup

trading
systems link)

Lansing
(Development

Center)

Tulsa
(Business

Center)

Denver
(Support

Center West)

Miami (Support
Center East)

Internet

T3 (45Mbps)

New York (National
trading systems

link)

248 Enterprise Security Architecture Using IBM Tivoli Security Solutions

7.3.3 Operational plans
Early plans are in the development stage for future expansion of Internet
operations into the Savannah center to provide for a redundant access capability
with load-balancing for customers on the U.S. East and West coasts. At this time,
there is no requirement to actually support this. However, the Stocks-4u.com
chief architect wants to be certain that the security solution they deploy is
capable of meeting such a requirement. During the Access Manager
proof-of-concept, it was determined that this should not be a problem.

7.4 Business requirements
The CIO has provided input about the business drivers for the targeted solution:

� Provide an enabler for consistent application of security policy across the
business. The business cannot afford to create multiple, competing security
infrastructures.

� Assure client confidence by offering a flexible yet perceptively secure solution.
It is essential that the security system not get in the way, while at the same
time protecting client information and assuring that financial transactions are
conducted securely.

� Competitively position the business to react quickly in deploying secure
premium services and content. Quickly deploying value-add capabilities is
important to gaining and maintaining market share.

Allow for the integration of special premium application capabilities to ML&J’s
“Select” clients. The firm is very focused on maintaining their existing
high-income client base by providing them with special capabilities that are
not available through any other online service. For example, additional bond
management capabilities within the portfolio management application are
being developed specifically for these clients.

� Provide for expansion of services with minimal incremental investment. It is
essential that, once in place, the security solution grow with the company. It is
unacceptable to require extensive and continuing re-engineering efforts for
the security infrastructure as the company expands its operations.

� Meet applicable U.S. Securities and Exchange Commission (SEC)
requirements. There are certain legal requirements for assurance that client
assets and transactions are handled properly. The security infrastructure
should be supportive of these requirements.

 Chapter 7. A basic WebSEAL scenario 249

7.5 Security design objectives
Based on initial discussions and a security workshop, it has been determined
that the following key technical requirements exist:

� Provide a single sign-on capability for all Web-based applications. A user
should only have to log in one time to one entity to obtain access to all
authorized applications and content that may reside on various servers.

� Remove the need for application developers to authenticate users. The
company does not want to invest in developing any authentication capabilities
within its new applications.

� Provide a cross-platform security solution. Previous experience with the
in-house security application clarified the need to maintain operating system
independence for Web-based application security.

� Provide the ability to control access to Web applications and content, which
may be hosted through multiple Web servers, at the URL level.

� Provide the ability to control access to applications that have existing URLs
without having to modify the application or the URL. One main application is
ticker.stocks-4u.com.

� Provide the ability to make fine-grained authorization decisions within
applications. While this is not an immediate deployment requirement, the
solution must allow for this capability to be added.

� Support browser-based access to applications from both employees and
customers. From their desks, internal users may access both Internet-hosted
applications and internal applications. At this time, there is no requirement for
employees to have access to internal applications from the Internet.

� For the first six months following deployment, load requirements are for up to
40,000 Internet users, with an annual growth rate of 50% over the next five
years. In five years, the online client base is expected to exceed 300,000
users. Approximately 25% of all clients are expected to conduct at least one
transaction on any given day.

� The internal employee user base is currently around 250 and is expected to
grow to approximately 1000 during the next five years. Approximately 80% of
employees are expected to conduct at least 10 transactions on any given day.

7.6 Requirements analysis
The requirements for this access control subsystem are typical of those found in
many Web application environments. Also, Stocks-4u.com’s experience with
home-grown security is not unique. With today’s Web-centric application focus,

250 Enterprise Security Architecture Using IBM Tivoli Security Solutions

many organizations approach the security issue from that perspective, yet they
often utilize existing host-based security systems that prove inadequate for
addressing key requirements. The fact is that, while some host-based security
capabilities are extensive, they are tied to a specific platform. This is inconsistent
with the reality of today’s Web-based applications. These applications often run
on several different machines on several different platforms and on various Web
server implementations.

An Access Manager WebSEAL capability is an obvious fit for Stocks-4u.com’s
current needs. In fact, most Access Manager deployments start with a Web
focus. However, there are clear requirement statements that discuss future
infrastructure expansion, and the same Access Manager environment that
supports WebSEAL will also be capable of addressing those needs.

For example, it is clear that the company has a future need to support a tighter
application-level integration with security, using Authorization Application
Programming Interface (aznAPI) or JAVA2 security-based functionality to allow
very detailed authorization for application components. The inherent architecture
of Access Manager enables these requirements to be met easily.

In this example, we address the immediate requirements of Stock4.com with a
WebSEAL solution. However, in a later chapter of this book, we may introduce
additional requirements or revisit some of the remaining issues to illustrate how
they may be addressed as the company expands its use of Access Manager.

To summarize the requirements discussion above, we know the following:

� We need to have a WebSEAL capability covering both internal and external
users.

� There is a relatively small number of users initially, but this will grow
dramatically.

We also know the following:

� All Internet access will go through a single site (San Diego).

� All Web servers we need to access are housed at a single site (San Diego).

� Web servers reside in an Internet DMZ network.

� Production systems reside in a special production network.

� All internal users share a common intranet across company site locations.

� Virtual host junctions will be required to accommodate the already existing
Web site of ticker.stocks-4u.com.

From this, we can easily address an initial WebSEAL-based Access Manager
architecture for Stocks-4u.com.

 Chapter 7. A basic WebSEAL scenario 251

7.7 Access control architecture
As we know it today, the diagram in Figure 7-2 summarizes the existing security
architecture deployed by Stocks-4u.com with multiple Web server host systems
deployed in the Internet DMZ.

Figure 7-2 Current Stocks-4u.com architecture

These are the most pressing issues:

� The operating system security model is too centric.
� Key components are exposed within the DMZ.
� It is difficult to apply a uniform security model.
� Long-term maintenance staffing is required.
� It is difficult to keep up with evolving standards.
� Authentication is not flexible for requirements.

This is our starting point for developing an Access Manager architecture to meet
current requirements, which are actually simple and straightforward, as we shall
see.

7.7.1 Initial architecture approach
Recalling the discussions in Chapter 5, “Access Manager core components” on
page 163, and Chapter 6, “Access Manager for e-business” on page 191, we
know that we will place a WebSEAL server in the DMZ, which provides for

IntranetInternet DMZInternet

 Browser

Web
Server

User Admin
Console

...
Web Server Host

System

Web Server Host
System

F
ir

ew
al

l
Operating
System
Security

Security
Plug-In

Operating
System User

Registry

Operating
System Security

Policies

F
ir

ew
al

l

252 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Internet user access. We also know that the user registry, Policy Server, and
Web Portal Manager (WPM) should not reside in the DMZ. The user registry and
Policy Server will be placed in the management zone while the WPM will reside
in the production zone.

The company currently has its Web servers in the DMZ. With WebSEAL, there is
no longer a need to do that, and these Web servers may be migrated to the
production network. This is good because it enhances the security of the overall
solution by moving the front-end application logic out of the DMZ.

Figure 7-3 displays our initial architectural diagram.

Figure 7-3 Initial WebSEAL architecture

This initial architecture provides us with the following benefits:

� The security model is independent of the operating system.

� We have a limited component exposure within the DMZ.

� It is architecturally consistent and we have a uniform security model.

� It is not dependent on internal resources to support core security component
code.

� As standards evolve, the security infrastructure may be upgraded readily.

Production Zone

Internet DMZInternet

Web
Server

Web
Server

Web
Server

Access Manager
User Registry

Browser

Authorization
Database

Management Zone

Access Manager
Policy Server

Web Portal
Manager

WebSEAL

 Chapter 7. A basic WebSEAL scenario 253

7.7.2 Internal user access
There are potentially many issues regarding internal user access, but for the
moment we know that we only need to support employee access to internal
applications from inside the company. In other words, Internet application access
is currently only being provided for client applications and content.

We could route browser traffic to internal applications through the same
WebSEAL that resides in the Internet DMZ. However, this is not a recommended
approach, partly for security reasons, and partly for manageability and
performance reasons. So in this case, we go with another WebSEAL server that
is dedicated solely to internal access. This enables us to create a different set of
junctions for the internal and external WebSEAL servers, which permits better
segregation of content between the two access classes.

Where should this internal WebSEAL server reside? In our case, based on the
Stocks-4u.com network structure, the logical place for this is in the production
network. Figure 7-4 depicts the updated architecture diagram.

Figure 7-4 WebSEAL security architecture with internal WebSEAL

Tip: There may be scenarios in which it makes sense to have different user
namespaces for employees and clients. This can be accomplished easily by
creating a second Access Manager secure domain. However, in our scenario,
such requirements do not exist. In this architecture, we will keep it simple and
use a single Access Manager user registry covering both employee and client
users in a common user ID namespace.

Production Zone

Internet DMZInternet

Web
Server

Web
Server

Web
Server

Access Manager
User Registry

Browser

Authorization
Database

Management
Zone

Access Manager
Policy Server

Web Portal
Manager

External
WebSEAL

Intranet

Browser

Internal
WebSEAL

254 Enterprise Security Architecture Using IBM Tivoli Security Solutions

7.7.3 Connecting the pieces
Now that we have placed the key components in this scenario, we discuss how
they interact with each other.

The Internet-facing WebSEAL will be listening on ports 80 and 443 (SSL). We
will also modify the configuration of the Web servers slightly to have them listen
on alternate ports (in our case, we use ports 81 and 1443). This enables us to
close ports 80 and 443 on the firewall between the DMZ and production networks
in the manner described previously in Chapter 6, “Access Manager for
e-business” on page 191. We also disallow LDAP port (389/636) access from the
Internet, because WebSEAL is the only entity that communicates from the DMZ
to the user registry.

A virtual host junction will be created to allow ticker.stocks-4u.com to participate
in the new Access Manager secure domain. By using virtual host junctions, we
allow the ticker.stocks-4u.com name to remain and avoid having to immediately
implement any changes to the application that would be required with a
traditional junction. Although there will be two names registered in DNS that point
to the WebSEAL server (stocks-4u.com and ticker.stocks-4u.com), the
architecture does not need to be modified. One WebSEAL server can still meet
these requirements.

There is also the question of whether the junctions between the Internet-facing
WebSEAL and the Web servers require the use of SSL. It is not strictly
necessary to do so in this case because the Web servers are in a controlled
zone. If the Web servers were in the open corporate intranet, SSL should
probably be used. The choice to use SSL may be made based on the specific
risk associated with the content involved. The answer is similar with respect to
communication with the user registry.

The internal WebSEAL in the production network, unlike the Internet-facing
WebSEAL, will be co-located with the Web servers it is junctioned to. It will listen
on ports 80 and 443, and the firewall between the intranet and production
network will be configured to disallow access via these ports. If, for some reason,
it is not possible to disable these ports (for example, there could be Web servers
that are separate from the Access Manager infrastructure), the junctioned Web
servers may be configured to accept connections only from the WebSEAL
server. This would enable both WebSEAL and non-WebSEAL controlled
resources to coexist in the same network while maintaining the integrity of the
back-end Web servers.

 Chapter 7. A basic WebSEAL scenario 255

Now that we addressed the communication among the components, our new
architecture is shown in Figure 7-5.

Figure 7-5 Detailed WebSEAL security architecture with internal WebSEAL

Important: If you place a production Web server under WebSEAL access
control, it is recommended that you do not allow access to it via
non-WebSEAL channels without careful consideration. Prior experience has
shown that this can lead to confusion, manageability issues, and most
important, security breaches.

Generally, co-locating internal WebSEALs with Web servers is acceptable to
many organizations; however, groups that may want to impose an internal
DMZ in front of a production network may do so in the same manner as is
done for the Internet-facing WebSEAL. This is a legitimate architecture and
may make sense in some cases. However, in the current scenario, the
requirements may be satisfied as we have described.

Production Zone

Internet DMZInternet

Browser

Management
Zone

Intranet

Browser

Port Access
Configuration

Port Open
Port Closed

81/1443
389/636

7135

80/443

81/1443
389/636

7135

80/443

81/1443
389/636

7135

80/443

81/1443
389/636

7135
80/443

Web servers are
only accessible

through
WebSEAL.

Communication
with internal

components is
restricted.

Web
Server

Web
Server

Web
Server

Access Manager
User Registry

Authorization
Database

Access Manager
Policy Server

Web Portal
Manager

External
WebSEAL

Internal
WebSEAL

256 Enterprise Security Architecture Using IBM Tivoli Security Solutions

7.8 Building the physical architecture
With the locations of the pieces decided, now we conclude how many machines
we need and what parts have to be configured on what systems.

7.8.1 Internet DMZ
Obviously, because the Internet-facing WebSEAL is in the DMZ by itself, it must
be on a separate machine. This is typical for most WebSEAL scenarios. While
technically this machine could support other applications or services along with
WebSEAL, such configurations are not generally recommended, especially in an
Internet-facing scenario.

A single WebSEAL host, appropriately configured, should be able to handle the
expected client load over the next six months.

7.8.2 Production network
In the production network, things get only a little more complicated.

An obvious place to consolidate components would be to put the Access
Manager Policy Server and the User Registry on the same machine, provided it
has sufficient capacity. The policy server uses little overhead in a basic
deployment such as this one, which has a relatively small number of components
and users. The user registry is the major user of memory and processor capacity.
We will place these components on a single machine.

The WPM component can run on a Windows 2000/2003 platform as well as on
AIX, Solaris, HP-UX, and Linux. One thing to keep in mind is that a midrange
desktop system that meets minimum WebSphere memory requirements will
generally work well to host WPM.

The internal WebSEAL is the remaining issue. Unlike the Internet-facing
WebSEAL, we have more flexibility here. First, we know that the number of users
is relatively small. However, they each perform several transactions per day. It
may be possible to consolidate this WebSEAL onto the same host running the
user registry and policy server. However, in this case, we opt to place the
WebSEAL on a separate machine to avoid any potential performance effects due
to component interactions.

Tip: However, it is important to point out that, as the company expands its
operations, it may make sense to eventually split these functions onto
separate machines. This should be easy to do when the time comes.

 Chapter 7. A basic WebSEAL scenario 257

Figure 7-6 shows the final physical architecture for the initial deployment.

Figure 7-6 WebSEAL physical architecture

7.9 Architectural summary
In this chapter, we used the guidelines discussed previously in this book to
illustrate the thought process involved in developing a typical WebSEAL solution
architecture. You can understand that a Web security solution with Access
Manager is often straightforward.

With this as a base, we can easily extend any Access Manager architecture to
add additional capability and capacity, as we will see in later chapters.

Production Zone

Internet DMZInternet

Browser

Management
Zone

Intranet

Browser

Port Access
Configuration

Port Open
Port Closed

81/1443
389/636

7135

80/443

81/1443
389/636

7135

80/443

81/1443
389/636

7135

80/443

81/1443
389/636

7135
80/443

Web servers are
only accessible

through
WebSEAL.

Communication
with internal

components is
restricted.

WebSEAL Host System

Web
Server

Web
Server

Web Server
Host System

Web
Server

Access Manager Services Host System

Access
Manager

Policy
Server

User Registry

External
WebSEAL

Web Portal Manager
Host System

Web
Portal

Manager
WebSEAL

Host
System

Internal
WebSEAL

258 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 8. Increasing availability and
scalability

In this chapter we continue the discussion from the previous chapter with our
customer Stocks-4U.com. Previously, the concern was access control and user
and account integration, as well as systems and network integration. Now the
focus has shifted slightly and the need to address additional requirements of a
growing business have come to the forefront. This growth and the increased
expectations pose new challenges to the architecture.

Availability is the major concern that a failing part of the infrastructure will cause
the overall solution to languish. This eventually leads to unsatisfied customers
and decreasing business success.

Scalability describes the ability to instantaneously change and adapt the IT
infrastructure in order to handle an increased number of information and
transaction requests without reducing the quality of the online experience for
customers.

8

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 259

8.1 Further evolution
Stocks-4U.com has seen steady growth of their business. This growth, and the
continued success of the business, has introduced new business requirements
that mirror the evolving business. Based on these new requirements, we have to
alter the security design objectives.

You, as the architect, now face the added design objectives of availability and
scalability. Content, access control, and centralized audit and policy
enforcement, as well as a single entry point into the site, are still very much a part
of the scenario and must be included with the new requirements.

8.1.1 Business requirements
After the initial Web presence approach, the Web-based functions have
functionally extended into content and applications and the security management
becomes more viable. With the successful reception by the public, and an
increasing client base, the availability of the Stocks-4U.com Web site is crucial.
E-businesses have no set hours of operation and must be reachable and
operational 24 hours a day, seven days a week (24x7).

At this stage, the CIO is looking for a way to guarantee the availability of the
business application around the clock. Customers are entrusting their financial
investments more and more to Stocks-4U.com, and they have to be rewarded
with a reliable e-business application infrastructure that is always there for them.

After some serious downtime of the WebSEAL server (because of some
operating system problems and issues with the back-end Web server availability,
due to security vulnerabilities), the CIO demands that some protection measures
in the availability and portability of the corresponding systems be taken.

A second concern of his is the constantly increasing number of customers
visiting the Web site. The CIO asks for future flexibility and ways to dynamically
add functional empowerment of the single systems to better cope with new
e-business opportunities.

8.1.2 Security design objectives
The major design objectives of these business requirements target two areas of
the e-business implementation:

� The access control infrastructure

Embracing the internal and external WebSEALs, as well as the underlying
security base, with the Access Manager Policy Server and the LDAP user
registry

260 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� The e-business application

Consisting of the HTTP Web servers and the applications running on those
servers

We have to consider two different approaches, as outlined by the CIO:

� Availability

Enabling systems to be available on a 24x7 schedule by providing enough
resources in additional, duplicated systems or other failover mechanisms.

� Scalability

Enabling the e-business solution to scale to any number of future capacities
by adding additional components of the same sort and providing smart load
balancing mechanisms to perfectly utilize these new components. In a second
viewpoint, this can also imply moving a current functional implementation to a
new, more powerful operating platform.

8.2 Availability
The Internet has changed forever the idea of fixed hours of operation. Now there
your customers expect to access your site at any time, day or night, increasing
your visibility and profitability. The IT systems must be reliable and offer
consistent content to the client in a timely fashion at any time. In our initial
architecture, there are different points of failure in the infrastructure.

Each element in a configuration must be analyzed for failure points, including the
hardware. Most hardware appliances, such as routers or switches, can be
configured for failover or alternate paths, and cold standbys can be kept
available, in case a hardware failure occurs.

The discussion in this section focuses on the availability of all components that
are part of the Web application. We do not consider infrastructure elements, such
as firewalls and routers.

8.2.1 Failure situations
Web servers and applications can and do fail. The reasons for failure vary:
Program code, unproven technologies, disk failures, and even human error. In
Figure 8-1 on page 262, the instance of only one WebSEAL user registry Access
Manager Policy Server with its authorization master database, Web Portal
Manager and each individual Web server are in themselves single points of
failure.

 Chapter 8. Increasing availability and scalability 261

Figure 8-1 Initial Web architecture

What happens if the WebSEAL server fails? What happens if a Web server fails?
What happens if the user registry server stops working? We now take a closer
look at the individual components.

WebSEAL failure
If the WebSEAL portal to either the Internet or the intranet fails, and there is no
operational replacement, the client attempting access will be denied access to
the site. While the content and the application might be fully functional behind
WebSEAL, the failure of the WebSEAL server leads the user to believe that the
site is down.

Web server failure
If a Web server stops operating, the applications and services that reside on it
are no longer available. While other applications are still working, the client that
tries to access offerings on this particular machine perceives that the site or the
application as down.

User registry failure
If the user registry is down, WebSEAL will no longer be able to authenticate
incoming users in order to access Web content and applications that are
protected and require user authentication. WebSEAL and the Web servers may

Web Server Browser

WebSEAL

Access
Manager

Policy ServerLDAP User
Registry

Authorization
Database

Master

Client

Internet DMZ

WebSEAL

Internet Production Zone Intranet

Uncontrolled Controlled Zone

Restricted ZoneAuthorization
Database
Replica

Authorization
Database
Replica

Access
Manager Web
Portal Manager

Controlled Zone

Management
Zone

Secured

262 Enterprise Security Architecture Using IBM Tivoli Security Solutions

still be operational, but the client is unable to gain access and thus assumes that
the site is down.

Access Manager Policy Server failure
Although failure of your Policy Server is not on your wish list, it does not affect
the availability of your Web site. Web security servers can still perform all
necessary authorization operations because they use the local cache mode,
which means that the Authorization Service running on the WebSEAL machine
uses a local authorization database replica. You only lose the ability to administer
your Access Manager secure domain while your Policy Server is down.

The same is valid for the Web Portal Manager, which provides the administration
graphical user interface Web application for the Access Manager administrators.
The Web application will not be affected if WPM is not available. The only impact
is that the administration of the Access Manager secure domain has to be
postponed until the service is available again.

In addition to problems or failures of these components, sheer volumes can affect
availability as well. With the growth of the Internet and your business, the ability
to handle the traffic to your site has changed the scope and appearance of the
architecture. Internet sites can become unstable or even fail under severe load
conditions.

Tip: Besides adding multiple replicas for increasing availability and
performance, you should also consider that your Web environment can scale
on different operating system platforms with different availability
characteristics. If you are stuck with only one supported platform, you might
lose the ability to grow your business later.

The best example is the Web server itself. The IBM HTTP Server or the
Apache Web server can scale from entry platforms such as Windows 2000/XP
or Windows 2003 to other powerful platforms such as Solaris, HP-UX, AIX,
Linux, or even OS/390® or z/OS. You should consider developing your Web
applications supporting only open standards such as basic HTML, Java, Java
Server Pages (JSP), or Enterprise Java Beans (EJB™); otherwise, you might
get stuck with one particular platform.

 Chapter 8. Increasing availability and scalability 263

8.2.2 Providing high availability
Adding replicas of crucial servers increases your site’s availability. After depicting
an overview of this configuration in Figure 8-2, we describe the different areas
with their solutions.

Figure 8-2 Server replication to increase availability

Session availability
It is recommended that the Tivoli Access Manager Session Management Server
(SMS) be used in any situation where Web security server (WebSEAL or Web
Server plugins) replicas are used. This prevents a user’s originated session from
being destroyed when the originating authentication service becomes
unavailable. Although technologies, such as failover cookies, are available to
provide seamless single sign-on to replica services, the replica session will not
exactly resemble that of the original. With the use of the SMS, the replica
services have access to the user’s original session information to be used when
this failover event occurs.

In conjunction to run time management of user sessions in a cluster or set of
clusters, the SMS also collects user authentication statistics from across the
cluster so that applications can maintain and display login history from within the
Access Manager environment.

The Session Management Server overcomes obstacles in relation to session
management in a clustered environment that include limitations for policy

Browser

Access
Manager

Policy Server

Client

Internet DMZInternet Production Zone Intranet

Uncontrolled Controlled Zone Controlled ZoneSecured

WebSEAL
Replica

WebSEAL

Web Server
Replica

WebSEAL
Replica

Web Server

WebSEAL

LDAP Replica

aznDB
Replica

N
et

w
or

k
D

is
pa

tc
he

r

N
et

w
or

k
D

is
pa

tc
he

r

Management
Zone

aznDB
Replica

aznDB
Replica

aznDB
Replica

aznDB Master

Session Management
Cluster

SMS

SMS

Access Manager Web
Portal Manager Cluster

WPM

WPM

LDAP Master

LDAP Master

LDAP Replica

Restricted

264 Enterprise Security Architecture Using IBM Tivoli Security Solutions

enforcement, management, security, and the user experience. It also provides
single sign-on between Web security servers in a failover situation.

The Session Management Server provides the following benefits in a clustered
environment:

� Distributed session cache to manage sessions across clustered Web security
server environments.

� Central point for maintaining login history information.

� Inconsistencies resolved between replicated Web security servers in regard
to session inactivity and session lifetime time-outs.

� Single sign-on and secure failover among replicated Web security servers.

� Maximum number of concurrent sessions enforced across replicated Web
security servers.

� Single sign-on capabilities among other Web security servers in the same
DNS domain.

� Performance and high availability protection to the server environment on the
event of a hardware or software failure.

� Administrators can view and modify sessions on Web security servers.

As the Session Management Server runs within WebSphere Application Server
to provide high availability, it is typical for a customer to use WebSphere
Clustering. More information about WebSphere clustering is available on the
Web at the following location:

http://www.ibm.com/software/webservers/appserv/was/network/

Centralized account lockout information
Each Web security server can be configured to store a user’s authentication
failure count within the Access Manager user registry. By enabling this feature, all
Web security servers can provide a consistent implementation of security policy
since all failure count information is located in a central directory. This
configuration is separate to that information stored within the Session
Management Server, which is used for reporting purposes rather than policy
enforcement.

Important: If the Session Management Server is used, failover cookies
should not be used as the functionality is provided by the Session
Management Server. There are rare cases where these functions can be used
together; however, we recommend that you typically choose between the two.

 Chapter 8. Increasing availability and scalability 265

http://www.ibm.com/software/webservers/appserv/was/network/

WebSEAL availability
Increasing the availability of your WebSEAL-controlled Web site starts with at
least two front-end WebSEAL servers. Replicated front-end WebSEAL servers
provide the site with load balancing during periods of heavy demand as well as
failover capability. That is, if a server fails for some reason, remaining replica
servers continue to provide access to the site. Successful load balancing and
failover capability results in high availability for users of the site. The load
balancing mechanism is handled by a mechanism such as the Network
Dispatcher component of the IBM WebSphere Edge Server or Cisco Local
Director.

In a redundant WebSEAL configuration environment, as depicted in Figure 8-3,
there are several places where the configuration must be duplicated.

Figure 8-3 WebSEAL availability overview

Note: This functionality does not apply if using a custom external
authentication C API program or External Authentication Interface (EAI). It can
only be used if WebSEAL or the Web Plug-in is configured with the default
user ID and password authentication module.

Also, in comparison to read operations, writing to an LDAP directory is an
expensive operation. An evaluation of the environment’s required and
expected performance should be completed prior to activating this feature.

Junction
Information

WebSEAL B

Backend 2
Server D

Backend 1
Server A

Backend 2
Server C

Backend 1
Server B

WebSEAL A

C
lu

st
er

 2
C

lu
st

er
 1

Backend
Server

Content

WebSEAL

WebSEALA

WebSEALB

Backend1

Backend2

Backend1

Backend2

\

Protected
Objectspace

266 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Back-end server content

This must be the same on every server in the same cluster. Maintaining this is
the responsibility of the individual system’s administrator for the
corresponding servers. More information can be found in “Web server
availability” on page 268.

� Junction information

Each duplicated WebSEAL server must have the same junction information.
This is made easy in Access Manager because all that is required is copying
the junction database from one WebSEAL to another. All junction information
is kept in XML-formatted files.

� Protected object space

Both WebSEALs must have the same ACLs attached to the same places in
their object space. In a normal configuration, both WebSEALs have their own
object space, so work must be duplicated. However, it is possible to make
WebSEAL servers share a single object space.

WebSEAL clusters
In order to make two WebSEAL servers share the same object space, we change
the part of the object space that one of the WebSEAL servers uses when making
authorization decisions.

Normally, when WebSEALB checks permissions on objects, it uses its own
unique objectspace. However, it is possible to have more than one WebSEAL
check the same objectspace. This enables consistent application of security
policy on multiple WebSEAL servers. However, in order for this type of setup to
function properly, all WebSEALs that share an object space must have the same
configuration and junctions.

WebSEAL failover cookies
Failover cookies are used in Access Manager to enable a user to access a
redundant WebSEAL server (in case of failure) without having to re-authenticate.
Access Manager supports the use of failover cookies over HTTP or HTTPS. With
the introduction of Access Manager 6.0, the Session Management Server
component should be the preferred method of providing failover between
replicated WebSEAL servers (refer to “Session availability” on page 264).

Note: Be sure that a copy of the XML junction information is distributed to all
clustered WebSEAL servers if new Web server junctions are being configured.

 Chapter 8. Increasing availability and scalability 267

More information about this configuration can be found in the section “Replicated
front-end WebSEAL Servers” in the IBM Tivoli Access Manager for e-business
WebSEAL Administration Guide Version 6.0, SC32-1687.

Web server availability
In order to increase the availability of your Web server space you have to
duplicate your servers exactly. The Web administrator has to ensure that the
content of the Web root directories on the duplicated servers is kept in sync. After
you have created an initial WebSEAL junction for your first Web server, you can
add your replicated Web servers to the same junction.

By default, Access Manager WebSEAL balances back-end server load by
distributing requests across all available replicated servers when the replicated
servers use the same junction point, as depicted in Figure 8-3 on page 266.
Access Manager uses a “least-busy” algorithm for this task. This algorithm
directs each new request to the server with the fewest connections already in
progress.

For static Web content, this approach is very easy to implement. However, there
are other considerations.

Maintaining a stateful junction
Most Web-enabled applications maintain a “state” for a sequence of HTTP
requests from a client. This state is used, for example, to:

� Track a user’s progress through the fields in a data entry form generated by a
CGI program.

� Maintain a user’s context when performing a series of database inquiries.

� Maintain a list of items in an online shopping cart application where a user
randomly browses and selects items to purchase.

Servers that run Web-enabled applications can be replicated in order to improve
availability through load sharing. When the WebSEAL server provides a junction
to these replicated back-end servers, it must ensure that all requests contained
within a client session are forwarded to the correct server and not distributed
among the replicated back-end servers according to the load balancing rules. It
maintains state through the use of a stateful cookie.

Note: The processing of failover cookies is processor-intensive and should
only be used for failure recovery. In later versions of Access Manager, user’s
session id’s are synchronized across Web security servers to minimize the
affect of crypto expense when non-sticky load balancing algorithms are used.

268 Enterprise Security Architecture Using IBM Tivoli Security Solutions

If the back-end application is capable of handling a failover event, WebSEAL
should be configured to automatically associate the user’s session with another
server on the junction if one is available. This will allow a user to continue
operating with no disruption of service. By default, this functionality is disabled.

Authorization Server availability
Although not initially depicted in the basic scenario in Figure 8-2 on page 264,
assume for now that we extended our Web application using some fine-grained
Authorization Application Programming Interface authorization calls. This
authorization information is provided by Access Manager, and the application
servers can be configured to request this information from a specific Access
Manager Authorization Server if the applications run in remote cache mode
configuration. This scenario is shown in Figure 8-4.

Figure 8-4 Authorization Server scenario for Stocks-4U.com

Access
Manager

Policy Server

Production Zone

Secured

Web Server
ReplicaWeb Server

application

Authorization
Server

LDAP Replica

Management
Zone

Authorization DB
Replica

Authorization
DB Master

Access
Manager Web
Portal Manager

LDAP Master

Web Server
ReplicaWeb Server

application

Restricted

 Chapter 8. Increasing availability and scalability 269

However, when this Authorization Server fails, the application cannot perform its
fine-grained authorization calls and will therefore fail. In order to provide high
availability of the application Authorization Services, the result would be the
scenario configuration shown in Figure 8-5.

Figure 8-5 Authorization Server scenario with high availability

After implementing a second Authorization Server, you would only need to
configure your aznAPI applications to be aware of the new replica.

Note: The second authorization server is only used for failover. Requests are
not load balanced across the server instances.

Access
Manager

Policy Server

Production Zone

Secured

Web Server
ReplicaWeb Server

application

Authorization
Server

LDAP Replica

Management
Zone

Authorization
DB Replica

Authorization
DB Master

Access
Manager Web

Portal
Manager

LDAP Master

Web Server
ReplicaWeb Server

application

Restricted

Authorization
Server

Authorization
DB Replica

270 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Another way of implementing this particular scenario could be by configuring the
applications to run in local cache mode, shown in Figure 8-6. By doing this, the
aznAPI calls do not go out to a remote Authorization Server for access control
checks, but instead uses the local authorization database replica.

Figure 8-6 Authorization Server scenario on local cache mode

User registry availability
The IBM Tivoli Directory Server supports the concept of master and replica
LDAP servers. This is discussed in more detail in 3.3, “IBM Tivoli Directory
Server” on page 72.

A master server contains the master directory from which updates are
propagated to replicas. All changes are made and occur on the master server,
and the master is responsible for propagating these changes to the replicas.

A replica is an additional server that contains a database replica. The replicas
must be exact copies of the master. The only updates that replicas allow are from
replication from the master. The replica provides a backup to the master server. If

Access
Manager

Policy Server

Production Zone

Secured

Web Server
ReplicaWeb Server

application

LDAP Replica

Management
Zone

Authorization
DB Replica

Authorization
DB Master

Access
Manager Web

Portal
Manager

LDAP Master

Web Server
ReplicaWeb Server

application

Restricted

Authorization
DB Replica

Authorization
DB Replica

Authorization
DB Replica

 Chapter 8. Increasing availability and scalability 271

the master server crashes or is unreadable, the replica is still able to fulfill search
requests and provide access to the data.

Access Manager utilization of multiple LDAP servers
The Access Manager connects to one of its LDAP master servers listed in
configuration files when it starts up. At a minimum, the Access Manager server
must be able to connect to an available LDAP replica server for any read
operations.

Many operations, especially those from regular users, are read operations.
These include such operations as user authentication and sign-on to back-end
junctioned Web servers. After proper configuration, Access Manager LDAP
server failover can be configured with priority given to replica servers over master
(read-write) servers or to master servers over replica servers depending on the
server being configured and the operations expected.

In order to configure Access Manager for the use of multiple LDAP directories,
you have to define the master and replica LDAP servers to be used:

1. Master server configuration

IBM Tivoli Directory Server and Sun Java System Directory support multiple
read-write LDAP servers. Access Manager treats the Sun Java System
Directory supplier server as the master server for configuration purposes.
Access Manager can be made aware of multiple master LDAP servers
through configuration.

If you make a change to the LDAP database, such as adding a new user
account through the WPM or changing a user’s password through WebSEAL,
Access Manager always uses the read-write (master) LDAP server.

2. Replica server configuration

IBM Tivoli Directory Server supports the existence of one or more read-only
replica LDAP servers. Sun Java System Directory Server supports the
existence of one or more read-only replica LDAP servers referred to as
consumers. Access Manager can be made aware of multiple LDAP replica
servers through configuration.

More about configuration can be found in the IBM Tivoli Access Manager
Version 6.0 Administration Guide, SG32-1686.

Access Manager Policy Server availability
The only portion of Access Manager that cannot be replicated within the same
secure domain is the Policy Server. You can, however, have a second server in
stand-by to provide manual failover capabilities as a first aid response. If you
want to assure 24x7 availability of your Access Manager Policy Server you could
implement a high-availability cluster solution, such as HACMP for AIX. For

272 Enterprise Security Architecture Using IBM Tivoli Security Solutions

further details check the HACMP Enhanced Scalability Handbook, SG24-5328,
and Configuring Highly Available Clusters Using HACMP 4.5, SG24-6845.

Before configuring a standby Policy Server, the files that it needs in order to
operate must be made available. To avoid synchronization problems, it is best to
locate these files on a shared filesystem.

In general, the most effective way to have a redundant Policy Server is to
configure an original and standby Policy Server in an HACMP (or similar)
environment. This handles routing IP traffic to the active instance and can handle
(via scripting) the starting and stopping of the Policy Servers so that only one is
active at any time.

Figure 8-7 shows a possible configuration that uses a network load-balancer to
direct SSL traffic to the active Policy Server. If it is not possible for the load
balancer to monitor the Policy Servers, then manual intervention (or custom
scripting) will have to be used to monitor the Policy Servers and switch to the
backup on failure.

Figure 8-7 Standby policy server configuration using a load balancer

Primary
Policy Server

PDRTE PDRTE

Standby
Policy Server

Load Balancer
(Monitoring HTTPS on 7135)

Other AM
Components

PDRTE

Other AM
Components

PDRTE

Primary – OK
Standby- Down

Shared StoragePrimary
Policy Server

PDRTE PDRTE

Standby
Policy Server

Load Balancer
(Monitoring HTTPS on 7135)

Other AM
Components

PDRTE

Other AM
Components

PDRTE

Other AM
Components

PDRTE

Other AM
Components

PDRTE

Primary – OK
Standby- Down

Shared Storage

 Chapter 8. Increasing availability and scalability 273

Web Portal Manager availability
Again, the same is valid for the Web Portal Manager, which provides the
administration GUI Web application for the Access Manager administrators. If the
implementation requires a 24x7 availability of the Web administration interface,
WebSphere clustering should be used to satisfy this requirement. Since Access
Manager Web Portal Manager runs on the WebSphere Application Server,
clustering of the application is supported by using WebSphere Application Server
6.0.2 Network Deployment. Configuring WebSphere Application Server for
clustering is beyond the scope of this book. For more information about
WebSphere clustering, refer to:

http://www.ibm.com/software/webservers/appserv/was/network/

Conclusion
Again, this point is clear: The Internet has changed the rules of how business is
conducted. It has also changed the rules or concepts concerning customer
loyalty. When users are experiencing slow response times or refused
connections, they are having what is considered an unsatisfactory experience,
which may cause them to never visit your site again and instead prefer one of
your competitors. This line of thought leads us to the next discussion about
scalability and performance.

8.3 Adding scalability
Scalability means that your systems have the capability to adapt readily to the
intensity of use, volume, or demand. Designing scalability into your architecture
also allows for failover of critical systems and continuous operation at the same
time. A lot of the availability discussion can be applied to the scalability issue as
well; the topics are all very similar. Here, we take a closer look at some specific
viewpoints concerning scalability.

Note: The purpose of the Policy Server is to maintain the master authorization
database that contains the protected object space with the access control
information (ACLs, POPs, and Rules). The Policy Server replicates the
authorization database to all other Access Manager Authorization Servers in
the secure domain. Every application, configured in local cache mode, that
uses this Authorization Service (such as WebSEAL and third-party utilization
of the aznAPI) has its own local copy (replication) of the master authorization
database and can therefore provide authentication and Authorization
Services, even if the Policy Server is not available for a brief period of time.

274 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.ibm.com/software/webservers/appserv/was/network/

Access Manager automatically replicates the primary authorization policy
database that contains the policy rules and credentials when a new application
component, configured in local cache mode, or an Access Manager resource
manager (such as WebSEAL or an Authorization Server) is configured. This
capability provides the foundation of Access Manager’s scalable architecture.
After you have designed and installed your Access Manager secure domain and
your Policy Server, you can easily extend and configure this IT security
landscape.

8.3.1 WebSEAL scalability
To add additional capacity to a WebSEAL cluster, simply add another WebSEAL
server behind an existing load balancer and configure it as a replica in the
cluster. More information about WebSEAL clusters is in the previous section
“WebSEAL clusters” on page 267.

The new WebSEAL will immediately receive browser requests that are routed
from the load balancer product. This way, you can easily extend or change your
WebSEAL infrastructure.

8.3.2 Authorization Server scalability
To add additional capacity to the Access Manager Authorization Server
infrastructure, simply install another Authorization Server and configure it as a
replica.

The new Authorization Server will immediately be available to receive
authorization requests from your applications. This way, you can easily extend
your application infrastructure.

8.3.3 Infrastructure component scalability
In order to achieve overall scalability, we need to take a closer look at the other
infrastructure components.

Web server scalability
When your current Web server-installed base is not capable of handling any
more incoming requests, it is time to add a new server, maybe on a different,

Tip: If you have installed WebSEAL multi-processor machines, they scale best
if you put one WebSEAL per two CPUs, and lock them to use the specific
CPUs only. Next, configure the WebSEAL instances into the load balancer.

 Chapter 8. Increasing availability and scalability 275

more powerful hardware and operating system platform. To incorporate the new
system into your existing Web server infrastructure:

1. Install a new HTTP server on a new machine and create an exact mirror of
your published root directory structure from your existing Web server.

2. Add a WebSEAL junction to the same junction point as your existing Web
server.

3. If you were previously using only one Web server at this particular junction,
you have to consider defining a stateful junction at this time, if your Web
application is relying on session states.

4. If you require SSL connections between WebSEAL and your Web server, you
have to configure the junction appropriately.

Using WebSEAL as a mechanism for Web server load balancing and high
availability makes it a simple task to scale your Web server environment to your
individual demands. You could even replace a grown Web server cluster of
multiple Intel machines with a new high-power server platform by reconfiguring
your WebSEAL junction information, without losing one second worth of business
or redefining any of your security access control information.

User registry scalability
In order to enhance the overall scalability of the implementation, LDAP master
and replica servers can be added at will to improve the response time for user
applications relying on LDAP access. In conjunction with using preference
values, you can place LDAP replica servers close to the application
functionalities—logically or location dependant.

Preference values for replica LDAP servers
Each replica LDAP server must have a preference value (1 through 10) that
determines its priority for selection as:

� The primary read-only access server
� A backup read-only server during a failover

The higher the number, the higher the priority. If the primary read-only server fails
for any reason, the server with the next highest preference value is used. If two or
more servers have the same preference value, a least-busy load balancing
algorithm determines which one is selected.

Remember that the master LDAP server can function as both a read-only and a
read-write server. For read-only access, the master server has a hard-coded
default preference setting of 5. This enables you to set replica servers at values
higher or lower than the master to obtain the required performance. For example,
with appropriate preference settings, you could prevent the master server from

276 Enterprise Security Architecture Using IBM Tivoli Security Solutions

handling everyday read operations. Access Manager can also load balance write
operations in a multi-master LDAP environment.

You can set hierarchical preference values to allow access to a single LDAP
server (with failover to the other servers), or set equal preferences for all servers
and allow load balancing to dictate server selection. Further details about
configuration can be found in the IBM Tivoli Access Manager Administration
Guide Version 6.0, SC32-1686.

For further capacity and availability discussion, refer to the IBM Tivoli Access
Manager for e-business Problem Determination Guide Version 6.0, SC32-1701,
and the IBM Tivoli Access Manager for e-business Performance Tuning Guide
Version 6.0, SC32-1704.

 Chapter 8. Increasing availability and scalability 277

278 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 9. Authentication and single
sign-on with Access
Manager for e-business

This chapter describes the flexibility of user authentication mechanisms with
Access Manager. It presents several mechanisms for the identification of users
and shows how they can be used in various Web-based scenarios. It also
introduces the basic concepts of achieving single sign-on solutions in Web-based
environments.

This chapter does not look into any particular customer scenario, but rather
presents the technological ground work for the scenario in Chapter 11,
“Application integration” on page 347.

Different approaches are needed to provide different types of user access (for
example, unrestricted access or restricted access with passwords, SecurID
tokens, or PKI certificates) to a variety of back-end applications. This flexibility
should be provided within one security solution, and the management of this
security solution must support both centralized and distributed security
administration groups, while maintenance of the Web applications can be done
by other individual groups.

9

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 279

The goal of this security solution is to enable user authentication and to enforce
target-based, coarse- or fine-grained authorization before forwarding a user’s
request along with his credentials to any of the Web application servers. This
way, the Web application developers can stay free of maintaining any security
infrastructures.

The represented Tivoli Web security solution is implemented as a reverse proxy
Access Manager WebSEAL, which is located in the Internet demilitarized zone
(DMZ). In order to serve as the single point of access control, it has to be used as
the only access point for all incoming HTTP and HTTPS connections. Its major
task will be to initially authenticate the user and to forward the user’s request
together with sufficient information about the user’s identity to a Web server in a
more secured network.

There are several issues we have to look out for:

� We have to make sure that WebSEAL does not allow any bypassing of the
access control system. All internal and external access to Web-based
resources should be channeled through WebSEAL.

� When using SSL connectivity to and from WebSEAL, you have to administer
a private key for each WebSEAL and Web server participating in the SSL
traffic flow. You should carefully control and document use of the private keys.

� You have to protect WebSEAL against unauthorized physical access.
Because the reverse proxy has to terminate incoming SSL connections, all
connection data will be unencrypted on WebSEAL. Although the data can be
encrypted again when using an SSL connection to a back-end application
server, physical access to WebSEAL or its memory might enable you to listen
to communications even if the data is not being held in a cache.

� We recommend that you use a hardened operating system for WebSEAL. Do
not use the machine for any other purposes. Restrict physical and logical
access and use intrusion detection tools to monitor any type of unauthorized
connection attempts.

We already focused on general WebSEAL architecture issues throughout
Chapter 6, “Access Manager for e-business” on page 191, and Chapter 7, “A
basic WebSEAL scenario” on page 245. In this chapter, we concentrate on the
different authentication and single sign-on mechanisms that can be utilized with
WebSEAL.

In addition to WebSEAL, the Web Server Plugins (referred jointly as the Web
security servers) offer an approach for those customers who support the plugin
model. The Web Server Plugins and WebSEAL product delivery teams
endeavour to ensure that the product features are functionally equivalent.
Obviously the architectural model is different, comparing the junctions of
WebSEAL to that of the plugin model of the Web Server Plugins, but best effort

280 Enterprise Security Architecture Using IBM Tivoli Security Solutions

was made by development to make the functional aspects the same. In the
chapters that follow, we reference Web security servers for referencing features
that are shared between the two implementations.

9.1 Typical business requirements
In addition to the typical business requirements that were described in 6.2.1,
“Typical business requirements” on page 193, which were driven by an overall
Web security approach, we want to add the following concerns from the
authentication aspect:

� The business application developers should only focus on business functions
and not on security in order to eliminate hidden security management costs.

Many applications use their own authentication and authorization
mechanisms as well as security information repositories. There are also a lot
of fields where basic operating system security is being used to achieve
authentication. These approaches force applications to be maintained
continually as changes to either security policy or operating system have to
be implemented.

� Increase authentication flexibility without the need to change any application
logic.

Separate user registries for internal and external applications are used, as
well as separate security administration for inside and outside applications.

Another flexibility requirement is to allow different authentication methods for
certain applications. A basic Web order system might be sufficiently protected
with user ID and password authentication, while access to the same ordering
system by business partners with high volume orders has to be controlled by
providing a certificate-based or token-based authentication.

� Increase authentication strength within one session without the need to
change any application logic.

Sometimes it is necessary to process a step-up authentication when an
already authenticated user tries to access data that is identified as critical.
This would result in the user being prompted for an additional authentication
after he already signed in.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 281

9.2 Typical security design objectives
In addition to the typical security design requirements described in 6.2.2, “Typical
design objectives (technical requirements)” on page 194, which were driven by
an overall Web security approach, we want to add the following concerns from
the authentication aspect.

Following are some of the technical requirements for authentication through the
Web security servers address:

� Authentication

Enforce authentication of users, where the type of authentication depends on
the resources they want to access. Sometimes all users need to be
authenticated, sometimes only users that want to access some protected
URLs or applications need to identity themselves.

� User-based authorization

Perform an initial user-based authorization check (such as, decide whether a
user should be allowed to initially contact any of the Web applications). This
step prevents certain users from accessing the system at all.

� Target-based authorization

Perform a resource-based authorization by deciding whether a user should be
allowed to contact a certain Web application.

� Single sign-on

If user authentication and authorization was successful, forward the user’s
request and user’s credentials to a certain Web application server for further
processing.

� Use of a separate component for authentication

It might be necessary to allow a separate and already existing authentication
application and repository to perform the initial user authentication. These
additional authentication methods should be usable without having to rewrite
any of the applications.

282 Enterprise Security Architecture Using IBM Tivoli Security Solutions

9.3 Solution architecture with WebSEAL
The most secure way to achieve the design objectives is to use a reverse Web
proxy with sufficient security functions in front of the existing Web application
servers. Figure 9-1 shows a basic architecture for protecting Web applications.

Figure 9-1 Reverse proxy flow for authentication, single sign-on, and authorization

The reverse proxy is used as a mediator between the user and the Web
application servers. The functions of the reverse proxy have to provide the
following details:

� Accept either HTTP or HTTPS connections.

� If needed, gather user credentials.

� If needed, perform user authentication (locally or by using an external
authentication service such as an external authentication C API or external
authentication interface (EAI)).

Management Zone

Production ZoneInternet DMZ IntranetInternet

Reverse
Web Proxy

Web
Application

Server

External
Authentication

Server

Backend

1: Authentication 3: Single sign-on

2: Authorization

4: Authentication and
Authorization (Optional)

5: Authentication
and Authorization

(Optional)

Policy Server

Browser

Authorization
Database

User Registry

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 283

� Gather authorization information and make an authorization decision.

� Proxy the user’s connection together with user credentials to the applicable
Web application server.

Because this is a pure architectural discussion about functionality, the placement
of additional components, such as load balancers and high-availability
mechanisms, is described in Chapter 8, “Increasing availability and scalability”
on page 259.

9.3.1 Authentication and single sign-on mechanisms
This section presents the basic principles of authentication and single sign-on
mechanisms that are used by the Web security server to enforce protected
access when a user tries to connect to a certain Web application from its Web
browser.

Authentication describes the process of exchanging credentials to identify the
communication partners. Authentication can be directional or mutual. Single
sign-on is the process of forwarding information about a user’s identity in a
secure way to another system. The Web security server can enforce certain
types of user authentication and can use several single sign-on mechanisms to
forward user requests together with user information to a Web application server.

Figure 9-2 on page 286 gives an overview of the various authentication and
single sign-on mechanisms supported by the Web security server. It depicts the
available authentication schema between a user and the Web security server, as
well as the authentication between the Web security server and other back-end
application servers. The different mechanisms are discussed in greater detail in
9.4, “Web security server authentication mechanisms” on page 291.

Look at Figure 9-1 on page 283 to follow the steps of the authentication process
for a WebSEAL environment:

1. The user contacts the Web site by entering the HTTP address of a Web page
or Web application. The first point of contact is the WebSEAL server.
Because WebSEAL works as a reverse proxy, the user does not realize that

Note: The Web Server Plugins do not perform the SSL encryption between
the client and the browser or the Web server and the applications (if remote)
because this is the responsibility of the Web server itself.

284 Enterprise Security Architecture Using IBM Tivoli Security Solutions

there is another system involved in the communication with the Web server
that has been contacted.

If access to the requested information is restricted, WebSEAL requests
authentication information and authenticates the user. After successful
authentication, WebSEAL generates user credential information.

2. When authenticated, WebSEAL achieves an authorization decision based on
the user credentials and the policy information that protects the information.
WebSEAL decides whether the user is allowed to contact the system at all.

3. WebSEAL selects the junction for the user’s requests and forwards the user
credentials and user request to the Web application server.

4. Based on the forwarded user credentials, the Web application server can
proceed with further, more fine-grained authorization decisions.

The Web security server solutions provide enough flexibility to support multiple
authentication and single sign-on mechanisms to act as a reverse Web proxy
between different user groups and different types of Web application servers in a
secure way.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 285

Figure 9-2 Access Manager authentication methods with Web Security Solutions

The left portion in Figure 9-2 lists authentication mechanisms available between
a user and a Tivoli Web Security Solution. The right side lists single sign-on
mechanisms between the Web security server and another Web application
server. Typically the Web security server of choice here is WebSEAL because of
its ability to provide downstream single sign-on capabilities.

Some of those mechanisms can be combined. For example, access to a certain
URL can be restricted to require a certain IP source address and the correct user
ID/password combination. It is also possible to combine some authentication
mechanisms with single sign-on mechanisms.

Web
Security
Solution

Forms-based logon
with user ID and password

SSLv3 client authentication
with X.509 certificate

RSA SecurID token

Other authenticators
supported by custom CDAS

Basic Authentication (BA)
with user ID and password

Custom HTTP
Header

BA with GSO user ID
and GSO password

BA with user ID and
generic password

HTTP variables with
user information

PAC token
(IV_CREDS)

LTPA token
(via cookie)

Multiplexing Proxy Agent
(MPA) gateway

No authentication

no credentials
mobile phone

PDA

HTTP

HTTPS

HTTP
HTTPS

WebSEAL
e-Community Cookie

Web
Application

Server

IP address

Trust Association
Interceptor Plus

(TAI++)

Client

Client

Client

Client

Client

Client

Client

Client

Other authenticators supported
by custom EAI application

Web
Application

Server

Web
Application

Server

Web
Application

Server

Web
Application

Server

Web
Application

Server

Web
Application

Server

T

R

U

S

T

Forms SSO Web
Application

Server

286 Enterprise Security Architecture Using IBM Tivoli Security Solutions

A single Web security server may be configured for multiple different levels of
authentication, of which unauthenticated is the first. Usually the next one is the
user ID and password, but it can be any of the supported authentication
mechanisms. Moving up to authenticated access happens when access control
lists on the requested object do not allow access for unauthenticated users. The
next level of authentication, which is usually a token (but can be any of the
supported authentication mechanisms), is required when a protected object
policy requiring it is set on an object.

9.3.2 Trust
An important factor for a centralized security portal solution is trust. If you
configure all information requests to be routed through your central WebSEAL
reverse proxy, you only want to authenticate the user once. This approach would
imply that all back-end application servers trust all incoming user requests as
being properly authenticated and authorized by a preliminary authority such as
WebSEAL. This solution is very useful if WebSEAL can do all necessary
authorization.

Figure 9-3 on page 288 shows a list of Web server products that can be
protected with Access Manager’s WebSEAL using some of the mechanisms that
we listed. This list is not all inclusive. For the most up to date list of integration
adapters visit the following download portion of the IBM Tivoli Access Manager
for e-business Web site:

http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliAccessManagerfore
-business.html

The topic of trust is less relevant in a Web Server Plugin discussion, where,
typically, the plugin is only focussed on protecting access to a single application
server (whether it be .NET or WebSphere).

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 287

http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliAccessManagerfore-business.html

Figure 9-3 Overview of Web server products protected with WebSEAL

In order to fully implement a secure trust relationship, you would also have to
configure each and every back-end application server to only accept incoming
requests from WebSEAL on the specified port. No other direct connections,
internal or external, are to be allowed to any of the servers. In cases where this is
not yet practical or possible to achieve, you would have to specify the junctions to
forward the user credentials in a way for the back-end servers to re-authenticate
the user principal. This discussion was also addressed in Chapter 6, “Access
Manager for e-business” on page 191.

Tivoli Access
Manager

WebSEAL

Access Manager
WebSEAL

Apache

IBM WebSphere
Application Server

Lotus Domino

HTTP

HTTPS

User ID / password

SecurID token

SSLv3 client authentication

PKI certificate

Microsoft IIS

BEA WebLogic

Microsoft Sharepoint
Portal 2003

SAP ITS

IBM WebSphere
Portal

IBM HTTP Server

IBM WebSphere
Everyplace

Basic Authentication

HTTP
forms-based logon

Client

Client

Client

Client

Client

T

R

U

S

T

288 Enterprise Security Architecture Using IBM Tivoli Security Solutions

9.3.3 Generic authentication mechanism with Web security server
Before going into the specific authentication model details, we use Figure 9-4 to
look at a generic picture of the Web security server authentication model.

Figure 9-4 Generic WebSEAL authentication model

The following steps explain Figure 9-4.

1. The user presents his identity information to the Web security server.

2. The Web security server invokes the configured authentication library
(password, token, certificate, or custom).

3. The authentication library passes the user identity information to the
Authentication Service to perform user validation.

4. After validating the user, the Authentication Service maps the information
according to its configuration and returns an Access Manager user ID. The
Authentication Service may return the same individual user information that it
received on input or it may use a mapped-to ID if each input user is also the
output user that is referred to as one-to-one mapping. If many input users are
mapped to the same output user, that is referred to as many-to-one. In both
cases, the returned user must be defined to the Access Manager’s user
registry.

5. The Web security server now uses the Access Manager user registry to
create the Access Manager credential that is cached for the duration of the
session and used for any authorization decisions.

Authentication Service

Validate user identity information,
and return Access Manager user ID

(and other attributes (optional))

1

Create Credential

Authentication
Library

Web Security
Server

2

3

4

5

Access Manager
User Registry

Authentication
Service Registry

Browser

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 289

9.3.4 Generic Web security server single sign-on mechanism
As discussed in Chapter 7, “A basic WebSEAL scenario” on page 245,
WebSEAL provides powerful capabilities for managing access to multiple Web
application servers through a common access point. Figure 9-3 on page 288
shows some of the various products WebSEAL can integrate with. Some of these
downstream single sign-on attributes can also be configured to be provided by
the Web Server Plugins.

If you want to delegate further authentication and authorization tasks to the
back-end application, you have to provide information about the user and the
session. In order to pass on that kind of information, you have to define your
junctions accordingly. You can actually provide the following information for your
junctioned servers.

Supplying client identity in HTTP headers
You can insert Access Manager-specific client identity and group membership
information into the HTTP headers of requests destined for junctioned third-party
servers. The Access Manager HTTP header information enables applications on
junctioned third-party servers to perform user-specific actions based on the
client’s Access Manager identity.

Supplying client IP addresses in HTTP headers
You can insert the client IP address information into the HTTP headers of
requests destined for junctioned application servers. The Access Manager HTTP
header information enables applications on junctioned third-party servers to
perform actions based on this IP address information.

Passing session cookies to junctioned portal servers
A Web portal is a server that offers a broad array of personalized resources and
services. You can send the Access Manager session cookie (originally
established between the client and the Web security server) to a back-end portal
server. This option currently exists to directly support the integration of WebSEAL
with different vendors’ portal solutions. Note that the passing of session cookies
is for downstream SSO from the portal to applications and for performing session
termination using applications built with the Management API.

Global Single sign-on solution
Access Manager supports a flexible single sign-on solution that features the
ability to provide alternative user names and passwords to the back-end Web
application server.

290 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Dynamic business entitlements
Access Manager offers a dynamic business entitlement functionality for passing
information to back-end Web applications. This is implemented with two steps:

1. It is possible to insert any field from an Access Manager user’s LDAP record
into the user’s credential at logon time. These values can be extracted by an
application using the Authorization Application Programming Interface
accessing the delegated client identity information.

2. Being able to insert arbitrary values from LDAP into the credential (without
writing new authentication code) is a useful addition to Access Manager;
however, the next step goes one step further, enabling back-end Web
applications to access the information without the need to use aznAPI.

The Web security servers can extract the values from the credential and pass
them to the back-end Web server as fields in the HTTP request header. This
enables most Web applications to access them without using any special
code.

9.4 Web security server authentication mechanisms
This section shows the authentication mechanisms that are supported by the
Web security servers to protect access to a Web environment. Some
mechanisms in this section can be combined with some of the single sign-on
mechanisms in the next chapter to make the connection between a user and a
Web application.

The Web security servers use the concept of authentication modules to use
different authentication methods. There are three types of modules:

� Built-in modules that ship with Access Manager Web security servers and are
fully supported

� Support for custom external authentication solutions using the external
authentication interface (EAI)

� Support for custom modules written using the external authentication C API

The following built-in modules exist in Access Manager:

passwd-ldap Password authentication via LDAP (Forms/BasicAuth)

passwd-uraf Password authentication using the Tivoli Access Manager
User Registry Adapter Framework (URAF) for Active
Directory or Domino (Forms/Basic Auth)

token-cdas Token authentication (SecureID)

cert-ldap SSL client certificate authentication

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 291

http-request HTTP header or IP address authentication

kerberosv5 Implements Simple and Protected Negotiation (SPNEGO)
authentication with WebSEAL
(Windows Desktop Single Sign-On)

9.4.1 Basic authentication with user ID and password
Basic authentication (BA) is part of the HTTP standard and defines a
standardized way in which user ID and password information is passed to a Web
server. When the Web security server sends a BA challenge to the browser, the
browser pops up a dialog panel requesting user name and password from the
user. When this information is entered, the browser sends its original request
again, but this time with the user name and password included in the BA header
of the HTTP request. The Web security server extracts this information from the
header and uses it to verify the user’s identity. In this case, a specific library
shipped with Access Manager implements a built-in authentication service and
performs a check against the Access Manager user registry. If successful, a
credential is created and cached.

After a user has authenticated an ID and password through the browser, the
browser caches this information in memory and sends it with each subsequent
request to the same server. Even by configuring a session log-out parameter,
which is possible for HTTPS sessions, the user automatically logs on to Web
security server with each new request he sends. The only way to clear this cache
(and log the current user out) is to close all browser panels.

9.4.2 Forms-based login with user ID and password
The alternative to using basic authentication is to use forms-based login. Rather
than send a basic authentication challenge in response to a client request, Web
security server responds with a sign-in form in HTML format. The client browser
displays this and the user fills in a user ID and password. When the user clicks
the send or logon button, the form is returned to the Web security server using an
HTTP POST request. The Web security server extracts the information and uses
it to verify the user’s identity through the Access Manager authentication service,
where it performs a check against the Access Manager user registry.

As the user ID and password information is not cached on the browser, it
becomes possible to perform a programmatic logout for the user. On a client
request, the Web security server presents a customizable logout form to a user.
After the user confirms the logout, the session is considered closed and the
credential is deleted from the Web security server cache.

292 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Another benefit to using the forms-based login process is that you can enforce a
time-based logout for authenticated sessions. The time values can be
customized in the Web security server configuration files.

9.4.3 Authentication with X.509 client certificates
In response to a certificate request from Web security server, as part of the SSL
Version 3 tunnel negotiation, the browser prompts the user to select a certificate
from the local certificate store or smartcard. The user is asked for a password to
access the private key. When the user selects a certificate, it is passed to the
Web security server, which uses the certificate authentication library to check the
signature of the client certificate. It also checks the validity period to ensure that
the certificate has not expired. Assuming that the certificate is valid, the identity
in the certificate is mapped (one-to-one) to an Access Manager identity. After the
Access Manager identity is passed back to Web security server, the Web
security server pulls the user information from the Access Manager user registry
and builds the credential.

If you configure Access Manager to use X.509 client certificates for
authentication, but the user does not have a certificate available, Web security
server can fall back to basic authentication, if required.

9.4.4 Authentication with RSA SecurID token
Access Manager includes an external authentication C API that supports
authentication of clients using user name and token pass code information from
an RSA SecurID token authenticator (TAR), a physical device that stores and
dynamically generates a piece of authentication data (a token).

The TAR is used in tandem with an authentication server (the RSA ACE/Server),
which actually performs the authentication. During authentication to the Web
security server, the client enters a user name and pass code. The pass code
consists of the following:

� The unique PIN number associated with the client’s SecurID TAR
� The current number sequence generated by the SecurID TAR

The Ace/Server uses its own registry database to determine the PIN that the
user should be using, checks it, and strips it off of the pass code. It then checks
the remaining number sequence against its own internally generated number
sequence. A matching number sequence completes the authentication.

At this point, the role of the external authentication C API token is complete. The
external authentication C API does not perform identity mapping, but simply
returns to the Web security server an Access Manager identity containing the

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 293

user name of the client. This user name must match a user ID stored in the
Access Manager user registry.

9.4.5 Windows desktop single sign-on
Before describing Windows desktop single sign-on, there are some important
security considerations to point out:

� In order for Microsoft Internet Explorer® (IE) to be able to use integrated
Windows authentication, it must recognize the Web security server server as
an intranet or Trusted site.

� The Web security server must be able to access Active Directory as its
Kerberos Key Distribution Center (KDC). This may expose Active Directory to
new networks.

Therefore, it is important to only use SPNEGO authentication over a secure
network or over a secure transport.

The Web security servers support the SPNEGO (Simple and Protected GSS-API
Negotiation) protocol and Kerberos authentication for use with Windows clients
to achieve Windows desktop single sign-on. The SPNEGO protocol allows for a
negotiation between the client (browser) and the server regarding the
authentication mechanism to use. The client identity presented by the browser
can be verified by the Web security server using Kerberos authentication
mechanisms.

Figure 9-5 on page 295 illustrates how the Web security server responds to
requests when configured for SPNEGO authentication.

Note: Use of SPNEGO requires that a time synchronization service be
deployed across the Active Directory server, the Web security server, and any
clients that will authenticate using SPNEGO.

294 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 9-5 Initial negotiation with SPNEGO configured Web security server

The response provided above indicates that the Web security server includes the
WWW-authenticate: Negotiate header in its response. In addition, the Web
security server also sends the login form back to the requestor’s browser. This
allows for a user that is not enabled for SPNEGO authentication to still
authenticate and participate in the Access Manager secure domain. If the user’s
browser is configured for integrated login, then the SPNEGO authentication
process can begin. Figure 9-6 shows the SPNEGO authentication process.

Figure 9-6 SPNEGO authentication process

Notice that in order to gain access to the Web security server, the user must first
obtain a ticket from the Key Distribution Center (KDC), which is also Active
Directory. This ticket is then sent in a SPNEGO message to the Web security
server as show in Figure 9-7 on page 296.

userid1

Client Accesses Protected
WebSEAL Resource

(https://webseal/protectedR)

WebSEAL returns HTTP 401 Unauthorized
and the HTTP Header:

WWW-Authenticate: Negotiate

1

2

Windows 2000/XP PC
Web Security Ser

TGT

TGS
Exchange

Kerberos Ticket

SPNEGO
Token

userid1

Windows 2000/XP PC

Web Security
Server

Active Directory Domain Controller
Key Distribution Center (KDC)

Authenticator
userid1

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 295

Figure 9-7 The Web security server processing of SPNEGO token

The last portion of the Authentication process is to build an Access Manager
credential as show in Figure 9-8.

Figure 9-8 Building a credential after SPNEGO authentication

Client re-sends the HTTP Get request
along with the new HTTP Header:
Authorization: Negotiate
<base64-encoded token>

The Web Security Server processes the
SPNEGO token using standard Kerberos

V5 (GSS-API) calls. It decrypts the
Kerberos ticket using a shared key file

from Active Directory.

1

2

userid1

Windows 2000/XP PC Web Security Server

userid1

/protectedR

Build
Credential 1

User IDs
between Access

Manager and
Active Directory

must match

2

3
Authorization occurs and
user is allowed to access

protected resource (in
this case a junction for

WebSEAL)

Web Security
Server

Backend Server

aznDB

Access
Manager User

Registry

Active Directory Domain userid1

296 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Mapping an ID from Active Directory to Access Manager is an important part of
SPNEGO. Normally, the Web security server truncates the domain name portion
of an Active Directory ID off in order to get the user ID. This can cause conflicts,
however, if two different users have the same ID in different Active Directory
domains. In this case, the Web security server would need to be configured to
keep the domain section of the user ID attached in order to be able to resolve the
conflict. Any more complex mapping scenarios of Active Directory IDs to Access
Manager IDs requires a custom module to be written to modify the user name
returned from SPNEGO authentication.

Also, if the desire is to have a user the IDs between Active Directory and Access
Manager remain synchronized, an directory synchronization product such as
IBM Tivoli Directory Integrator should be used.

Support for Kerberos authentication in the Web security server was implemented
specifically to support a Windows desktop single sign-on solution. This solution
requires that the Web security server server have accounts in an Active Directory
domain, and that they be able to access a Kerberos Key Distribution Center. In
addition, the Internet Explorer (IE) client must be configured to use the SPNEGO
protocol and Kerberos authentication when contacting the Web security server.

Kerberos authentication, which uses Active Directory services, is supported by
the Web security server running on Windows, AIX, Solaris, Linux on x86, and
zSeries Linux.

If you have to use the older NTLM (NT LAN Manager) authentication, which
involves passing a token based on the user’s local password, your only option is
to use the Web server plug-in for IIS.

9.4.6 External Authentication Interface
Tivoli Access Manager Web security servers both support the externalization of
authentication through an HTTP interface. This technology is known as the
External Authentication Interface (EAI). The external authentication interface is
an alternative way to customize authentication when the authentication
information is passed in HTTP messages. It allows a backend application server
to perform the authentication of a user (with the HTTP messages passing
through the Web security server) and then, upon successful authentication,

Note: Compatibility between SPNEGO authentication and the Web security
server e-community single sign-on is limited. The Web security server can be
an e-community master authentication server (MAS) and support SPNEGO.
However, the Web security server server cannot be an e-community
subordinate and also support SPNEGO.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 297

return an identity to the Web security server using some predefined HTTP
headers.

By allowing an application server to perform authentication, virtually any desired
authentication strategy can be implemented. Since the interface is HTTP, the
backend application can be written in any language that supports communication
via the HTTP protocol. This is an advantage over the external authentication C
API that must be written exclusively in C. The external authentication C API is
still, however, the only method for performing non-HTTP authentication such as
client certificate authentication.

Figure 9-9 External Authentication Interface

The external authentication interface could return a Privilege Attribute Certificate
(PAC) which could then be used to build the credential. It can also return identity
components that the Web security server can use to create a credential. These
include all components that can be returned from an authentication module, such
as username, authentication level, and extended attributes.

There are some implications to externalizing authentication outside of the
standard Web security server password module. The password module in the
Web security server provides for maximum failed login attempts, password
lifetime checks, and a password change function. All of these functions need to
be duplicated if using an external authorization interface.

A benefit that comes with implementing an external authorization interface is that
the restrictions on user registries for authentication is no longer applicable. In
theory you could authenticate against any user registry you want (directory,
database, and so on) provided that the interface you are writing supports it. In

EAIWeb Security Server

Build
Credential

Gather
Authentication

Data

Session Cache

Verify/Process
Data

Return Access
Manager User

ID

HTTP

Browser
Access Manager

User ID
(Auth Level)
(Attributes)

298 Enterprise Security Architecture Using IBM Tivoli Security Solutions

addition, you could also authenticate against multiple user registries. Regardless
of where the external authentication interface authenticates a user or how it
authenticates them, the EAI must return a valid Access Manager user. This
means that user and groups must exist in the Access Manager user registry that
can represent users and groups in the foreign registry. There are three ways to
approach this problem:

� Synchronize user registries

User and group objects could be synchronized from the foreign user registry
into the Access Manager user registry. This allows for user level authorization
to still be performed within the Web security server. When the user ID is
passed from the EAI to the Web security server, group information is pulled
into the credential from the Access Manager user registry not the foreign user
registry. Since authentication is not being performed against the Access
Manager user registry there is no need to synchronize user passwords or
password policy information. Since the synchronization would need to be
constant as users and group could be modified on both the Access Manager
user registry and the foreign user registry, IBM Tivoli Directory Integrator
would be a good solution for user registry synchronization in this situation.

� Fixed user ID returned

User and group information is not synchronized between the Access Manager
user registry and the foreign user registry. The EAI returns a fixed user ID to
the Web security server. While easier to implement, this solution has serious
drawbacks in terms of enforcing security policy. Since all users being
authenticated by the EAI are returning the same user ID to the Web security
server, there is no way to use user dependent ACLs for security. This model
simply allows for authenticated or unauthenticated access to resources.
Authorization rules could be used to enforce policy, however, if the EAI
included the actual user ID in an extended attribute in the credential. Using
only authorization rules for security results in higher administrative overhead
due to the effort needed to define the rules. It also results in lower system
performance as evaluating rules is more expensive than evaluating ACLs.

� Dynamic group assignment

This option only works if the EAI passes back a credential to the Web security
server (this is also known as a Privilege Attribute Certificate or PAC). The EAI
would insert group membership information from the foreign user registry into
the user’s credential. The groups could then be synchronized from the foreign
user registry into the Access Manager user registry. Another way to perform
this type of mapping is to have the EAI map the users into a specified set of
static groups in the Access Manager user registry. Using this technique,
authentication is performed against a foreign user registry and the group
memberships in the foreign user registry can be reflected in the Access

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 299

Manager credential. ACL authorization can now be performed at the group
level. It is important to be aware that user level authorization is still not
possible since the EAI is still returning a fixed user ID to the Web security
server.

EAI using IBM Tivoli Directory Integrator
Directory Integrator can be used as an external authentication interface into
Access Manager, the Web security server. Directory Integrator has an HTTP
server connector that allows an assembly line to listen for HTTP requests and
then runs an assembly line with the HTTP request as input. The assembly line
output sends an HTTP response to the caller. Figure 9-10 shows how Directory
Integrator can be used as an EAI to perform directory chaining—users defined in
multiple registries can all be authenticated to the Web security server.

Figure 9-10 Directory chaining EAI using IBM Tivoli Directory Integrator

Web Security
Server

Tivoli Directory
Integrator

Foreign
Registry 1

Foreign
Registry 2

Foreign
Registry n

W
eb

C
on

ne
ct

or
Connector

Connector

Connector

Build EAI
Message

Page
Generator

Browser

Access
Manager

User Registry

300 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Another problem that can be solved using a Directory Integrator-based EAI
solution is user migration of passwords. Figure 9-11 provides an example of a
user authenticating to the original, foreign user registry using a Directory
Integrator-based EAI application. The assembly line can then create a user ID for
the user in the Access Manager user registry, including their password, before
returning that new user ID to the Web security server. The Web security server
can then build the user credential based on the newly created user. This whole
process of user migration would be completely automatic and transparent to the
end user.

Figure 9-11 Automated user migration using EAI and IBM Tivoli Directory Integrator

9.4.7 Custom authentication using the External Authentication C API
All of the authentication mechanisms described above assume that the user
identity validation information is held in the Access Manager user registry or can
be verified locally on the Web security server. Of course, there are situations
where this is not the case, and user authentication has to be performed outside
of the Access Manager trusted domain: one-time password servers (for example,
RSA SecureID), RADIUS, Resource Access Control Facility (RACF), and so on.
On the other side, depending on the requirements, it may become necessary to
extend or enrich the capabilities provided by built-in authentication libraries.

Foreign
Registry

Connector

Build EAI
Message

Access
Manager User

Exists?

Yes No

Web Security
Server

Tivoli Directory
Integrator

Page
Generator

Browser

Access
Manager

User Registry

W
eb

C
on

ne
ct

or

Add Access
Manager User

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 301

the Web security server provides a capability referred to as the external
authentication C API in order to meet these requirements.

As shown in Figure 9-12, the external authentication C API enables you to
substitute the default built-in Web security server authentication mechanism with
a highly flexible shared library mechanism that allows custom handling and
processing of client authentication information.

You can customize the external authentication C API shared library to handle
authentication data according to your security requirements given the following
options.

Figure 9-12 Web security server authentication model with the external authentication C
API

The external authentication C API can process authentication data internally and
return an Access Manager identity. This is especially useful if you want to have
enriched authentication mechanisms in comparison to built-in ones, for example,
checking client certificate validity via Online Certificate Status Protocol (OCSP).
The user identity validation information may reside in the user registry and not be
used for authentication by default (for example, providing a customer number
along with user ID and password in B2B scenarios).

Extending the built-in capabilities of authentication mechanisms provided by
Access Manager is another reason to built a custom program using the external
authentication C API. This method enables you to authenticate clients who are
not direct members of the Access Manager security domain. In that case, the
custom external authentication C API program can direct authentication data to
be processed by an external authentication mechanism and third-party registry
(for example, RACF, One-Time Password Server, or authentication via personal

Authentication Service
Validate user identity

information and return Access
Manager user ID

1

Create Credential

Custom
Authentication

Library

Web Security
Server

2

3

4

5

External
authentication

C API

Access Manager
User Registry

Authentication
Service Registry

Browser

302 Enterprise Security Architecture Using IBM Tivoli Security Solutions

question). Ultimately, the external authentication application returns an Access
Manager identity to the Web security server for creating the Access Manager
credential.

9.4.8 Entitlement service interface
An entitlement service interface is a part of the aznAPI that is called during the
building of a credential. This entitlement service receives the basic user
credential being created and can specify a list of additional custom attributes to
be added to the credential before it is returned to the application.

The entitlement service interface is called from within the aznAPI and so the
function is available to all Access Manager applications regardless of the registry
and regardless of the authentication method used. The credential attribute
service can obtain the custom credentials from any source; they don’t have to
come from the user registry. Custom entitlement services can be written to obtain
attributes from any desired source.

Figure 9-13 shows the architecture for adding attributes to a new user credential.
The main aspect is that the Resource Manager can be any Access Manager
aznAPI application—it is no longer limited to just the Web security servers.

Initially the application calls the aznAPI to request a credential. The aznAPI
builds a basic Access Manager credential for the user (1) and then calls the
configured credential attribute entitlement services. These gather additional
attributes for the user (from the registry in this example) and return them to the
aznAPI (2). The aznAPI then adds these attributes to the basic Access Manager
credential before returning it to the calling application.

Figure 9-13 Entitlement service

An entitlement service is a very generic plug-in that can be called by the Access
Manager authorization service. It is possible to register multiple credential

Any
aznAPI

Resource
Manager

aznAPI

AM Registry

1.Build Credential

Entitlement Service(s) 2.Get Attributes

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 303

attribute entitlement services with the aznAPI. These will all be called, and all of
the attributes are added to the user’s credential.

The input to an entitlement service is a user credential and an application
context. The output of an entitlement service is an attribute list. This is how the
entitlement service passes back its results.

Credential attribute entitlement service
The credential attribute entitlement service extracts information from a user’s
LDAP entry and add its to their credential. For example, a backend application
requires a user’s department number in addition to their user ID in order to build
the application interface appropriately. By using the credential attribute
entitlement service, the Web security server can pull the user’s department out of
their entry in LDAP, place it in the user’s credential, then use the information from
the credential to place the department value in an HTTP header. These attributes
must exist within the inetorgperson (or some subclass of) LDAP object.

Policy credential attribute entitlement service
The policy credential attribute entitlement service allows user policy information
to be gathered from the Access Manager registry and inserted into the user’s
credential. This information can include password requirements, account
expiration date, and time-of-day login restrictions. If a user does not have these
attributes explicitly defined to their account, the values are inherited from the
global policy settings.

9.4.9 Authentication using customized HTTP headers
Access Manager supports authentication via customized HTTP header
information supplied by the client or a proxy agent.

This mechanism requires a mapping function (a shared library) that maps the
trusted (pre-authenticated) header data to an Access Manager identity. The Web
security server can take this identity and create a credential for the user.

The Web security server assumes that custom HTTP header data was
authenticated previously. For this reason, you should implement this method
exclusively with no other authentication methods enabled. It is possible to
impersonate custom HTTP header data. This method is therefore only
appropriate in tightly controlled networks, where traffic from the authenticating
proxy supplying the HTTP header can be absolutely trusted.

By default, this shared library is built to map data from trusted proxy headers.

304 Enterprise Security Architecture Using IBM Tivoli Security Solutions

9.4.10 Authentication based on IP address
Access Manager supports authentication via an IP address supplied by the
client.

This mechanism is used best in combination with other mechanisms. For
example, you can use IP network addresses to identify a certain group of users,
give them access to a certain application, then use additional authentication
mechanisms to give access to more protected applications.

Such a configuration can be used to implement a two-factor authentication as
well. It will possibly be more secure than plain password authentication.

9.4.11 No authentication
Any user who can reach the Web security server belongs to the group of
unauthenticated users. This group can also get certain permissions.

This group of unauthenticated users generally is used to define public Web
access. The Web security server can force unauthenticated users to use another
authentication method when selecting certain protected URLs.

All users who can reach the Web security server might already have enough
permissions to contact certain junctioned Web servers. For example, if the Web
security server is connected to a VPN gateway, only authorized VPN users will
be able to reach that server, and additional authentication might not be needed.
In this situation, you can probably treat unauthenticated users as you would a
group of password-authenticated Internet users.

9.4.12 MPA authentication
Access Manager provides an authentication mechanism for clients using a
Multiplexing Proxy Agent (MPA). This is a special variation of the authentication
with customized HTTP headers that is often used for mobile phones and PDAs,
but is not limited to these.

Multiplexing Proxy Agents are gateways that accommodate multiple client
access. IBM Everyplace Wireless Gateway (EWG) is an integrated part of the
IBM WebSphere Everyplace Suite that provides security-rich wired and wireless
connectivity between the IT network and the communications network; for
example:

� Cellular networks, including GSM, CDMA, TDMA, PDC, PHS, iDEN, and
AMPS

� Packet radio networks, including GPRS, CDPD, DatatTAC, and Mobitex

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 305

� Satellite and wireline environments, including DSL, cable modems, Internet
service providers, ISDN, dial, and LAN

In addition, the Everyplace Wireless Gateway provides protocol translation as a
Wireless Application Protocol (WAP) gateway, information push as a WAP push
proxy gateway, and support for short messaging services (SMS). EWG
establishes a single SSL channel to the origin server and “tunnels” all client
requests and responses through this channel.

To the Web security server, the information across this channel initially appears
as multiple requests from one client. The Web security server must distinguish
between the authentication of the MPA server over SSL and the additional
authentication requests for each individual client, so MPAs must use a different
authentication method from that used by clients.

Because the Web security server maintains an SSL session state for the MPA, it
cannot use SSL session IDs for each client simultaneously. The Web security
server must therefore use some other mechanism for maintaining sessions with
the clients, such as cookies or HTTP headers.

WebSEAL has support for the Entrust Proxy and the Nokia WAP gateway.

9.5 Web security server single sign-on mechanisms
After a user is authenticated by the Web security server and an authorization
decision is made, the Web security server has to forward the user’s request to a
back-end Web application server. If needed, the Web security server can include
information about the user, such as X.509 distinguished name, group
memberships, or any other value.

The mechanisms to forward that information can vary. You can use standard
protocols such as the HTTP basic authentication header or use proprietary
mechanisms when talking to specific server products. The Web security server
supports several mechanisms for forwarding requests to Web application
servers.

This section presents alternatives on how to pass information about the user and
the user’s request to the back-end application.

When a protected resource is located on a junctioned Web application server, a
client requesting that resource can be required to perform multiple logins: one for
the Web security server server and one for the back-end server. Each login may
require different login identities. Often, the problem of administering and
maintaining multiple login identities can be solved with a single sign-on
mechanism.

306 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The Open Group defines single sign-on as a mechanism whereby a single action
of user authentication and authorization can permit a user to access all
computers and systems where that user has access permission, without the
need to enter multiple passwords1. While Tivoli Global Sign-On addresses the
authentication issues for various applications running on different operating
systems, the Web security server’s realm is to provide the single sign-on
functionalities for Web infrastructures. WebSEAL, acting as a Web reverse proxy
to the company’s Web environment, communicates with the junctioned servers
on behalf of the users. It enables the user to access a resource, regardless of the
resource’s location, using only one initial login. Any more login requirements from
back-end application servers are handled so that they are transparent to the
user.

Depending on integration requirements, different data should be sent to the Web
security server-secured Web application using different formats. However, most
of the Web applications support standard HTTP-based mechanisms for the user
identification, which are exploited by the Web security server.

9.5.1 Tivoli Global Single Sign-On lockbox
Most Web applications support basic authentication or forms-based login for
checking authenticity and obtaining a user’s identity information. When using this
support, an application or the server the application is running on maintains a
database with user IDs and passwords (in the most simple case). In our initial
example in Chapter 7, “A basic WebSEAL scenario” on page 245, it was
operating system-based user management on multiple Web servers, containing
lists of user IDs and passwords. After challenging a user and obtaining a user ID
and password, an application would look up the matching entry and, if one was
found, the user was considered authenticated and his or her identity was
associated with the provided user ID. In more sophisticated environments
relational databases, existing applications or LDAP-based repositories are
targeting that scope.

Access Manager supports a flexible single sign-on solution that features the
ability to provide alternative user IDs and passwords to the Web application
servers in two different ways:

� By supplying user ID and password information via basic authentication
headers

� By performing forms-based single sign-on

The integration is achieved by creating SSO-aware junctions between the Web
security server and Web servers hosting the applications. Global Sign-On (GSO)
resources and GSO resource groups must first be created in Access Manager for

1 From the security section of the Open Group Web site (http://www.opengroup.org/security/sso/).

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 307

http://www.opengroup.org/security/sso/

every application that requires a different logon. When the Web security server
receives a request for a resource located on the SSO-junctioned server, the Web
security server queries the Access Manager user registry for the appropriate
authentication information. The user registry contains mappings for each user
registered for using that application, which provides alternative user IDs and
passwords for specific resources. Evidently, that information has to be in the
repository prior to initial using. The values (user IDs and passwords) should
match those stored in the application home registry.

The visible advantage of the solution is that no changes are supposed to be
made on the application side. However, synchronization of the user IDs and
passwords in the application’s home user registry and Access Manager user
registry is required and can be accomplished with IBM Tivoli Directory Integrator.

A special situation emerges if Access Manager and the secured application
share the same repository for storing user data, as shown in Figure 9-14 on
page 309. An LDAP directory is the most suitable platform for maintaining
application-specific information about users and groups. Given compatible LDAP
schemas, many applications may share the same LDAP directory. LDAP
provides a standardized way of authenticating users based on user ID and
password stored as user attributes. However, it provides no flexibility in defining
object classes to be used for authenticating a user rather than performing a call
based on primary identification attributes of a user (user ID and password).

While using an Access Manager GSO junction, Access Manager uses specific
LDAP attributes for storing GSO information for every GSO user. As a result, the
GSO user ID and password provided for a specific junction are not necessarily
the same as the primary ones. However, a junctioned application sharing the
same LDAP repository would then try to authenticate a user using these values
against primary ones (by doing LDAP bind or compare). The need arises to keep
the values of primary user IDs and passwords the same as GSO IDs and
passwords.

Note: Although junctions are set up on a Web server basis, it is possible to
provide different SSO data to different applications hosted on the same server.
In order to achieve this, multiple GSO junctions to the same Web server are
created. However, using access control lists, the access to the resources is
defined that way, so that only appropriate URLs can be requested through a
specified junction.

308 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 9-14 LDAP shared by Access Manager and other applications

The following issues should be considered while looking for solutions for
integrating Access Manager and Web applications using the same LDAP
repository or even different user repositories:

� Using a directory synchronization product such as IBM Tivoli Directory
Integrator to synchronize both the corporate tree and the Access Manager
tree within the same directory. Directory Integrator also allows for the
synchronization of a user’s password.

� As GSO passwords are encrypted, they can only be read by the Access
Manager GSO APIs.

cn=John Doe

dc=YourCompany,dc=com secAuthority=Default

LDAP Directory Server

Attribute List
cn=John Doe
uid=john123
userPassword=Encrypted Data

cn=Users
principalName=john123

cn=ResCreds
secResCredsId=T:MyGSO

cn=Resources
secResourceID=MyGSO

Common
Attributes

Attribute List
secResCredsID=T:MyGSO
secUid=john123
secAuthnData=Encrypted Data
secAuthnLength=36
secAuthnType=2

Attribute List
secResourceID=MyGSO
secType=1
secValid=True
Description=My GSO Resource

Synchronize

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 309

9.5.2 Forms single sign-on
Forms single sign-on authentication supports existing applications that use
HTML forms for authentication that cannot be modified to directly trust the
authentication performed by the Web security server. Forms single sign-on is
built on the following process:

1. The Web security server will interrupt the authentication process initiated by
the backend application.

2. The Web security server supplies the data required by the login form and
submits the login on behalf of the user.

3. The Web security server saves and restores all cookies and headers.

4. User is unaware of the second login taking place between the Web security
server and backend application.

5. The backend application is unaware that the login form is not coming directly
from the user.

The login form from the backend application can be filled in with a variety of
information from the Web security server such as the following:

� Static text.

� GSO user name and password (see “Tivoli Global Single Sign-On lockbox” on
page 307 for more information).

� Values contained within a user’s credential.

In order to use forms single sign-on, the backend application’s login page must
be uniquely identifiable. Also, client-side scripting can be used to validate input
data, but it must not modify the input data. The junction where the authentication
request is directed must be the same junction where the login page is returned.

9.5.3 Passing an unchanged basic authentication header
WebSEAL can be configured to pass the received basic authentication data
unchanged to the junctioned application. If Access Manager and the application
share the same LDAP registry, Access Manager authenticates a user against the
same LDAP attributes as an application performing a regular LDAP bind (that is,
using a main user ID and password). In this case, there is no need to maintain
the GSO attributes of a user, and the main password may be encrypted.
However, basic authentication is the only available authentication method used
by WebSEAL, as WebSEAL has to obtain the BA header values in order to pass
them through.

310 Enterprise Security Architecture Using IBM Tivoli Security Solutions

9.5.4 Providing a generic password
At this point, the following sections are based on the assumption that trust is
established between WebSEAL and the back-end application server.

Given a Web application that may be contacted only through WebSEAL, an
integration solution based on providing a user ID along with a uniform generic
password and shared by WebSEAL and the application can be considered. As
the process of authenticating a user is performed by WebSEAL, and given that
WebSEAL is the only gateway into the application, there is no need to carry out
the authenticity check again. Although no changes have to be made in the
application, it still could perform authentication in its obvious manner. However,
its scope should only be the gaining of user identity. There should be no other
possibilities available to contact the application avoiding WebSEAL.

The application can maintain its own user repository or share that of Access
Manager (LDAP-based). In the second case, however, the LDAP-bind issue
discussed previously (see 9.5.1, “Tivoli Global Single Sign-On lockbox” on
page 307) has to be considered. That leads to the necessity of maintaining
separate entries for a single user for Access Manager and the secured
application.

9.5.5 Supplying user and group information
The Web security server can be configured to provide information to a junctioned
application about user ID, groups, and resources the user has access to. That is
accomplished by supplying the values of defined HTTP variables:

iv_user For user ID

iv_user_l For user’s LDAP distinguished name

iv_groups For groups a particular user belongs to

iv_creds For the user’s credentials in base64-encoded Privilege
Attribute Certificate (PAC) format

The variables supplied in the HTTP stream can be mapped easily to the CGI
environment variables that can be interpreted by a Web application. As no
password information can be supplied this way, no authentication can be
performed by the junctioned Web application. However, it is possible to combine
this option with any previously described.

Secure credential exchange
We briefly introduce the notion of secure credentials and how they could be
exchanged between Web applications.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 311

Credentials are created as a result of a successful authentication. Credentials
created by the Web security server can be understood by other Web security
servers in the same Access Manager security domain and even beyond.
However, the credential exchange with the junctioned Web server is not
necessarily trivial mainly due to the lack of standardization.

9.5.6 Using LTPA authentication with the Web security servers
The Web security server can provide authentication and authorization services
and protection to an IBM WebSphere or Lotus Domino environment. When the
Web security server is positioned as a protective front end to WebSphere or
Lotus Domino, accessing clients are faced with two potential login points.
Therefore, the Web security server supports a single sign-on solution to one or
more IBM WebSphere or Lotus Domino.

WebSphere provides the cookie-based Lightweight Third Party Authentication
mechanism (LTPA). You can configure the Web security server to support LTPA
and provide a single sign-on solution for clients.

When a user makes a request for a WebSphere or Lotus Domino resource, the
user must first authenticate to the Web security server. Upon successful
authentication, the Web security server generates an LTPA cookie on behalf of
the user. The LTPA cookie, which serves as an authentication token for
WebSphere or Lotus Domino, contains user identity and password information.
This information is encrypted using a password-protected secret key shared
between the Web security server and the WebSphere or Lotus Domino server.

The Web security server inserts the cookie into the HTTP header of the request
that is sent across the junction to WebSphere or Lotus Domino. The back-end
WebSphere or Lotus Domino server receives the request, decrypts the cookie,
and authenticates the user based on the identity information supplied in the
cookie.

To improve performance, the Web security server can store the LTPA cookie in a
cache and use the cached LTPA cookie for subsequent requests during the same
user session. You can configure lifetime timeout and idle (inactivity) timeout
values for the cached cookie.

The creation, encryption, and decryption of LTPA cookies basically introduces
processing overhead. The LTPA cache functionality enables you to improve the
performance of LTPA junctions in a high load environment. By default, the LTPA
cache is enabled. Without the enhancement of the cache, a new LTPA cookie is
created and encrypted for each subsequent user request.

312 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Having the LTPA cookie enabled is independent of the basic authentication
header. This means that with the LTPA cookie inserted into the request header, it
is still possible to have the BA header to carry any authentication information to
the back-end server depending on the -b option specified during the junction
creation. The usage of the BA header depends on the configuration of the
back-end WebSphere or Lotus Domino server. Figure 9-15 shows the available
usage scenarios with the LTPA authentication.

Figure 9-15 WebSEAL LTPA token single sign-on

This concludes the discussion on the various authentication capabilities provided
by Tivoli Access Manager. In the next chapter we take a closer look into the
authorization realm.

9.6 Enterprise single sign-on mechanisms
Another type of distributed scenario involves single sign-on for access to
resources in multiple security domains. A single domain ties together a group of
individuals who need access to a set of applications within an organization. This
implies that if a user needs to access an application in a different security
domain, then they would need to perform a single sign-on operation to that
domain in order to gain access. When secured by Tivoli Access Manager for
e-business, this implies a separate policy server and user registry.

WebSEAL
LTPA

WebSphere
Application

Server

LTPA

LTPA

Domino

LTPA-aware
application

server

Browser

user ID /
password
via forms-

based login

Browser

X.509
certificate

Browser

SecurID
token

Browser

other
authenicators
supported by

custom
CDAS

custom HTTP
header

supported MPA
gateway

Browser

user ID /
password

via
Basic

Authenticaon

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 313

The term multiple security domains can also refer to a multi-domain Access
Manager environment where the user registry and Policy Server are shared, but
the security policy is separated into different authorization databases on a
per-domain basis. For more information about multi-domain environments, see
the product feature outlined in the section titled “Multi-Domain Policy Server” on
page 179.

Consider two divisions of a company, each offering Web-based services to
Internet customers. Each division deployed Web security servers in separate
security domains, implying that there is a separate Policy Server and user
registry for each domain. However, there is a requirement for certain users in
one domain to access resources in the other domain without needing to
authenticate twice. The Web security servers support two different types of
cross-domain authentication to address such scenarios: Cross Domain Single
Sign-On and e-community single sign-on. For both of these types of single
sign-on mechanisms to work, it is necessary that the users participating in the
single sign-on can be mapped to a user in the opposing security domain.
Typically, this might be a one-to-one mapping; however, a programatic interface
is provided (cross domain mapping function) if the customer wants to implement
a more complex mapping function.

9.6.1 Cross Domain Single Sign-On
The Web security servers support the ability to forward an authenticated identity
from a user in one security domain to a Web security server in another security
domain. The receiving Web security server then maps the identity provided by
the sending Web security server to an identity that is valid in its security domain.
This functionality can also be viewed as a push model with respect to
authentication.

This functionality is known as Cross Domain Single Sign-On (CDSSO). In
CDSSO, the user makes a request to a special link on a Web security server,
which then forwards the request, along with some encrypted user and session
information to a Web security server in a different Access Manager domain. The
destination Web security server recognizes the incoming request as a CDSSO
request and authenticates the incoming encrypted token within the local domain.
Hence each security domain shares a set of crpyographic keys.

Note: With the release of Tivoli Federated Identity Manager, many customers
are embracing the open standards approach to enterprise single sign-on by
adopting a ratified standard for passing security tokens between partners.
More information can be found in Part 4, “Managing federations” on page 653.

314 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The CDSSO process contains the following steps:

1. A user initially logs on to a Web security server in one security domain.

2. At some point the user accesses a link controlled by the user’s Web security
server, which contains a special directive (pkmscdsso). This directive results
in redirecting the user to a URL controlled by a Web security server in another
security domain and passing encrypted credential information to the new Web
security server.

3. The user is redirected to the other Web security server and this server
decrypts the credential information passed to it, maps the identity to one
defined in its own user registry, and creates a local credential. The Web
security server then associates this credential with a local session.

4. At this point the user has established secure sessions with two Web security
servers in different domains, but has only had to log in once.

Figure 9-16 on page 316 summarizes a typical CDSSO flow.

Note: Cross Domain Single Sign-On requires that the originating site’s
application be able to generate an appropriate CDSSO link for the destination
site, or alternatively, the link is housed on the static content near the logout
button.

If these changes are not permitted/desired or if application awareness of Web
security server single sign-on functionality is not possible, then e-community
single sign-on can be used. See 9.6.2, “e-community single sign-on” on
page 316 for more information.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 315

Figure 9-16 CDSSO identity determination process

Another significant CDSSO implication for a given security domain, in addition to
the need to potentially modify backend applications, involves the mapping of user
identities. How this mapping is done is not really an architectural issue. It is more
a detailed-design/implementation concern.

It is possible (using the CDMF interfaces discussed in 9.6.3, “Cross Domain
Mapping Framework” on page 321) to map from an ID in one domain to a
different ID in another. However, if the IDs in both domains are the same, a direct
mapping may be done. This is the default and does not require the use of any
special programming interfaces.

9.6.2 e-community single sign-on
e-community single sign-on supports a cross-domain authentication capability.
However, it differs from CDSSO in a few ways. Recall that in CDSSO,
authenticated identities are forwarded. In an e-community scenario, identities are
instead retrieved—it is a pull model. The use of e-communities has certain
advantages over CDSSO, yet have architectural impacts that are not
encountered in a CDSSO environment.

Secure
Domain A

Domain B
WebSEAL

 Browser

Domain A
WebSEAL

1. User authenticates to Domain A WebSEAL.
2. At some point, user makes a request to a "pkmscdsso" link, which contains a Domain B URL.
3. The Domain A WebSEAL constructs an identity token, and redirects the browser to the Domain B

WebSEAL along with the token.
4. The Domain B WebSEAL receives the identity token, maps the user to a Domain B identity (4a),

and establishes a secure session with the browser.
5. The Domain B URL is processed and the result sent to the browser .

Once the identity is established with the Domain B WebSEAL, subsequent requests are processed
normally without need for authentication.

1

2

3

4

5 Secure
Domain B

Domain A
User Registry

Domain B
User Registry

4a1a

316 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Instead of having to use special URLs to indicate the use of single sign-on as in
the CDSSO model, e-community allows for direct access to secured links. This
has a benefit over CDSSO in that users can bookmark links to resources but will
still be allowed to participate in e-community.

In this model, multiple Access Manager domains are defined to be part of a
single e-community. While each participating domain has its own user registry,
one of the domains is designated to be the home domain. Users requesting
protected resources in any of the participating domains initially authenticate to a
Master Authentication Server (MAS) in the home domain. After the initial
authentication occurs, the user has an e-community identity based on the home
domain’s user registry. A user’s e-community identity subsequently may be
mapped, as required, to local identities by Web security servers in other domains
within the e-community.

The e-community model is shown in Figure 9-17 on page 318. Following are
some key points to be aware of in the e-community model:

� There is a single-home domain for the entire e-community. All users will
authenticate to this domain first.

� The MAS belongs to the home domain and should not be used for any other
purpose than to authenticate users. There should not be any authorization
performed by the MAS.

� After authentication by the MAS, the home domain identity provided in the
e-community token is mapped to a user identity in the domain of the referring
WebSEAL.

� The MAS also has the ability to retrieve information from a user’s credential in
the home domain and place it in the e-community token on a per domain
basis. This allows the MAS to tailor the token contents to match the needs of
the destination domain.

Single sign-on with e-community can be used if there are two completely
separate Access Manager security environments (two different Policy Servers
and user registries) or in an Access Manager multi-domain environment where

Note: Users who do not exist in the MAS home domain can still authenticate
to their own domain and access protected resources. This allows for a
company to restrict access to who can essentially single sign-on to resources.
Only users defined to both the MAS domain and the domain where the
protected resource is defined can participate in e-community single sign-on.

Also, the MAS architecture can also be deployed in a single Access Manager
domain. This allows for organizations to deploy a central authentication server,
allowing other servers to simply provide content delivery.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 317

there is one Policy Server and one user registry shared between domains (this
does not imply that the users and groups are shared between domains though).
Refer to “Multi-Domain Policy Server” on page 179 for more information about
Access Manager multiple domain environments with a single Policy Server.

Figure 9-17 e-community single sign-on model

The e-community mechanism involves the following steps, we use WebSEAL as
the example of the Web security server configured:

1. A user makes a request for a protected resource controlled by a WebSEAL
server in one of the e-community domains. This WebSEAL does not yet have
an established secure session with this user.

2. The WebSEAL server redirects the user to the MAS and sends with the
request a special directive (pkmsvouchfor), which requests that the MAS
provide identity information for the user.

3. The MAS checks to see whether the user has already been authenticated to
the e-community, and if not, the MAS then authenticates the user.

4. The MAS then sends a token back to the original WebSEAL server that
contains credential information that vouches for the user’s identity.

WebSEAL MAS

mas.domainA.com

WebSEAL 1

ws1.domainA.com

WebSEAL 2

ws2.domainA.com

WebSEAL 3

ws3.domainB.com

WebSEAL 4

ws4.domainB.com

DOMAIN A DOMAIN B
Client

Home Domain

Domain A
User Registry

Domain B
User Registry

318 Enterprise Security Architecture Using IBM Tivoli Security Solutions

5. The WebSEAL server then maps the identity provided to it by the MAS to an
appropriate Access Manager within its local domain and establishes a secure
session with the browser.

Figure 9-18 summarizes the flow of an initial e-community user authentication.

Figure 9-18 e-Community initial identity determination process

Within the home domain, unauthenticated requests are always vouched for via
the MAS. In other participating domains, after the user initially logs in to the MAS,
subsequent authentication activities to other WebSEAL servers in those domains
are handled locally. The first WebSEAL in the requestor’s local domain that
validates the user’s identity against the MAS acts as the voucher for that user’s
identity within that domain for all subsequent authentication attempts. This is
depicted in Figure 9-19 on page 320.

Secure
Domain A

MAS
WebSEAL

 Browser

WebSEAL

1. User requests URL:
 https://www.xyz.com/abc.html
2. WebSEAL redirects user to MAS WebSEAL with request for "voucher".
3. Browser forwards voucher request to MAS.
4. If a session has not yet been established, the user is authenticated and mapped to a Home Domain identity

(4a).
5. A voucher token is created (in a cookie), and the MAS redirects the user back to the original WebSEAL.
6. The browser forwards the request and voucher cookie to the original WebSEAL, which maps the user to an

appropriate Domain A identity (6a), establishes a secure session, and processes the request.

Once the session is established with the Domain A WebSEAL, subsequent requests are processed normally
without need for vouchering/authentication.

1

2

3

4

5

6

Home
Secure

Domain

Domain A
User Registry

Home
Domain User

Registry

4a6a

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 319

Figure 9-19 e-Community subsequent identity determination process

The key advantage of e-community single sign-on over CDSSO is that the initial
URL request can be made directly to the target WebSEAL server. Recall that with
CDSSO, the URL request must go through the WebSEAL to which the user is
currently authenticated. In an e-community configuration, the target WebSEAL is
specifically configured to retrieve credential information through the vouching
mechanism, and the URL request itself need not be accompanied by special
processing or contain special characteristics, as in the CDSSO case. This can
lead to scalability related issues that need to be addressed around the
authentication event.

Secure
Domain A

 Browser

WebSEAL 1

(User has authenticated to an e-community MAS in a previous request to WebSEAL 2. WebSEAL 2 now
will vouch for subsequent identity "voucher" requests by other WebSEALs for this user in this domain.)

1. User requests URL from WebSEAL 1:
 https://www.xyz.com/abc.html
2. WebSEAL 1 redirects user to WebSEAL 2 with request for "voucher".
3. Browser forwards voucher request to WebSEAL 2.
4. WebSEAL 2 provides a voucher cookie token, and redirects the user back to WebSEAL 1.
5. The browser forwards the request and voucher cookie to WebSEAL 1, which maps the user to the correct

Domain A identity, establishes a secure session, and processes the request.

Once the session is established with the WebSEAL 1, subsequent requests are processed normally without
need for vouchering/authentication.

1

2

5

Domain A
User Registry

WebSEAL 2

34

New session is
established here

Identity is vouched for
here, where user

already has an active
session.

320 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Architectural significance of e-community single sign-on
There are many design considerations regarding the implementation of
e-community single sign-on, which will not affect your physical architecture
design. The main architectural impact of e-community single sign-on involves the
role of the MAS as the single authentication point. The key issue is that with all
user authentication for the e-community going through a single domain, where
should the MAS server (or servers) be located?

9.6.3 Cross Domain Mapping Framework
Whenever single sign-on is used between two different security domains, the
need for mapping user IDs from one domain to another exists. The reason this
issue occurs is that the user ID from one domain may not map exactly to a user
ID in another domain. For example, a user may have an ID of user123 in one
Access Manager security domain.The same user may have an ID of myuser123
in another Access Manager domain.

The Cross Domain Mapping Framework (CDMF) is a programming interface that
may be used in conjunction with WebSEAL e-community single sign-on and
Cross Domain Single Sign-On. It enables a developer to customize the mapping
of user identities and the handling of user attributes when single sign-on
functions are used.

Conceptually, the mapping in a CDMF function works in a manner similar to an
application using the external authentication C API, except that it is used to map
an Access Manager user in one secure domain to an Access Manager user
defined in a different secure domain.

9.6.4 Cookie Based single sign-on
A number of customers have embraced the use of the Web security server
failover cookie as a means for single sign-on. This allows Web security servers
hosted in the same DNS domain to accept failover cookies configured from other
domains. Of course, for this to function, failover cookies need to be configured as
domain cookies and both hosted servers must share the cryptographic key.

With the addition of the Session Management Server, customer’s now have the
ability to perform Single Sign-on across Web security servers in the same
domain configured into the Session Management Server. The advantage of this
approach is that, unlike failover cookies, Session Management Server cookies
are not cryptographic cookies containing user information.

 Chapter 9. Authentication and single sign-on with Access Manager for e-business 321

322 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 10. Access Manager
authorization

This chapter discusses the authorization mechanisms and the components of the
Tivoli Access Manager authorization service, what they deliver, and how to apply
them in the definition and enforcement of a comprehensive security policy. These
include:

� Access control list (ACL)

� Protected object policy (POP)

� Authorization rule

� Object space

� Resource manager

The chapter uses several scenarios to illustrate where and how to apply the
authorization components in cases ranging from simple static Web page access
control to complex dynamic access control decisions.

10

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 323

10.1 Authorization overview
ISO 7498-21, the ISO Security Architecture, defines access control as:

The prevention of unauthorized use of a resource, including the prevention of
use of a resource in an unauthorized manner.

Tivoli Access Manager’s core function is to support this definition. The Access
Manager access control capabilities are built on a standards-based approach,
namely the Open Group’s authorization (azn) API standard. This technical
standard defines a generic application programming interface for access control
in systems whose access control facilities conform to the architectural framework
described in International Standard ISO 10181-32 (access control framework).

The ISO 10181-3 framework defines four roles for components participating in an
access request, similar to Figure 10-1 on page 325:

Initiator Initiators submit access requests. This request specifies an
operation to be performed on a target.

Target A target can be an information or a system resource.

Access Control Enforcement Functions (AEFs)
AEFs submit decision requests to Access Control Decision
Functions (ADFs). A decision request asks whether a particular
access request should be granted or denied.

Access Control Decision Functions (ADF)
ADFs decide whether access requests should be granted or
denied based on security policy.

ADFs make access control decisions based on Access Control Decision
Information (ADI) or, in Tivoli Access Manager terms, Security Policy. ADI
describes security-relevant properties of the initiator, the target, the access
request, and the system and its environment.

1 For a complete reference of ISO 7498-2 visit:
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=14256
2 For a complete reference of ISO 10181-3 visit:
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18199

324 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18199
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=14256

Figure 10-1 Open Group authorization model

10.1.1 The Tivoli Access Manager authorization service
The Tivoli Access Manager authorization service is responsible for the
authorization decision-making process that helps to enforce a security policy.
Authorization decisions made by the authorization service result in the approval
or denial of client requests to perform operations on protected resources in a
domain.

The authorization service is made up of three basic components:

� Master authorization policy database
� Policy Server
� The authorization decision-making evaluator

Policy database
The policy database, also referred to as the master authorization policy database
and the master authorization database (ACL DB), contains the security policy
information for all resources in a domain. Each domain has its own policy
database. The content of this database is manipulated using the Web Portal
Manager, the pdadmin command line utility, or the administration API.

Policy Server
The Policy Server (pdmgrd) maintains the policy database, replicates this policy
information throughout the domains, and updates the database replicas
whenever a change is made to the master.

Application /
Information

(Target)

Resource Manager

Policy Enforcer
(AEF)

Authorization
Check Yes / No

Authorization Service
(ADF)

Resource
Request

Policy
Database

Authenticated
Client

(Initiator)

 Chapter 10. Access Manager authorization 325

The Policy Server also maintains location information about the other Tivoli
Access Manager and non-Tivoli Access Manager resource managers operating
in the domain.

Authorization evaluator
The authorization evaluator is the decision-making process that determines a
client’s ability to access a protected resource based on the security policy. The
evaluator makes its recommendation to the resource manager which, in turn,
responds accordingly.

Registry database replication parameters are configured for each evaluator.

Figure 10-2 illustrates the main components of the authorization service.

Figure 10-2 Access Manager authorization service

Master
Authorization

Policy

Replica
Authorization

Policy

Policy Server
(pdmgrd)

Web Portal
Manager,

pdadmin and
adminAPI

Authorization
Evaluator

Resource
Manager

AuthAPI

Management
Interface

Authorization Interface

326 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The diagrams in Figure 10-1 on page 325 and Figure 10-2 on page 326 clearly
show how the Tivoli Access Manager authorization model maps to the ISO
10181-3 security architecture standard. Table 10-1 shows the mapping.

Table 10-1 Tivoli Access Manager authorization model mapping to ISO 10181-3

Authorization service interfaces
The authorization service has several interfaces where interaction takes place:

� Management interface: The security administrator manages the security
policy by using the Web Portal Manager or the pdadmin command line utility
to apply policy rules on resources in a domain. Both of these interfaces are
built on the administration API. This API can also be used directly by
applications to query and update management data.

This interface requires detailed knowledge of the object space, policies, and
credentials.

� Authorization API: The authorization API passes requests for authorization
decisions from the resource manager to the authorization evaluator, which
then passes back a recommendation whether the request should be granted
or denied.

� JAAS: The Access Manager Authorization Java Classes provide an
implementation of Java security code that is fully compliant with the Java 2
security model and the Java Authentication and Authorization Services
(JAAS) extensions. This enables Access Manager to be used as an
authentication and authorization back-end inside the Java 2 security model.

� .NET Authorization: The .NET Assembly for Tivoli Access Manager
Authorization Services exposes Tivoli Access Manager APIs at the .NET
Common Language Runtime Level, thereby making authorization functions
available to all .NET languages.

Resource managers
An authorization service must be able to make appropriate access control
decisions in the right place. That is, access control decisions must be enforced at
the time they are required.

ISO 10181-3 Tivoli Access Manager

Initiator User

Targets Protected resources

AEF Authorization Evaluator

ADF Resource Manager

ADI Policy Database

 Chapter 10. Access Manager authorization 327

Resource managers support this objective. That is, they intercept application flow
to request authorization decisions from the Authorization evaluator when a
request is made for a protected object. Access Manager provides several
resource managers, which are described in the Access Manager component
overview in Chapter 5, “Access Manager core components” on page 163.

10.1.2 Access Manager authorization components
Within any Access Manager domain authorization enforces the security policy by
determining what objects (targets) a user (initiator) can access and what actions
a user can take on those objects, then granting appropriate access to the user.

Tivoli Access Manager handles authorization through the use of the following
policy components (ADI):

� Access control lists (ACLs), protected object policies (POPs), and
authorization rules for fine-grained access control

� Protected object space

� Users and groups

It uses the following enforcement mechanism (AEF):

� Resource managers

These use the following access control decision mechanisms (ADF):

� Tivoli Access Manager authorization service

� Standards-based authorization API, using the aznAPI for C language
applications and the Java Authentication and Authorization Service (JAAS) for
Java language applications

� External authorization service capability

The following sections describe these components and mechanisms and how
they relate to each other.

10.2 Security policy
The goal of any security policy is to adequately protect business assets and
resources with a minimal amount of administrative effort. First, you must define
what resources should be protected. These could be any type of data object
such as files, directories, network servers, messages, databases, or Web
resources. Then, you must decide what users and groups of users should have
access to these protected resources. You also need to decide what type of
access should be permitted to these resources. Finally, you must apply the

328 Enterprise Security Architecture Using IBM Tivoli Security Solutions

proper security policy on these resources to ensure that only the right users can
access them.

Access to objects within a domain is controlled by applying a security policy to
the container and resource objects in the protected object space. Security policy
can be explicitly applied to an object or inherited by the object from objects above
it in the hierarchy. You need to apply an explicit security policy in the protected
object space only at those points in the hierarchy where the rules must change.

Security policy is defined using a combination of:

� Access control lists (ACLs)

An access control list specifies the predefined actions that a set of users and
groups can perform on an object. For example, a specific set of groups or
users can be granted read access to the object.

� Protected object policies (POPs)

A protected object policy specifies access conditions associated with an
object that affect all users and groups. For example, a time-of-day restriction
can be placed on the object that excludes all users and groups from
accessing the object during the specified time.

� Authorization rules

An authorization rule specifies a complex condition that is evaluated to
determine whether access will be permitted. The data used to make this
decision can be based on the context of the request, the current environment,
or other external factors. For example, a request to modify an object more
than five times in an 8-hour period could be denied.

A security policy is implemented by strategically applying ACLs, POPs, and
authorization rules to those resources requiring protection. The Tivoli Access
Manager authorization service makes decisions to permit or deny access to
resources based on the credentials of the user making the request and the
specific permissions and conditions set in the ACLs, POPs, and authorization
rules.

Authorization flow
Figure 10-3 on page 330 shows where ACLs, POPs, and authorization rules fall
in the authorization process.

When an authorization decision request is received, the access control list for the
object is checked first. If this does not allow access to the object then the request
is denied. No further processing is required and no rule is evaluated.

 Chapter 10. Access Manager authorization 329

If the ACL is satisfied, then the POP is checked. If the POP returns a deny
decision (for example, if the time-of-day check fails), then the overall access is
denied. No further process is required and no rule is evaluated.

If both the ACL and POP allow access, then the rules engine is called, and the
engine’s output ultimately determines whether access is permitted or denied.

Figure 10-3 Authorization decision flow

The authorization engine uses the following algorithm to process the policy
attached to a protected object:

1. Check ACL permissions. See “Evaluating an ACL” on page 333 for
information about the ACL evaluation process.

The ACL is also checked to determine whether the user (for whom the
authorization check is being made) has the additional privilege of being
unaffected by POP or authorization rule policy. This privilege is bestowed
when the user’s effective ACL for access to the object contains the B
permission to denote that POP policy is ignored, or the R permission to
denote that authorization rule policy is ignored.

2. When an authorization rule is attached to the object and the user does not
have the privilege of being unaffected by authorization rules, verify that all of
the ADI is present for the coming rule evaluation. If it is not, then find it by
querying one of the available sources.

3. When there is a POP attached, check the Internet Protocol (IP) endpoint
authentication method policy.

4. When there is a POP attached, check the time-of-day policy on the POP.

5. When there is a POP attached, check the audit-level policy on the POP, and
audit the access decision as directed.

6. When an authorization rule is attached to the object and the user does not
have the privilege of being unaffected by authorization rules, check the
authorization rule policy.

ACL
Satisfied?

POP
Satisfied?

Rule
Decision?

Request “Deny” “Deny” “Permit” / “Deny”

no no

yes yes

Permit / deny

330 Enterprise Security Architecture Using IBM Tivoli Security Solutions

7. When an external authorization service (EAS) operation or POP trigger
applies to this access decision, invoke the external authorization services that
apply.

If any of the ACL, POP, or authorization rule evaluations fail, then the access
request is denied. The external authorization service can override this decision
on its own, if it has been designed to do so, or it might choose not to participate in
the authorization decision at all.

Every ACL, POP, or authorization rule can be thought of as a policy. Fill in the
policy, specifying the appropriate access conditions. After the policy is complete,
apply it to any number of resources within the domain. Subsequent changes to
the policy are automatically reflected across the domain.

10.2.1 Protected object space
Tivoli Access Manager represents resources within a domain using a virtual
representation called the protected object space. The protected object space is
the logical and hierarchical portrayal of resources belonging to a domain.

The protected object space consists of two types of objects:

Resource objects Resource objects are the logical representation of actual
physical resources, such as files, services, Web
resources, message queues, and so on, in a domain.

Container objects Container objects are structural components that enable
you to group resource objects hierarchically into distinct
functional regions.

Security policy can be applied to both types of objects. Figure 10-4 on page 332
shows a logical representation of a protected object space with multiple container
and resource objects.

The structural top, or start, of the protected object space is the root container
object, which is represented by a forward slash (/) character. Below the root
container object are one or more container objects. Each container object
represents an object space consisting of a related set of resources. These
resources can be resource objects or other container objects.

 Chapter 10. Access Manager authorization 331

Figure 10-4 Access Manager protected object space

Tivoli Access Manager creates an object space called /Management that
consists of the objects used to manage Tivoli Access Manager itself. Each
resource manager that protects a related set of resources creates its own object
space. For instance, the WebSEAL resource manager, which protects
Web-based information and resources, creates an object space called
/WebSEAL. These companion applications are referred to as blades.

10.2.2 Users and groups
Tivoli Access Manager maintains information about Tivoli Access Manager users
and groups in the user registry. Users and groups that already exist in the user
registry can be imported into Tivoli Access Manager. If a user or group does not
already exist in the user registry, it can be created directly within Tivoli Access
Manager.

When a user is authenticated to Tivoli Access Manager, a user credential is
returned. This credential is used by other Tivoli Access Manager functions to
uniquely identify the user making the request.

Root
(/)

Web ObjectsManagement Custom

HR Web General
Web

Finance
Web

index.htmlcgi-bin ledger reports

1.html 2.html 3.html1.exe 2.exe

Containter Objects

Resources Objects

332 Enterprise Security Architecture Using IBM Tivoli Security Solutions

10.2.3 ACL policy
The policy that defines who has access to an object, and what operations can be
performed on the object, is known as the ACL policy. Each ACL policy has a
unique name and can be applied to multiple objects within a domain. An ACL
policy consists of one or more entries describing:

� The names of users and groups whose access to the object is explicitly
controlled

� The specific operations permitted to each user, group, or role

� The specific operations permitted to the special any-other and
unauthenticated user categories

Using ACL policies with the authorization service
Tivoli Access Manager relies on ACL policies to specify the conditions necessary
for a particular user to perform an operation on a protected object. When an ACL
is attached to an object, entries in the ACL specify what operations are allowed
on this object and who can perform those operations.

Resource manager software typically contains one or more operations that are
performed on protected resources. Tivoli Access Manager requires these
applications to make calls into the authorization service before the requested
operation is allowed to progress. This call is made through the authorization
application programming interface (authorization API) for both Tivoli Access
Manager services and other applications.

The authorization service uses the information contained in the ACL to provide a
simple yes or no response to the question: Does this user (group) have the r
permission (for example) to view the requested resource?

The authorization service has no knowledge about the operation requiring the r
permission. It is merely noting the presence, or not, of the r permission in the
ACL entry of the requesting user or group. The authorization service is
completely independent of the operations being requested. This is why it is easy
to extend the benefits of the authorization service to other applications.

Evaluating an ACL
Tivoli Access Manager follows a specific evaluation process to determine the
permissions granted to a particular user by an ACL. When you understand this
process, you can determine how best to keep unwanted users from gaining
access to resources.

 Chapter 10. Access Manager authorization 333

Evaluating authenticated requests
Tivoli Access Manager evaluates an authenticated user request in the following
order:

1. Match the user ID with the ACLs user entries. The permissions granted are
those in the matching entry.

Successful match: Evaluation stops here.
Unsuccessful match: Continue to the next step.

2. Determine the groups to which the user belongs and match with the ACLs
group entries: If more than one group entry is matched, the resulting
permissions are a logical or (most permissive) of the permissions granted by
each matching entry.

Successful match: Evaluation stops here.
Unsuccessful match: Continue to the next step.

3. Grant the permissions of the any-other entry (if it exists).

Successful match: Evaluation stops here.
Unsuccessful match: Continue to the next step.

4. An implicit any-other entity exists when there is no any-other ACL entry. This
implicit entry grants no permissions.

Successful match: No permissions granted. End of evaluation process.

Evaluating unauthenticated requests
Tivoli Access Manager evaluates an unauthenticated user by granting the
permissions from the ACLs unauthenticated entry.

The unauthenticated entry is a mask (a bitwise “and” operation) against the
any-other entry when permissions are determined. A permission for
unauthenticated is granted only if the permission also appears in the any-other
entry.

Because unauthenticated depends on any-other, it makes little sense for an ACL
to contain unauthenticated without any-other. If an ACL does contain
unauthenticated without any-other, the default response is to grant no
permissions to unauthenticated.

10.2.4 Protected object policies
A protected object policy (POP) specifies security policy that applies to an object
regardless of what user or what operation is being performed. Each POP has a
unique name and can be applied to multiple objects within a domain.

334 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The purpose of a POP is to impose access conditions on an object based on the
time of the access and to indicate whether the access request should be audited.
Specifically, the conditions you can apply are:

� POP attributes, such as warning mode, audit level, and time-of-day.

� The authentication-strength POP allows for the configuration of step-up
authentication to enforce stronger security for certain parts of the object
space.

� The quality-of-protection POP implements privacy and integrity mechanisms
such as encryption (SSL) and hash algorithms.

� The network-based authentication POP makes it possible to control access to
objects based on the IP address of the client.

10.2.5 Authorization rules
Authorization rules are defined to specify conditions that must be met before
access to a protected object is permitted. A rule is created using a number of
boolean conditions that are based on data supplied to the authorization engine
within the user credential, from the resource manager application, or from the
encompassing business environment. The language of an authorization rule
allows customers to work with complex, structured data by examining the values
in that data and making informed access decisions. This information can be
defined statically within the system or defined during the course of a business
process. Rules can also be used to implement extensible, attribute-based
authorization policy by using attributes within the business environment or
attributes from trusted external sources.

A Tivoli Access Manager authorization rule is a policy type similar to an access
control list (ACL) or a protected object policy (POP). The rule is stored as a text
rule within a rule policy object and is attached to a protected object in the same
way and with similar constraints as ACLs and POPs.

How authorization rules differ from ACLs and POPs
ACLs take a given predefined set of operations and control which users and
groups have permission to perform those operations on a protected object. For
example, a user’s ability to read data associated with an object is either granted
or denied by an ACL policy. POPs apply to all users and groups and control
conditions that are specific to a particular protected object. For example,
time-of-day access excludes all users and groups from accessing an object
outside of the times set in the time-of-day policy.

Rules enable you to make decisions based on the attributes of a person or object
and the context and environment surrounding the access decision. For example,
you can use a rule to implement a time-of-day policy that depends on the user or

 Chapter 10. Access Manager authorization 335

group. You also can use a rule to extend the access control capabilities that ACLs
provide by implementing a more advanced policy, such as one based on quotas.
While an ACL can grant a group permission to write to a resource, a rule can go
a step further by enabling you to determine whether a group has exceeded a
specific quota for a given week before permitting that group to write to a
resource.

When to use authorization rules
In the Tivoli Access Manager authorization process, all three policy objects—the
ACL, the POP, and the authorization rule—must permit access to a protected
object before access to the object is granted. Authorization rules provide the
flexibility needed to extend an ACL or POP by tailoring the security policy to your
needs.

Although authorization rules can be used to extend the policy implemented by
other Tivoli Access Manager policy types, they are not simply extensions of the
existing policy types. An authorization rule is a policy type that is rich enough in
functionality to replace the ACL and POP. However, using ACLs and POPs
generally provides better performance. Therefore, use a rule to complement
these policies instead of replacing them.

10.2.6 Authorization rules detail
The Access Manager authorization rules engine is implemented using an XSL
parser. This, then, defines how the inputs to the rules engine must be specified.

The two inputs to an XSL parser are:

Document An XML document. In the case of the Access Manager
authorization rules engine, this is a document, built
internally, that contains all of the required ADI.

Stylesheet An XSL document. In the case of the Access Manager
authorization rules engine, this is a document built from
the configured rule for the object being accessed.

The output from an XSL parser is a new version of the document formatted using
the stylesheet. In the case of the Access Manager authorization rules engine, the
rules must be written in such a way that this formatting causes the output to be
the access decision.

The diagram in Figure 10-5 on page 337 shows how the logical components of
the rules engine are implemented using XML and XSL technology.

336 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 10-5 Authorization rules engine

The XSL parser formats the XML document containing the authorization decision
information using an XSL formatted rule.

The rule must be written in such a way that the output is TRUE (permit access),
FALSE (deny access), or INDIFFERENT (no opinion). Any other output is
considered the same as FALSE (deny access).

10.2.7 External authorization capability
In some situations, the standard Tivoli Access Manager policy implementations
of ACLs, POPs, and authorization rules might not be able to express all the
conditions required by an organization’s security policy. Tivoli Access Manager
provides an optional external authorization capability to accommodate any
additional authorization requirements.

The external authorization service allows you to impose additional authorization
controls and conditions that are dictated by a separate, external, authorization
service module.

Extending the authorization service
External authorization capability is automatically built into the Tivoli Access
Manager authorization service. If you configure an external authorization service,
the Tivoli Access Manager authorization service incorporates the access
decision paths into its evaluation process.

Resource managers that use the authorization service, such as WebSEAL and
any application using the authorization API, benefit from the additional, but
seamless, contribution of a configured external authorization service. Any

XSL ParserXML Document

XSL Document

!TRUE!
!FALSE!
!INDIFFERENT!

ADI

Rule

Rule Evaluation Engine

Result

 Chapter 10. Access Manager authorization 337

addition to the security policy through the use of an external authorization service
is transparent to these applications and requires no change to the applications.

The external authorization service architecture allows the full integration of an
existing security service. An external authorization service preserves a
company’s initial investment in security mechanisms by allowing existing servers
to be incorporated into the Tivoli Access Manager authorization decision-making
process.

Imposing conditions on resource requests
An external authorization service can be used to impose more specific conditions
or system-specific side effects on a successful or unsuccessful access attempt.

Examples of such conditions include:

� Causing an external auditing mechanism to record the successful or
unsuccessful access attempt

� Actively monitoring the access attempt and causing an alert or alarm
whenever unacceptable behavior is detected

� Conducting billing or micro-payment transactions

� Imposing access quotas on a protected resource

The authorization evaluation process
An authorization decision that incorporates an external authorization server
takes place in the following manner:

1. If a trigger condition is met during the course of an access decision, the
external authorization services that were configured for that condition are
each called in turn to evaluate their own external authorization constraints.
Invocation of the external authorization service occurs regardless of whether
or not the necessary permission is granted to the user by the Tivoli Access
Manager authorization service.

2. Each external authorization service returns a decision of permitted, denied, or
indifferent. When indifferent is returned, the external authorization service has
determined that its functionality is not required for the decision process and
that it does not participate.

3. Each external authorization service decision is weighted according to the
level of importance that its decision carries in the process. The weighting of
individual external authorization services is configured when the service
plug-in is loaded.

4. All authorization decision results are summed and combined with the decision
made by the Tivoli Access Manager authorization service. The resulting
decision is returned to the caller.

338 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 10-6 illustrates an authorization decision involving an application server
and an external authorization service.

Figure 10-6 External authorization service with an application server

In this example, the purpose of the external authorization service is to impose a
quota restriction on how often a photo-quality printer resource can be accessed.

The service implementation imposes a limit on the number of job submissions
that any one person can make to this printer in one week. An external
authorization service trigger condition was attached to the photo printer resource
so that the external authorization service is invoked anytime that the photo
printer is accessed.

The external authorization service was loaded with the default decision weighting
of 101, which overrides any decision made by the Tivoli Access Manager
authorization service, should it need to do so.

1. The resource manager server receives a request from a client for access to
an online photo printing resource. The client is a member of the appropriate
group GraphicArtists and so is normally permitted to submit jobs to the
printer.

8. Response: Denied

1. Request

2. Request for
Authorization

3. Authorization Check
(allowed +100)

4. External
Authorization Check

5. External
Authorization Results

(denied -101)

6. Combined
Authorization Decision

(denied -1)

7. Denied Access

Authorization Service

Client

External
Authorization Service

Authorization
Policy

ResourcesThird-Party Resource
Manager

Authzn API

 Chapter 10. Access Manager authorization 339

2. The application server first consults the Tivoli Access Manager authorization
service to determine whether the requesting user has permission to submit
jobs to the printer.

3. The authorization service checks the access permissions on the target
requested object and compares these with the capabilities of the requesting
user: group GraphicArtists rx In the ACL on the printer resource, the x
permission grants any user in the GraphicArtists group access to the
resource. Therefore, the authorization service grants the user permission to
submit the job.

4. Because the photo printer resource is being accessed and an external
authorization service trigger condition was attached to this object, a request is
also made to the external authorization service configured for that trigger
condition. The external authorization service receives all of the Access
Decision Information (ADI) that was passed in with the original access
decision check by the resource manager server.

5. The external authorization service consults a record of previous accesses
made by this user. If the requesting user has not exceeded the quota for the
week, it returns an access decision of “indifferent.” The implication is that the
external authorization service is indifferent to the request and has no intention
of participating in the access decision because its conditions for denying
access have not been met. However, if the user has exceeded the quota, then
the external authorization service returns a decision of “access denied”. For
this example, it is assumed that the requester has exceeded the quota and
that the external authorization service detects this and returns an “access
denied” decision.

6. The Tivoli Access Manager authorization service receives the “access
denied” result from the external authorization service. It then takes this
decision and weights it with the default external authorization service
weighting value of 101. The results of the external authorization service
decision and the decision made by the Tivoli Access Manager authorization
service are combined. The result is “access denied” because the result of the
external authorization service (-101) outweighs that of the Tivoli Access
Manager authorization service (100).

7. The resource manager server rejects the job submission to the photo printer
resource.

8. The resource manager server returns a response to the caller to indicate that
the job was rejected.

340 Enterprise Security Architecture Using IBM Tivoli Security Solutions

10.2.8 ADI
The authorization engine can gather Access Control Decision Information (ADI)
from four sources for use when evaluating a rule:

� User credential entitlements

� Application context information passed in by the Tivoli Access Manager
resource manager

� Tivoli Access Manager authorization engine context

� Dynamic ADI retrieval entitlement services

User credential entitlements
Additional entitlements data can be inserted as name and value attribute pairs
(referred to as tag-value) into the client credential by a Tivoli Access Manager
authorization client during the user authentication process or at any time during
the process of the transaction. Tivoli Access Manager provides a credential
attributes entitlement service that retrieves entitlements data from the user
registry. Or, you can define your own entitlement services.

Any attribute added to the user credential can be used as ADI in a rule definition.
There are also attributes that are built into the Tivoli Access Manager user
credential when it is created by the authorization engine. Just as with attributes
that can be added to the credential by the resource manager, the built-in
credential attributes can be used in authorization rules. The built-in credential
attributes include items of information, such as the user name (or the principal
UUID) and the groups (or the group UUID) of which the user is a member.

Application context information
Authorization rules might require application context information to complete an
evaluation. Context information includes information that is not an entitlement but
is specific to the current transaction or operation. An example is a transaction
amount, such as purchase price or transfer amount. This information is passed to
the decision through the app_context attribute list of the
azn_decision_access_allowed_ext() call. Tivoli Access Manager WebSEAL also
uses this mechanism to pass the values of certain HTML tags and HTML request
data (from a get or post request) into the access decision for use in a rule
evaluation.

Authorization engine context information
Authorization engine context information is provided automatically by the
authorization engine, if required, before the authorization rule is evaluated. The
ADI provided by the authorization engine includes the name of the protected

 Chapter 10. Access Manager authorization 341

object that is the target of the access decision and the string of operations that
the requesting user wants to perform on the protected object.

The following attribute names are reserved for these data items:

� azn_engine_target_resource
� azn_engine_requested_actions

Dynamic ADI retrieval entitlement services
The final source for retrieving ADI is the dynamic ADI retrieval entitlements
service. This class of azn entitlement services is designed to retrieve ADI from
an external source. These services can be developed to retrieve ADI from an
enterprise database containing employee, customer, partner, or inventory
information. The dynamic ADI retrieval service is called to retrieve ADI at the time
that the access decision is being made. Calling both at the same time has the
benefit of being able to retrieve volatile data, such as quotas, at a time when its
value is most current.

There are several methods available for retrieving Dynamic ADI:

� Resource managers
� Entitlement service
� Attribute Retrieval Service (ARS)
� Redirecting a user to ADI Provider site

Resource Managers
In order to provide on demand ADI to the rules engine, a resource manager must
first register the information it is capable of supplying and then be able to respond
to a request to supply it. Registration is done by specifying one or more prefixes
that the authorization engine should use to identify on demand ADI that can be
supplied by the resource manager.

If variables starting with these prefixes are found in authorization rules then a
deny result is returned to the Resource Manager in response to the authorization
request. However, an attribute is included with the result that specifies the ADI
variables required. The resource manager must recognize that this attribute is
present in the response from the authorization engine and then re-submit the
access decision request with the required ADI. If the Resource Manager cannot
supply the requested ADI (for whatever reason) then it must deny the user
request.

342 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Entitlement service
An entitlement service is a very generic plug-in that can be called by the Access
Manager authorization service. Normally entitlement services are called as the
result of an azn_entitlement_get_entitlements() call from a resource manager
but, as in the case of ADI entitlement services, they can also be called by the
authorization engine itself.

The input to an entitlement service is a user credential and an application
context. The application context is simply an attribute list that can contain any
information relevant to the entitlement service.

The output to an entitlement service is an attribute list. This is how the
entitlement service passes back its results.

Attribute Retrieval Service
The final way to acquire ADI is really an extension of the dynamic ADI entitlement
service. A dynamic ADI entitlement service is supplied out-of-the-box with
Access Manager that can call the IBM Tivoli Access Manager Attribute Retrieval
Service (ARS) to gather ADI.

The entitlements service formats the initialize, get_entitlements, and shutdown
calls it receives from the authorization service into SOAP messages and sends
them to a configured URL (which is the input interface for the Attribute Retrieval
Service). It receives the response from the Attribute Retrieval Service and
formats it back into an AM attribute list that it can return.

The IBM Tivoli Access Manager Attribute Retrieval Service, which is supplied
with Access Manager as a J2EE application that runs in WebSphere Application
Server, provides a framework for gathering ADI from external Information
Providers or Profiling Services. A number of plug-ins for the Attribute Retrieval
Service are provided for gathering information from certain providers. An
interface is provided to enable additional custom plug-ins to be written that gather
information from other providers. These are written in Java.

Redirecting a user to ADI provider site
In some cases, an ADI provider may need direct input from the user (or from the
end users client, perhaps a client certificate or an SAML token) in order to be
able to supply the requested ADI. To facilitate this, the dynamic ADI entitlement
service has the capability to pass back a URL to Access Manager that is then
passed back to the resource manager.

In response to receiving this URL (as an attribute to a deny response) the
resource manager should direct the user to the URL so that they can go and
interact directly with the ADI provider.

 Chapter 10. Access Manager authorization 343

When the direct interaction with the ADI provider has been completed, they can
(at some later time) return to the resource manager and repeat the original
request. This time the request can be properly validated because the ADI
provider is now in a position to provide the ADI required to evaluate the
authorization rule.

10.3 Conclusion
Access Manager provides comprehensive and flexible methods of defining and
enforcing security policy through resource managers. ACLs form the main
component used to define policy. They define static relationships between users
and groups, resources, and the actions a user can perform. POPs and extended
attributes provide more flexibility, allowing for further criteria to be specified
around access decisions.

Access Manager authorization rules give the ability to base access decisions on
dynamic information about the current user. For example, access control lists do
not provide the functionality to limit access to an object based on usage. To do
this the current usage must be gathered in real time. Then make a decision by
comparing it to some limit.

10.3.1 Guidelines for a secure protected object space
The following guidelines are suggestions for building and maintaining a secure
protected object space:

� Set high-level security policy on container objects at the top of the object
space. Set exceptions to this policy with explicit ACLs, POPs, and
authorization rules on objects that are lower in the hierarchy.

� Arrange your protected object space so that most objects are protected by
inherited, rather than explicit, ACLs, POPs, and authorization rules. Reduce
the risk of an error that could compromise your network by simplifying the
maintenance of your tree. Inherited ACLs, POPs, and authorization rules
lower maintenance because they reduce the number of ACLs, POPs, and
authorization rules you must maintain.

� Position new objects in the tree where they inherit the appropriate
permissions. Arrange your object tree into a set of subtrees, where each
subtree is governed by a specific access policy. You determine the access
policy for an entire subtree by setting explicit ACLs, POPs, and authorization
rules at the root of the subtree.

344 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Create a core set of ACLs, POPs, and authorization rules policies and reuse
them wherever necessary. Because ACL, POP, and authorization rule policies
are a single source definition, any modifications to the policy affects all
objects associated with the ACL, POP, or authorization rule.

� Control user access through the use of groups. An ACL can consist of only
group entries. Individual user entries are not required in the ACL when the
users can be categorized into groups instead. Authorization rules can also be
written to consider an individual’s group memberships rather than the
individual specifically. This can reduce the complexity of the rule logic
considerably.

Access to an object by individual users can be efficiently controlled by adding
users to or removing users from these groups.

 Chapter 10. Access Manager authorization 345

346 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 11. Application integration

An area of caution in IT security management is application-managed security.
When different applications on different platforms driven by different project
groups implement their own views of security functionalities, the result is an
expensive, unmanageable turmoil that opens security holes instead of providing
a strong access control solution. In developing new applications, we can start to
build a solution that enables us to distinguish and differentiate between security
and application functions.

Tivoli Access Manager aims to be a corporate access control solution. To reach
this level of integration, there are a few application integration options that meet
most application development platforms within today’s e-business environments.

In this chapter we take a closer look at WebSphere, .NET, C and Java integration
with Tivoli Access Manager.

11

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 347

11.1 Business requirements
Security is such a fundamental enabler of e-business that in the B2C and B2B
markets, effective security can make the difference between owning the market
or being just another competitor. The promise of e-business and its ability to
create new revenue streams is predicated on the ability of these new business
processes to reach these new markets and customers. These promises do not
materialize if security issues are not addressed properly.

As enterprises extend their business applications to reach new markets and
customers, security and trust issues take on paramount importance. This has
always been true in core, mission-critical, intranet-based applications. This is
even more true as these applications leverage the Internet’s Web-based
computing model for B2C and B2B.

As customers have moved to a Web-based computing model, some have found it
very difficult to implement security on an application-by-application basis. With
disparate applications that require disparate security approaches, it becomes
clear very quickly that there is no security policy when there are numerous
islands of security that cloud the picture. There is nothing nefarious about the
islands of security approach; in fact, it can be a natural evolution for customers,
because many products come with some form of security built in. But when the
islands begin to diminish, the ability to clearly manage security according to
policy for your organization decreases, so there is tremendous value in securing
applications in a way that is consistent and compatible with securing applications
and application-components running on other middleware and platforms in the
enterprise.

For this scenario, we define the following business requirements for existing as
well as new e-business applications based on WebSphere family products:

� Reduced costs of implementing and maintaining proprietary security solutions
(islands of security)

� Fast time-to-production

� Reduced cost and complexity of application development

� Consistently managed end-to-end security (from browser to Web application)
in order to mitigate risks of fraud

� Applications developed according to standards and standard architectures in
order to achieve independence of specific vendor solutions

348 Enterprise Security Architecture Using IBM Tivoli Security Solutions

11.2 Security design objectives
Based on business requirements, we define the following security design
objectives to be achieved by integrated solutions:

� Simplification of application development and off-loading the security policy of
the application

� Simplification of system administration by maintaining a consistent security
model across applications and related systems

Regarding the implementation of an access control subsystem, the systems fall
into one of the following three categories.

Category 1 systems implement and enforce their own authorization decision
processes based on security policies defined in proprietary formats, as shown in
Figure 11-1.

Figure 11-1 Category 1 systems

Obviously, these are home-grown applications that may even precisely reflect the
existing security policies. However, the risk is rather high that such
implementations go outside the designed limits in rapidly extending and
changing IT environments. As security decision making, as well as their
enforcement, is implemented inside the application, any change in the policies
must be reflected in the application code. Moreover, it becomes difficult to ensure
that all category 1 systems enforce the same policy. As an outcome in category 1
systems, maintenance costs for updating security in the applications are rising,
and valuable development time is spent writing security, not business functions.

Category 1

Resource Manager

Application A

Decision
Making

Policy

Decision
Enforcement OK?

Category 1

Resource Manager

Application C

Decision
Making

Policy

Decision
Enforcement OK?

Category 1

Resource Manager

Application B

Decision
Making

Policy

Decision
Enforcement OK?

 Chapter 11. Application integration 349

Category 2 systems address this issue by offloading the authorization
decision-making process from the application to a resource manager, as shown
in Figure 11-2. The resource manager takes over the role of providing the
requested resources to the application and decision making process. If a
resource is requested by the application, it calls the authorization
decision-making process residing in the resource manager. The resource
manager consults its policy database and provides the application with a simple
yes-or-no decision. It is then up to the application to enforce the received
decision and provide information as the user requests, or decline it. A series of
subsequent authorization decision calls may be necessary to come to the final
go-or-no-go decision.

Figure 11-2 Category 2 systems

By separating the two functions (decision making and decision enforcement), it is
much easier to achieve reusability of the decision making processes and
consistency of the policies. The Tivoli Access Manager software architecture
supports this category, providing a uniform framework for authorization decisions
and Open Group’s Authorization application programming interface (API) for its
querying. Decision enforcement takes place on the blades in order to meet the
needs of distributed applications acting in disparate environments with different
security requirements.

However, an application based on a system of category 2 has to implement its
own decision enforcement. If it is not standardized (for example, based on

Resource
Manager

Application A

Decision Making

Policy

Decision
Enforcement

Category 2

OK?

Application B

Decision
Enforcement OK?

Application C

Decision
Enforcement OK?

350 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Authorization API provided by Open Group), it also must implement the decision
requester, which may be considered to be more error-prone.

To avoid this problem, systems of category 3 rely on mechanisms provided by a
resource manager and have no need to even maintain decision enforcement, as
shown in Figure 11-3.

Figure 11-3 Category 3 systems

An application that falls in this category is a Web server providing access to files
in a defined directory. In a simple case, it uses security mechanisms of the
operating system that act as a resource manager. If a user is requesting an
HTML document, the operating system’s file permissions are decisive for
granting access. The application (Web server) requests a resource (file),
managed by the operating system. While serving the request, the operating
system makes a decision based on the permission attributes (policy) of the
requested file and, if allowed, provides access to the file (decision enforcement)
by the Web server. Applications based on Enterprise Java Beans (EJB) work in a
similar way.

This approach works when applications reside together with the resource
manager on the same system. It becomes much more difficult to manage if
multiple applications of the same kind are distributed through the IT environment
and communicate with the same resource manager. Moreover, as soon as a
need arises to establish security policies throughout applications based on

Resource Manager

Application A

Decision Making

Policy

Decision Enforcement

Category 3

OK?

Application B Application C

 Chapter 11. Application integration 351

different resource managers of different kinds, a new consolidation layer is
required.

As shown in Figure 11-4, Access Manager provides that uniform authorization
framework, which enables you to consolidate the decision-making process based
on a consistent policy database.

Figure 11-4 Policy enforcement based on consistent decision making

11.3 WebSphere Application Server security
WebSphere Application Server Version 6.0 is a Java 2 Enterprise Edition
compliant Java application server.

Here we concentrate on the J2EE 1.4 security features implemented in
WebSphere V6.0:

� Role-based security
� Declarative security
� Programmatic security

Access Manager

Resource
Manager

Application A

Decision
Enforcement

OK?

Decision Making Policy

Resource
Manager

Application B

Decision
Enforcement

OK?

352 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Role-based security
One of the goals of the J2EE specification was to lessen the burden of
application security on application developers. Previously, if a portion of code
could only be executed by particular types of users, the code itself had to handle
the authorization, often right within the business logic. For example, if only
managers were allowed to execute a function, then each user attempting to call
that function would have to be identifiable as a manager. This might require a
lookup in an employee database to determine the user’s employee type or group
type. This led to the development of category 1 systems, as described in
Figure 11-1 on page 349.

J2EE attempt to move this security burden to the application assemblers and
deployers. It enables them to define security roles, sets of permissions for access
to Web resources, and specific EJB methods. The use of roles provides a level of
indirection that enables the subsequent assignment of those roles to users and
groups to be done at application installation time, rather than during
development. It also allows security constraints within modules developed by
different teams to be resolved at assembly, deployment, or installation time.

The J2EE specification defines a security role as a logical grouping of users that
is defined by an Application Component Provider or assembler. It is then mapped
by a deployer to security identities (for example, principals or groups) in the
operational environment. A security role can be used either with declarative
security or with programmatic security. Thus, WebSphere’s security is
role-based. This authorization model is shown in Figure 11-5.

Figure 11-5 Role-based authorization model

Access
Denied

Access
Allowed

yes

no

Authenticated
Request

Any
Match?

(list of roles)

(li
st

 o
f r

ol
es

)What Roles are possessed?

•Get Principal & Group names
from credential

•Get Roles assigned to these
Principals & Groups (set by
Application Deployer)

What Roles are permitted?

•EJB - required roles from
declared method-permissions
•Servlet/JSP – required roles
from security-constraints

(from deployment descriptor file)

 Chapter 11. Application integration 353

Declarative security
The declarative security mechanisms, as part of J2EE, are stored in a document
called deployment descriptor using a declarative syntax. Global security roles for
a WebSphere application are stored in the XML deployment descriptor. Security
roles for WebSphere components are stored in their corresponding deployment
descriptors inside the EAR, Java archives (JARs), and Web archives (WARs).

WebSphere uses method permissions, introduced in the EJB 1.1 specification, to
describe security roles for EJBs. For a particular EJB resource, method
permissions are the association of role names with the sets of methods, based
on what types of permissions should be required to invoke the methods.

Example 11-1 demonstrates a slightly abbreviated sample role description for
EJB methods within an ejb-jar.xml deployment descriptor. Only a user who can
be mapped to the security role Teller is allowed access to the methods
getBalance and getLastTransaction of the bean AccountBean.

Example 11-1 Method permissions in the ejb-jar.xml deployment descriptor

<method-permission>
<role-name>Teller</role-name>
<method>

<ejb-name>AccountBean</ejb-name>
<method-name>getBalance</method-name>

</method>
<method>

<ejb-name>AccountBean</ejb-name>
<method-name>getLastTransactions</method-name>
</method>

</method-permission>

If WebSphere security is enabled and EJBs have no method at all configured
with security, then the default is to grant access to the EJB methods. If
WebSphere security is enabled and at least one method has a security
constraint, then the request to the EJBs is denied. This kind of behavior is
different compared to the Web modules’ components. By default, access is
allowed to all Web resources. Parts of the Web resources can be protected using
security constraints.

For a particular Web resource (servlet, JSP, and URL), security constraints are
the association of role names with the sets of HTTP methods, based on the types
of permissions that should be required to access the resource. These are defined
in the WAR’s deployment descriptor. Example 11-2 on page 355 shows a WAR
deployment descriptor that restricts access to any URL containing the
URL-pattern /sales/ to the methods HTTP-POST and HTTP-GET and to users,
that can be mapped during runtime to a security role called SalesPerson.

354 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Example 11-2 Security constraints and permissions in a WAR deployment descriptor

<web-app>
<display-name>Retail Application</display-name>
<security-constraint>

<web-resource-collection>
<web-resource-name>SalesInfo</web-resource-name>
<url-pattern>/sales/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

< /web-resource-collection>
<auth-constraint>

<role-name>SalesPerson</role-name>
</auth-constraint>

</security-constraint>
</web-app>

Figure 11-6 depicts declarative security based on security roles. The objects
(EJB methods, static Web pages, servlets, and JSPs) are protected by method
permissions or security constraints. Permissions and constraints are mapped to
security roles. The deployer grants access to roles for users and groups.

So far, there is no need for a developer to implement a single line of code to
achieve security.

Figure 11-6 Role-based security

Group

Role

User

Defined by
Application Deployer

Group

Role Principal
Mapping

Resource Role Mapping

Defined by
Application Assembler

Web URL

EJB Method

Application Deployment Descriptor

UserUser User
User

User

Role

Group User
Mapping

 Chapter 11. Application integration 355

Programmatic security
Declarative security is not always sufficient to express the security model of the
application. Using a payment transaction example: A customer has to have
access to a bean method in order to transfer money. If he is granted access, he
can perform any transaction he wants. In order to limit the amount of money that
can be transferred by this user, the application must have knowledge about the
role of the customer.

Developers can check security constraints programmatically using the name of
the role. The API for programmatic security in J2EE consists of two methods of
the EJB EJBContext interface and two methods of the servlet
HttpServletRequest interface:

� isCallerInRole (EJBContext)
� getCallerPrincipal (EJBContext)
� isUserInRole (HttpServletRequest)
� getUserPrincipal (HttpServletRequest)

These methods enable components to make business logic decisions based on
the security role of the caller or remote user. In our example, the application may
use the method isUserInRole to verify whether the user is allowed to transfer the
amount of a given sum. Another possibility would be to use the method
getUserPrincipal to use the user’s principal name as a key to get more
authorization information stored elsewhere.

To summarize, WebSphere Application Server authorization uses a role-based
model. WebSphere Application Server treats a role as a set of permissions to
access particular resources.

11.3.1 Java Authorization Contract for Containers
Java Authorization Contract for Containers (JACC) was introduced in J2EE 1.4
specification to address some problems and limitation of earlier definitions:

� All access decisions made by the application server, unless proprietary
interfaces used for third-party plug-ins.

� There were no standards for integration of application servers with
authorization service providers. There was no standard representation of
application security policy (roles, resources, resource-to-role mappings) and
no standard interface for access decision (declarative or programmatic).

JACC allows third-party authorization service providers to plug into application
servers like WebSphere using standard interfaces for policy configuration and
access decisions. JACC defines new Permission classes to handle both the EJB
and the Web permissions required by “security constraints” in J2EE deployment
descriptors. A J2EE is a named collection of these permissions.

356 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Please note that JACC does not specify a standard interface for principals to
roles mapping.

JACC defines a standard contract (interfaces and rules) that allows authorization
framework providers to plug into J2EE application containers to provide
authorization policy management and access decision services. Figure 11-7
shows these relationships.

Figure 11-7 Java Authorization Contract for Containers

11.4 Access Manager and WebSphere integration
Providing a standard-based authorization framework for WebSphere
applications, Tivoli Access Manager supports the Java 2 security model as well
as the Java Authentication and Authorization Services (JAAS) and Java 2
Enterprise Extensions (J2EE).

Integrating WebSphere and Access Manager adds WebSphere resources to the
significant list of elements that can be managed via Tivoli Access Manager’s
consistent authorization policy, and it also adds to WebSphere applications the
benefits that accrue in an Access Manager protected environment. The
examples of this discussed in the previous chapters include URI-based access
control, availability and scalability characteristics inherent in Access Manager
implementations, and the ability to support many authentication mechanisms
without any impact to the target application and Web single sign-on, which are
fully applicable for WebSphere Application Server.

JACC Provider

Policy Configuration

Provider Repository

Access Decision

J2EE Container

Application Management
(deploy, undeploy) Access Enforcement

Manage resources,
roles, mappings Access allowed?

Application
Administrator

User

 Chapter 11. Application integration 357

The integration of WebSphere Application Server and Access Manager offers the
following additional options/possibilities:

� Shared user registry

� Web single sign-on using:

– Tivoli Global Sign-On (GSO) junctions

– Trust Association Interceptor Plus (TAI++)

� Application integration utilizing:

– Authorization Application Programming Interface (aznAPI)

– JAAS

– PDPermission

– J2EE security

11.4.1 Shared user registry
Both WebSphere and Access Manager need a user registry to store user
information, such as IDs and passwords. The first area of integration is for both
products to use the same user registry, and so have a single, common set of
users defined to both WebSphere and Access Manager. They each support a
number of Lightweight Directory Access Protocol (LDAP) servers for this
purpose. Obviously, to share the same user registry you must choose a server
that both products support. The most common is to use Tivoli Directory Server.

Administration considerations
WebSphere has no interface for administering users in an LDAP server, so you
have to use the tools that are provided with the LDAP server product. Access
Manager, on the other hand, does have tools: the command line interface and
the Web Portal Manager Administrator Console.

When sharing the same directory, WebSphere Application Server has to be
configured to meet Tivoli Access Manager LDAP requirements. The changes to
be aware of are:

� Anonymous access to LDAP is no longer permitted. WebSphere must be
configured with a Bind Distinguished Name.

� The default WebSphere group filter defined for the particular LDAP server
must be updated.

� LDAP access control lists (ACLs) are modified. You require a special privilege
to be able to perform a directory search. WebSphere bind distinguished name
must be able to perform directory searches to retrieve users and groups and
populate user and group-selection lists.

358 Enterprise Security Architecture Using IBM Tivoli Security Solutions

11.4.2 Single sign-on
Single sign-on between Access Manager and WebSphere Application Server 6
can be achieved using two different mechanisms:

� GSO junctions
� Trust Association Interceptor Plus

Please note that WebSEAL still supports LTPA integration, but it‘s only supported
for WebSphere 5.x applications running on WebSphere Application Server 6.
Trust Association Interceptor Plus is the preferred method, as it supports both
previous and current application versions under WebSphere Application Server 6
and also WebSphere Application Server 5.11.

GSO junctions
Access Manager’s Global-Sign-On provides a mapping between the primary
user identity (used for login to WebSEAL) and another user ID/password that
exists in another user registry.

In a pure WebSphere environment, accessing a protected URL causes an HTTP
401 challenge to the browser. The user enters authentication details (user ID and
password), and this information is passed in a basic authentication (BA) header
back to WebSphere. WebSphere Application Server then uses the authentication
information to perform an LDAP-bind to authenticate the user.

The different GSO options and capabilities are described in detail in 9.5.1, “Tivoli
Global Single Sign-On lockbox” on page 307.

Trust Association Interceptor Plus (TAI++)
In a customer’s corporate distributed environment, the Access Manager security
architecture utilizes a reverse proxy security server, WebSEAL, as an entry point
to all service requests. The intent of this implementation is to have WebSEAL as
the only exposed entry point. As such, it authenticates all requests that come in
and provides course-granularity junction point authorization.

When WebSphere is used as a back-end server it further exploits its fine-grained
access control. WebSEAL can pass to WebSphere an HTTP request that
includes the credential of the authenticated user. WebSphere can then use these
credentials to authorize the request.

The Trust Association Interceptor Plus provides a WebSphere interface with
third-party objects. It intercepts requests issued by trusted proxy servers, such as
WebSEAL. These objects are collectively known as Trust Association
Interceptors or simply interceptors.

 Chapter 11. Application integration 359

TAI++ implies that the WebSphere security application recognizes and processes
HTTP requests received from WebSEAL. WebSphere and WebSEAL engage in
a contract in which the former gives its full trust to the latter, which means that
WebSEAL applies its authentication policies on every Web request that is
dispatched to WebSphere.

This trust is validated by the interceptors that reside in the WebSphere
environment for every request received.

Using TAI++
When using Trust Association Interceptor Plus, WebSEAL authenticates the
user, acquires credentials for the user from the user registry and possibly
authorizes the request at URL level. With a successful authorization, WebSEAL
augments the request with an additional HTTP header (iv-creds) that contains
the user's credentials. It also changes the password contained in the Basic
Authentication header so it matches a configured SSO user.

This request is sent to WebSphere Application Server, who calls a TAI method to
determine whether the request is from a perimeter authentication service that
has already authenticated the user, to establish trust with the perimeter
authentication server and retrieve the credentials. This method establishes trust
with WebSEAL by checking if the Basic Authentication header contains the
correct password for the configured SSO user. It is done by calling an Access
Manager Authorization Server to make this decision.

The iv-creds header is then extracted from the request and used to construct a
PDPrincipal object. A credential object containing user and group information is
constructed from information contained in the PDPrincipal. The Principal and the
Credential objects are inserted into a JAAS Subject which is returned from the
call. At this point WebSphere Application Server has valid credentials that it can
use for making authorization decisions in the usual J2EE manner. In addition, the
Subject now contains the PDPrincipal object which application code can access
if needed.

If a remote call is made to an EJB on a downstream server the credential
information (that was initially extracted in the TAI) is serialized and sent to the
downstream server. In addition, if a cluster is in place, the serialized Subject is
also replicated horizontally using the WebSphere Application Server propagation
framework.

Important points to note are:

� WebSEAL needs to insert the iv-creds header into the request, not the iv-user
header.

� TAI++ does not directly contact LDAP unlike the previous TAI version. It
instead contacts the Access Manager Authorization Server which validates

360 Enterprise Security Architecture Using IBM Tivoli Security Solutions

the SSO password to establish trust with WebSEAL. This means that
additional configuration is required on the WebSphere Application Server side
to ensure that the TAI can reach the Access Manager Authorization Server.

� The Credential object inserted into the Subject by the TAI means WebSphere
Application Server does not have to perform any additional user registry
searches as part of the authentication process.

� Native WebSphere Application Server Authorization or Access Manager
JACC authorization will work with this Subject.

The TAI++ overall process is shown in Figure 11-8.

Figure 11-8 TAI++ overall process

Trust Association Interceptor Plus is transport agnostic and processes HTTP
and HTTPS requests in an identical manner. Please be aware that trust between
WebSEAL and WebSphere Application Server cannot be established using
mutually authenticated SSL sessions and can only be established by verifying
the SSO password. No checking of certificates is performed by the TAI.

Proof of
Server Identity

User Identity

TAM Security Server

Proof of
Server Identity

forwarded
request

Web Authenticator
WebSphere

•validate origin
•return identity

TAI

Proof of
Server Identity

2 4

3
TAM Directory

TAM
USER

GROUP-1

GROUP-2

Credential

Build Credential1

Java Subject

Credential WAS Credential

C
redential

Java Subject
C

redential

 Chapter 11. Application integration 361

The TAI++ logical architecture is shown in Figure 11-9.

Figure 11-9 TAI++ logical architecture

Summary of how TAI++ works
To sum up how Trust Association works using the WebSphere Administration
Applications:

1. The browser requests a URI that WebSEAL recognizes to be a protected
resource.

2. WebSEAL prompts the user to provide a user ID and password (this can be
either via Basic Authentication challenge or via a Custom Form).

3. WebSEAL authenticates the user.

4. After proper authentication and coarse-grained authorization, WebSEAL
forwards a modified HTTP request to the back-end WebSphere server.

5. TAI++ then extracts the value of the iv-cred and basic authentication http
header, validates it against Access Manager Authorization Server, and
returns this as the authenticated user that should be used by WebSphere
authorization.

How to select the SSO option
In fact, if you assume that Access Manager and WebSphere share a user
registry, then GSO would be the last choice for SSO. Instead, using the Trust
Association Interceptor Plus (TAI++) would be the preferred solution. GSO is only
an option when WebSEAL and WebSphere rely on different user registries. In

any TAM
authentication
mechanism

Users: Groups:
User-1 Group-1

TAM Registry

User

HTTP or HTTPS

TAM
Security Server

WebSphere &
TAI++

TAM
Authorization

Server TAM
Policy
Server

Basic Auth Header=
(WebSEAL-user, Password)

iv-cred=<TAM Cred>

Build
Credential

Validate
BA Header

Examine
TAM Credential

User-A

362 Enterprise Security Architecture Using IBM Tivoli Security Solutions

this case you may need to supply a different user ID and password combination
for the user to WebSphere that is meaningful to the WebSphere user registry.

Otherwise, we recommend the TAI++ option, because it is easy to configure and
maintain. There is no key distribution or periodic update required. TAI++ is also
the method used when WebSphere supports integration with third-party reverse
proxy security servers in general.

11.4.3 User mapping for WebSphere J2EE Connector Architecture
The J2EE Connector Architecture, sometimes called J2CA, JCA, J2C, or JCX,
defines a standard architecture for connecting the Java 2 Platform, Enterprise
Edition (J2EE) to heterogeneous enterprise information systems (EIS).
Examples of EIS include Enterprise Resource Planning (ERP), mainframe
transaction processing (TP), and database systems.

The connector architecture enables an EIS vendor to provide a standard
resource adapter for its EIS. A resource adapter is a system-level software driver
that is used by a Java application to connect to an EIS. The resource adapter
plugs into an application server and provides connectivity between the EIS, the
application server, and the enterprise application.

Accessing information in EIS typically requires access control to prevent
unauthorized accesses. J2EE applications must authenticate to the EIS to open
a connection to it. Figure 11-10 depicts the J2CA architecture.

Figure 11-10 J2EE Connector Architecture - J2CA

Managers:

Transaction
Connection

Security

WebWeb
ApplicationApplication

EJBEJBEJB

ResourceResource
AdapterAdapter

Enterprise Enterprise
Information Information

SystemSystem

J2EE Server

Application

Contract

Application

Contract

System

Contract

 Chapter 11. Application integration 363

As seen in Figure 11-11, the user identity flows from the point of authentication to
the back-end EIS. The user identity can be propagated or mapped for each
transaction, without requiring the application logic for this mapping when in
Container managed mode.

The J2CA specifies the use of a JAAS login module for:

� Principal mapping

� Creation of principal’s credentials

Figure 11-11 J2CA security objective: Provide identity to enterprise information system

The EIS sign-on can be managed by the application or the container. When
application management is in use, the application provides the identity and
authentication data. When container management is in use, the JAAS login
module provides the identity and authentication data.

Tivoli Access Manager provides an Access Manager Global Sign-on Principal
Mapper, which is configured as a J2CA JAAS login module. It locates an Access
Manager GSO entry using the Access Manager user and the GSO target.
Access Manager can use the currently authenticated user (subject in the security
context), or part of the authDataAlias string, that is a property of the
ConnectionFactory.

The Access Manager user and GSO target uniquely identify the GSO entry. The
GSO entry contains the user ID and password to be provided by the resource
adapter to the Enterprise Information System.

User
User-A

authenticate

Access Manager
Security Server

WebSphere

User-A

forward
Identity

Enterprise
Information

System

User ???

forward
Identity

User Identified
via Authentication

Identity forwarded
to Application Server
(for example: Access

Manager Creds to TAI++)

TA
I+

+ J2C
A

Identity required for
EIS access.

How is it provided?

364 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 11-12 shows the Access Manager GSO principal mapping for J2CA.

Figure 11-12 Access Manager GSO principal mapping for Java 2 connectors

Access Manager JACC Provider
The Access Manager JACC Provider is shipped with WebSphere Application
Server 6.0. It replaces the previous Access Manager for WebSphere (AMWAS)
component that was shipped with Access Manager.

When using the Access Manager JACC provider and a user attempts to access a
protected resource (one that requires some role), the access enforcement point
for the container authenticates the user (if necessary) to create a WebSphere
credential. After this JACC interfaces are called passing the resource, user, and
type of access required. The Access Manager JACC provider then uses a local
copy of the Access Manager Policy Database to determine if the user possesses
a role that grants access.

All Application Management events are passed to the Access Manager JACC
provider (via the WebSphere console). The Access Manager JACC Provider

WebSphere

A
pp

lic
at

io
n

Java 2 Connector

Resource Adaptor

JAAS Config Entry
for Resource Adaptor

Access Manager GSO
Mapping Module

Enterprise
Information

System

GSO_UserID
GSO_Password

authDataAlias=
EIS-1

GSO_UserID
GSO_Password

Access Manager Directory

TAM User Data
TAM GSO EIS1

User ID: User-A target=EIS-1
user=GSO_UserID
password=GSO_Password

EIS-1

use
r-A

,

EIS-1

GSO_UserID,

GSO_Password

User-A

1

2

3

4

5

6

User-A

 Chapter 11. Application integration 365

communicates with the Access Manager Policy Server to persist the J2EE
security configuration data:

� Resource to Role mappings – for example, the URLs and EJB methods that
have security requirements and the roles that are allowed access.

� Role to Principal mappings – for example, which users/groups are granted the
roles required by the application’s resources.

This data is first created in the Policy Server’s master policy database and then
replicated to every WebSphere Application server that is configured into the
same Access Manager secure domain. All WebSphere servers in that cell should
be configured to use the same Access Manager domain by using the Access
Manager JACC configuration built into the WebSphere Application Server Admin
Console.

Figure 11-13 shows both Application Management and Access Enforcement
between WebSphere Application Server and Tivoli Access Manager using
Access Manager JACC Provider.

Figure 11-13 Tivoli Access Manager JACC Provider

The benefits of the Access Manager JACC Provider over Access Manager for
WebSphere Application Server are as follows:

� Easier deployment

– No additional Access Manager installation required

– Access Manager JACC Provider only needs configuration

• WebSphere Admin Console or wsadmin CLI

TAM Auth
Server(s)

WebSphere 6.0

Access Manager JACC Provider – shipped with WAS 6.0

Access Manager Java Runtime – shipped with WAS 6.0

Replicated Access
Manager Policy Database

Policy Configuration Access Decision

Application Management
(deploy, undeploy) Access Enforcement

Access
Manager

Auth
Server(s)

Access
Manager

Policy
Server

Access Manager
Policy Database

Access Manager
Server

Application
Admin User

366 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Integrated policy configuration

– Access Manager for WebSphere Application Server migration utility
eliminated

– Application deploy/undeploy exports policy to Access Manager

� Dynamic Policy Updates

– Role-to-Principal changes do not require application restart. New policy is
effective as soon as Access Manager Policy Database is replicated

� Integrated Administration

– Role-to-Principal mapping available on WebSphere Admin Console

Please note that existing applications must be re-deployed or migrated to benefit
from Access Manager JACC provider.

11.5 Access Manager and .NET Integration
IBM Tivoli Access Manager for .NET provides a standard-based authorization
framework for .NET. Integrating .NET framework and Access Manager adds
.NET resources to the significant list of elements that can be managed via Tivoli
Access Manager’s consistent authorization policy, and it also adds to .NET
applications the benefits that accrue in an Access Manager protected
environment. The examples of this discussed in the previous chapters include
URI-based access control, availability and scalability characteristics inherent in
Access Manager implementations, the ability to support many authentication
mechanisms without any impact to the target application, and Web single
sign-on, which are fully applicable for .NET environment.

The integration of .NET and Access Manager offers the following additional
options/possibilities:

� SSO from Access Manager Web security servers to ASP.NET applications

– Accepts Access Manager user ID or credential

– Authenticates traffic origin

� Role membership evaluation using Access Manager policy

– Declarative role security

• Application configuration enforced by application server

– Programmatic role security

• Application API call – “does user possess this role?”

 Chapter 11. Application integration 367

� Web service security

– Client-side authorization and Identity propagation (via HTTP headers)

– Server-side authentication and authorization

• HTTP header or SOAP WS-Security header (UsernameToken)

� Exposure of Access Manager APIs to .NET applications

– Access Manager Authorization & Administration APIs

– API-level help for MS Visual Studio® .NET

Within the .NET framework, the common language runtime (CLR) is responsible
for run-time services such as:

� Language integration

� Common language runtime

� Security enforcement

� Memory process and thread management.

Access Manager for .NET exposes Access Manager APIs to the .NET common
language runtime level, thereby making the functions available to all .NET
languages such as:

� Managed C++

� C#

� Visual Basic .NET

11.5.1 Single sign-on
An ASP.NET application can be configured to use the Access Manager
Authentication Module to achieve SSO from Access Manager Web security
servers. The capabilities and options are the functional equivalent of the Trust
Association Interceptor (TAI) for WebSphere.

The input request carries the user’s identity in an HTTP header. The value can be
a simple user ID string or the Access Manager credential created by the Web
security server (these are typically carried by http_iv_user and http_iv_creds
respectively).

A user ID that represents the Web security server itself can be configured to
provide a trust basis for the request. If configured, the password field of the basic
authentication header must be the password of this “Web security server” user.

In addition to the trust-basis provided by the basic authentication header
password, the Access Manager Authentication Module can also confirm that an

368 Enterprise Security Architecture Using IBM Tivoli Security Solutions

SSL session was used to transport the request and that a client-side certificate
was used for the SSL connection. This provides an additional level of trust that
the user identity came from a trusted source.

The Access Manager Authentication Module uses the input identity to create an
AccessManagerPrincipal object that is an implementation of the .NET IPrincipal
interface. This identity is placed in the HttpContext where it is used by the .NET
server for declarative role-based access decisions and is available to the
application for programmatic role-based decisions.

Figure 11-14 shows Web single sign-on to the ASP.NET environment. Note that
http headers never go to the browser. They only exist between the Access
Manager Security Server and the IIS Web server.

Figure 11-14 Access Manager Web single sign-on to ASP.NET environment

11.5.2 Role-based authorization in .NET
.NET uses role-based authorization. Access Manager for .NET provides
Principal to Role mapping for .NET. With Access Manager for .NET in use,
authorizations in .NET applications benefit from the central authorization
framework that Tivoli Access Manager provides.

Authorization from .NET applications
Access Manager for .NET exposes the Access Manager aznAPI to the .NET
environment, providing a standard-based authorization framework for .NET
applications. This is done by an Access Manager assembly deployed in the .NET
environment. Figure 11-15 on page 370 shows how this assembly integrates a
.NET application with Tivoli Access Manager authorization framework.

Windows Server OS

Access Manager Authentication Module

ASP.NET App

Access
Manager

Policy
Server

Access
Manager
Directory

ASP.NET 1.1

Access Manager Authorization Assembly

IIS
Access

Manager
Web

Security
Server

Access Manager
IPrincipal

(in context)

User
iv-user

iv-creds

 Chapter 11. Application integration 369

Figure 11-15 Access Manager authorization from .NET application

The Access Manager authorization module contains a locally cached copy of the
policy database that is updated by the Policy Server as changes are made by
administrative actions that change the Access Manager policy, so authorization
checks do not require a call to the Access Manager Policy Server.

Role-Based authorization in ASP.NET
The Principal to Role mapping provided with Access Manager for .NET is used
by:

� The ASP.NET container to enforce role requirements declared by the
application.

� The ASP.NET application that explicitly invokes IsInRole (role-name) to
control its logic.

To use Principal to Role mapping, the source code of ASP.NET applications
using either declarative or programmatic security does not have to be modified in
any way.

It is not the intention of this section to explain how to write a .NET application, nor
explain security calls, but to explain architectural context. For this reason we are
providing an example of C# code to get the current IPrincipal object and check if
the user possesses the ‘PetOwners’ role:

IPrincipal currentPrincipal = Thread.CurrentPrincipal;
if (currentPrincipal.IsInRole("PetOwners")) { ...

Windows OS

.NET Common
Language Runtime

Access Manager Authorization Assembly

.NET Application
(WinForms, Cmd Line)

Access
Manager

Policy
Server

Access
Manager
Directory

(could be AD)

Authorization
Policy Database

Auth
en

tic
ati

on
 &

Cred
en

tia
ls

Access Manager
Runtime

370 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Here is an example from an aspx page:

System.Security.Principal.IPrincipal user = HttpContext.Current.User;
if (user.IsInRole("PetOwners")) { ...

In both examples, the IPrincipal will be an AccessManagerPrincipal object that
was created by the Authentication Module and inserted into the security context
of the application. Because AccessManagerPrincipal implements the .NET
standard IPrincipal both declarative and programmatic security realms work
unchanged.

Figure 11-16 shows the context of role-based authorization in an ASP.NET
environment.

Figure 11-16 Role-based authorization in an ASP.NET environment

Principal to Role mapping approaches
Access Manager for .NET provides two approaches for determining if the user
(Access Manager IPrincipal) possesses a given role:

� User-to-Role mapping via the user’s group membership (as found in the
currently authenticated credential).

In this case, the roles possessed by a given user are determined by the user’s
group membership within the current Access Manager credential. That is, a
check for role “role name” simply checks if the user’s credential contains a
group with the same name.

Windows Server OS

Access Manager Authentication Module

ASP.NET App

ASP.NET 1.1

Access ManagerAuthorization Assembly

IIS Access Manager IPrincipal
(in context)

Demand Role-A Demand Role-B

If IPrincipal.IsInRole(“Sales”)…

Declarative
Role

Security

Programmatic
Role

Security

 Chapter 11. Application integration 371

� User-to-Role mapping via an Access Manager authorization check of an
object in the Access Manager protected object space that represents the role.

In this case, roles are represented by objects in the Access Manager object
space, and the roles possessed by a user are those role objects that allow the
[AMNET] “m” permission.

In both cases it is possible to partition the “role name space” – allowing, for
example, two applications to use a role called “Finance”. This is called the “role
context” of the application and is a separately configurable for each application.
The role context is a simple string such as “myApp”.

In the case of role mapping via group membership the role context is prepended
to the requested role with a ‘/’ separator and a check is made for the resulting
group name. For example, with a context of “myApp” a check for “Finance” would
look for group “myApp/Finance”. By default there is no role context and the role
name equates directly to a group name.

In the case of role mapping via object space permissions the role context is
made part of the path to the Access Manager object that represents the role. For
example, with a context of “myApp” a check “Finance” would check that the user
is granted the [AMNET] “m” action on the /AMNET/Roles/myApp/Finance
object. By default there is not a role context and the object space path is
/AMNET/Roles/DefaultContext/<role>.

Figure 11-17 shows both options. Please note that the choice of group or object
space role mapping is made for each .NET application.

Figure 11-17 User to role mapping: Two distinct configuration options

Access Manager
IPrincipal

User ID, Attributes
Groups:

Finance, Manager

Access Manager
Credential

IsInRole(“Finance”) = TRUE
(user is a member of group ‘Finance’)

IsInRole(“CEO”) = FALSE
(user NOT a member of group ‘CEO’)

Ac
ce

ss
 M

an
ag

er
 P

ro
te

ct
ed

O

bj
ec

t S
pa

ce

/AMNET/Roles
/DefaultContext ACL-1

ACL-2

POP

ACL-3

<Role-name>

/ApplicationContext

/Finance

/CEO

check role object
check for group with role name

User Role mapping via Groups User Role mapping via Object Space

372 Enterprise Security Architecture Using IBM Tivoli Security Solutions

There are a few considerations that you must be aware of before you decide on
one of the models for each application:

� Role mapping via groups

– Very simple model requires less administration

• No objects to create, no ACLs to manage

– Better performance

• Only need to check Access Manager credential for presence of group
(=role)

– Change of policy not effective until next user login

– Cannot use advanced authorization policy methods

• POP, authorization rule

� Role mapping via Access Manager object authorization

– Allows dynamic policy change without new user login

– Can use all Access Manager authorization policy declarations

• ACLs, POPs, authorization rules

– Good performance (local policy database used for authorization check)

– More administration setup and Access Manager for .NET configuration

ASP.NET Web services security
Access Manager for .NET provides a plug-in to the MS Web Services
Enhancements 2.0 framework (WSE 2.0).

Role-based authorization is available for Web services using either:

� Transport identity
– User is in HTTP header, authenticated by Access Manager Authentication

Module

� Message identity
– User is in SOAP WS-Security header, authenticated by Access Manager

for .NET plugin for Web Services Enhancements for Microsoft .NET 2.0

This configuration choice is available for each Web service. Please note that
transport and message based authentication can also be used together, and in
this case message identity has precedence, if present in a SOAP request.

Message identity can be used for declarative and programmatic role-based
authorization. In this case, user-to-role mapping is evaluated by group

 Chapter 11. Application integration 373

membership or object authorization, the same as a typical ASP.NET Web
application.

The Access Manager for .NET Plug-in for Web Services Enhancements for
Microsoft .NET 2.0 supports:

� Username/Token with Username and Password

� Username/Password validated against Access Manager registry

Each ASP.NET Web service can request that the identity carried in the
Username/Token of the SOAP’s WS-Security header be used in preference to
the identity carried in the HTTP request headers.

When applications use message-level identity:

� Declarative security is evaluated using message-level identity but only if a
valid Username/Token with Password is present, and is successfully validated
against the Access Manager registry.

� The transport-level identity is not used (for example, the message-level
identity overrides the HTTP identity).

The message-level identity can also be used for programmatic security, for
example:

IPrincipal currentPrincipal = Thread.CurrentPrincipal;
if (currentPrincipal.IsInRole("myRole"))

If applications access the message-level identity via the “RequestSoapContext”,
they will still work and the identity will be the same one accessed via
Thread.CurrentPrincipal.

374 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 11-18 HTTP or SOAP security in an ASP.NET Web service

Client side proxy for Web services
The .NET infrastructure and development tools allow a Web service client
application to view the Web service as a locally accessible object with an
interface that matches the operations of the Web service. That is, the application
simply invokes methods on a local object that acts as a proxy for the Web
service. The proxy object handles any data format conversion, creation of a
SOAP Request package, transporting the SOAP request to the remote service
over some transport (usually HTTP) and doing the inverse for the SOAP
Response (the .NET support in this regard is analogous to the WSDL2Java
development tool and the JAX-RPC support in Java.)

Access Manager for .NET provides a class that integrates into this mechanism to
provide client-side Web services security. This class uses the application current
authenticated user (in the security context of the application) to:

� Authorize the user’s access to the Web service by performing an
authorization check on a Access Manager protected object.

� Insert the user’s identity into the HTTP request that will carry the SOAP
request.

Access
Manager

Web
Security
Server

(could be
WebPI on IIS)

iv-user
iv-creds

Windows Server OS

Access Manager Authentication Module

ASP.NET
Web Service

Access Manager Authorization Assembly

IIS

Access Manager
IPrincipal

(in context)

Windows Server OS

Access Manager WSE 2.0 Plugin

ASP.NET
Web Service

Access Manager Authorization Assembly

IIS

Access Manager
IPrincipal

(in context)

Username/Password

SOAP Message

Transport identity – user carried in HTTP headers

Message identity – user carried in SOAP message

 Chapter 11. Application integration 375

The user can then be authenticated and authorized by the Web service. Note
that in order to use this support, a small modification needs to be done at the
Web service client application.

In Figure 11-19 we show a .NET application invoking a Web service. Access
Manager for .NET authorizes the current user (IPrincipal) access to the Web
services. Access Manager for .NET also inserts the user identity into the HTTP
headers, which allows user authentication and authorization at the Web service.

Figure 11-19 Web services client side proxy

11.6 C and Java application integration
If we want to integrate C and Java applications running outside an Application
Server, it is necessary to call the Access Manager Authorization API from within
this applications.

Access Manager provides a C version of the Authorization API (aznAPI) and
pure Java classes: PDPermission, PDPrincipal, and PDLoginModule.

Java wrapper classes for the aznAPI are also available from Open Source.
PDPermission is usable in both a Java Authentication and Authorization Services
(JAAS) and non-JAAS environment. We provide an overview of these methods in
the next subsections, “This interface is called aznAPI. Access Manager provides
a C version of the API, and Java wrappers are available as Open Source.” and
“PDPermission and JAAS.”

Access
Manager
for .NET

WS Client
Proxy

.NET
Application

calling
Web

Service
(client)

Authentication &
Trust Module

ASP.NET
Web Service

Authorization Services

ASP.NET

TAI J2EE
Web Service

Container-level Authorization

WebSphere

Access Manager
Realm (AM WLS)

J2EE
Web Service

Container-level Authorization

BEA WLS

Access Manager
IPrincipal
(in context)

IV_CREDS

IV_CREDS

IV_USER

SOAP over HTTP

376 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The Authorization API
Using the Tivoli Access Manager authorization application programming
interface (API), you can program Tivoli Access Manager applications and
third-party applications to query the Tivoli Access Manager authorization service
for authorization decisions.

The Tivoli Access Manager authorization API is the interface between the
server-based resource manager and the authorization service and provides a
standard model for coding authorization requests and decisions. The
authorization API lets you make standardized calls to the centrally managed
authorization service from any developed application.

The authorization API supports two implementation modes:

� Remote cache mode

In remote cache mode, you use the authorization API to call the Tivoli Access
Manager authorization server, which performs authorization decisions on
behalf of the application. The authorization server maintains its own cache of
the replica authorization policy database.

� Local cache mode

In local cache mode, you use the authorization API to download a local
replica of the authorization policy database. In this mode, the application can
perform all authorization decisions locally.

The authorization API shields you from the complexities of the authorization
service mechanism. Issues of management, storage, caching, replication,
credentials format, and authentication methods are all hidden behind the
authorization API.

The authorization API works independently from the underlying security
infrastructure, the credential format, and the evaluating mechanism. The
authorization API makes it possible to request an authorization check and get a
simple “yes” or “no” recommendation in return.

The authorization API is a component of the Tivoli Access Manager application
development kit (ADK).

The Open Group Authorization API standard
The Tivoli Access Manager authorization API implements the Open Group
Authorization API (Generic Application Interface for Authorization Frameworks)
standard. This interface is based on the International Organization for
Standardization (ISO) 10181-3 model for authorization. Figure 10-1 on page 325
explain this model.

 Chapter 11. Application integration 377

This interface is called aznAPI. Access Manager provides a C version of the API,
and Java wrappers are available as Open Source.

PDPermission and JAAS
The original Java security model dealt almost exclusively with the needs of the
Java environment’s first major user, the Web browser. It focused on the
complexities of secure usage of mobile code, so it worried about the origins of
code and its authors, as indicated by digital signatures. The Java 2 environment
generalizes that model to concern itself with all code, not just that loaded from
remote locations. The Java 2 architecture also restructures the internals of the
Java run-time environment to accommodate a very fine-grained usage of
security. JAAS, a standard extension of the Java 2 environment, adds in the
concept of who the user is who is running the code and factors this information
into its security decisions.

All levels of Java security have been policy based. This means that authorization
to perform an action is not hard coded into the Java run time or executables.
Instead, the Java environment consults policy external to the code to make
security decisions, and therefore maps to systems of category 2 or 3, as
described previously in 11.2, “Security design objectives” on page 349. In the
simplest case, this policy is implemented in a flat file, which somewhat limits its
scalability and also adds administrative overhead.

To overcome the flat file implementation of Java 2 policy, and to converge to a
single security model, the authorization framework provided by Access Manager
can be leveraged from inside a normal Java security check. As mentioned earlier,
the most natural and architecturally pleasing implementation of this support is
inside a JAAS framework. Support for this standard provides the flexibility for
Java developers to leverage fine-grained usage of security and authorization
services as an integral component of their application and platform software.

With the Java 2 and JAAS support delivered in Tivoli Access Manager, Java
applications can:

� Invoke the JAAS LoginModule supplied by Tivoli Access Manager to acquire
authentication and authorization credentials from Access Manager.

� Use the PDPermission class to request authorization decisions.

This offers Java application developers the advantages that:

� The security of Java applications that use PDPermission is managed using
the same, consistent model as the rest of the enterprise.

� Java developers do not need to learn anything beyond Java 2 and JAAS.

� Updates to security policy involve Tivoli Access Manager–based administrator
actions, rather than any code updates.

378 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Other programming languages
Most programming languages provide some kind of integration with C libraries or
Java classes. We can also extend to these platforms to the Access Manager
authorization framework.

11.7 Conclusion
Tivoli Access Manager aims to be a corporate authorization solution. Supporting
the most important platforms in actual businesses and providing a strong and
unique authorization framework across multiple technologies makes Tivoli
Access Manager a fundamental enabler of e-business in the B2C and B2B
markets.

Access Manager makes application security a reality even with disparate
applications that require disparate security approaches, reducing costs of
implementing and maintaining proprietary security solutions (islands of security),
providing fast time-to-production, reducing cost and complexity of application
development, achieving independence through standards and mitigating risks of
fraud due to consistent managed end-to-end security.

 Chapter 11. Application integration 379

380 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 12. Access Manager for
Operating Systems

Compliance and auditing has become a major consideration of corporations.
Organizations that use UNIX or Linux operating systems see the benefit of
running a robust platform. Yet, these systems have an inherent weakness in
producing useful audit information and ensuring compliance with corporate
security policy.

This chapter introduces the elements of the Access Manager architecture in a
UNIX or Linux environment. It describes the use of the OSSEAL resource
manager and covers key architectural issues associated with any Access
Manager deployment. It also provides a foundation for the architectural
discussions in later chapters.

12

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 381

12.1 Overview of Tivoli Access Manager for Operating
Systems

Tivoli Access Manager for Operating Systems provides a layer of authorization
policy enforcement in addition to that provided by a native UNIX operating
system. It applies fine-grained access controls that restrict or permit access to
key system resources. Controls are based on user identity, group membership,
the type of operation, time of the day or day of the week, and the accessing
application. An administrator can control access to specific file resources, login
and network services, and changes of identity. These controls can also be used
to manage the execution of administrative procedures and to limit administrative
capabilities on a per-user basis. In addition to authorization policy enforcement,
mechanisms are provided to verify defined policy and audit authorization
decisions.

Access controls are stored in a policy database that is centrally maintained in the
IBM Tivoli Access Manager environment. The accessing user definitions are
stored in a user registry that is also centrally maintained in the environment.
When protected resources are accessed, Tivoli Access Manager for Operating
Systems performs an authorization check based on the accessing user’s identity,
the action, and the resource’s access controls to determine whether access
should be permitted or denied.

12.1.1 Business context
UNIX has several inherent problems with security when it is examined from an
enterprise point of view. One problem is that there is no inherent security
infrastructure. Each vendor has their own unique security that can vary widely
from platform to platform. Another problem centers around the concept of group
users. In UNIX, when a group user account is used such as root, all auditing is
based on the group user account, not an individual user account. By its nature,
this makes auditing events on the host system extremely difficult.

Important: Tivoli Access Manager for Operating Systems does not replace
native UNIX security. It is, however, an additional level of security.

382 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Tivoli Access Manager for Operating Systems allows a single product to be used
to apply security policy consistently across the entire enterprise. The ability to
manage an entire corporate UNIX or Linux environment from a single security
product has numerous benefits such as:

� Consistent application of security policy regardless of the server
� User-level audit records regardless of whether a group account is used
� Application of a policy from a central server

Figure 12-1 illustrates how Tivoli Access Manager for Operating Systems
provides an additional layer of security beyond native UNIX security.

Figure 12-1 Security layering on UNIX with Access Manager for Operating Systems

Tivoli Access Manager for
Operating Systems

UNIX Filesystem Security

Application Security

Operating
System

 Chapter 12. Access Manager for Operating Systems 383

12.1.2 Access Manager for Operating System integration
Tivoli Access Manager for Operating Systems can leverage the existing
infrastructure from other Tivoli Access Manager deployments such as Tivoli
Access Manager for e-business. All Tivoli Access Manager systems have the
ability to share a common user registry, Policy Server, and Web Portal Manager.
Figure 12-2 illustrates this concept.

Figure 12-2 Access Manager for Operating Systems and Access Manager for e-business components

For more information, see Chapter 5, “Access Manager core components” on
page 163.

12.2 Security architecture subsystems perspective
Architectural subsystems provide a way to group common attributes and to
provide a common set of services to a broad range of applications (see 2.1,
“Common security architecture subsystems” on page 20). The subsystem
approach allows for a clear articulation and understanding of the security solution
and enables it to be deployed as a service within a real-world infrastructure.

Production Zone

Internet DMZInternet

Web
Server

Web
Server

Web
Server

Access Manager
User Registry

Browser

Authorization
Database

Management
Zone

Access Manager
Policy Server

External
WebSEAL

Intranet

Browser

Internal
WebSEAL

UNIX
Server w/
OSSEAL

UNIX
Server w/
OSSEAL

UNIX
Server w/
OSSEAL

Web Portal
Manager

384 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The main security architecture subsystems addressed by Access Manager for
Operating Systems are:

� Access Control: Access Manager is used to authenticate users and to enforce
security policy at application and system level.

� Auditing: The Access Manager components and infrastructure provide a
comprehensive logging framework that can be integrated with any threat
management system.

Access Manager for Operating Systems uses all of the subsystems, but these
two are fundamental to the mapping of Access Manager within an overall
enterprise IT architecture.

The design of any architecture must be based on clearly defined and articulated
principles that form a foundation for the design process. Whenever in doubt
about a design decision, the principles should be used to map a path forward and
to justify the overall design.

Here are some key principles that can be applied to an access control solution:

� The security solution must have a central point of authority for security-related
information. This authority must support both centralized and distributed
management.

– Motivation: This principle drives the need for one source of an
authoritative security-related policy within an organization. It enables a
consistent policy to be applied across applications and systems, and
throughout the organization, while providing a flexible administration
framework that fits into and enhances an organization’s operation
capabilities.

– Implication: This principle implies a high degree of integration, broad
coverage, and flexibility required from the products that are chosen to
support it. Integration is one of the greatest challenges.

� Security policy should be defined and enforced across all layers of the
infrastructure from the application layer down to the network.

– Motivation: The security of any system is only as strong as its weakest
link. As a result, it is essential to secure the application, the system on
which the applications runs, and the network that supports the solution.

– Implication: Securing all aspects of an IT system always generates
numerous integration issues because no one product provides an
enterprise security solution. For example, throughout an environment,
maintaining policy consistency and consolidation of logging systems are
just two of the major issues that must be addressed.

 Chapter 12. Access Manager for Operating Systems 385

� Sufficient logging is required to capture all authentication and access control
decision events and logs. The level of logging should be based on business
and security requirements, so the security solution should provide
comprehensive and flexible logging coverage, allowing it to be customized.

– Motivation: Because no security solution is foolproof, it is essential to
keep good records of the transactions performed by the security system.
An easily manageable method of dealing with these records is essential.

– Implications: Strong integration is required to provide logging across
multiple systems. Mechanisms must be in place to collect, filter, analyze,
and report on audit data.

These principles are not intended to be comprehensive, but to highlight some
core objectives of the security solution.

Access Manager for Operating Systems supports all of these principles. The
Access Manager family of products, when integrated throughout an environment,
provides comprehensive access control capability. The breadth of the Access
Manager solution along with its open architecture and interfaces means that it is
an optimal solution for providing the majority of an enterprise’s access control
capabilities.

Access Manager for Operating Systems provides fine-grain access control and
audit logging at the system level. While the rest of the Access Manager family of
products sits within the application space, Access Manager for Operating
Systems sits at the UNIX kernel level to intercept every system call and user
transaction. This provides a strong system-level audit capability across a large
environment. This capability, in conjunction with the Access Manager
application-level logging and the Common Auditing and Reporting Service, can
provide a comprehensive operational view of the environment.

12.3 Architecture
Tivoli Access Manager is a network-based access control framework that
provides a backbone for defining, managing, and enforcing access control policy.
Multiple resource managers can use this framework. Tivoli Access Manager for
Operating Systems is one of the resource managers that uses the authorization
service provided by Tivoli Access Manager.

Access Manager for Operating Systems uses the same Access Manager base
infrastructure as all other resource managers. The core functional components
and the base management components are described in the following sections.

386 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Core components
Access Manager is based on two components:

� A user registry

� An Authorization Service, consisting of an authorization database and an
authorization engine

Management components
The Access Manager environment requires certain basic capabilities for
administrative control of its functions. Management facilities are provided through
the following base components:

� The Policy Server, which supports the management of the authorization
database and its distribution to Authorization Services

� The pdadmin utility, which provides a command line capability for performing
administrative functions, such as adding users or groups

� The Web Portal Manager, which provides a browser-based capability for
performing most of the same functions provided by the pdadmin utility

For more about the base components, refer to Chapter 5, “Access Manager core
components” on page 163.

Although Tivoli Access Manager for Operating Systems relies on the information
stored in the centrally maintained Tivoli Access Manager authorization database,
the information required to make authorization decisions is replicated and
cached within the distributed managed nodes. This enables authorization policy
enforcement even if the Tivoli Access Manager Policy Server becomes
unavailable.

Restriction: While Access Manager can use Microsoft Active Directory as a
user registry, there are some restrictions when it is used with Access Manager
for Operating Systems. Access Manager for Operating Systems can only use
a single Active Directory domain.

If the core Access Manager environment is configured into a multiple domain
Active Directory environment, then Access Manager for Operating Systems
must be configured into only one domain. That domain name must be included
in the definitions of access control lists (ACLs), extended attributes, and
certain policy objects.

 Chapter 12. Access Manager for Operating Systems 387

12.3.1 Authorization model
Tivoli Access Manager for Operating Systems components operate in the
user-level application space and within the UNIX kernel. The Tivoli Access
Manager for Operating Systems kernel extension and user-level components
interact in a tightly integrated, secure manner to provide an extended layer of
authorization enforcement as shown in Figure 12-3. Applications access system
resources through system-provided APIs, which eventually arrive in the UNIX
kernel through a variety of mechanisms.

Figure 12-3 An overview of IBM Tivoli Access Manager for Operating Systems

User
Registry

Authorization
Database

Tivoli Access Manager
for Operating Systems

processes

Tivoli Access
Manager Policy

Server

User mode

User
Request

Credential cache

Kernel mode

Tivoli Access Manager for Operating Systems Kernel interception

Native operating system services

Authorization Database
Replica

388 Enterprise Security Architecture Using IBM Tivoli Security Solutions

On a system that is not protected by Tivoli Access Manager for Operating
Systems, the native system’s security verifies whether the accessing user’s
native identity has the authorization to perform the requested action and either
carries out the operation or denies it.

The primary function of the kernel extension is to intervene in accesses to
resources that are subject to the authorization policy. The kernel extension uses
the authorization daemon process, PDOSD, to obtain an authorization decision
and then enforces that decision. If the policy permits access to the resource, the
operation continues and is then subject to the native system’s security. Otherwise
the resource access is denied.

The PDOSD daemon maps UNIX user identities to Tivoli Access Manager
credentials that describe users and their group memberships from a Tivoli
Access Manager point of view. The PDOSD daemon then uses the Tivoli Access
Manager Authorization API to obtain authorization decisions based on the
credentials, the operation being performed, the resource being accessed, and its
associated access controls defined in the policy database.

12.4 Native UNIX security relationship
One of the most difficult concepts surrounding Access Manager for Operating
Systems is how it relates to existing security within UNIX itself. Access Manager
for Operating Systems does not replace any existing security. It compliments
what is already present on the native operating system. Figure 12-4 on page 390
illustrates how authorization decisions are made on a system running Access
Manager for Operating Systems.

 Chapter 12. Access Manager for Operating Systems 389

Figure 12-4 Authorization process flow

User requests
access to
resource

Tivoli Access
Manager for
Operating

Systems intercepts
requests

Perform check
against local copy of

Access Manager
authorization

database

Is user
authorized

Pass request over
to native UNIX

security

Perform check
against native

operating system
rules

User is
permitted

access to the
resource

Is user
authorized

ACCESS
DENIED

ACCESS
DENIED

YES

NO

YES

NO

390 Enterprise Security Architecture Using IBM Tivoli Security Solutions

In addition to the authorization process flows, Tivoli Access Manager for
Operating Systems does not replace existing UNIX users. Stated simply, users
must exist in UNIX in addition to existing in Access Manager. If a user exists in
UNIX and does not exist in Access Manager, the user is treated as an
unauthenticated user. This eases implementation issues because the default
policy for the enterprise can be applied to the unauthenticated user group within
Access Manager. The only users that need to be created in Access Manager are
users on UNIX to which the default policy does not apply or is insufficient such as
group accounts.

12.5 Policy
IBM Tivoli Access Manager for Operating Systems protects system resources by
enforcing authorization policy defined in terms of Tivoli Access Manager access
controls. Access to the following types of system resources can be controlled:

� File system resources
� Remote network services
� Local network services
� Login services
� Changes of user and group identity
� Sudo commands
� Password management services

These resources are identified by Tivoli Access Manager object names. They are
protected by associating Tivoli Access Manager access controls with the object
name. Tivoli Access Manager access controls and object names are also used to
specify resource-level and user-level audit policy.

Important: A user that exists within Access Manager’s user registry but does
not exist on the native UNIX user registry is not allowed to log on to the
system. Authentication allows the user to log on to Access Manager services,
but it fail when Access Manager for Operating Systems passes the
authentication information to the native logon services.

 Chapter 12. Access Manager for Operating Systems 391

As with all Access Manager resource managers, enforcing access control policy
includes the use of:

� Access control lists: Identifies specific users, groups of users, and types of
users who can be considered for access and specifies the operations
permitted on the resource.

� Protected object policies (POP): Specifies conditions regarding access to the
protected objects, such as auditing, warning mode, and time-of-day access.

� Extended attributes: Additional values placed on an object, ACL, or POP that
further restrict the access such as limiting which programs can be used to
access a resource.

12.5.1 File policy
Tivoli Access Manager for Operating Systems provides the ability to control
access to file system resources. File system resources consist of:

� Files
� Directories
� Soft links
� Hard links
� Device files

File system resources are protected in two ways:

� Access controls protect file system resources based on the identity of the
user who is attempting the access and the action that the user is trying to
perform.

� Membership in the Trusted Computing Base (TCB) protects file system
resources by monitoring the members’ contents and attributes for change.

Table 12-1 details the level of access control that can be applied through the file
policy.

Table 12-1 File system permissions

Permission name Permission granted

Read (r) Access a file system resource for reading.

Write (w) Access a file system resource for writing.

Create (N) Create a particular file system resource.

Execute (x) Execute a file system resource.

Chown (o) Change the ownership of a file system resource.

392 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Trusted Computing Base resources
Tivoli Access Manager for Operating Systems provides the ability to define files
on a system as being part of a TCB. Files that are members of the trusted
computing base are monitored for changes in ownership, UNIX file permissions,
creation and modification time stamps, presence or absence on a system,
content of the file, and the device on which the file resides. These attributes are
collectively referred to as the file signature.

Tivoli Access Manager for Operating Systems has the ability to ignore some of
these attributes when creating the file signature. This feature is useful if you want
a file to remain part of the TCB even though an attribute has changed. While this
reduces the level of security, it allows you to reduce the amount of administrative
overhead that needs to occur on file attributes that change frequently. Table 12-2
lists all the attributes that compose the file signature that can be ignored.

Table 12-2 TCB available extended attributes for file signatures

Chmod (p) Change the native UNIX file system permissions associated with
a file system resource. This applies to both operations that modify
UNIX mode bits and to operations that alter a resource’s native
ACL for applicable platforms.

Chdir (D) Change directory into a file system directory resource
(directories only).

Rename (R) Move (or rename) a file system resource.

Delete (d) Remove a file system resource.

Utime (U) Modify the file access and modification times associated with a
file system resource.

Kill (K) Terminate a process that was executed from a file system
resource.

List (l) List the contents of a directory.

Attribute Description

Set-CRCMaxFileSize Set the maximum number of bytes that are considered
significant in the calculation of the checksum for the file.

Ignore-CRC Do not calculate or include the CRC sum in any signature
check.

Ignore-CRCExec Do not calculate or include the CRC sum in signature checks
that occur when a program is run.

Permission name Permission granted

 Chapter 12. Access Manager for Operating Systems 393

Tivoli Access Manager for Operating Systems enables you to grant special
privileges to programs by defining them in the TCB. If the integrity of a program
defined in the TCB is compromised, it should no longer be trusted with special
privileges. Tivoli Access Manager for Operating Systems detects changes that
compromise the integrity of a registered program. When a change is detected,
Tivoli Access Manager for Operating Systems records that the program is
untrusted and does not allow an untrusted program to be executed until an
administrator explicitly trusts it again.

12.5.2 Network policy
Access Manager for Operating Systems provides the ability to control access to
remote network services from a local machine. It also provides the ability to
control access to local network services from remote locations. These two types
of network access are controlled separately by defining protected resources.

Ignore-Owner Do not include the user ownership of the file in the signature
check.

Ignore-Group Do not include the group ownership of the file in the signature
check.

Ignore-Size Do not include the file size in the signature check.

Ignore-ctime Do not include the file creation time in the signature check.

Ignore-mtime Do not include the last-modified time in the signature check.

Ignore-mode Do not include the file permission in the signature check.

Ignore-inode Do not include the inode of the file in the signature check.

Ignore-nlink Do not include the hard links to the file in the signature check.

Ignore-rdevno Do not include the device ID of the file in the signature check.

Ignore-devno Do not include the device number of the file in the signature
check.

Ignore-Missing Do not perform a signature check when the file is not found.

Ignore–All Do not perform signature checking.

Attribute Description

394 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Table 12-3 describes the network object names that can be used to define a
policy.

Table 12-3 Network resource naming

Object
name

Description Type

protocol A representation of a network protocol
name. The only supported protocol is TCP
over IP Version 4 or IP Version 6. This
protocol is represented by the string tcp.

A case-sensitive string representing the
protocol.

service A description of the set of services
represented by this resource. For
NetIncoming resources, this service
represents the service on the local machine
to which an incoming connection has been
addressed. For NetOutgoing resources,
this service represents the service on the
remote machine to which a connection
attempt is being made.

A comma-separated list of ports and port
ranges. Ports can be specified explicitly by
number or by name. Port names are mapped
to port numbers according to the mapping
defined in the /etc/services file on the
machine where the network policy is being
enforced. The special port range ‘*’ is
equivalent to the range 1 - 65535. Only one
of ‘*’ or ‘1 - 65535’ can be present in your
policy.

host A description of the set of hosts represented
by this resource. For NetIncoming
resources, this represents remote hosts
from which an incoming connection is
attempted. For NetOutgoing resources, this
represents the remote host to which an
outgoing connection is being attempted.

The host specification may be in one of two
forms:
� ip-address[:nbits]
� host name

ip-address A dotted notation of an IP Version 4
address, for example 192.168.1.42. The
notation for IP Version 6 is supported as
well.

A string that represents an IP Version 4 or IP
Version 6 address.

nbits The number of bits considered significant in
an ip-address. Bits are counted from left to
right, with 0 indicating that no bits are
significant and 32 indicating that all bits are
significant. When a host is specified in the
ip-address[:nbits] form and the no nbits
component is specified, 32 is assumed.

A number ranging from 0 to 32

hostname A wildcard string matching the names of the
hosts represented by this resource.

A case-insensitive string that consists of
wildcard elements and legal host name
characters.

 Chapter 12. Access Manager for Operating Systems 395

12.5.3 Login policy
Access Manager for Operating Systems lets you control when and from where a
user can log in to a system. The following basic mechanisms control user
access:

� Defining time-of-day login restrictions for users independent from where they
log in

� Defining access controls on local and remote terminals

Tivoli Access Manager for Operating Systems also provides the ability to enforce
a login-activity-related policy such as password expiry, automatically disabling
accounts after a number of failed logins, and automatically disabling inactive
accounts.

12.5.4 Password management policy
Access Manager for Operating Systems provides the ability to define and enforce
a policy related to password management. Password management prevents
users from specifying weak passwords that are vulnerable to compromise by
methods such as a dictionary attack. The policy is defined centrally and controls
the following aspects of password management activity:

� Password strength
� Password aging

The password management policy is applied in addition to any such policy that is
provided natively by the operating system. As a result, the most restrictive policy,
which may either be from Tivoli Access Manager for Operating Systems or the
operating system, applies.

12.5.5 Surrogate policy
Access Manager for Operating Systems provides the ability to control operations
that can change the UNIX identity of a process. Such operations are referred to
as surrogate operations. Surrogate operations can change the user identity or
group identity of a process. Access control of each of these kinds of surrogate
operations is established by applying the authorization policy to the User and
Group subtypes of the Surrogate resource type. The object names identify the
potential targets of the surrogate operations and control the ability, for example,
to surrogate to the root user or the system group.

396 Enterprise Security Architecture Using IBM Tivoli Security Solutions

12.5.6 Sudo policy
Sudo resources describe commands that require more stringent access control
than whether a particular program can be executed. Sudo commands enable
access control based on a command as well as on the parameters that are
passed to that command. You can use Sudo commands to remove the
requirement for a user to become the root user on a system in order to perform
administrative tasks. Sudo does this by providing the capability to run a
command as a UNIX user other than that of the invoker.

12.6 Policy branches
Each Tivoli Access Manager for Operating Systems machine is configured to an
initial policy branch during its initial configuration. The initial policy branch is
created and populated with the Tivoli Access Manager for Operating Systems
default policy during the initial configuration, if it does not already exist. The
branch that is specified as the initial branch should never be a branch that was
created by any means other than Tivoli Access Manager for Operating Systems
configuration. Doing so can render the machine inoperable. A Tivoli Access
Manager administrator can add additional policies to the initial policy branch.

12.6.1 Single policy branch configuration
Multiple machines can subscribe to the same initial policy branch. This allows an
administrator to define the policy for a specific class of machines once and have
it apply to all machines that are in that class. If all machines in that class can use
the same policy, then any additional policy should be added to the initial policy
branch. This is a single branch configuration, which is the easiest type of
configuration to understand and maintain.

12.6.2 Multiple policy branch configuration
In some situations, it might be useful to define additional policies in policy
branches other than the initial policy branch, such as:

� Each application or set of applications requires their own branch.

� Different hardware types (HP, AIX, Solaris, and so on) can have their own
branches.

� Each policy type can have its own branch (File, Sudo, and so on).

Recommendation: We strongly advise that you do not modify the Tivoli
Access Manager for Operating Systems default policy.

 Chapter 12. Access Manager for Operating Systems 397

For example, application A that runs on a subset of machines. Rather than
defining the policy for application A in each of the class-specific initial policy
branches, the policy for application A can be defined in its own branch. Then
each machine that runs application A can subscribe to this policy branch in
addition to the initial policy branch to which it is subscribed. The complexity of
understanding the policy that applies to a given machine increases with each
additional branch that is configured.

Figure 12-5 on page 399 illustrates the layout of multiple policy branches for the
application A example.

Another problem is also illustrated in Figure 12-5 on page 399. Two conflicting
policies are applied to the same resource /etc/passwd. If an evaluation occurs on
the resource, ServerPWD-ACL and AppAPWD-ACL can be applied. To resolve
this, Access Manager for Operating Systems uses a method called branch
precedence. In the example, branch precedence is set to evaluate the AppA
branch then the Server branch. For the conflict on /etc/passwd, it is resolved by
using AppAPWD-ACL since AppA has precedence over Servers.

Consider the following key points, among others, when defining policy and policy
branches:

� Defining the multiple policy branches does not negate the need for a proper
policy design.

� Policies should be defined to minimize conflicts and maximize security
benefits.

� Minimize the number of policy branches whenever possible because
complexity grows with each new policy branch created.

Important: Do not configure a second initial policy branch as an additional
branch. After the initial policy branch is created during the Access Manager for
Operating Systems configuration, there is no reason to create a second initial
policy branch (this creates an unnecessary duplicate default policy). Use the
defined initial policy branch. If a second branch is required, create it using the
appropriate commands either in pdadmin or Web Portal Manager.

Important: We recommend that you keep the number of configured branches
to a minimum.

Important: Although branch precedence is used to resolve conflicts, avoid
defining conflicting policies. Conflicting policies result in confusion when trying
to determine which policy is actually applied.

398 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Validate that the correct branch precedence is set for each branch created to
avoid applying the incorrect policy when a conflict occurs.

Figure 12-5 Multiple policy branch layout with Access Manager for Operating Systems

/

/OSSEAL Initial
Branch

Branch
Precedence:

 AppA, Servers

/OSSEAL/Servers

/OSSEAL/AppA/File/AppA

/OSSEAL/AppA

/OSSEAL/Servers/File/opt

ACL Attached:
ServerPWD-ACL

ACL Attached:
AppAPWD-ACL

ACL Attached:
AppFile-ACL

ACL Attached:
ServerFile-ACL

/OSSEAL/AppA/File/etc/passwd

/OSSEAL/Servers/File/etc/passwd

 Chapter 12. Access Manager for Operating Systems 399

12.7 Runtime environment
The following sections describes the major components of Tivoli Access
Manager for Operating Systems and their operating environment. The following
daemons are responsible for the major functions of Tivoli Access Manager for
Operating Systems:

pdosd The authorization daemon makes authorization decisions and
monitors the Trusted Computing Base.

pdosauditd The audit daemon receives audit events from other components
of Tivoli Access Manager for Operating Systems and manages
the audit trail.

pdoswdd The watchdog daemon ensures that the other daemons remain
available. The other daemons also monitor each other.

pdostecd The Tivoli Enterprise Console® daemon makes many of the Tivoli
Access Manager for Operating Systems audit events available to
the Tivoli Enterprise Console.

pdoslpmd The login policy and password management daemon makes
authorization decisions about logins and password changes.

pdoslrd The log router daemon makes audit records available for transfer
to multiple locations.

Each daemon maintains a log file that records significant events and error
conditions. The records written to the log files contain a UTC time stamp,
information that identifies the component logging the event, the message
classification, and the message text.

12.7.1 The pdosd authorization daemon
The pdosd authorization daemon performs the following actions:

� Handles the authorization requests that are generated by the kernel extension
when it intercepts operations that are subject to policy

� Maps UNIX user identities to Tivoli Access Manager credentials that describe
users and their group memberships from a Tivoli Access Manager point of
view

� Monitors the files that constitute the Trusted Computing Base in order to
detect any changes that might cause them to become untrusted

The pdosd daemon is a local-mode Tivoli Access Manager Authorization API
application. The Tivoli Access Manager documentation describes this in detail.
The pdosd daemon replicates the Access Manager master policy database and

400 Enterprise Security Architecture Using IBM Tivoli Security Solutions

makes authorization decisions based on the information stored in this local
replica.

12.7.2 The pdosauditd audit daemon
The pdosauditd audit daemon manages the Tivoli Access Manager for Operating
Systems audit log. The audit daemon receives binary audit records from the
daemons, kernel extension, and the pdosobjsig command. It stores them in
memory and writes them to the audit log on a regular basis.

Components generate audit records based on the auditlevel settings. For
authorization decisions, the global audit level, global warning level, resource
audit level, resource warning level, and per-user audit level are all considered. In
the case of a non-authorization decision, only the global audit level is used.

12.7.3 The pdoswdd watchdog daemon
The pdoswdd watchdog daemon monitors the availability of the pdosd,
pdosauditd, pdoslpmd, and pdoslrd daemons. These daemons monitor each
other in the same manner; this is the watchdog daemon’s only function. This
self-monitoring function, as implemented by each of the daemons, is the
watchdog system. The watchdog system ensures the high availability of Access
Manager for Operating Systems services on a machine.

12.7.4 The pdostecd Tivoli Enterprise Console daemon
The pdostecd daemon makes a subset of the audit events produced by Access
Manager for Operating Systems available to the Tivoli Enterprise Console. The
daemon reads the active log file, /var/pdos/audit/audit.log, and records relevant
audit events to a file called /var/pdos/tec/tec.log, which the Tivoli Enterprise
Console logfile adapter can monitor.

12.7.5 The pdoslpmd login and password management daemon
The pdoslpmd daemon provides support for Tivoli Access Manager for Operating
Systems login activity policy and password management enforcement.
Processes that perform logins and password changes communicate with
pdoslpmd to determine whether the operation is allowed under the current Tivoli
Access Manager for Operating Systems policy.

Login activity and password management policy enforcement is enabled by
default when Tivoli Access Manager for Operating Systems is configured on the
system. If login policy is not enabled on the system, the pdoslpmd daemon is not
running. If login policy is enabled after the initial Tivoli Access Manager for

 Chapter 12. Access Manager for Operating Systems 401

Operating Systems configuration and start, then the pdoslpmd daemon is started
the next time that Tivoli Access Manager for Operating Systems is started.

12.7.6 The pdoslrd log router daemon
The pdoslrd log router daemon reads a Tivoli Access Manager for Operating
Systems audit record from an input channel, formats the record, and then
queues the record for the output channels to process. Each output channel
dequeues a formatted audit record, applies a filter to it (if one has been specified
for that channel), and, if the record is not filtered out, formats the record into the
proper output format and sends it to its destination.

The pdoslrd daemon uses the audit.log file as input. If the file is removed, the
daemon shuts down and must be restarted manually after the audit.log file is
made available. The pdosauditd daemon must be shut down and then restarted
in order to make the audit.log available.

12.8 Putting it all together
Figure 12-6 shows the component interaction associated with a typical process
call within an Access Manager for Operating Systems protected system.

Figure 12-6 Typical Access Manager for Operating Systems component interaction

Process

real_open()

pdos_open()
real_open

AMOS Kernel Extension

open

setuid

brk

pdos_open

pdos_setuid

real_brk

Intervention Point

1

pdosauditd

pdosd

pdoswdd

2

FILE /etc/hosts
riley (r,w)

AMOS Database

3

4 5
6

7
8

9

UNIX Kernel

Access = R,W
File=“/etc/hosts"

uid=1032

valid file descriptor

permit

Process

real_open()

pdos_open()
real_open

AMOS Kernel Extension

open

setuid

brk

pdos_open

pdos_setuid

real_brk

Intervention Point

1

pdosauditd

pdosd

pdoswdd

2

FILE /etc/hosts
riley (r,w)

AMOS Database

3

4 5
6

7
8

9

UNIX Kernel

Access = R,W
File=“/etc/hosts"

uid=1032

valid file descriptor

permit

402 Enterprise Security Architecture Using IBM Tivoli Security Solutions

For each type of operating system and each type of access protection (for
example, file system, sockets, and so on), Access Manager for Operating
Systems implements an intervention point using supported operating system
APIs. At the intervention point, the Access Manager for Operating Systems
authorization service daisy-chains into the application call process, inserting a
call to the Access Manager for Operating Systems kernel-level code. The
following data is required to make an access control decision:

� The resource name (for example, /etc/hosts)
� The access mode requested (read and write in this case)
� The UID of the calling user

In our example, the user logged in as UID 1032 and then performed an su
command to switch to root (UID 0).

The following steps correspond to the numbers in Figure 12-6 on page 402:

1. The executable causes a file system open file call to be made.

2. Access Manager for Operating Systems kernel code checks whether this call
is subject to policy. If not, the original call is passed to the operating system
routine. If the policy is cached locally and the request is denied, then a
standard operating system no access return code to the call is immediately
returned. If the policy is cached and the request is allowed, the request is
immediately passed on to the original operating system routine (and the
process skips to step 7. on page 404).

3. If the policy is not cached in the kernel, then the call is passed to the
user-level pdosd daemon.

Important: UNIX always keeps track of the UID under which a person
originally logged into the system. When a person subsequently uses the su
command to switch to another ID (or exploits a hacker to reach another ID),
UNIX permissions and privileges become based on that new ID. However,
Access Manager for Operating Systems always bases access control on the
original login ID. This is the most fundamental way in which Access Manager
for Operating Systems determines the capabilities of root and protects against
root attacks.

Ideally, all administrators log in under a unique user (non-root) ID. Then they
use the su command to root. Access Manager for Operating Systems checks
their original ID first to determine whether the policy allows the operation. If it
does, then the operation is passed to UNIX to allow them to perform privileged
operations. Applications are otherwise unaffected, and operation methods and
processes continue as normal. No special processes or tools are required by
the administrators.

 Chapter 12. Access Manager for Operating Systems 403

4. pdosd resolves the request from policy data held in a store in the same UNIX
system (includes caching).

5. The result is posted back to pdosd.

6. pdosd passes the result back to the Access Manager for Operating Systems
kernel-level code.

7. If access was granted, the call is passed on to the original operating system
routine.

8. and 9. The file handle from the original operating system routine is returned to
the application.

All of these operations take place independently of the Policy Server on which
the authorization database master is stored. All of the data needed to make the
access determination has already been cached locally. Connection to the Policy
Server occurs only if the policy changes and the Policy Server informs the
Access Manager for Operating Systems system that it must request a refresh of
the access control data cache.

12.9 Entitlement reports
It has traditionally been difficult to determine exactly the access permissions, or
entitlements, that a given user or group has. The multiple policy branch feature
makes this even more difficult.

Tivoli Access Manager for Operating Systems allows for an administrator to
quickly determine exactly what a user or group has permissions to do through
the use of entitlement reports. The pdosent command provides the capability to
create an entitlement report for a given user or group. This entitlement report
contains all information stored in the Tivoli Access Manager Policy Server about
the user or group and all the policy information specific to the specified branch
precedence rule.

Here are some examples of information that entitlement reports can provide:

� Show entitlements for a user on the present machine

� Show entitlements for members of a given group

� Show entitlements for a user if the machine was configured to a different
domain

� Show entitlements for a given user to perform Tivoli Access Manager base
actions

404 Enterprise Security Architecture Using IBM Tivoli Security Solutions

More complex entitlement reports can be generated to see the entitlements that
a user or group has if the branch precedence order was changed. Consider the
following example with the group sysadmin:

pdosent -g sysadmin -b branchC,branchB,branchA

The command creates an entitlement report for the sysadmin group if the branch
precedence was changed to branchC, branchB, and branchA.

Using entitlement reports allows an administrator to not only examine
permissions for an existing configuration, but to also see the permissions that are
applied if a configuration is altered.

12.10 Auditing
Tivoli Access Manager for Operating Systems provides extensive auditing
capabilities. They enable you to track authorization access decisions made to
protected resources and to monitor activity of an administrative nature, such as
the starting and stopping of the daemons.

12.10.1 Auditing authorization decisions
Auditing of authorization decisions can be set globally, for a specific protected
resource, or on a per-user basis.

It is possible to audit authorization access decisions for specific resources by
enabling resource-level auditing. This is achieved through POP access controls
by setting the audit-level attribute to permit, deny, or both.

Permit Logs all permitted actions

Deny Logs all denied actions

Both Logs all action on the resource

Audit records for authorization access decisions are also generated if the permit
or deny level is set in the global audit level. This results in the generation of audit
records for all authorization decisions that permit or deny access to protected
resources. The global audit level is set on a per-machine basis.

Note: From a security architecture subsystem perspective, the core
functionality of Access Manager for Operating Systems also supports the
Audit subsystem. Access Manager for Operating Systems provides strong
auditing capabilities at a granular level. It also supports a consolidated and
centralized view of these logs.

 Chapter 12. Access Manager for Operating Systems 405

It is possible to enable more granular auditing for authorization access decisions
based on the action that is being performed against the protected resource. This
granularity can be accomplished by specifying the accessing permissions that
trigger the generation of an audit record. This action can be useful in reducing
the total amount of audit records that are generated.

For example, for file system resources, it may be desirable to only audit
authorization decisions that permit actions that could modify the file resource,
such as the actions kill program (K), create (N), rename (R), delete (d), change
ownership (o), change permission (p), and write (w). Auditing based on the
action that is being performed can be specified separately for global permit,
global deny, per-resource permit, and per-resource deny audit levels. It only has
an effect if the corresponding global or per-resource audit level is enabled.

Login audit
It is possible to audit authorization decisions that are specific to login by setting
the global loginpermit and logindeny audit levels. These generate audit log
records for authorization decisions that permit or deny a login action respectively.
Authorization decisions that are specific to login are also audited if the global
permit and deny audit levels are set. The loginpermit and logindeny audit levels
enable global audit of login separately from other authorization decisions.

Audit authorization decisions on a per-user basis can also be defined by the
user-level audit authorization policy using AuditAuth resource definitions. The
user-level audit authorization policy can be set on an individual user, a group, or
unauthenticated users. The supported audit levels for user-level audit
authorization policy are permit, deny, loginpermit, logindeny, all, and none.

The permit and deny audit levels enable the generation of audit records for all
authorization decisions that permit and deny access by the user to protected
resources.

The loginpermit and the logindeny audit levels enable the generation of audit
records for all login-related authorization decisions that permit and deny a login
by a user. Specifying all turns on all of the audit levels. A level of none is a
special case that indicates that no audit records should be generated for the user
even if global or resource level auditing is set. With the exception of audit level
none, all audit levels are additional to the audit levels set by global and resource
audit.

Note: The auditing levels for the global audit level and the resource audit level
are cumulative. For example, if the global audit level is set to deny, and a
resource has a POP attached to it with an audit level of permit, every
authorization decision for access to that resource is audited.

406 Enterprise Security Architecture Using IBM Tivoli Security Solutions

12.10.2 Auditing administrative activity
You can also audit actions taken by the Access Manager for Operating Systems
daemons of an administrative nature by setting the administrative level in the
global audit level. The administrative audit level causes Tivoli Access Manager
for Operating Systems daemons to generate audit records for the following
events among others:

� Starting and stopping the daemons

� Loss of connectivity with the Tivoli Access Manager user registry

� Trusted-Computing-Base-related activity such as a file being marked
untrusted by the Trusted Computing Base monitoring function

� Detection of the incorrect policy

The administrative audit level also causes the generation of audit records for
events that are related to a user login account being enabled or disabled when
login activity policy is being enforced. Enabling the information level in the global
audit level causes auditing to occur for routine events such as the pdosd daemon
receiving valid policy updates. Setting the information level results in a large
amount of audit data being generated.

12.10.3 Auditing trace events
Tivoli Access Manager for Operating Systems supports the generation of
TraceExec and TraceFile audit events. Trace-style audit events are generated by
setting the trace_exec, trace_exec_l, trace_exec_root, or trace_file levels in the
global audit level or defining user-level trace policy.

Setting the trace_exec global audit level causes the Tivoli Access Manager for
Operating Systems kernel code to track program invocations initiated by the
exec() system call that occurs in processes that descend from a login event that
was detected by Tivoli Access Manager for Operating Systems. This action
results in the generation of a TraceExec audit record for each detected exec()
system call. These records are generated regardless of whether the program
being run is protected by the Tivoli Access Manager for Operating Systems
policy. Depending on the amount of activity on the system, activating the
trace_exec global audit level can generate a large amount of auditing data that
can be difficult to manage.

Recommendation: Carefully monitor the overall space that is consumed by
audit data. We recommend that you place audit logs into a separate file
system so that they do not fill up the root file system.

 Chapter 12. Access Manager for Operating Systems 407

When the trace_exec_l global audit level is enabled, and the trace_exec audit
level is not enabled, TraceExec audit data is only generated for the exec() activity
when the accessing user’s accessor identity and effective UNIX identity do not
match. This typically happens when a user surrogates to another user. Use of the
trace_exec_l level, instead of trace_exec, prevents TraceExec audit data from
being generated when the accessing user’s accessor identity and effective UNIX
identity are the same.

When the trace_exec_root global audit level is enabled, and the trace_exec audit
level is not enabled, TraceExec audit data is only generated for the exec() activity
when the accessing user’s accessor identity is the root user. Note that it is the
accessing user’s accessor identity, the identity used by Tivoli Access Manager for
Operating Systems for purposes of making authorization decisions, that matters,
not the user’s effective UNIX identity.

Using both the trace_exec_root and trace_exec_l audit levels, instead of
trace_exec, causes TraceExec audit data to be generated only for program
invocations that are initiated by the exec() system call. It occurs in processes that
descend from a login event that was detected by Tivoli Access Manager for
Operating Systems. It also occurs when the accessing user’s accessor identity is
either the root user or the accessor identity and the effective UNIX identity do not
match.

Setting the trace_file global audit level results in the generation of a TraceFile
audit record for each access to a file system resource that is protected by Tivoli
Access Manager for Operating Systems policy.

12.10.4 Audit log consolidation
Tivoli Access Manager for Operating Systems supports the functionality to send
audit data to the following three destinations: a local text file, an e-mail address,
and a remote collection point, which is a Tivoli Access Manager authorization
server, pdacld. It also supports the functionality to send audit data to all three
destinations. The data that is sent to these destinations can be filtered and
formatted.

The audit log consolidation functionality is controlled by pdoslrd, the log router
daemon. The daemon reads a Tivoli Access Manager for Operating Systems
audit record from an input channel (the audit logs), formats the record, and sends
the formatted record to the appropriate destination (local file, e-mail, or remote
host). A control file is used to specify the destination channels and associated
filters.

Multiple Tivoli Access Manager for Operating Systems machines can be
configured to send audit data to the same pdacld server as the remote collection

408 Enterprise Security Architecture Using IBM Tivoli Security Solutions

point, consolidating the audit data into a single file. A command line utility,
pdoscollview, is provided to view the audit records stored in the consolidated
audit log file.

12.10.5 Common Auditing and Reporting Service integration
Tivoli Access Manager for Operating Systems has the ability to use the Common
Auditing and Reporting Service for consolidating and centralizing audit log
information.

Common Auditing and Reporting Service
The Common Auditing and Reporting Service has the following features:

� Provides auditing support

– Defines a consistent format for auditable events using the Common Base
Event (CBE) format

– Provides a centralized collection point for auditable events from various
sources

– Provides consistent management of the lifecycle of audit data

� Facilitates reporting of audit data

– Provides interfaces to stage audit data into custom report tables

– Enables customers to use a reporting tool of their choice to build custom
audit reports

– Facilitates cross-product audit reports

– Exploits IBM products to provide audit reports for immediate use

� Provides interfaces for IBM products to create and submit data that needs to
be audited

For more information about the Common Auditing and Reporting System, refer to
Chapter 27, “Introducing IBM Tivoli Common Auditing and Reporting Service” on
page 845.

 Chapter 12. Access Manager for Operating Systems 409

Log file consolidation
By using the Common Auditing and Reporting Service, the numerous audit log
files generated by Tivoli Access Manager for Operating Systems can be
consolidated into a central repository for analysis. Several reports are shipped
with the product and are summarized in Table 12-4.

Table 12-4 Access Manager for Operating Systems audit reports

Report name Description

General Audit Event
Details Report

Displays all information about a single auditable event denoted
by the event reference ID parameter. Typically a user runs this
report after running other reports and deciding that an event
drill down is desired.

General Audit Event
History

Displays the total number of auditable events for each event
type during a specified time period. It also shows all events of
the specified event type and product name sorted by specified
sort criterion and time stamp. This report can be used for
incident investigation and assuring compliance.

Audit Event History
by User

Displays the total number of events for a specified user during
a specified time period. It also presents a list of all events of the
specified event type and product name sorted by time stamp
and grouped by session ID during the time period. The purpose
of this report is to investigate the activity of a particular user
during a specified time period.

Failed Authentication
History

Presents a list of all failed authentication events over the time
period sorted by specified sort criteria such as by time stamp.
This report can be used by an administrator to investigate
security incidents.

Failed Authorization
History

Lists all of the failed authorizations events during a specified
time frame.

Locked Account
History

Displays all of the accounts that have been locked during a
specified time period.

User Password
Change History

Displays events that are related to password changes done by
the user during a specified time period.

Server Availability
Report

Shows the availability status of Security servers on a specific
machine. The user can display all protected machines in the
report or limit the report by entering a single host name as the
subject of the report.

410 Enterprise Security Architecture Using IBM Tivoli Security Solutions

12.11 Conclusion
This concludes the discussion about the Tivoli Access Manager for Operating
Systems business context, architecture, and technical components. In
Chapter 13, “Access Manager for Operating Systems business scenario” on
page 413, we explore some real-life customer scenarios.

Certificate Expiration
Report

Allows detection of soon-to-expire certificates and highlights
the need to replace the certificate to insure 24x7 operability. It
shows the number of clients that have server or Secure
Sockets Layer (SSL) certificates that expire in n days. It also
show a table of client host names, the days until their
certificates expire, and the server to which they are configured.

Most Active
Accessors Report

Shows a list of users who are the most active in the system,
and can lead administrators to investigate improper use of their
resources.

General
Authorization Event
History

Displays the total number of authorization events, failed
authorization events, successful authorization events, and
unauthenticated events during the specified time period.
Additionally it shows a list of all authorization events sorted by
specified sort criteria (time stamp, resource, or user name)
during the time period. The purpose of this report is to analyze
authorization event history for incident investigation and
assuring compliance.

Authorization Event
History by Action

Displays a list of all authorization events that contain the
specified action sorted by resource and then time stamp during
the time period specified.

User Administration
Event History

Can be used to investigate security incidents and to track
changes to users by administrators.

Resource Access By
Accessor Report

Shows the top resources in terms of access or authorization
events during a time period for each machine name identified.
The report identifies who is repeatedly accessing resources
and the resource that is being accessed.

Resource Access By
Resource Report

Shows the top accessors in terms of access or authorization
events during a time period for each machine name identified.
The report identifies which resources are most heavily
accessed and which user is accessing the resource.

Report name Description

 Chapter 12. Access Manager for Operating Systems 411

412 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 13. Access Manager for
Operating Systems business
scenario

This chapter uses the Stocks-4u.com example that is described in previous
chapters. The requirements are based on the requirements defined in Chapter 7,
“A basic WebSEAL scenario” on page 245. The business requirements are
mapped to system-level technical security requirements.

13

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 413

13.1 Business requirements
To meet regulatory compliance and internal security requirements,
Stocks-4u.com has established that implementing IBM Tivoli Access Manager for
Operating Systems will mitigate security risks that currently exist in their UNIX
environments. They have also decided that current auditing capabilities on UNIX
are insufficient to provide the level of detail required by new legislation governing
Stocks4u.com’s industry.

Due to the wide variety of UNIX vendors in their environment, Stocks-4u.com has
decided that a single policy enforcement engine is necessary. This ensures that
a single, centralized view of security policy for the entire UNIX-based server
environment is available to both administrators and management. The system
must be able to have policy defined:

� Globally for all UNIX servers
� On a per vendor basis (for example, IBM AIX)

The corporate direction is to use the new security system to ensure that
UNIX-based systems now have the ability to define policy according to the
corporate security direction. Management will not allow complete root-level
authority to be given to anyone without an audit trail. The audit trail must indicate
the actual user performing the operations in order to be compliant with internal
and external security requirements.

Stocks-4u.com has indicated that security management should not be a apart of
a UNIX administrator’s job and, therefore, wants to transfer security
administration to their enterprise security group.

13.2 Functional requirements
We extract functional requirements by mapping business requirements to their
underlying reasons. We expand the reasons in increasing detail until we find
problems that can be solved using capabilities of Access Manager for Operating
Systems. Our functional requirements will tie these low level reasons for a
business requirement to the Access Manager for Operating Systems capability
that can fulfill that business requirement.

414 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Let us examine the business requirements and search for reasons and the
functional requirements.

� Business requirement: Single policy enforcement engine.

Stocks4u.com has multiple UNIX vendors in its environment. Each one has a
security policy that is defined locally to individual servers. Because
Stocks4u.com has specialists for each vendor that supports their UNIX
environment, the security policy is not consistent from vendor to vendor or
from server to server. This leads to the functional requirements listed in
Table 13-1.

Table 13-1 Functional requirements for security policy enforcement

� Business requirement: Single view for UNIX security policy.

Stocks4u.com has never been able to have a complete view of its security
policy for their UNIX server environment. This is due to the many tools that
exist per platform and the various implementations that exist. Stocks4u.com
must have a complete, unified view of security policy across all UNIX servers.
This leads to the functional requirements listed in Table 13-2.

Table 13-2 Functional requirements for security policy management

� Business requirement: The ability to audit the root user account.

The biggest problem when a UNIX system audits root user actions is that it is
difficult to tie those operations back to a specific user. Stocks4u.com must be
able to tie operations performed on their UNIX servers back to a specific user
account to comply with internal and external regulations. This leads to the
functional requirement listed in Table 13-3.

Table 13-3 Functional requirement for root user account auditing

Requirement Description

1 All UNIX server security must be implemented from a central
location.

2 The security policy must be implemented at a global level and at a
vendor level, such as IBM AIX.

Requirement Description

3 All platform and system accounts must be managed centrally.

4 A common Web Interface will be used for security policy
management.

Requirement Description

5 All root operations must have the original user account as part of
the audit record that is generated.

 Chapter 13. Access Manager for Operating Systems business scenario 415

� Business requirement: UNIX security should be externalized from the UNIX
system administration group.

Stocks4u.com wants to transfer all security management responsibilities to
their security group. This ensures that security policies are implemented
correctly across their entire UNIX server environment. This also enables their
UNIX system administrators to focus on technical UNIX issues instead of
being bogged down in security policy definition and enforcement. This leads
to the functional requirement listed in Table 13-4.

Table 13-4 Functional requirement for externalizing UNIX security

13.3 Designing the solution
To effectively design a solution, it is important to consider the following key
questions:

� What are the various UNIX vendors that are currently implemented?

� Can the solution support every vendor?

� Are there common policies that can be defined globally for the entire
environment?

� Is there a logical separation of policy definition where a subset of policy needs
to be enforced?

� Who defines the policy?

� What level of auditing is required to meet corporate and regulatory
requirements?

After the business and functional requirements are defined, you can look at the
specific security design objectives. The security objectives and the subsystems
become the basis for the conceptual architecture and the implementation phase.
The security phase should include security policy definition, policy management,
audit management, as well as all standards, guidelines, and policies that relate to
UNIX operations.

The requirements for this access control subsystem are typical for those found in
many Web application environments. The application-level security is addressed
by the use of Tivoli Access Manager for e-business and WebSEAL as described
in previous chapters. However, a gap exists in the security controls placed on the
systems that support the Web applications. That is, in most environments, the
system security policy is applied on a per-server basis. Any form of automation

Requirement Description

6 Security policy definition and enforcement will be externalized from
the UNIX system administration group.

416 Enterprise Security Architecture Using IBM Tivoli Security Solutions

and consolidation of operational functions, such as policy audit and system and
security event alerting, requires a substantial amount of custom, in-house
scripting and development. This leads to numerous inconsistencies and
integration issues within an environment.

To address this, Access Manager for Operating Systems is deployed as an
additional layer of security at the UNIX system level. The Access Manager for
Operating Systems deployment is integrated into the existing Tivoli Access
Manager infrastructure and provides centralized policy enforcement and audit
capabilities for the whole Stocks-4u Web environment.

Stocks4u.com has decided to implement IBM Tivoli Access Manager for
Operating Systems to meet their business requirements. The solution provides
the following support:

� Provides a consistent security policy across all Stock-4u.com servers

� Enables a security policy to support the network zones security classification
requirements

That is, the security policy is most secure and locked down in the Internet
DMZ, and more open within the more trusted zones.

� Provides a framework to enable the rapid deployment of the new server
infrastructure

� Protects application-level transactions down to a data storage level

� Minimizes data flow between the Stocks-4u sites in Savannah and San Diego

� Provides a consistent audit and logging framework, with centralized log
consolidation capabilities for event alerting and auditing

� Supports system administration from multiple locations in a consistent
manner

13.4 Policy design
The main considerations when defining the system security policies are:

� User and administration access

Which users are allowed to manage the servers and under what conditions
can this be done?

� Available services for each type of server

Which connections does a server accept and which connections are allowed
to other servers?

 Chapter 13. Access Manager for Operating Systems business scenario 417

� Logging requirements

What needs to be logged and to what level of detail does it need to be
logged?

� Operational monitoring

What other monitoring needs to occur, such as snmp alerting, syslogs,
process and CPU monitoring?

13.4.1 Administrative groups
For this example, we have four types of administrators within the Stocks-4u Web
environment:

� Network security

This group manages the firewalls and Internet DMZ infrastructure, including
WebSEAL servers, mail, and Domain Name System (DNS). This group also
handles the Access Manager for Operating Systems administration activities.

� Tivoli Access Manager for e-business administrators

This group manages the Tivoli Access Manager for e-business application
and deployment within the Stocks-4u environment. This includes any version
upgrades and configuration changes that are required.

� Application managers

This group manages the business applications.

� Security administrators

This group manages user access and user provisioning. It is responsible for
creating users and placing them in appropriate groups and so on.

13.4.2 Policy layout
To meet Stocks4u.com’s need for global and vendor specific policies, the policy
tree within Access Manager for Operating Systems must be defined
appropriately. Table 13-1 on page 415 illustrates the appropriate policy branch
definition for Stocks4u.com.

418 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 13-1 Stocks4u.com policy branch definition

The policy branch definition allows for all servers in the Stocks4u.com
environment to subscribe to the /OSSEAL/Servers branch for global policy. In
addition, each specific operating system (AIX, HP-UX, Solaris, Linux) can
subscribe to their own branch. Branch precedence is defined as the specific
operating system branch first and then the global server branch.

The security management department at Stocks4u.com can now implement a
policy globally for all UNIX-based servers as well as apply a specific policy to
servers that run any vendor’s UNIX operating system.

We further examine the specific policies to be applied to the AIX servers at
Stocks4u.com. Because Stocks4u.com runs all of the Access Manager base
components (Policy Server, Authorization Server, Policy Proxy Server, Common
Auditing and Reporting Service, and User Registry) on AIX servers, there are

/

/OSSEAL Initial
Branch

/OSSEAL/Servers

/OSSEAL/AIX

/OSSEAL/HPUX

/OSSEAL/Solaris

/OSSEAL/Linux

 Chapter 13. Access Manager for Operating Systems business scenario 419

specific security requirements that must be defined in the /OSSEAL/AIX branch.
This differs from the Mail and DNS servers that run on HP-UX.

AIX servers
The groups that allowed access to these servers are the network security group
and the Tivoli Access Manager for e-business administrators. Each user has a
unique login, and remote root login is not allowed. Tivoli Access Manager for
e-business administrators have access only to Tivoli Access Manager for
e-business directories and files. The network security group has access to the
whole system.

The external interface allows connections from any source on port 80 and 443
only. The internal interface allows outbound connections to the Lightweight
Directory Access Protocol (LDAP) replica and Web servers in the production
network on their respective ports only.

The management interface accepts Tivoli Access Manager management
connections from the Policy Server and the Policy Proxy Server. It also accepts
Secure Shell (SSH) connections from the system management server within the
management network for CLI administration. In addition, it allows outbound
connections for systems management traffic only to specific servers.

A Trusted Computing Base (TCB) is established within the servers to protect core
system files such as routing tables, password files, and so on.

HP-UX servers
The HP-UX servers are solely managed by the network services group, who has
full access to the servers. This group is responsible for running the mail and DNS
applications for the company.

Inbound connections are allowed to UDP port 53 for DNS and TCP port 25 for
Simple Network Management Protocol (SNMP) on the external network
interface. Outbound connections are allowed for SNMP to the actual mail servers
within the internal network.

The management network allows SSH connections from the systems
management servers. It also allows the same outbound connections as for the
WebSEAL servers.

A TCB is established within the servers to protect core system files such as
routing tables, DNS tables, password files, and so on.

420 Enterprise Security Architecture Using IBM Tivoli Security Solutions

13.4.3 Architecture overview
An environment that does not have any pre-existing Access Manager
components installed is illustrated from a logical viewpoint in Figure 13-2.

Figure 13-2 Access Manager for Operating System logical component placement

Each server secured by Access Manager for Operating Systems shares the
same common requirements:

� Each server runs the Access Manager for Operating Systems daemon
(OSSEAL).

� For authentication purposes, each server must communicate with the Access
Manager user registry.

� Each server has a local copy of the authorization database (aznDB) to
evaluate security policy decisions.

� Every server sends the audit data to the Common Auditing and Reporting
Service for audit consolidation and reporting.

Production Zone

Access Manager
User Registry

Master Authorization
Database
(aznDB)

Management Zone

Access Manager
Policy Server

Intranet

Browser

Web Portal
Manager

Replica
aznDB

Replica
aznDB

Replica
aznDB

Replica
aznDB

AIX
Server w/
OSSEAL

AIX
Server w/
OSSEAL

Solaris
Server w/
OSSEAL

Solaris
Server w/
OSSEAL

HP-UX
Server w/
OSSEAL

HP-UX
Server w/
OSSEAL

Linux
Server w/
OSSEAL

Linux
Server w/
OSSEAL

Audit Database

Common Auditing
and Reporting

Service

 Chapter 13. Access Manager for Operating Systems business scenario 421

13.5 Integrating into an Access Manager environment
Since Stocks4u.com already has an existing Access Manager environment
deployment to secure their Web applications, the corporation wants to leverage
their existing environment wherever feasible.

Figure 13-3 shows the environment into which Access Manager for Operating
Systems is deployed. The view is given at a logical network level to illustrate the
network zones that dictate the security policies applied to the servers within
them.

The system security policy for each server is driven by two main factors.

� Server function, such as Web servers, mail servers, and application servers
� Server placement, including Internet DMZ, intranet, management zone, and

so on

The environment in Figure 13-3 depicts the San Diego location.

Figure 13-3 Servers deployed within the Stocks-4u Web environment

To minimize the disruption to the existing Access Manager environment at
Stocks4u.com, a new Access Manager domain called amos is created strictly for
use by Access Manager for Operating Systems. This ensures that security

Production ZoneInternet DMZInternet Intranet

IBM

DNS

WebSEAL
Host System

Mail Proxy

IBM

DNS

Mail Server

Mail Proxy

IBM

WebSEAL

WebSEAL
Host System

IBM

WebSEAL

WebSEAL
Host System

IBM

Web
Server

Web Server
Host System

IBM

Web
Server

Web Server
Host System

IBM

Web
Server

Web Server
Host System

IBM

Access Manager
Services Host System

User
Registry

Access
Manager

Policy Server

IBM

Access Manager
User registry

replica

User
Registry

IBM

Access Manager
User registry

replica

User
Registry

IBM

WebSEAL

WebSEAL
Host System

IBM

WebSEAL

WebSEAL
Host System

IBM

Web Portal
Manager

Access Manager
Services Host

System

IBM

Application
Server

Web Application
Servers

IBM

Application
Server

Web Application
Servers

IBM

Application
Server

Web Application
Servers

IBM

Data Base

Data Servers

Management
Zone

IBM

Proxy Policy
Server

Browser

Browser

422 Enterprise Security Architecture Using IBM Tivoli Security Solutions

policies for the Web environment remain separate from the security policies of
the UNIX environment.

Figure 13-4 illustrates the placement of Access Manager components when
integrating with an already existing environment such as Tivoli Access Manager
for e-business.

Figure 13-4 Stocks4u.com integrated security solution for UNIX and Web applications

Important: When you integrate multiple resource managers, such as Access
Manager for Operating System and Access Manager WebSEAL, consider the
amount of policy replication traffic that may occur. If the amount of policy
replication traffic will be large for one environment and small for the other, it is
better to split the environment into two distinct Access Manager domains to
minimize replication traffic. Each security domain has its own ACL database.
Therefore, an environment with multiple domains will only replicate the
security on a per-domain basis, and not to the whole environment.

Production Zone

Internet DMZInternet
IntranetManagement Zone

Browser

Browser

HP-UX Server
w/ OSSEAL
DNS Mail
HP-UX Server
w/ OSSEAL
DNS Mail

AIX Server
w/ OSSEAL

WebSEAL

AIX Server
w/ OSSEAL

WebSEAL

Solaris Server
w/OSSEAL

Database
Server

Linux Server
w/OSSEAL

Web
Server

Linux Server
w/OSSEAL

Web
Server

Solaris Server
w/OSSEAL

Database
Server

AIX Server
w/ OSSEAL

User Registry

AIX Server
w/ OSSEAL

User Registry

AIX Server w/ OSSEAL

Default Domain
aznDB

AIX Server
w/ OSSEAL

WebSEAL

AIX Server
w/ OSSEAL

WebSEAL

AIX Server
w/ OSSEAL

Policy Proxy
Server

Policy Server

AMOS Domain
aznDB

AIX Server
w/ OSSEAL

Web Portal
Manager

AIX Server
w/ OSSEAL

User Registry

AIX Server w/
OSSEAL

Common Auditing and
Reporting Service

Audit DB

 Chapter 13. Access Manager for Operating Systems business scenario 423

The policy server at Stocks4u.com now has two distinct and separate databases
to manage. This new database does not, however, require the addition of any
new hardware.

13.6 Conclusion
In this chapter, we used the guidelines that we discussed previously in this book
to illustrate the thought process involved in developing a typical Access Manager
for Operating Systems solution architecture. With this example, you can further
extrapolate to more complicated environments using the same thought process.

424 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 14. Access Manager for
Business Integration

This chapter describes Tivoli Access Manager for Business Integration and the
role that the product plays within the overall enterprise architecture. This is
described in the contexts of the security architecture subsystems.

Tivoli Access Manager for Business Integration and Tivoli Access Manager for
WebSphere Business Integration Broker are the two resource managers that
Access Manager uses to provide secure messaging through WebSphere MQ.
The two products provide authenticated, authorized, and secured transactions
between applications.

It is assumed that the reader has a basic understanding and knowledge of the
core Access Manager infrastructure that is described in Chapter 5, “Access
Manager core components” on page 163.

14

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 425

14.1 Product overviews
The following sections briefly introduce IBM WebSphere MQ, WebSphere
Business Integration Message Broker, Access Manager for Business Integration,
and Access Manager for WebSphere Business Integration Brokers.

14.1.1 IBM WebSphere MQ
Message queuing (MQ) is a method of application-to-application communication.
Applications communicate by writing and retrieving application-specific data
(messages) to and from queues without having a private, dedicated connection
to link them. Messaging means that programs communicate with each other by
sending data in messages and not by calling each other directly, which is the
case for technologies such as remote procedure calls. Queuing means that
applications communicate through queues. The use of queues removes the
requirement for both the sending and receiving applications to be executing
concurrently.

IBM WebSphere MQ products enable applications to communicate with each
other across a network of different components, such as processors,
subsystems, operating systems, and communication protocols. For example,
IBM WebSphere MQ supports more than 35 different operating systems.

IBM WebSphere MQ supports two different application programming interfaces:
Java Message Service (JMS) and Message Queuing Interface (MQI). On IBM
WebSphere MQ servers, the JMS binding mode is mapped to the MQI. An
application talks directly to its local queue manager by using MQI, which is a set
of calls that request services from the queue manager. The attractive feature of
MQI is that it provides only 13 calls. This means that it is a very simple interface
for application programmers to use, because most of the hard work is done
transparently.

Figure 14-1 on page 427 shows the essence of IBM WebSphere MQ
programming. The first step is for the application to connect to the queue
manager. It does this through the MQConnect call. The next step is to open a
queue for output using the MQOpen call. The application then puts its data on
the queue using the MQPut call. To receive data, the application calls the
MQOpen call to open an input queue. The application receives data from the
queue using the MQGet call.

Also shown in the figure are the message channel agent (MCA), channel exits,
and object authority manager (OAM). The MCA is the IBM WebSphere MQ
program that moves the messages from the local transmission queue to the
target queue manager using existing transport services, such as TCP/IP and
SNA. These transport services are known as channels. The channel exits are

426 Enterprise Security Architecture Using IBM Tivoli Security Solutions

user-written libraries that can be entered from one of a defined number of places
during channel operation. The OAM is the default authorization service
(OS-specific) for command and object management. These three components
are important for existing security solutions for IBM WebSphere MQ.

Figure 14-1 IBM WebSphere MQ programming

14.1.2 WebSphere Business Integration Message Broker
WebSphere Business Integration Message Broker enables information,
packaged as messages, to flow between different business applications, ranging
from large existing systems to unmanned devices such as sensors or pipelines.

WebSphere Business Integration Event Broker and Message Broker provide the
capability to integrate resources without bounds by mediating between message
transports and message formats and by routing messages on behalf of the
enterprise. WebSphere Business Integration Event Broker is a true subset of
WebSphere Business Integration Message Broker. In other words, a Message
Broker is an Event Broker with additional capabilities.

WebSphere Business Integration Message Broker provides powerful
publish/subscribe capability in a Java Messaging System (JMS) environment.

Queues

Customer
Application

Queue
Manager

MCA

MQI API

OAM
Channel Exits

M
Q

C
O

N
N

E
C

T

M
Q

O
P

E
N

M
Q

P
U

T

M
Q

G
E

T

OK?

y/n

 Chapter 14. Access Manager for Business Integration 427

Component descriptions
Figure 14-2 shows the interaction between various components of WebSphere
Business Integration Message Broker. A brief description of the components
shown in the diagram follows.

Figure 14-2 WebSphere Business Integration Message Broker overview

Broker
The broker is a system service on Windows platforms, or a server process on
UNIX platforms, that controls processes that run message flows. Applications
send messages to the broker using WebSphere MQ queues and connections.
The broker routes each message using the rules defined in message flows and
message sets, and transforms the data into the structure required by the
receiving application.

Application

Message Broker Toolkit

Broker
Domain

Broker

M
es

sa
ge

flo

w
M

es
sa

ge

se
ts

Optional user
Name server

Configuration
Manager

Repository

WebSphere Business Integration Message Broker

ApplicationApplication

Application

428 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The broker uses sender and receiver channels to communicate with the
Configuration Manager and other brokers in the broker domain.

The broker depends on a broker database to hold broker information. This
information includes control data for resources defined to the broker, such as
deployed message flows. The database is also known as the broker’s local
persistent store.

The broker connects to the database using an ODBC connection.

When you create a broker, you must give it a name that is unique within the
broker domain. Broker names are case-sensitive on all supported platforms
except Windows platforms.

Broker domain
A broker domain is one or more brokers that share a common configuration,
together with the single Configuration Manager that controls them.

You install, create, and start one or more brokers, and an optional User Name
Server, in a broker domain. You can configure more than one broker domain,
each managed by its own Configuration Manager.

User Name Server
The User Name Server is an optional run-time component that provides
authentication of users and groups performing publish/subscribe operations. If
you have applications that use the publish/subscribe services of a broker, you
can apply an additional level of security to the topics on which messages are
published and subscribed. This additional security, known as topic-based
security, is managed by the User Name Server. It provides administrative control
over who can publish and who can subscribe.

Configuration Manager
The Configuration Manager is the interface between the WebSphere Business
Integration Message Brokers Toolkit in the configuration repository and an
executing set of brokers. It provides brokers with their initial configuration and
updates them with any subsequent changes. It maintains the broker domain
configuration.

The Configuration Manager is the central run-time component that manages the
components and resources that constitute the broker domain.

 Chapter 14. Access Manager for Business Integration 429

The Configuration Manager has four main functions:

� Maintains configuration details in the configuration repository. This set of
database tables provides a central record of the broker domain components.

� Deploys the broker topology and message-processing operations in response
to actions initiated through the Toolkit. Broker archive (bar) files are deployed
through the Configuration Manager to the execution groups within a broker.

� Reports on the results of deployment and the status of the broker.

� Communicates with other components in the broker domain using
WebSphere MQ transport services.

You must install, create, and start a Configuration Manager for each broker
domain.

Message flow
A message flow is a directed graph of message flow nodes that represents the
actions that are performed on a message when it is received and processed by a
broker. Each node in a message flow represents a processing step, and the
connections in the flow determine which processing steps are carried out, and in
which order. A message flow must include an input node that provides the source
of the messages that are processed. A message flow represents a set of actions
that can be executed by a broker and therefore can be deployed.

Message sets
A message set is a container, a logical grouping of messages and associated
message resources (elements, types, groups).

Execution group
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between
message flows in distinct execution groups by ensuring that they execute in
separate address spaces, or as unique processes. Within an execution group,
the assigned message flows run in different thread pools.

Each execution group is started as a separate operating system process,
providing an isolated runtime environment for a set of deployed message flows. A
single default execution group is set up ready and for use when you create a
broker in the Toolkit.

Execution groups are created and deployed in the Toolkit. Tivoli Access Manager
for WebSphere Business Integration Brokers supports one execution group per
broker.

430 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Term descriptions
We now describe some important terms and concepts that must be understood
before using Tivoli Access Manager for WebSphere Business Integration
Brokers.

Publish/subscribe
Publish/subscribe is a style of messaging application in which the applications
that provide information are decoupled from the applications that might use that
information. The following terms are used in a publish/subscribe system:

Publisher An application that provides information
Subscriber An application that uses the information
Publication The information that a publisher provides
Subscription The request that a subscriber makes for information

In a publish/subscribe system, a publisher does not need to know who uses the
information that it provides, and a subscriber does not need to know who
provides the information that it uses.

Message brokers make sure that messages arrive at the correct destinations and
are transformed into the format required at each destination.

The simplest form of a publish/subscribe system has one message broker, one
application that publishes messages, and one application that subscribes to
messages, as shown in Figure 14-3.

Figure 14-3 Simple publish/subscribe system

Topic
A topic is a character string that describes the nature of the data that is being
published in a publish/subscribe system.

Topics are key to the successful delivery of messages in a publish/subscribe
system. Instead of including a specific destination address in each message, a
publisher assigns a topic to the message. The message broker matches the topic
with a list of clients who have subscribed to that topic and delivers the message
to each of those clients.

BrokerPublisher SubscriberPublication

Subscription

Publication

 Chapter 14. Access Manager for Business Integration 431

Publish/subscribe security
A secure publish/subscribe system needs at least these two security services:

� Topic-based security

Access to messages on particular topics is controlled using access control
lists (ACLs).

� Authentication services

An authentication protocol is used by a broker and a client application to
confirm that they are both valid participants in a session.

14.1.3 Access Manager for Business Integration
IBM Tivoli Access Manager for Business Integration operates in conjunction with
the base components provided by IBM Tivoli Access Manager. Together, these
software applications provide a security solution for IBM MQSeries, Version 5.2,
and IBM WebSphere MQ, Version 5.3, products. All subsequent general
references refer to IBM WebSphere MQ.

With IBM Tivoli Access Manager for Business Integration you can:

� Secure sensitive or high-value messages processed by IBM WebSphere MQ.

� Control which users have access to specific queues.

� Detect and remove rogue or unauthorized messages before they are
processed by a receiving application.

� Generate detailed audit records showing which messages were expressly
authorized and encrypted.

� Centrally define authorization and data protection policies for IBM
WebSphere MQ resources (getting and putting messages to queues).

� Provide integrity and privacy protection for your data as it flows across the
network and while it is in a queue.

� Secure existing off-the-shelf and customer-written applications for IBM
WebSphere MQ.

IBM Tivoli Access Manager for Business Integration furnishes IBM WebSphere
MQ applications with the following functionality:

� A centralized authorization service that defines security policies for IBM
WebSphere MQ queues and messages in these queues.

� Privacy, in the form of encryption, and integrity in the form of checks against
message modification, so that senders and receivers of IBM WebSphere MQ
messages can exchange them with security. IBM Tivoli Access Manager for

432 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Business Integration provides these services while the messages are in
transit as well as when the messages are stored in the queues.

� IBM Tivoli Access Manager for Business Integration identifies IBM
WebSphere MQ users with X.509 distinguished names that are independent
of the operating system and network.

� Transparent message-level security. IBM WebSphere MQ applications do not
have to be modified to be protected by IBM Tivoli Access Manager for
Business Integration.

14.1.4 Access Manager for WebSphere Business Integration Brokers
IBM Tivoli Access Manager for WebSphere Business Integration Brokers, in
conjunction with Access Manager, provides the security solution for WebSphere
Business Integration Message Broker Version 5.0 and WebSphere Business
Integration Event Broker, Version 5.0. All subsequent references refer to this
product as Message Broker. With Tivoli Access Manager for WebSphere
Business Integration Brokers you can:

� Define authorization policies centrally for Java Message Service (JMS)
publish/subscribe topics.

� Secure JMS publish/subscribe applications using Tivoli Access Manager
authentication.

� Provide user name/password or credential-based authentication for JMS
publish/subscribe applications.

� Provide an audit trail for authorization events in WebSphere Business
Integration Message Broker.

14.2 Architectural perspective
We use the concept of security architected subsystems, as discussed in 2.1,
“Common security architecture subsystems” on page 20, to provide a way to
group common attributes and to provide a common set of services to a broad
range of applications. The Subsystem approach allows for a clear articulation
and understanding of the security solution, and enables this to be deployed as a
service within a real-world infrastructure.

 Chapter 14. Access Manager for Business Integration 433

The main subsystems addressed by Access Manager for Business Integration
are:

� Access control: Access Manager is used to authenticate users and to enforce
security policy at an application and system level.

� Auditing: The Access Manager components and infrastructure provide a
comprehensive logging framework that can be integrated with most threat
management system.

� Information flow control: Access Manager for Business Integration controls
the flow of information over MQ between applications in terms of authorization
and message protection through the use of cryptographic confidentiality and
integrity mechanisms.

Access Manager for Business Integration utilizes all of the subsystems. However,
the three just listed are fundamental to subsystems involving Access Manager
within an overall Enterprise Architecture.

14.2.1 Design principles
The design of any architecture must be based on clearly defined and articulated
principles that form a foundation for the design process. Whenever in doubt
about a design decision, the principles should be used to map a path forward and
to justify the overall design.

Some key principle can be applied to an access control solution:

� The security solution must have a central point of authority for security-related
information. This authority must support both centralized and distributed
management.

– Motivation: This principle drives the need for one source of authoritative
security-related policy within an organization. It enables a consistent policy
to be applied across applications and systems and throughout the
organization while providing a flexible administration framework that will fit
into and enhance an organization’s operation capabilities.

– Implication: This principle implies a high degree of integration, broad
coverage, and flexibility required from the products that are chosen to
support it. Integration is one of the greatest challenges.

� The solution should support the end-to-end flow of transactions throughout an
environment. That is, security should be applied throughout the system and
not just at the front door. Mechanisms should exist that not only authorize

434 Enterprise Security Architecture Using IBM Tivoli Security Solutions

transactions but also protect transaction data from tampering and
eavesdropping.

– Motivation: Many of today’s online application support high-valued
transactions that require appropriate security controls end-to-end. Also,
privacy laws now force organizations to provide better data protection.

– Implication: Authorization and cryptographic message protection
throughout a distributed environment creates numerous integration issues.
A distributed environment will have many requirements that are hard to
satisfy with just one product.

� Sufficient logging is required to capture all authentication and access control
decision events and logs. The level of logging should be based on business
and security requirements, hence the security solution should provide
comprehensive and flexible logging coverage that enables it to be
customized.

– Motivation: Because no security solution is foolproof, it is essential to keep
good records of the transactions performed by your security system. An
easily manageable method of dealing with these records is essential.

– Implications: Strong integration is required to provide logging across
multiple systems. Mechanisms must be in place to collect, filter, analyze,
and report on audit data.

These principles are not intended to be comprehensive, but to highlight some
core objectives of the security solution.

Access Manager for Business Integration supports all of these principles. The
Access Manager family of products, when integrated throughout an environment,
provides a comprehensive access control capability. The breadth of the Access
Manager solution along with its open architecture and interfaces means that it is
a perfect solution to provide the majority of an enterprises’s access control
capabilities.

14.3 Access Manager for Business Integration
IBM Tivoli Access Manager for Business Integration enables IBM WebSphere
MQ applications to send data with confidentiality and integrity by using keys
associated with the sending and receiving applications. Application-level data
protection enhances the SSL channel security that is part of IBM WebSphere
MQ, Version 5.3. This additional level of data protection is critical for customers
needing to establish a Health Insurance Portability Accountability Act (HIPAA)
compliant implementation of IBM WebSphere MQ, or for any customer using IBM
WebSphere MQ to process other types of sensitive data, such as high-value
financial transactions or Human Resources (HR) data. The Tivoli Access

 Chapter 14. Access Manager for Business Integration 435

Manager authorization service provides access control to IBM WebSphere
MQ-based services and restricts which users or processes can and cannot
access messages on queues.

14.3.1 Security characteristics
IBM Tivoli Access Manager for Business Integration provides a high level of
security in terms of user authorization and data protection while not affecting the
end applications. IBM Tivoli Access Manager for Business Integration provides
the following security benefits:

� Secures sensitive and high-value transactions processed by IBM WebSphere
MQ.

� Controls which users and applications have access to specific queues.

� Detects and removes rogue or unauthorized messages before they are
processed by a receiving application.

� Generates detailed auditing records.

� Verifies that messages were not modified while in transit from queue to
queue.

� Centrally defines authorization policies (including data protection) for IBM
WebSphere MQ resources (getting and putting messages to queues) using a
common console for heterogeneous servers across the enterprise.

� Protects the data not only as it flows across the network but also as it sits in a
queue.

Secures existing off-the-shelf and customer-written applications for IBM
WebSphere MQ.

436 Enterprise Security Architecture Using IBM Tivoli Security Solutions

14.3.2 Architecture
Figure 14-4 shows a diagram of the core IBM Tivoli Access Manager for
Business Integration components and security infrastructure components (in
shaded areas).

Figure 14-4 IBM Tivoli Access Manager for Business Integration environment

IBM Tivoli Access Manager for Business Integration relies on IBM Tivoli Access
Manager servers and clients, and on the following Tivoli Access Manager
services:

� Enterprise LDAP user registry where IBM WebSphere MQ users are
represented as Tivoli Access Manager users.

� Centralized Policy Server to define authorization and data protection policy for
access to IBM WebSphere MQ resources, such as queues.

� GUI-based management console provided by Tivoli Access Manager Web
Portal Manager.

IBM Tivoli Access Manager for Business Integration uses the industry standard
aznAPI to obtain authorization services from the Policy Server.

For a more detailed discussion of the core components refer to Chapter 5,
“Access Manager core components” on page 163.

AMBI Server

C Server Interceptor

API Exits

C Client Interceptor

JMS Java Interceptor

Cryptographic Libraries

Local TCP/IP
Socket

AM Server

LDAP Server

 Chapter 14. Access Manager for Business Integration 437

14.3.3 Components and dependencies
IBM Tivoli Access Manager for Business Integration supports two different
interception environments:

� IBM Tivoli Access Manager for Business Integration Server and Client
Interceptors.

The key piece of IBM Tivoli Access Manager for Business Integration is a set
of multi-threaded, shared libraries that executes in the process space of an
IBM WebSphere MQ application. The IBM Tivoli Access Manager for
Business Integration libraries intercept IBM WebSphere MQ C API calls and
enable IBM WebSphere MQ applications to be secured without any changes.

� IBM Tivoli Access Manager for Business Integration JMS Interceptor.

IBM Tivoli Access Manager for Business Integration Java Message Service
(JMS) Interceptor is a set of JAR files and tools to intercept JMS calls and
enable the JMS application to be secured without any changes.

Access Manager for Business Integration server
Access Manager for Business Integration server is a service on Windows and
UNIX platforms. It accepts service requests from all IBM Tivoli Access Manager
for Business Integration Interceptors running on the local system and provides
the following services:

� Authorization checks based on the security policy specified using the IBM
Tivoli Access Manager administrative tools.

� Auditing of security events, such as mapping of the PKI identity to the IBM
Tivoli Access Manager user.

� Retrieval of security policy information, such as signature algorithms,
encryption strength, queue resolution, and so on.

� Public key certificate retrieval for recipients of messages.

Access Manager C authorization APIs are used to perform authorization checks
and obtain security policy information. They also communicate with the LDAP
server to obtain user mapping information and retrieve public key certificates for
recipients of messages. IBM Tivoli Access Manager for Business Integration
server is also responsible for generating audit records for security events
according to user-defined audit policy.

IBM Tivoli Access Manager for Business Integration server is optimized to serve
a large number of WebSphere MQ applications. It is a local-mode IBM Tivoli
Access Manager authorization API application that uses a local copy of the
security policy database. The policy database is updated by periodic notifications
from the IBM Tivoli Access Manager Policy Server. It can also be updated using
the IBM Tivoli Access Manager administrative tools.

438 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Access Manager for Business Integration Interceptor model
IBM Tivoli Access Manager for Business Integration operates as shown in
Figure 14-5.

Figure 14-5 Tivoli Access Manager for Business Integration interceptor model

IBM Tivoli Access Manager for Business Integration provides a set of
multi-threaded, shared libraries that executes in the process space of the IBM
WebSphere MQ application. The IBM Tivoli Access Manager for Business
Integration libraries intercept IBM WebSphere MQ calls, enabling IBM
WebSphere MQ applications to be secured without any modifications.

On IBM WebSphere MQ Version 5.3 servers, IBM Tivoli Access Manager for
Business Integration intercepts IBM WebSphere MQ calls by using the API exits
mechanism. If the IBM Tivoli Access Manager for Business Integration API exit is
added to the configuration of some or all queue managers, IBM WebSphere MQ
will call into this library before and after every MQI call. For more information
about API exits, see the WebSphere MQ System Administration Guide.

API exits are not supported on IBM WebSphere MQ Version 5.2 servers or any
IBM WebSphere MQ clients. On these platforms, interception is accomplished by

Queues

Customer
Application

Queue
Manager

MCA

MQI API

OK?

y/n

IBM Tivoli Access Manager
for Business Integration

Server Interceptor

IBM Tivoli Access
Manager for

Business
Integration Server

GSKit/
ACME

IBM Tivoli Access
Manager Server

LDAP Server Certificated

User
Registry

Security
Policy

Administration
Tool

Channel
Exits

OAM

 Chapter 14. Access Manager for Business Integration 439

replacing the native IBM WebSphere MQ with the IBM Tivoli Access Manager for
Business Integration interceptor library.

When intercepting an IBM WebSphere MQI call, IBM Tivoli Access Manager for
Business Integration determines:

� Whether the request for IBM WebSphere MQ services is authorized.

� Whether the data in the transaction should be digitally signed or digitally
encrypted, or both, before being placed in the queue requested.

� Whether a message has been signed (that the signature associated with the
message is verified before the original message is presented to the
requesting application).

� Whether a message has been encrypted, that the message is decrypted, and
that the original message is presented to the requesting application.

Authentication
Access Manager for Business Integration uses Public Key Infrastructure (PKI)
credentials to authenticate the user or application requesting IBM WebSphere
MQ services. It also uses cryptographic client services to securely wrap
messages using the IETF CMS standard. This encapsulation protects the
message data from being disclosed or tampered with while in a queue or in
transit.

Authorization and permission bits
IBM WebSphere MQ queues must be represented in the protected object space
so that access policies can be attached to them.

When IBM Tivoli Access Manager for Business Integration is configured, it
creates an object space container, which contains entries for each of the
protected queues in the domain. Each queue is listed underneath its queue
manager.

The ACL on the queue is checked when the application attempts to open the
queue using MQOPEN after connecting to the queue manager. The mode in
which the queue is opened, either for input (MQPUT) or output (MQGET),
determines which permission bits in the ACLS are required.

Data protection and audit
There are three main functions supported in this category:

Integrity If integrity is specified, then all messages put onto the queue must be
signed so that tampering can be detected and so that the sender is
known.

Privacy Each message put onto the queue must be encrypted so that only
the intended recipients can read it.

440 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Auditing Tivoli Access Manager for Business Integration records each
transaction involving the queue in question. Auditing records and
notifies any violation to the integrity and privacy functions.

Error handling
IBM Tivoli Access Manager for Business Integration defines an error handling
queue to manage messages that contain errors or messages that cannot be
routed correctly. For example, if the message is signed when it should be
encrypted, or if encryption or signature verification fails, then the message is sent
to the error-handling queue.

IBM WebSphere MQ Client overview
An IBM WebSphere MQ client is part of the IBM WebSphere MQ product that
can be installed on its own, on a separate machine from the MQ server. You can
run an IBM WebSphere MQ application on an IBM WebSphere MQ client, which
interacts with one or more IBM WebSphere MQ servers. The IBM WebSphere
MQ client connects to queue managers by means of a communications protocol.
The servers to which the client connects might or might not be part of an IBM
WebSphere MQ cluster.

The queues and other IBM WebSphere MQ objects are held on a queue
manager that you have installed on an MQ server machine. When the application
issues a client call, the IBM WebSphere MQ client directs the request to a queue
manager, where it is processed and from where a reply is sent back to the IBM
WebSphere MQ client. The link between the MQ application and the IBM
WebSphere MQ client is established dynamically at runtime.

 Chapter 14. Access Manager for Business Integration 441

Client interceptor considerations
The C Client Interceptor supports IBM WebSphere MQ 5.2 and IBM WebSphere
MQ 5.3. The C Client Interceptor operates as shown in Figure 14-6.

Figure 14-6 IBM Tivoli Access Manager for Business Integration C Client Interceptor

Currently, IBM WebSphere MQ does not permit user-written data conversion
exits on the client. If message protection is in effect (integrity or privacy levels)
and a message contains data in a user-defined format, the message is not
converted, even if a data conversion exit for that format is defined on the IBM
WebSphere MQ server. For security reasons, the C Client Interceptor cannot
send plain text data back to the server for conversion. However, the C Client
Interceptor converts messages in the IBM WebSphere MQ–defined message
formats, such as Rules and Formatting Header (RFH).

JMS Interceptor considerations
IBM Tivoli Access Manager for Business Integration supports the IBM Tivoli
Access Manager for Business Integration Java Message Service (JMS)
Interceptor, which interoperates with other interceptors. The JMS Interceptor
provides authorization, data protection, and auditing security services for the

Queues

Customer
Application

Queue
Manager

MCA

MQIC API

OK?

y/n

C Client Interceptor

IBM Tivoli Access
Manager for

Business
Integration Server

GSKit/
ACME

IBM Tivoli Access
Manager Server

LDAP Server Certificated

User
Registry

Security
Policy

Administration
Tool

Channel
Exits

OAM

MCA

Channel Protocol

442 Enterprise Security Architecture Using IBM Tivoli Security Solutions

JMS interfaces that are available as part of the IBM WebSphere MQ client
support.

JMS Interceptor model
Figure 14-7 shows the architecture of a Java application that uses the JMS
interfaces with an IBM WebSphere MQ JMS provider and the JMS Interceptor
enabled. The JMS Interceptor is enabled using the pdmqjmsadmin program,
which sets up the administered objects to use the JMS Interceptor. When the
methods in these objects are invoked, authorization, audit, and data protection
services are applied as per the security policy specified in the IBM Tivoli Access
Manager protected object space.

Figure 14-7 IBM WebSphere MQ JMS architecture with JMS Client Interceptor

The JMS Interceptor performs the same security services (authorization, data
protection, and auditing) as the other interceptors provided by IBM Tivoli Access
Manager for Business Integration.

14.4 Access Manager for WebSphere Business
Integration Brokers

IBM Tivoli Access Manager for WebSphere Business Integration Brokers
operates in conjunction with IBM Tivoli Access Manager, which is the base

Note: Only applications that use the JNDI namespace are supported.

JMS Application

JMS API

JMS Interceptor

IBM WebSphere MQ
JMS Provider

IBM WebSphere MQ
JMS Administration

pdmqjmsadmin

IBM WebSphere
MQ Server

JNDI
Namespace

Client Transport

 Chapter 14. Access Manager for Business Integration 443

component. Together, these software applications provide the security solution
for WebSphere Business Integration Message Broker Version 5.0 and
WebSphere Business Integration Event Broker Version 5.0. All subsequent
references refer to this product as Message Broker. With Tivoli Access Manager
for WebSphere Business Integration Brokers you can:

� Define authorization policies centrally for Java Message Service (JMS)
publish/subscribe topics.

� Secure JMS publish/subscribe applications using Tivoli Access Manager
authentication.

� Provide user name/password or credential-based authentication for JMS
publish/subscribe applications.

� Provide an audit trail for authorization events in WebSphere Business
Integration Message Broker.

Tivoli Access Manager for WebSphere Business Integration Brokers provides
authorization services to the brokers. It also replaces the User Name Server to
provide support for client authentication. Tivoli Access Manager for WebSphere
Business Integration Brokers uses the centralized authorization policy support
provided by Tivoli Access Manager to provide access control for protected
resources or topics.

14.4.1 Authorization and permission bits
The publish and subscribe topics must be represented in the Tivoli Access
Manager protected object space so that access policies can be attached to them.

When Tivoli Access Manager for WebSphere Business Integration Brokers is
configured, it creates an object space container that contains entries for each of
the protected topics in the domain. The protected object space that is created
follows the previously described topic tree model. Because attached policies are
inherited down the object space, a policy attached to a parent topic affects all
topics below it unless another policy is attached to a specific topic.

Tivoli Access Manager for WebSphere Business Integration Broker’s action bits
are used within the Tivoli Access Manager ACLs that are attached to the
protected objects. These permission bits are used to determine whether a user
can publish or subscribe on a given topic. The ACL on the topic is checked when
the application attempts to publish or subscribe on the topic. If the user does not
have the required permissions, an authorization failure error is sent back to the
application.

The ACL for a topic uses the following permissions:

P The user is allowed to publish to the topic.

444 Enterprise Security Architecture Using IBM Tivoli Security Solutions

S The user is allowed to subscribe to the topic.
R The user is allowed persistence on the topic.

When an application attempts to publish or subscribe to a topic, Tivoli Access
Manager for WebSphere Business Integration Brokers only checks that the
application had permission to publish or subscribe to the topic. If the user does
not have the required permission, the publish or subscribe call fails, and the user
is not allowed to publish or subscribe to the topic.

14.5 A distributed application at Stocks-4u.com
We now look briefly at the use of Access Manager in a distributed situation, with
IBM MQSeries as a solution component.

Expanding on our current scenario, Stocks-4u.com intends to deploy a new stock
transaction record application that uses MQSeries for data exchange between
front-end and back-end application components. In this case, the front-end
application component is deployed in the San Diego IT Center, and the back-end
component is deployed in Savannah on a corporate mainframe host. The
front-end application component is embedded within a servlet running on an IBM
WebSphere Application Server platform. Clients may access the application via
WebSEAL. Figure 14-8 illustrates these components.

Figure 14-8 A Stocks-4u.com MQSeries application

 Browser

MQSeries

San Diego
IT Center

Application
Front-End
Process

MQSeries

Savannah
IT Center

Application
Back-End
Process

WebSEAL

stocks-4u.com
Intranet

 Chapter 14. Access Manager for Business Integration 445

In this case, the MQSeries channels represent a cross-site communication
component that, depending on the specific network configuration, might not be
secure. In this case, we assume that the MQSeries communication occurs
across the Stocks-4u.com intranet, leaving the traffic largely unsecured. The
question is: How can we use Access Manager to secure this communication and
assure data privacy and integrity?

Access Manager for Business Integration is specifically designed to address
such situations. As mentioned earlier, it provides queue security and
transparently applies encryption to message channel traffic, permitting highly
secure use of MQSeries over otherwise insecure channels.

Access Manager for Business Integration provides two key functions:

� It provides access control for enqueue and dequeue (put/get) operations
using Access Manager’s authorization engine.

� It can encrypt individual messages to protect their integrity and privacy. It
does this transparent to the application.

446 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Refer to Figure 14-9, which depicts Access Manager for Business Integration
components and interactions.

Figure 14-9 Access Manager for Business Integration architecture

Access Manager for Business Integration places a runtime library shim in the
path between the application and MQSeries. The application continues to call the
standard MQSeries runtime functions. These calls are intercepted transparently,
where authorization checks and message encryption and decryption is done.
Neither MQSeries itself nor the application are aware of Access Manager for
Business Integration functions. Architecturally, this permits Access Manager for
Business Integration to be deployed in existing MQSeries environments with
minimal changes.

In the Stocks-4u.com environment, Access Manager for Business Integration can
be overlaid on top of the MQSeries components used by the stock transaction
application. Transaction records queued as MQ messages in San Diego are
encrypted while in transit.

Message ChannelMessage Channel

PUTPUT
Operation

Sending
Application

Message
Channel
Agent

Transmit
Queue

Data

MessageMessage
Message
Channel
Agent

GETGET
Operation

Receiving
Application

Receive
Queue

Data is encrypted/decrypted before being
placed on/removed from the queue.

MQI MQI

Requests are intercepted by “PDMQI”,
which provides authorization and

encryption services.

Access Manager
Authorization EnginePUT Ok?

QoP?
GET Ok?

QoP?

Authentication to
AM is via Certificate

Data

MessageMessage

Data

MessageMessage

Data

PDMQI

Data

PDMQI

Data
Data

Message ChannelMessage Channel

PUTPUT
Operation

Sending
Application

Message
Channel
Agent

Transmit
Queue

Data

MessageMessage
Message
Channel
Agent

GETGET
Operation

Receiving
Application

Receive
Queue

Data is encrypted/decrypted before being
placed on/removed from the queue.

MQI MQI

Requests are intercepted by “PDMQI”,
which provides authorization and

encryption services.

Access Manager
Authorization EnginePUT Ok?

QoP?
GET Ok?

QoP?

Authentication to
AM is via Certificate

Data

MessageMessage

Data

MessageMessage

DataData

PDMQI

DataData

PDMQI

DataData
DataData

 Chapter 14. Access Manager for Business Integration 447

Finally, because queue access can now be managed, it is easier to leverage a
single queue for multiple applications securely. Stocks-4u.com can deploy a
common set of messaging channels used by all of its MQSeries applications, as
shown in Figure 14-10.

Figure 14-10 A Stocks-4u.com Access Manager for Business Integration scenario

Combining this with a WebSEAL front end, which is interfaced to the application
front-end process, shows how Access Manager components may be utilized at
multiple levels within the application framework to meet various security
requirements.

 Browser

MQSeries

San Diego IT Center

Application
Front-End
Process

WebSEAL

AM/BI

Savannah IT Center

Application
Back-End
Process

AM/BI

MQSeries

stocks-4u.com
Intranet

* Not all Access Manager components are shown

Authorization
Engine

Authorization
Engine

Access
Manager User

Registry
Master

Access
Manager User

Registry
Replica

448 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 15. Access Manager for
Enterprise Single Sign-On

Whereas Tivoli Access Manager WebSEAL provides single sign-on for Web
applications by inserting a reverse Web proxy in the network in front of all
enterprise Web applications, Tivoli Access Manager for Enterprise Single
Sign-On brings single sign-on to the desktop by placing an agent on the desktop
to automatically respond to authentication requests on behalf of the user.

Tivoli Access Manager for Enterprise Single Sign-On detects and responds to all
password-related events, automating every password management task for the
user, including login, password selection, password change, and password
reset. It delivers single sign-on for Windows, Web, Java, UNIX, Telnet, in-house
developed, and host-based mainframe applications.

In this chapter we discuss the logical and physical architecture of Tivoli Access
Manager for Enterprise Single Sign-On and its most fundamental components.

First we review the logical components within Tivoli Access Manager for
Enterprise Single Sign-On and how they relate to each other, what is needed and
what is an optional component.

Next on the physical architecture section we discuss how to physically deploy the
components that make up Tivoli Access Manager for Enterprise Single Sign-On.

15

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 449

15.1 Logical component architecture

Tivoli Access Manager for Enterprise Single Sign-On provides single sign-on by
introducing a secure middle layer that authenticates the user once and then
automatically detects and handles subsequent requests for user credentials.
Specifically, it uses patented client-side intelligence to respond to requests for
user credentials (user name and ID, password, and so on) from any Windows,
Web, or mainframe or host application. Tivoli Access Manager for Enterprise
Single Sign-On supports authentication from any authenticator (for example,
Passwords, Biometrics, Tokens/Smart Cards) and authentication service (for
example, Windows, Entrust PKI, RSA Keon PKI, or LDAP directory).

Tivoli Access Manager for Enterprise Single Sign-On stores user credentials in
an encrypted database using almost any encryption algorithm, including
Triple-DES, AES/IES, RC4, Cobra, and Blowfish. Users can access their
credentials from any workstation through Credential Synchronization (for
example, Tivoli Directory Server and other LDAP directories, and Active
Directory). Tivoli Access Manager for Enterprise Single Sign-On can log
notifications of events (for example, logins) to almost any destination, such as
SNMP and Windows Event Logging service.

Tivoli Access Manager for Enterprise Single Sign-On is designed to adapt to the
specific needs of your organization. Many components provide several
alternatives, allowing you to tailor your single sign-on deployment to fit your
environment. Tivoli Access Manager for Enterprise Single Sign-On supports the
most widely used authenticators, directory services, and PKIs, and can be
customized through standard APIs to support less-common technologies.

Tivoli Access Manager for Enterprise Single Sign-On consists of the following
logical components:

� Authentication
� Encryption
� Intelligent agent response
� Core (including storage)
� Credential synchronization
� Event logging
� Additional components
Figure 15-1 on page 451 illustrates these components.

450 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 15-1 Logical architecture overview

Tivoli Access Manager for Enterprise Single Sign-On can be extended with the
following adapters:

� Desktop Password Reset Adapter
� Authentication Adapter
� Provisioning Adapter
� Kiosk Adapter

In addition, administration is facilitated by the Administrative Console.

In the following sections we discuss every logical component in more detail.

15.1.1 Authentication

Authentication is how the system validates users so they gain access to Tivoli
Access Manager for Enterprise Single Sign-On, for example, password,
biometrics, token, and so on. The authentication component, depicted in
Figure 15-2 on page 452, consists of the following three layers:

1. The Authenticator

2. System authentication services

 Chapter 15. Access Manager for Enterprise Single Sign-On 451

3. Authenticator API

Figure 15-2 Authentication process

Authentication to Tivoli Access Manager for Enterprise Single Sign-On involves
the following three steps:

1. The user provides credentials to the authenticator.
2. The authenticator validates the user with the authentication service.

3. The authentication service passes to the authenticator API information
confirming validation and unlocking the user’s encryption keys. See section
15.1.2, “Encryption” on page 453.

Other authenticators can be added and supported using the Authentication
Adapter. The Authentication Adapter can add support for SmartCards (for
example, Gemplus, and Schlumberger), signature authentication, iris
recognition, tokens (for example, SAFLINK, Entrust Entelligence, RSA Keon,
and NEC Touch Pass), digital client and server certificates, magnetic access
cards, fingerprint biometrics (including Digital Persona biometrics), facial
biometrics, handprint biometrics, voice print biometrics, and proximity cards such
as Ensure's Xylock. The Authentication Adapter supports any form of strong
authentication that replaces the Windows GINA (Graphical Identification and
Authentication dynamic-link library), such as the RSA SecurID for Windows card.
The RSA SoftID is supported as an application logon (not at the initial Windows
authentication). Using the Tivoli Access Manager for Enterprise Single Sign-On

452 Enterprise Security Architecture Using IBM Tivoli Security Solutions

authentication API virtually any means of authentication can be supported by
writing a specific authenticator for that product. More details on the
Authentication Adapter are available in 15.1.9, “Authentication Adapter” on
page 469.

Authenticator
An authenticator allows users to prove their identity, whether through a
password, biometrics, or token. The authenticator takes the user’s proof and
passes it to the authentication service. Tivoli Access Manager for Enterprise
Single Sign-On ships with a set of authenticators, including Windows
authentication, SmartCard, LDAP, RSA, and Entrust.

Authentication Service
The authentication service validates the credentials provided by the
authenticator against either its own store or a system authentication service such
as a Windows domain or a PKI. If validated, it passes the validation to the
authenticator API. An authentication service can support a disconnected mode if
it meets the requirements of the Tivoli Access Manager for Enterprise Single
Sign-On authenticator API. This allows users to access their credentials even
when the system authentication services are not available.

Authenticator API
The Tivoli Access Manager for Enterprise Single Sign-On authenticator API is a
set of plug-in interfaces that integrate the authentication user interface with the
main Tivoli Access Manager for Enterprise Single Sign-On agent. It serves as a
conduit between the authentication service and Tivoli Access Manager for
Enterprise Single Sign-On. Third-party authentication services can integrate with
Tivoli Access Manager for Enterprise Single Sign-On by utilizing the
authenticator API.

15.1.2 Encryption

Encryption secures user credentials by creating a unique primary symmetric key
for each user to be used in encrypting the user's credentials. End-to-end
encryption is provided between the Tivoli Access Manager for Enterprise Single
Sign-On agent and the directory using the selected encryption algorithm. The

Note: Tivoli Access Manager for Enterprise Single Sign-On ships with six
authentication services: Windows (Domain) Smart Card Logon (pass phrase
and certificate based), LDAP, Entrust PKI, and enhanced versions of the
Windows and LDAP authenticators that support pass phrase challenge.

 Chapter 15. Access Manager for Enterprise Single Sign-On 453

Tivoli Access Manager for Enterprise Single Sign-On default encryption
algorithm is the MS CAPI-provided TripleDES.

Credentials are stored encrypted on the client/PC, in transit, in memory, and in
the directory. The only time that sensitive data is not encrypted is the moment a
specific credential is requested for viewing (if permitted), or when it is submitted
to an application for sign-on. The core requests that credentials be encrypted or
decrypted based on the appropriate Crypto Library algorithm. The agent
migrates credentials automatically to a new algorithm or strength (for example,
from Triple DES to AES), if necessary. Tivoli Access Manager for Enterprise
Single Sign-On supports a variety of encryption algorithms and algorithm
strengths to suit most corporate, legal, security, performance, and other
requirements. Figure 15-3 shows the encryption component.

Figure 15-3 Encryption component

The advanced security setting controls the preferred encryption provider and
strength. Tivoli Access Manager for Enterprise Single Sign-On ships with the
following algorithms:

� Cobra 128-bit
� Cobra 128-bit (also)
� Blowfish 448-bit
� Triple DES 168-bit
� AES 256-bit
� Triple DES (MS-CAPI) (All OSs) default
� Triple DES (MS-CAPI) (XP/2003 only)
� RC-4 (MS-CAPI) (All OSs)
� RC-4 (MS-CAPI) (XP/2003 only)
� AES (MS-CAPI) (XP/2003 only)

454 Enterprise Security Architecture Using IBM Tivoli Security Solutions

To configure the Default encryption, go to your Administrative Console →
Global Agent Settings → Live → Security → Advanced, as shown in
Figure 15-4.

Figure 15-4 Default encryption setting control

Tivoli Access Manager for Enterprise Single Sign-On uses cryptography to
confirm user authentication and to secure storage of user credential data. Upon
first-time use, Tivoli Access Manager for Enterprise Single Sign-On generates
and maintains a cryptographically unique primary authentication key that is
authenticator independent and requires successful completion of the
authentication process in order to be usable. Upon successful authentication,
this key becomes available internally to Tivoli Access Manager for Enterprise
Single Sign-On and is then used to decrypt and access user credentials. Each
credential is only decrypted on an as-needed basis and is never stored or
cached in the clear.

15.1.3 Intelligent agent response

When an application presents a request for credentials the agent detects this
event, determines the appropriate action, and responds with the correct
credentials. Tivoli Access Manager for Enterprise Single Sign-On ships with the

 Chapter 15. Access Manager for Enterprise Single Sign-On 455

configuration information for many popular applications. Figure 15-5 depicts the
logical architecture for the intelligent agent response process.

Configurations for common network/Web pop-up logins and for online service
logins are stored in the configuration file applist.ini, which is located in the
installation directory. For a more complete list of pre-configured applications, see
Reference → Preconfigured Applications in the Tivoli Access Manager for
Enterprise Single Sign-On Administrative Console Help File.1

Figure 15-5 Intelligent client response process

Event detection
Tivoli Access Manager for Enterprise Single Sign-On detects requests for
credentials in a variety of ways, depending on application type (Web, Windows,
and Mainframe/Host).

1 This help file is installed automatically with the Tivoli Access Manager for Enterprise Single Sign-On
Administrative Console.

Note: All modules are installed by default but Mainframe/HOST and SAP
support are disabled.

456 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Determine action
Tivoli Access Manager for Enterprise Single Sign-On determines whether the
event is a logon or password change:

� If the dialog is a password-change dialog, Tivoli Access Manager for
Enterprise Single Sign-On can be configured to either generate a new
password and respond on behalf of the user or prompt the user to enter a
new password.

� In case of a regular logon dialog Tivoli Access Manager for Enterprise Single
Sign-On determines whether it has all necessary information, or if it needs to
request information from the user.

If user credentials are not present, Tivoli Access Manager for Enterprise
Single Sign-On prompts the user for credentials. If the user provides
credentials to Tivoli Access Manager for Enterprise Single Sign-On, the Shell
stores the credentials in the Local Credential Store for future use.

Intelligent response
The Tivoli Access Manager for Enterprise Single Sign-On Access Component
retrieves the credentials from the Local Credential Store and submits them to the
application in the most effective and secure way possible for that application. For
a password change, Tivoli Access Manager for Enterprise Single Sign-On then
submits (in the most secure way possible for that application) the old password
(if required), new password, and new password again for verification (if required).
If the password change is not successful, the user can instruct Tivoli Access
Manager for Enterprise Single Sign-On to use the old password.

In the following sections we take a closer look at the different kinds of
applications that Tivoli Access Manager for Enterprise Single Sign-On supports:

� Windows applications
� Mainframe and host applications
� Web applications
� Java applications and applets

Windows applications
Tivoli Access Manager for Enterprise Single Sign-On responds to any and all
requests for user credentials from Windows applications. It works without any
special configuration after you install it with the most widely used applications. In
addition, you can configure it to work with any other individual application.

All credential requests in Windows have specific attributes: application name,
window name, the control ID of the input field, and so on. Tivoli Access Manager
for Enterprise Single Sign-On looks for the specific attributes of each
application’s logon and password change dialog boxes and responds to these
accordingly. The attributes are stored in the basic applist.ini and administrative

 Chapter 15. Access Manager for Enterprise Single Sign-On 457

entlist.ini configuration files. See the Tivoli Access Manager for Enterprise Single
Sign-On Administrative Console help system for additional information.

The Tivoli Access Manager for Enterprise Single Sign-On hook (vgohook.dll)
component captures standard OS-level Windows messages and sends them to
the Tivoli Access Manager for Enterprise Single Sign-On Shell and Access
Manager components of the Windows applications. When a specified application
creates a dialog, Tivoli Access Manager for Enterprise Single Sign-On looks at
the window title. If Tivoli Access Manager for Enterprise Single Sign-On
recognizes the window title, it searches for the appropriate control ID or IDs.

Tivoli Access Manager for Enterprise Single Sign-On submits credentials to most
Windows applications through secure, standard, OS-level Windows messages.
Thus, keyboard-sniffing utilities cannot intercept the credentials. Furthermore,
because Tivoli Access Manager for Enterprise Single Sign-On does not use
scripts or keystrokes, users cannot confuse the response by selecting and
working in another application.

Mainframe and host applications
Tivoli Access Manager for Enterprise Single Sign-On responds to any and all
requests for user credentials from mainframe and host applications. It works
without modification with the most popular mainframe and host emulators. In
addition, you can configure it to work with others.

All requests for credentials in mainframe and host applications have specific
attributes: window title and various blocks of text (at specific coordinates for
Mainframe applications), user name and password field text, and so on. Tivoli
Access Manager for Enterprise Single Sign-On looks for the specific attributes of
each application’s logon and password-change screens and responds
accordingly. The attributes are stored in the administrative entlist.ini
configuration file. See the Tivoli Access Manager for Enterprise Single Sign-On
Administrative Console help system for additional information.

The Tivoli Access Manager for Enterprise Single Sign-On Mainframe Helper
Object monitors emulators, looking for the defined matches. When a new panel
is presented, Tivoli Access Manager for Enterprise Single Sign-On reviews the
text for matching fields. If all strings match, Tivoli Access Manager for Enterprise
Single Sign-On uses the Mainframe Helper Object to submit user credentials.

Tivoli Access Manager for Enterprise Single Sign-On submits credentials to most
emulators through HLLAPI. Thus, keyboard-sniffing utilities cannot intercept
these credentials. Furthermore, because Tivoli Access Manager for Enterprise
Single Sign-On does not use scripts or keystrokes for these emulators, users
cannot confuse the response by selecting and working in another application.

458 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Web applications
Tivoli Access Manager for Enterprise Single Sign-On responds to any and all
requests for user credentials from Web applications, whether in a form or through
a pop-up dialog. Unlike most single sign-on products, Tivoli Access Manager for
Enterprise Single Sign-On supports access to all Web applications, not just
intranet applications. Most Web applications are supported without modification
and new applications can be added.

All credential requests in Web applications are either in forms or in dialog boxes.
The Tivoli Access Manager for Enterprise Single Sign-On Browser Helper
Object (BHO) and Event Manager respond to the specific events of a Web dialog
box opening or of a Web page rendering.

There is one BHO for Citrix/Terminal Services environments and another for
standard Windows environments. Both BHOs detect events from the browser
and can directly interact within the browser engine. The standard BHO also
supports Internet Explorer embedded within Lotus Notes. Because Tivoli Access
Manager for Enterprise Single Sign-On does not use scripts or keystrokes for
Internet Explorer, users cannot confuse the response by selecting and working in
another application.

Tivoli Access Manager for Enterprise Single Sign-On handles the two types of
Web application credential requests similarly, as follows:

� Pop-up dialog boxes

Pop-up dialog boxes have specific attributes: realm, site, and so on. Tivoli
Access Manager for Enterprise Single Sign-On understands the specific
attributes of each application’s logon and password-change screens and
responds accordingly. The attributes are stored in the basic applist.ini and
administrative entlist.ini files. When a new pop-up dialog box is created, Tivoli
Access Manager for Enterprise Single Sign-On reviews the dialog, requests
credentials from the shell, and then submits them to the pop-up dialog box.

� Forms

Forms have specific attributes: URL (including domain), frame name, form
name, specific blocks of text on the page, user name and password field text,
password fields (HTML <Input type=password>), and so on. Tivoli Access
Manager for Enterprise Single Sign-On looks for the specific attributes of
each application’s logon and password-change screens and responds
accordingly. The attributes are stored in the basic applist.ini and

Note: Tivoli Access Manager for Enterprise Single Sign-On also supports
some emulators that have a scripting language capable of presenting a
(hidden) dialog box to the user.

 Chapter 15. Access Manager for Enterprise Single Sign-On 459

administrative entlist.ini files. When a new page is fully rendered, the BHO
reviews the page for matching criteria. If at least a password field is present,
the BHO requests credentials from the shell then injects them into the
browser.

Java applications and applets
Tivoli Access Manager for Enterprise Single Sign-On responds to login and
password change requests for virtually all AWT (Abstract Window Toolkit) and
Swing Java applications and applets built on the Sun Java Runtime Engine 1.4.1
or higher. New Java applications or applets can be supported by using the Tivoli
Access Manager for Enterprise Single Sign-On Administrative Console.

15.1.4 Core (including storage)

Tivoli Access Manager for Enterprise Single Sign-On stores user credentials
locally in the encrypted Local Credential Store. It never maintains credentials
unencrypted on disk or in memory. See 15.1.2, “Encryption” on page 453. The
credentials are locally stored and encrypted for each user in a secure database
file. Within this file are the encrypted records for each set of user credentials,
user settings, and additional configuration information. Because the credential
file is stored locally, there is no risk that a disruption in a centralized server
infrastructure can impair users’ access to their applications. In addition, it speeds
up access to credentials because there is no server latency issue.

Because Tivoli Access Manager for Enterprise Single Sign-On stores the local,
secure credential file in a specific directory within the application data directory of
the user profile. The file can be secured from other users by properly configuring
Windows security on NTFS partitions. This also means that if Windows roaming
profiles are enabled, users can log on to Windows from any computer within a
domain and their credential file is available to them.

The Windows 2000 variable for the user profile directory is %UserProfile%,
which defaults to C:\Documents and Settings\%UserName%. The file is stored as
%UserName%\AML.mdb in %UserProfile%\Application Data\IBM, so the file
for user user1 might be as follows:

C:\Documents andSettings\user1\Application Data\IBM\user1\AML.mdb

15.1.5 Credential synchronization

While the agent stores user credentials and settings locally, it can synchronize
the credentials and settings with remote file systems, directories, databases, and
devices. Synchronization can be of the entire user database file (which contains
all user credentials) or of individual records within the database. The

460 Enterprise Security Architecture Using IBM Tivoli Security Solutions

synchronization is triggered by a change to the Local Credential Store or
settings. Synchronization can be extended to any storage mechanism through
the synchronization API. Agent administration is fully supported through the
synchronization component and allows the administrator to dynamically deliver
updated settings and configuration data to the agent through the main storage
mechanism. Synchronization can be of the entire credential file (Tivoli Access
Manager for Enterprise Single Sign-On uses the newer of the local and remote
files and overwrites the older ones through silent backup and restore
functionality) or each individual credential record within the credential file (Tivoli
Access Manager for Enterprise Single Sign-On uses the newer of the local and
remote record for each record and overwrites the older ones).

Tivoli Access Manager for Enterprise Single Sign-On uses client-side intelligence
in conjunction with a locally encrypted database of user credentials to respond to
logon requests. Synchronizing user credentials to a directory service or network
drive enables mobility, eases deployment, simplifies administration, and in
certain settings (for example, public workstations) increases security.

Using LDAP, Tivoli Access Manager for Enterprise Single Sign-On supports
multiple directory services including IBM Tivoli Directory Server, Sun ONE
Directory Server, Novell NDS, and Microsoft Active Directory Server without
modification. In addition, Tivoli Access Manager for Enterprise Single Sign-On
supports a record level file system synchronization, Windows roaming profiles,
file-level synchronization and backup, and provides a standard API for
record-level synchronization of user credentials with any external application or
device.

Figure 15-6 on page 462 shows an architectural overview.

 Chapter 15. Access Manager for Enterprise Single Sign-On 461

Figure 15-6 File credential synchronization

Tivoli Access Manager for Enterprise Single Sign-On can synchronize each
user’s credentials on a record-by-record basis with a remote store (for example,
LDAP directory, Active Directory, NDS, a database, a file system, smartcard, and
so on). Also, it can synchronize each user’s credentials on a record-by-record
basis (the record being their application credentials). Devices that store these
records must have an extension to the synchronizer API.

462 Enterprise Security Architecture Using IBM Tivoli Security Solutions

As shown in Figure 15-7, the synchronizer API is a set of plug-in interfaces that
the Tivoli Access Manager for Enterprise Single Sign-On synchronization
manager uses to read and write data from and to the data source.

Figure 15-7 Record credential synchronization

The synchronization is based on record date and time and other authentication
information. Put simply, Tivoli Access Manager for Enterprise Single Sign-On
overwrites the older of the two local and remote records, replaces those files with
the newer ones, and then uses the local credentials. The administrator can
configure this process to occur as often as every credential change.

If the remote store is a directory, file system, or database, users can access
credentials from anywhere they have access to the store. If the remote store is a
token, users can take the remote store with them.

Each storage device has its own requirements. The most common storage is in a
directory server, such as LDAP, Active Directory, or Novell NDS as well as a file
system on a server.

During synchronization, Tivoli Access Manager for Enterprise Single Sign-On
takes credentials from the local credential file and credentials from remote
storage, and merges them by date and time. If a set of credentials exists in one

Note: This record-level synchronization enables users to utilize Tivoli Access
Manager for Enterprise Single Sign-On from multiple computers in parallel.

 Chapter 15. Access Manager for Enterprise Single Sign-On 463

place but not the other, it copies those credentials to the location where they are
missing (either the AML file or remote storage). When a user deletes a set of
credentials, Tivoli Access Manager for Enterprise Single Sign-On places that
credential set’s unique identifier (UID) in the UID list. Stored remotely, the UID
list contains all deleted credential sets, each one containing a unique identifier.

Upon startup, Tivoli Access Manager for Enterprise Single Sign-On downloads
the latest copies of the first-time use settings, application configurations, and
administrative override settings, overwriting older versions. See Overriding
Settings: Registry Values in the Tivoli Access Manager for Enterprise Single
Sign-On Administrative Console Help file for more information about these files
including a complete list of their variables and values.2

Tivoli Access Manager for Enterprise Single Sign-On includes the following
synchronizer extensions:

� LDAP-compliant directory servers
� IBM Tivoli Directory Server
� Oracle Directory Server
� Novell eDirectory
� Sun Java System Directory Server 5.1
� Critical Path Directory Server
� OpenLDAP Directory server
� Microsoft Active Directory Server
� SQL-compliant relational database systems
� Microsoft SQL Server
� IBM DB2
� Oracle 9i and 10g

You determine which synchronization modules to install on each computer,
which modules to enable for each user, and how to configure each extension. By
default the synchronizer module is installed without any additional
synchronization extensions.

15.1.6 Event logging

Tivoli Access Manager for Enterprise Single Sign-On can report events locally
and remotely. It can log all events, including credential use, credential changes,

2 This help file is installed automatically with the Tivoli Access Manager for Enterprise Single Sign-On
Administrative Console.

Note: Tivoli Access Manager for Enterprise Single Sign-On also includes a
synchronizer extension supporting a file system, such as on a remote network
drive share.

464 Enterprise Security Architecture Using IBM Tivoli Security Solutions

global credential events, Tivoli Access Manager for Enterprise Single Sign-On
events, and Tivoli Access Manager for Enterprise Single Sign-On feature use.
The solution can log the fields that administrators specify. As depicted in
Figure 15-8, Tivoli Access Manager for Enterprise Single Sign-On can log events
locally or to any external destination through the Event Logging API.

Figure 15-8 Event logging process

Specifically, Tivoli Access Manager for Enterprise Single Sign-On can log the
following:

� Credential use events: log ins, manual password changes, automatic
password changes.

� Credential changes: add credentials, delete credentials, change credentials,
copy credentials.

� Global credential events: backup, restore, synchronize.

� Tivoli Access Manager for Enterprise Single Sign-On events: startup,
shutdown.

� Tivoli Access Manager for Enterprise Single Sign-On feature use: Logon
Manager, Settings, Help, About, and so on.

� Administrator-specified fields: Domain, Windows user name, system user
name, Application name, Application user name, Application third field, Date,
Time, and so on.

� Events can be logged to any desired destination: Local XML storage, SNMP
service, Windows event log, or directory server.

Note: Default: No Event Logging modules are installed, and no logging
occurs.

 Chapter 15. Access Manager for Enterprise Single Sign-On 465

15.1.7 Additional components

Tivoli Access Manager for Enterprise Single Sign-On also includes the following
miscellaneous modules:

� Screen saver

Tivoli Access Manager for Enterprise Single Sign-On supplies a secure
screen saver that works with the Windows 95, 98, and ME operating systems
(systems that lack secure screen savers of their own). This screen saver
requires a password and does not allow the user to bypass the password
request.

� Backup/restore

For users who do not perform any credential synchronization, the
backup/restore component enables archiving and restoration of user
credentials.

� Citrix/Terminal Services tools

For environments that require usage of Tivoli Access Manager for Enterprise
Single Sign-On within a Citrix or Windows Terminal Services environment,
additional components are supplied to allow Tivoli Access Manager for
Enterprise Single Sign-On to interact appropriately within each session.

� Installer Package

Tivoli Access Manager for Enterprise Single Sign-On ships within a Windows
Installer package that supports the flexibility of that technology for easier
deployment and customization.

SSO File Sync Service
For servers sharing file systems for synchronization, the SSO File Sync Service
ensures that proper rights are set on all user object trees.

466 Enterprise Security Architecture Using IBM Tivoli Security Solutions

15.1.8 Desktop Password Reset Adapter

The Tivoli Access Manager for Enterprise Single Sign-On Desktop Password
Reset Adapter enables users to reset their Windows password from locked
workstations and helps to eliminate costs that are associated with help-desk calls
related to Windows password resets (Figure 15-9).

Figure 15-9 Desktop Password Reset Adapter Architecture

Desktop Password Reset Adapter should be integrated where the Windows
Password is needed most and often forgotten—at the Windows Logon—to
increase the likelihood of its access and use (Figure 15-10).

Figure 15-10 Windows Logon

User

Domain

Admin Console

Admin

Audit,
Reporting

Windows Logon

Reset
Desktop

Password Reset
Adapter

User

 Chapter 15. Access Manager for Enterprise Single Sign-On 467

The password reset process is Web browser based. It provides access on kiosks
or from other machines when needed and can be integrated with other Web
self-service mechanisms such as Tivoli Access Manager for e-business.

The Tivoli Access Manager for Enterprise Single Sign-On Desktop Password
Reset Adapter (DPRA) enables users to reset their primary authentication
(Windows) password from a locked workstation based on a challenge-response
process. All questions are customizable and configurable. When Tivoli Access
Manager for Enterprise Single Sign-On DPRA is installed, users enroll by
answering a series of confidential questions. When users forget their Windows
password, Tivoli Access Manager for Enterprise Single Sign-On DPRA prompts
the user to answer the questions again. An identity validation process compares
the answers with the originals and factors in accounting for human errors in
typing and memory recall (confidence-based authentication). If the user answers
a sufficient number of questions successfully, the DPRA enables them to reset
their Windows password automatically, and no call to the help desk is necessary.

Tivoli Access Manager for Enterprise Single Sign-On DPRA can call either the
Tivoli Identity Manager password reset mechanism or the stand-alone IIS-based
DPRA server. If Tivoli Identity Manager is chosen, then when Tivoli Identity
Manager creates a new password the DPRA resets the user’s password on the
domain and closes the browser window, returning the user to the Windows
sign-on window where they can sign in.

Note: The Desktop Password Reset Adapter resets the Windows Domain
password only. It does not require access to a separate logged on computer.

468 Enterprise Security Architecture Using IBM Tivoli Security Solutions

15.1.9 Authentication Adapter

The Authentication Adapter allows strong authentication using tokens, smart
cards, proximity cards, and biometrics, as well as flexible authentication options
such as stepping up from passwords to stronger authentication mechanisms for
accessing select, critical resources. Figure 15-11 depicts the architecture for the
Authentication Adapter.

Figure 15-11 Authentication Adapter architecture

The Authentication Adapter enables organizations to bridge strong
authentication to all of their applications seamlessly. Users can employ different
authenticators at different times, and application access can be controlled based
upon the authenticator used. The Authentication Adapter adds the following three
capabilities:

1. Strong authentication support from a variety of strong authenticators,
including smart cards and biometrics devices, for all authentication events like
initial authentication, re-authentication, and forced authentication.

2. Multiple authenticator support allows multiple logon methods to be used to
authenticate a user and provides an authenticator that is capable of
supporting graded authentication as well as alternative logon methods. This
allows users the ability to mix and match multiple logon methods on-the-fly.

3. Administrators can define grades or levels to authentication methods and to
applications. This provides the ability to control what functions of the
Authentication Adapter users can execute based upon the type of
authenticator presented.

User

MS CAPI
smart cards

SAFLink

Auth API

Auth API

Multi-Auth
Interface

&

Graded
Auth

Policies
Entrust PKI

LDAP

Authentication
Adapter

TAMESSO: Kiosk
Adapter

TAM for Enterprise
Single Sign-on

 Chapter 15. Access Manager for Enterprise Single Sign-On 469

Multiple authenticator support
Multiple authentication supports the use of multiple logon methods to
authenticate a user. This feature provides an authenticator that is capable of
supporting graded authentication as well as alternative authentication methods.

Tivoli Access Manager for Enterprise Single Sign-On Authentication Adapter's
multiple authenticator provides the following capabilities:

� Accepts authentication using different authenticators. It also supports graded
authentication.

� Allows multiple authenticators to be used interchangeably during a user
session, for example, between the initial logon and the logout.

� Allows multiple authenticators to be used interchangeably between sessions.

� Provides administrators the ability to do the following:

– Allow or disallow the use of multiple authenticators.

– Specify which authenticator is the default primary authenticator.

– Specify which authenticators are required for enrollment.

– Restrict access to applications based upon the strength of the
authenticator used.

– Allow or disallow the use of multiple authenticators interchangeably during
a single session.

– Allow or disallow the use of multiple authenticators interchangeably
between sessions.

Graded authentication
Graded authentication lets you define grades or levels to authenticate in the
Authentication Adapter. Graded authentication controls what functions of the
Authentication Adapter users can execute based upon the type of authenticator
presented. Levels, or grades, can be applied and used to ensure the correct level
of authentication is performed for specific events or activities.

Note: Authentication Adapter files and components are installed directly into
the Tivoli Access Manager for Enterprise Single Sign-On directory. A separate
Authentication Adapter directory does not exist. Because the Authentication
Adapter is an add-on module to Tivoli Access Manager for Enterprise Single
Sign-On, Authentication Adapter Help is part of the Tivoli Access Manager for
Enterprise Single Sign-On Help Documentation.

470 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Tivoli Access Manager for Enterprise Single Sign-On Authentication Adapter’s
graded authentication supports the following capabilities:

� An unbounded number of authentication grades or levels.

� Setting required authentication grades on a per application basis.

� Setting required authentication grades on Tivoli Access Manager for
Enterprise Single Sign-On processes that require re-authentication.

� Administration set up for the authentication level for every application.

� Administration set up for the authenticator grade.

� Logging of graded authentication events.

� Administration of the following:

– Graded authentication support to be turned on or off.
– Configuration of graded authentication on a per-application basis.

The Authentication Adapter controls application logins that can be initiated by the
user, based upon the authenticator used by the user on the most recent
authentication request. The most recent authentication request might be the
initial logon, the last re-authentication, or the forced authentication requested by
the Authentication Adapter.

The Authentication Adapter has an authentication grading scheme to which
different authenticators are mapped and, separately, to which application logins
are mapped. The Authentication Adapter only allows users to logon to an
application when the grade of the authenticator used equals or exceeds that of
the application logon.

When a user does not respond to an authentication request with an authenticator
of sufficiently high grade, the Authentication Adapter prompts the user to either
re-authenticate with an authenticator of sufficiently high grade or cancel the
requested logon. If a user repeatedly attempts to initiate a logon or function with
an authenticator of insufficient grade, the Authentication Adapter locks out the
user, logs an event in the Event Manager, and notifies the user and
administrator. If a user does not have the Authentication Adapter installed but
their application logins were configured to require strong authentication, the user
does not have access to those applications (for example, strong authentication is
deployed in the enterprise, but not to that user).

The Logon Manager only displays the application logins that are currently
available, based upon the authenticator used in the most recent authentication
request.

 Chapter 15. Access Manager for Enterprise Single Sign-On 471

You can configure the following Authentication Adapter functions to be
accessible or inaccessible based upon the grade of authenticator that is used in
the most recent authentication request:

� System Tray: Logon Manager

� Logon Manager: Delete, Properties, and Reveal All functions

� Logon Manager → Properties Page: Reveal Password function

If the Reveal All function is accessible based upon a grade of authentication
used, it only reveals passwords for those applications whose grade is equal to or
lower than the grade used to authenticate for that function.

15.1.10 Provisioning Adapter

The Provisioning Adapter automates the user credential distribution process so
that identity management solutions such as Tivoli Identity Manager can provision
and remove user involvement in the credential provisioning and management
process. It enables an administrator to automatically provision Tivoli Access
Manager for Enterprise Single Sign-On with a user’s ID and password by using a
provisioning system. An administrator is able to add, modify, and delete IDs and
passwords for particular applications within the provisioning system and have the
changes reflected in Tivoli Access Manager for Enterprise Single Sign-On. From
the provisioning system, all user names and passwords inside of Tivoli Access
Manager for Enterprise Single Sign-On can also be deleted so that a user’s
access to all protected applications is eliminated.

Figure 15-12 on page 473 illustrates the Provisioning Adapter architecture.

472 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 15-12 Provisioning Adapter architecture

The Provisioning Adapter can be implemented as a stand-alone management
tool for credentials that are stored in a Tivoli Access Manager for Enterprise
Single Sign-On implementation. It provides a Web-based interface that shows
you the applications that are part of the Tivoli Access Manager for Enterprise
Single Sign-On environment, and it allows the administrator to manually add,
modify, or remove credentials. In addition to an administrative Web-based
interface, it also provides a command line interface, Java interface, and includes
logging and reporting tools.

In most organizations, users have to know, remember, and enter their application
credentials. This is a particular hassle on the first day a user begins work or
takes on a new set of responsibilities and permissions. But when an organization
uses the Tivoli Access Manager for Enterprise Single Sign-On Provisioning
Adapter, application credential provisioning and deprovisioning between Tivoli
Identity Manager and Tivoli Access Manager for Enterprise Single Sign-On are
automated. Consequently, organizations no longer need to physically distribute
credentials to users who must enter them manually into Tivoli Access Manager
for Enterprise Single Sign-On.

Instead, administrators directly create, edit, and delete user credentials through
Tivoli Identity Manager. Users can enjoy single sign-on from day one and are no
longer responsible for keeping track of their own application credentials. All while
helping maximize security. When users no longer need access to systems, the
integration between the Tivoli applications enables Tivoli Identity Manager to

User’s Desktop

Directory,
Domain,
Database

TAM for E-SSO

Server

Connectors

SPML

Provisioning
Sources

Applications &
Custom Programs

Data file and
Manual Entry

Provisioning
Instructions Credentials

TAM for E-SSO:
Provisioning

Adapter

Tivoli Identity Manager

13289576

SECURID

Password

PKI

Biometrics

Token/
smart card

User AuthUser Auth Application Sign-OnApplication Sign-On

Windows

Web sites

Mainframes

TAMeB

User

 Chapter 15. Access Manager for Enterprise Single Sign-On 473

remove the users’ system and application access and also delete their
credentials automatically from the Tivoli Access Manager for Enterprise Single
Sign-On data store. Controlling the appropriate level of access helps maximize
security and assists with compliance initiatives by demonstrating enforcement of
internal controls to auditors.

Furthermore, Tivoli Access Manager for Enterprise Single Sign-On Provisioning
Adapter provides a high level of administrative control. For example, when
application passwords are reset in Tivoli Identity Manager, Tivoli Access
Manager for Enterprise Single Sign-On is simultaneously updated so that it
always has the correct password. Additionally, it extends audit and reporting
capabilities to include information about applications and use of applications that
are configured in Tivoli Access Manager for Enterprise Single Sign-On but that
fall outside the Tivoli Identity Manager umbrella. Administrators can use the
adapter to view a list of all users who are allowed to use a particular application.
Or, conversely, they could see all the applications that a particular user can
access.

The Provisioning Adapter receives instructions from Tivoli Identity Manager that
contain credential data. It informs individual Tivoli Access Manager for Enterprise
Single Sign-On agents about application configurations that were added,
deleted, or changed by the following:

� Normalizing these instructions into a format that Tivoli Access Manager for
Enterprise Single Sign-On can understand.

� Placing them into the directory object for the appropriate user.

When the Tivoli Access Manager for Enterprise Single Sign-On agent
synchronizes with the database or directory, it reads and processes the
instructions and then updates the entries as needed in its local credential cache.
Depending on the instructions that it receives, the Tivoli Access Manager for
Enterprise Single Sign-On agent might add, modify, or delete credentials in the
appropriate user’s local credential cache. Finally, the Tivoli Access Manager for
Enterprise Single Sign-On agent synchronizes the credentials back to the
database directory object for that user.

The Provisioning Adapter includes the following logical components:

� Server

Accepts account credential provisioning information through a Web services
interface. It also communicates that information to Tivoli Access Manager for
Enterprise Single Sign-On agents by placing provisioning instructions into the
directory or data store.

� Console

Provides a Web-based administration GUI for communicating with the server.

474 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Command line interface

Enables applications and administrators to communicate with the server.

� Connector

Integrates the server and Tivoli Identity Manager through the CLI. The
connector is a Java-based class library that is implemented as a workflow
extension and can be incorporated into any Tivoli Identity Manager
provisioning operation. Consequently, administrators can add, edit and delete
application credentials for users through the Tivoli Identity Manager interface.
The connector works on any platform where Tivoli Identity Manager runs.

Event logging and reporting
The Tivoli Access Manager for Enterprise Single Sign-On Provisioning Adapter
contains an administrator-controlled event logging capability that enables
organizations to monitor and record events.

The adapter can run a number of audit reports:

� All users that have a particular application configured in Tivoli Access
Manager for Enterprise Single Sign-On

� All applications configured in Tivoli Access Manager for Enterprise Single
Sign-On for particular user

� All provisioning requests

� Usage, based on user object detail

15.1.11 Kiosk Adapter

The Kiosk Adapter delivers a secure and user friendly solution that addresses
the needs of traditional single logout in a kiosk environment and that is easy to
maintain.

This solution provides user identification to the kiosk by prompting users to login
with a Windows password or any supported primary authenticator. The Kiosk
Adapter has a client-side agent that suspends or closes inactive sessions and
seamlessly shuts down all applications.

Figure 15-13 on page 476 illustrates an architecture overview of the Kiosk
Adapter.

Note: To analyze the event log, simply export it as a comma-separated values
file. Then import the file into virtually any tool that is used for analysis.

 Chapter 15. Access Manager for Enterprise Single Sign-On 475

Figure 15-13 Kiosk Adapter architecture

The Kiosk Adapter adds the following capabilities:

� System logon

Two modes of system logon are supported:

– Automatic

When the kiosk boots up, it automatically logs on to a generic user
account, and all subsequent logins/logouts into Windows are disabled.

– Manual

When the kiosk boots, it prompts the user to log in.

� Session Suspend and Un-suspend

A session is suspended upon either of the two following events:

– Current session is inactive for a predefined period of time.

– User logs out of current session.

� Session logoff

A suspended session is automatically logged off upon either of the two
following events:

– The session was suspended for a predefined period of time

– A new user initiates a new session at the kiosk

Note: A session is resumed when the user re-authenticates to the
suspended session.

Sign-off

Windows

Web Apps,
Extranet,
Portal

Mainframes
(System z,
System i)

Java

Session
(Initiate, Suspend, Terminate)

Session
Monitor

Time out

Application
Shutdown

Keystroke xmit

Closure request

Process terminate

Audit,
Reporting

User

LDAP Logon

Kiosk Adapter

476 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Applications can be closed using multiple methods, including the following:

– Transmission of key stroke sequences to the application

– Window messages (application closure requests)

– Process termination

15.2 Physical component architecture

In this section, we describe the physical components that are assembled for
Tivoli Access Manager for Enterprise Single Sign-On as well as some
step-by-step walkthroughs. Figure 15-14 shows a simple, base deployment
architecture.

Figure 15-14 Physical base deployment architecture

15.2.1 Agent

The Tivoli Access Manager for Enterprise Single Sign-On agent foundation gets
deployed on user workstations either manually or using software distribution
mechanisms. With this agent foundation, several configuration options can be
deployed:

� Logon methods

The logon methods are plug-ins that provide different methods for logging
onto Tivoli Access Manager for Enterprise Single Sign-On. By default,
Windows Logon is installed.

 Chapter 15. Access Manager for Enterprise Single Sign-On 477

The plug-ins available are as follows:

– Windows Logon

Plug-in that enables logging onto TAM E-SSO by logon to Windows.

– Windows Logon V2

Plug-in that enables logging onto TAM E-SSO by logon to Windows. This
plug-in also includes secure pass phrase and Graphical Identification and
Authentication (GINA) DLL support.

– GINA

GINA module that works with the Windows Domain logon method.

– LDAP

Plug-in that enables logging onto TAM E-SSO by logon to an LDAP
directory.

– LDAP V2

Plug-in that enables logging onto TAM E-SSO by logon to an LDAP
directory. This plug-in also includes secure pass phrase support.

– Authentication Manager

This feature adds the capability to allow multiple logon methods to
authenticate the user.

� Extensions

The extensions are plug-ins that enhance and extend functionality of Tivoli
Access Manager for Enterprise Single Sign-On. By default, the
Backup/Restore Manager, Logon Manager, and Setup Manager are installed.
The plug-ins available are as follows:

– Backup/Restore Manager

This plug-in provides a simple file-based backup and restore mechanism
through a wizard interface.

– Logon Manager

This plug-in provides the main credential management, request, and
delivery interfaces.

Note: If you are using a server-based instead of the local Windows login
mechanism to authenticate to Tivoli Access Manager for Enterprise Single
Sign-On, you must ensure that the adequate server (Active Directory,
LDAP, and so on) is available.

478 Enterprise Security Architecture Using IBM Tivoli Security Solutions

– Setup Manager

This plug-in provides the initial first time user experience when setting up
the application.

– Synchronization Manager

This plug-in provides for the management of synchronization extensions
to the application.

– Event Manager

This plug-in provides for the management of event logging extensions to
the application.

� Logon Manager

There are several helper plug-ins available that assist with SSO.

– Internet Explorer Helper

Extension helpers that add SSO support for Internet Explorer.

– Mozilla Browser Helper

Extension helpers that add SSO support for Mozilla-based browser.

– Mainframe Emulator Helper

Extension helpers that add SSO support for HLLAPI-based emulators.
The Mainframe helper extensions are as follows:

• Console Window Support

Support for Console windows (command prompt) within Tivoli Access
Manager for Enterprise Single Sign-On’s mainframe plug-in.

• Legacy Emulator Support

Support for 16-bit existing HLLAPI-based emulators.

– Java Helper

Extension helpers that add SSO support for Java applications natively.

– SAP Helper

Extension helpers that add SSO support for SAP applications.

In order for this to work SAP must be configured to work with Tivoli Access
Manager for Enterprise Single Sign-On. See the Technical Notes in IBM
Tivoli Access Manager for Enterprise Single Sign-On Release Notes
Version 6.0, SC32-1990.

 Chapter 15. Access Manager for Enterprise Single Sign-On 479

� Synchronizer Manager

The synchronizer plug-ins available are as follows:

– Active Directory Synchronizer

Synchronization plug-in that supports storage and retrieval of credentials
and settings from an Active Directory server.

– LDAP Synchronizer

Plug-in that supports storage and retrieval of credentials and settings from
an LDAP-compliant directory, such as Tivoli Directory Server or Sun Java
System Directory Server.

– ADAM Synchronizer

Synchronization plug-in that supports storage and retrieval of credentials
and settings from a Microsoft Active Directory or Active Directory
Application Mode (ADAM) server.

– File System Synchronizer

Synchronization plug-in that supports storage and retrieval of credentials
and settings from a file share.

– Database Synchronizer

Synchronization plug-in that supports storage and retrieval of credentials
and settings from a database.

– Roaming Profile Synchronizer

Synchronization plug-in that supports roaming profiles.

� Event Manager

The plug-ins available are as follows:

– XML File

Event Management plug-in that supports logging of events to a local XML
file.

– Windows Event Extension

Event Management plug-in that supports logging of events to the Windows
Event Manager.

15.2.2 Repository and authentication

By default, the agent uses a locally encrypted credential store for mobile or
offline use. The other component in the base architecture is the Tivoli Access
Manager for Enterprise Single Sign-On repository. The repository can be used
as a centralized encrypted storage for user credentials and agent configuration.

480 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The client can back up and restore credentials to and from the central repository,
automatically using synchronizer plug-ins as described previously. Several
different forms of repository are supported, including the following:

� Sun ONE Directory Server
� Microsoft Active Directory
� Microsoft ADAM (Active Directory in Application Mode)
� Novell eDirectory
� Microsoft SQL
� Oracle
� IBM DB2
� Network Drive Shares
� Any v2/v3 LDAP directory

In order to use any of these repositories individual configurations have to be
performed.

Tivoli Access Manager for Enterprise Single Sign-On can also be configured to
have the users log on to a central authentication server like Active Directory or an
LDAP server.

15.2.3 Administrative Console

In order to perform centralized administration for Tivoli Access Manager for
Enterprise Single Sign-On you deploy the Administrative Console, as shown in
Figure 15-15.

Figure 15-15 Administrative Console deployment

 Chapter 15. Access Manager for Enterprise Single Sign-On 481

The Administrative Console enables both agent and server configuration of most
agent options. All changes are being pushed to the central repository and are
then synchronized back to the agents. The Administrative Console enables the
following configuration options:

� Easy creation, management, and deployment of the following:

– Application configurations and application configuration lists
– Credential-Sharing Groups
– Password Policies
– Bulk-add lists
– Agent configuration settings (through registry settings)

� Easy set up and management of synchronizer extensions:

– LDAP Directory Servers, including Tivoli Directory Server, Novell
eDirectory, Oracle Directory Server, Sun Java System Directory Server
5.1, Critical Path Directory Server, And OpenLDAP Directory Server.

– Microsoft Active Directory Server systems (including Application Mode)

– Relational database systems, including Microsoft SQL Server, IBM DB2,
and Oracle 9i/10g

– File systems

The Administrative Console obsoletes the need for editing configuration files or
the registry by hand with the associated risks of errors or providing invalid
parameters.

Initial deployment scenario
Now it is time to take a closer look at a possible initial deployment scenario for
Tivoli Access Manager for Enterprise Single Sign-On. Figure 15-16 on page 483
shows a numbered layout picture.

482 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 15-16 Initial deployment overview

Following is a walk through of the steps illustrated in Figure 15-16:

1. The administrator installs the Tivoli Access Manager for Enterprise Single
Sign-On agent and the Administrative Console and prepares a Microsoft
installer (MSI) file that includes the initial configuration for each desktop
agent.

The administrator then uses the Administrative Console to configure
applications and other options. In this case, the user logon module uses the
standard Windows login mechanism, and the synchronizer manager is
configured to replicate Tivoli Access Manager for Enterprise Single Sign-On
data with the central repository based on Active Directory.

When the configuration of the MSI file is completed, the administrator can
deploy it to the enterprise workstations (for example, using an existing
software provisioning mechanism).

 Chapter 15. Access Manager for Enterprise Single Sign-On 483

2. The user authenticates to the central Active Directory using the standard
Windows login mechanism.

After the Tivoli Access Manager for Enterprise Single Sign-On agent is
deployed and started for the first time, the user is prompted to provide some
additional information for the preconfigured applications, for example, a
password.

3. After providing this information, and every time the user changes a Tivoli
Access Manager for Enterprise Single Sign-On setting on the local
workstation, the agent encrypts the data and stores it locally as well as in the
central repository on Active Directory.

From this point forward, the user is operating as usual. However, the user is
no longer required to provide authentication information other than the initial
Windows user ID and password.

In the event of a password update request from a particular application, the
Tivoli Access Manager for Enterprise Single Sign-On agent can generate a
new password according to the password policy. It then sends the new
password to the application, stores it on the local workstation, and
synchronizes it with the central repository. When settled in this password
renewal mechanism, there is no further need for users to remember a
password.

4. After the initial deployment, the administrator needs to add new Tivoli Access
Manager for Enterprise Single Sign-On profile information for additional
applications and other changes, for example, an updated password policy.

The administrator then uses the Administrative Console to push the changes
into the central repository.

5. After these changes are published in the repository, the Tivoli Access
Manager for Enterprise Single Sign-On agents pick up the changes and
synchronize with the local profiles that are stored on the individual
workstations.

15.2.4 Authentication Adapter

The Authentication Adapter enables organizations to bridge strong
authentication seamlessly to all of their applications, including smart cards,
biometric devices, and Entrust authenticators. Users can employ different

Note: Automatically generated random passwords do not have to be
remembered by the user. In case of curiosity or other reasons, the
password can, however, be displayed in clear text on the user’s
workstation.

484 Enterprise Security Architecture Using IBM Tivoli Security Solutions

authenticators at different times and application access can be controlled based
upon the authenticator used.

The physical components needed to implement strong authentication, like smart
card readers, biometrical scanners, and so on, must be deployed at the agent. In
addition to the physical components you also have to deploy the Authentication
Adapter add-on module for the Tivoli Access Manager for Enterprise Single
Sign-On agent.

If you deploy an application that requires strong authentication, you have to
make sure that workstations for the particular users are equipped with the proper
authentication mechanism and hardware. Otherwise, the user cannot
authenticate towards that particular application.

15.2.5 Kiosk Adapter

The Kiosk Adapter delivers a secure and easy to use administer solution that
addresses the needs of traditional single sign-off in a kiosk environment. This
solution provides identification to the kiosk by prompting users to login with a
Windows password or any supported primary authenticator. The Kiosk Adapter
has a client-side agent that suspends or closes inactive sessions and seamlessly
shuts down all applications.

There are no additional physical components required to deploy a Kiosk Adapter
onto a Tivoli Access Manager for Enterprise Single Sign-On agent. For more
information about setting up the Kiosk Adapter refer to IBM Tivoli Access
Manager for Enterprise Single Sign-On Kiosk Adapter Installation and Setup
Guide Version 6.0, SC32-1997.

15.2.6 Desktop Password Reset Adapter

The Desktop Password Reset Adapter (DPRA) lets you access your Windows
user account when you lose or forget your password. There is no need to call
your help desk or technical support and no waiting for an administrator to reset
your password.

Instead, you have to do a quick pop-quiz that verifies that you are really you, and
you can reset your password yourself. If you are the account owner, you should

Note: Most strong authentication devices that you can deploy for your clients
might have their own requirements in terms of additional components. Make
sure you have satisfied all those requirements before deploying the solution.

 Chapter 15. Access Manager for Enterprise Single Sign-On 485

always pass because you created the quiz answers when you completed the
DPRA enrollment interview.

To deploy the DPRA in your environment, you have to provide two additional
physical components, as shown in Figure 15-17.

Figure 15-17 DPRA physical architecture

The first component necessary is the DPRA Service. This component provides
the Web Service (Microsoft IIS/.NET based) interface for the agent to interact
with when the user has to reset his password or when he initially enrolls for the
password reset service. In order for this connection to be established you also
have to install the DPRA client-side agent.

The second component provides the storage capability for the DPRA interview
questions, the enrolled users, and their answers, which can be stored in either
one of the following:

� Microsoft Active Directory or Active Directory Application Mode (ADAM)
� Microsoft SQL Server 2000
� Oracle Database

486 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Because you have to use Active Directory or ADAM as your authentication
repository with the DPRA service, you will probably also use that component to
store your DPRA data. However, you can decide to store the data on any of the
supported platforms. You can also have those services (SQL Server or Oracle)
run on their own physical machine as shown in Figure 15-18.

Figure 15-18 DPRA physical architecture - continued

Following is a walk through of the single steps involved in using the DPRA, as
illustrated in Figure 15-18:

1. After the DPRA component is purchased and deployed on the workstations,
the user has to perform an initial enrollment using a Web application provided
by the DPRA Service (1a). A challenge/response set of questions are being
filled in and stored in the DPRA data repository (1b).

2. After the Windows workstation logon password is reset, the user then uses
the special link on top of the Windows logon dialog as shown in Figure 15-19
on page 488 (2a).

Note: Be advised that you should not consider deploying both the IIS services
and your primary Active Directory on the same physical machine in a
production environment.

 Chapter 15. Access Manager for Enterprise Single Sign-On 487

Figure 15-19 Initiating the Windows password reset

After walking through a Web-based challenge or response quiz (2b)
successfully, the user provides a new password.

3. The DPRA Service finally updates the password on the Active Directory
server (3a), and the user can log on to the workstation by providing the new
password (3b).

15.2.7 Provisioning Adapter

The Provisioning Adapter Server can receive and process provisioning requests
initiated by Tivoli Identity Manager. The integration between the Provisioning
Adapter Server and Tivoli Identity Manager is accomplished by using a workflow
extension that Tivoli Identity Manager uses to communicate with the Provisioning
Adapter Server Web Service.

Figure 15-20 on page 489 illustrates the necessary physical components.

488 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 15-20 Provisioning Adapter physical architecture

The best way of describing the individual components is by taking the following
step-by-step walkthrough:

1. Tivoli Identity Manager is responsible for centrally provisioning accounts and
maintaining the overall user lifecycle management, including modifications
and deletions. In our scenario, the Tivoli Access Manager for Enterprise
Single Sign-On workflow extensions are installed and configured on the Tivoli
Identity Manager system.

Let us assume that our user obtained a new job role and needs access to a
specific target application. Tivoli Identity Manager picks up the role change for
the user automatically and provisions a new user account and password
according to the centralized policies (1a).

Due to the workflow extensions and the fact that the target application is
configured to use them, Tivoli Identity Manager also initiates a provisioning
call to the Provisioning Adapter Server (1b), which takes over the
responsibility to create the SSO user account for that particular application in
the Tivoli Access Manager for Enterprise Single Sign-On repository (1c).

 Chapter 15. Access Manager for Enterprise Single Sign-On 489

When this provisioning step takes place, the new SSO user account
information is placed in a special staging area for that individual user where it
awaits further processing.

2. When the user logs into the Windows workstation, the Tivoli Access Manager
for Enterprise Single Sign-On agent picks up the information in the staging
area (2a), encrypts the password with the local key, and stores the password
again in the local store and on the Tivoli Access Manager for Enterprise
Single Sign-On repository (2b). Upon completion the information in the
staging area is removed.

3. After the user logs into the Windows workstation, the user can immediately
invoke the new application without providing a password.

15.3 Conclusion

This concludes the architecture and component design for Tivoli Access
Manager for Enterprise Single Sign-On. We took a close look at the internal data
flow between the different logical components and the optionally available
adapters. By using physical component diagrams for the different scenarios, we
provided descriptions on how to deploy the different physical components as well
as step-by-step workflows.

Note: At this point, the new application is fully available to the user without
the user ever knowing the provisioned password. Although the following
step is necessary for the provisioning process, the user can access the
application immediately after logging into the Windows workstation.

As mentioned previously, out of curiosity the user could use the Tivoli
Access Manager for Enterprise Single Sign-On Logon Manager on the
workstation to reveal the new password, although the user will never need
to do this.

490 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 16. Tivoli Access Manager for
Enterprise Single Sign-On
scenario

In this chapter we describe the architecture components for deploying Tivoli
Access Manager for Enterprise Single Sign-On within an example configuration.

Throughout this chapter, we provide a real world example of an enterprise, we
define the business and functional requirements, and give a detailed account on
the architecture for an Enterprise Single Sign-On Solution.

16

© Copyright IBM Corp. 2006. All rights reserved. 491

16.1 Company profile
In this chapter we introduce Areally Big Investment Corporation, an investment
bank that is headquartered in a large metropolitan area. As with all financial
institutions, it has a diverse set of business drivers and operating environments.
Areally Big Investment Corp. offers broker services to their customers and
handles transactions for the various stock markets around the world. With offices
located around the globe, Areally Big Investment Corp. has 5,000 employees
who have access to financial data systems, e-mail, and other intranet
applications.

There are several smaller data centers and help desk facilities located around
the world but the main data center and help desk facilities are located within a
one-day drive of the company headquarters. Areally Big Investment Corp.
currently has a robust security and network infrastructure in place. These
systems are audited regularly, and risk assessments are scheduled quarterly.

Because there are numerous operating regulations that have been imposed by
various government authorities, Areally Big Investment Corp. is implementing a
worldwide security policy that supports these regulations.

However, Areally Big Investment Corp. has been aware for some time that there
are some problems that need to be addressed in the password management
area.

16.2 Current IT Architecture

Areally Big Investment Corp. currently has a distributed architecture based on
different banking applications, as well as other related technologies. Figure 16-1
on page 493 is a diagram of the logical architecture. The diagram is not following
the usual networked layout standard because it is meant to only show the logical
components. The physical topology is not of any consequence to this scenario.

492 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

Figure 16-1 Logical architecture of Areally Big Investment Corporation

The corporation’s main banking applications run on an IBM System z mainframe.
Most of the employees use this application for their work. The credit card
processing software runs on an IBM System i, and it is used by the credit card
teams. In the corporation’s intranet a J2EE application is deployed on
WebSphere Application Server. The online banking application also runs on
another instance of a WebSphere Application Server, and it is protected using
Tivoli Access Manager for e-business.

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 493

The corporation’s ERP is based on SAP with a DB2 back-end. For corporate
messaging the standard is Lotus Domino, and for corporate instant messaging
the standard is Lotus Sametime®.

As for directory technologies, the main corporate directory is based on Tivoli
Directory Server, which hosts the internal and external user directories. There is
also a Microsoft Windows Active Directory for domain authentication in the
Windows environment.

For the purpose of this scenario, we are interested in the authentication to the
different environments to be able to automate this process with the
implementation of an enterprise single sign-on solution. Table 16-1 shows the
different client applications for the previously explained architecture:

Table 16-1 Client applications

Important: The purpose of this chapter is to demonstrate a scenario for Tivoli
Access Manager for Enterprise Single Sign-On. The Tivoli Access Manager
for e-business and Tivoli Directory Server components presented here are
there for architectural reasons. For information about a scenario focused on
Tivoli Access Manager for e-business see Chapter 7, “A basic WebSEAL
scenario” on page 245.

Application Technology Client Authentication type

Banking
application

IBM System z IBM Personal
Communications

Host based

Credit Card
Processing

IBM System i IBM Personal
Communications

Host based

E-mail Lotus Domino Lotus Notes client Windows application

Chat Lotus
Sametime

Lotus Sametime
Client

Windows application

ERP SAP SAP Client SAP application

Intranet WebSphere
Application
Server

Firefox / Internet
Explorer

Web based application

Attention: The previous architecture only referenced the components that are
important for this scenario. This is not a complete architecture as there are a
lot of components missing. Components like networking, firewalls, and so on,
were left out for clarity purposes.

494 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

16.3 Current password management problems

The current applications and directory infrastructure deployed by Areally Big
Investment Corp. present some problems mainly because there is a mix of
different applications, operating systems, and directories, and most of the
applications use their own user repository. Because of this, for every application,
the user has to maintain a separate username and password, which must adhere
to the application’s password constraints that typically include one or more of the
following:

� Minimum number of characters
� Must contain a specific number of uppercase or lowercase characters
� Must contain at least one number
� Must contain at least one special character
� Cannot repeat any of the previous number of passwords used for that

application

Because of those constraints and other external factors, a lot of problems have
started to appear.

16.3.1 Time and money related problems

Users of the company have started to complain and become frustrated because
of the number and complexity of passwords they need to memorize. This is
forcing the users to write down the passwords either on paper notes that they
keep close to their desktops or in unencrypted text files on their computers.

In the recent past the total number of password related calls to the help desk
increased to about 30% of all calls received. Furthermore, the procedure for a
password reset takes time to be completed, time that users cannot log into their
desktop or application.

This in itself creates a bigger problem in terms of auditing. If a user has to
complete a specific task, and the password for the application to execute this
task was forgotten, the user will probably ask his coworker to log in with his own
credentials instead of the actual user’s credential (which he does not remember).
This action, considered harmless for most users, creates a missing audit trail,
because all tasks done by the user are recorded under the other user’s
credentials; therefore, making him implicitly responsible for the actions taken.

The procedure for every password reset call also has a price. A framework
needs to be in place to reset the password from the help desk, proper access to
the administrative consoles of the applications or operating systems, and so on.
Also, added to these, is the cost of having a user without being able to access his
computer or application for the time that it takes for this procedure to be

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 495

completed. Analyst groups estimated this cost to be between US $15 and
US $45 per call.

16.3.2 Security related problems

From a business perspective some applications might require enhanced access
control mechanisms, such as biometric authentication, additional password
constraints, and so on. For some existing or older applications, it can be too
complicated or risky to modify them in order to handle the new security
requirements. Because of the risk of modifying these applications, the IT security
department must find a different way to satisfy the requirements without
compromising the applications.

16.3.3 Compliance with regulations

To comply with regulations is no longer a choice for a company. The need to audit
password related user activities becomes more important every day. To be able
to record the applications into which a user has logged in, when a password was
changed, or to assure the right security controls mechanisms becomes more
important by the day.

16.3.4 Current single sign-on costs

After studying the current password related problems the security management
team at Areally Big Investment Corp. determined that the company is incurring a
high amount of unnecessary costs due to their current problems.

To mitigate these costs, the CIO’s team took into account the following variables:

� Number of users to implement the solution: 5000

� Number of applications to implement single sign-on: Seven

� Cost of one password reset call: Between US $15 and US $451

� Number of times a user forgets a password per application per year: Two

� Total solution costs the first year: $425,000

– Solution licensing costs: $400,000

– Implementation services costs: $25,000

1 Various analysts firms have estimated this number between US $15 and US $45 per call. The
actual costs depend on different factors like the process, hourly wage of employees, and so on.

496 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

The following assumptions and calculations were made to get to the yearly costs:

� Number of times users requests a password change from the help desk: 142.

� Costs of those calls per user per year: 14 calls x $15 per call: $210

� Costs for the 5000 users: 5000 x $210 = $1,050,000

Based on the fact that password reset calls cost the company $1,050,000 per
year, and an enterprise single sign-on solution implementation costs $425,000,
the return on investment (ROI) is 247% ($1,050,000 / $425,000).

If we modified the scenario above to increase the costs of every call to $45 per
call, the results are the following:

� Number of times users requests a password change from the help desk: 14.

� Costs of those calls per user per year: 14 calls x $45 per call: $630

� Costs for the 5000 users: 5000 x $630 = $3,150,000

� Return on investment: 741% ($3,150,000 / $425,000).

Based on the above calculations, the security team reached the conclusion that
this solution not only has a very high return on investment rate, but can save the
company a lot of money for every consecutive year by reducing password reset
calls to the help desk.

Important: To calculate licensing costs, we assume US $80 per user costs for
the Tivoli Access Manager for Enterprise Single Sign-On core, the
Authentication Adapter, and the Desktop Password Reset Adapter. This is a
reference price for this particular example. For actual licensing costs of this
product, call your local IBM sales representative.

The implementation services costs are assumed typical for a project this size,
but they do not represent a real services offering from IBM or any IBM
business partner and therefore hold no validity as an offer.

2 This is assuming that every user will request 2 password changes per application per year. We
know that not every user requests it, but because some user request passwords more times than
the established, and some users less times, this number works for the exercise.

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 497

16.4 Business requirements
Let us take a look at the business requirements, as defined by the CIO office of
the corporation:

� To increase the employee’s productivity and reduce costs, a password
management solution must be implemented.

� The solution should be operated efficiently and correctly in order to comply
with the corporate security policies.

� To lessen administrative cost, it is desirable to automate management
operations related to passwords wherever possible.

� In order to reduce the probability of fraud, strong authentication has to be
evaluated for specific applications.

� The new system has to integrate well into the existing infrastructure without
making significant modifications and investments to it—making full use of the
existing resources.

� The new system has to allow the users to also use the corporate system for
their personal credentials.

16.5 Functional requirements
Based on the corporate business vision and business needs, Areally Big
Investment Corporation came up with the following list of functional requirements
that have to be met by the proposed solution.

� Externalized authentication

The proposed solution must provide externalized authentication and
authorization at an enterprise level including Web based applications, client
server based applications, and distributed platforms.

� Integration with current infrastructure

The proposed solution must make use of the current directory by leveraging
the directory services already in place.

� Support for the following application types:

– Web Applications running in Internet Explorer of Firefox Web browser.

– SAP client application single sign-on.

– Existing applications have to be accessible by integrating SSO to
host/mainframe based applications that use an emulator based client
application.

498 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

� Support for offline mode

The proposed solution must be able to cache the credentials on a user’s
workstation, so it works in a disconnected environment.

� Integration for non-enterprise applications

The solution must allow users to integrate non-enterprise applications into
their personal SSO applications without any need for programming or
scripting.

� Support for automatic password change without user intervention

The proposed solution must support the changing of a password when the
target application requests it, generate a new password, and update it to the
central repository without any user intervention.

� Support for strong authentication

The solution must support the use of different strong authentication
mechanisms. It must especially support biometric devices.

� Provide self-service capabilities for the single user password

The proposed solution must offer capabilities to the user in case they forget
the password. There has to be a way to choose a new password in a secure
way without having to call the Help Desk.

� Provide auditing capabilities

The proposed solution must log password related events, such as credential
changes, log into an application, agent shutdown, and so on.

� Enforce encryption for all data so no credentials are stored in plain text

The proposed solution must encrypt data stored in the server, in the client
agent, and in transit. The encryption method chosen must be certified to meet
FIPS 140-23. It must encrypt all communications with the SSO server using
SSL for all communications with the respected credential repository.

16.6 Design approach

Now that the functional pre-requisites are defined, let us consider a more
detailed description of the architecture and how Areally Big Investment Corp. is
going to implement IBM Tivoli Access Manager for Enterprise Single Sign-On to
satisfy all of the requirements described in 16.5, “Functional requirements” on
page 498.

3 For more information on FIPS 140-2 please visit http://csrc.nist.gov/cryptval/140-2.htm

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 499

http://csrc.nist.gov/cryptval/140-2.htm

The products and components that will be deployed include:

� IBM Tivoli Access Manager for Enterprise Single Sign-On core component

� IBM Tivoli Access Manager for Enterprise Single Sign-On Desktop Password
Reset Adapter

� IBM Tivoli Access Manager for Enterprise Single Sign-On Authentication
Adapter

The following is a diagram (Figure 16-2) that shows the initial deployment of the
core solution component:

Figure 16-2 Core solution deployment

16.6.1 Core solution deployment

The first part of this deployment is to set up the administration console to
configure the repository, which in our case is the Microsoft Active Directory. All
credentials, settings, and configuration information is stored in the repository.

500 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

Currently, the templates for the different applications must be created and
configured. For every application the following must be done:

1. Configure the initial logon form.

– If it is a Windows application, it occurs based on the specific fields in the
logon dialogs.

– If it is a Web based application, it is based on the authentication form.

– If it is a host/mainframe application, it is based on the coordinates of the
login and password fields in the emulator window.

2. Configure the password change form based on the previous procedure.

3. Test the template.

4. Deploy the template to the repository.

After the configuration for all required applications occurs, a custom MSI file must
be created in order to deploy these settings to all the workstations.

After the installation is completed for all the workstations, the agents can
synchronize with the Active Directory to retrieve templates and settings. At this
point, users can add their credentials and start experiencing single sign-on.

16.6.2 Desktop Password Reset Adapter deployment

The next step in our solution is to deploy the Desktop Password Reset Adapter
(DPRA). The following is a diagram (Figure 16-3 on page 502) of the architecture
of this component.

Important: The following parts describe some details of a deployment of Tivoli
Access Manager for Enterprise Single Sign-On for this architecture, but it is
not considered a complete deployment guide. For more information on a
deployment guide for this solution, please visit the following Web site:
http://www.redbooks.ibm.com/redpieces/abstracts/sg247350.html

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 501

http://www.redbooks.ibm.com/redpieces/abstracts/sg247350.html

Figure 16-3 Desktop Password Reset Adapter deployment

The DPRA component allows the users to reset their only password (the domain
password) directly from their locked workstation. Before having the service
available for the users, they must answer a few predefined questions. In the case
where a user forgot the primary password, these questions authenticate the
users and give them the chance to change their password.

From an architectural point of view the DPRA has two main components, the
server and the client. It uses the Microsoft Internet Information Services to host
the Web application that conducts the interview and the actual reset. For more
information on the architecture and functionality of this component see 15.1.8,
“Desktop Password Reset Adapter” on page 467.

In our solution, the server component is deployed and the client is distributed to
all the workstations. An important part of this deployment step is to educate the
users on the procedure to sign up for the service and how to use the password
reset activities. This way, all of the users have to sign up, answer the questions,
and start using this service when they forget their password.

502 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

16.6.3 Authentication Adapter deployment

In our solution, there is a requirement to support strong authentication for some
specific applications. To satisfy this requirement, we use the graded
authentication functionality of the Authentication Adapter, which allows us to
require an additional level of authentication for a specific application. This way,
the enterprise can selectively deploy strong authentication devices, like smart
cards or biometric devices, for a group of users. No changes are required for
applications. The strong access control enforcement only affects the
workstations.

16.7 Solution analysis

After a description of how the different components fit in the architecture for
Areally Big Investment Corporation, we now analyze the different requirements
and see how our solution answers these requirements.

� Externalized authentication

Tivoli Access Manager for Enterprise Single Sign-On provides single sign-on
by introducing a secure middle layer that authenticates the user once and
detects all subsequent requests for credentials from all applications, including
Web, client/server, and host/mainframe based applications.

� Integration with current infrastructure

Tivoli Access Manager for Enterprise Single Sign-On makes use of the
current Active Directory in place in the corporation. It also supports other
LDAP compliant directories or databases if required.

� Support for the following application types:

– Web applications running in Internet Explorer or Firefox Web browser:
Tivoli Access Manager for Enterprise Single Sign-On supports the sign on
to a Web application either in a form or a pop-up window. It looks for the
correct fields and injects the credentials accordingly.

– SAP application: Tivoli Access Manager for Enterprise Single Sign-On
supports logging into the SAP client.

Tip: For more information on the installation and configuration of the
Authentication Adapter visit the Tivoli Access Manager for Enterprise Single
Sign-On Information Center at the following Web site:
http://publib.boulder.ibm.com/tividd/td/IBMTivoliAccessManagerforEnt
erpriseSingleSign-On6.0.html

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 503

http://publib.boulder.ibm.com/tividd/td/IBMTivoliAccessManagerforEnterpriseSingleSign-On6.0.html

– Existing applications based on host/mainframe emulators: Tivoli Access
Manager for Enterprise Single Sign-On responds to credential requests
from host/mainframe applications by interacting through the terminal
emulator used to access the application. The agent monitors the window
presented in the emulator and looks for specific text to identify the correct
screen and to inject the credentials in the correct place.

� Support for offline mode

Tivoli Access Manager for Enterprise Single Sign-On supports working in
offline mode by keeping a local copy of the credentials on the local
workstation. When the user connects to the network, the credentials are
synchronized with the repository.

� Integration for non-enterprise applications

Tivoli Access Manager for Enterprise Single Sign-On recognizes login
requests from non enterprise Web applications, for example a Web based
e-mail application, or an online banking application. If allowed by the
administrator, the user can also add these credentials to the repository to
utilize single sign-on for these applications.

� Support for automatic password change without user intervention

Tivoli Access Manager for Enterprise Single Sign-On can be configured to
automate the password change process for the user. In this case, when a
password change request occurs, the agent generates a new random
password according to the policy, makes the change in the application, and
stores this new password in the credentials repository for later use.

� Support for strong authentication

Tivoli Access Manager for Enterprise Single Sign-On supports various
authentication mechanisms including smart cards, biometric devices, tokens,
and digital certificates at the workstation.

� Provide self-service capabilities for the single user password

In case the users forget their password Tivoli Access Manager for Enterprise
Single Sign-On offers them the capability to reset the password by choosing
another one in a secure way without having to call the Help Desk.
Authentication to the password reset mechanism is enforced by using a user
pre-defined question algorithm.

� Provide auditing capabilities

Tivoli Access Manager for Enterprise Single Sign-On logs all user password
events, including last successful logon, number of login attempts, credential
changes, and agent events. It also logs dates, times, and usernames for
events such as application log ons, application password changes, startup
and shutdown of the agent, and setting changes.

504 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

� Enforce encryption for all data so no credentials are stored in plain text

All local credentials and those stored in the repository are encrypted using
Triple DES symmetric key encryption, certified to meet FIPS 140-2. If desired,
the encryption algorithm can be changed. Tivoli Access Manager for
Enterprise Single Sign-On utilizes SSO component communication by
default.

16.8 Conclusion

Like many other large companies, Areally Big Investment Corporation battled the
password management problem for years, suffering productivity loss, elevated
user help desk costs, and became more vulnerable due to this fact. The
implementation of an enterprise single sign-on solution is the main step taken to
mitigate these issues.

The way the company is approaching the security problem covers the following
important issues:

� Improving the user experience around accessing different applications
� Enforcing general security policies of password creation
� Reducing operational costs
� Complying with regulatory standards

Finally, this chapter described how the different components of IBM Tivoli
Access Manager for Enterprise Single Sign-on address different authentication
requirements for a company with characteristics such as mobile users, strong
authentication, and a diverse variety of applications.

If you want to learn more about deploying a Tivoli Access Manager for Enterprise
Single Sign-On solution refer to the Deployment Guide Series: Tivoli Access
Manager for Enterprise Single Sign-On, SG24-7350.

 Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario 505

506 Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single Sign-On

Part 3 Managing identities
and credentials

In Part 3, we discuss the solutions Tivoli offers in the identity and credential
management space of the overall security architecture. Identity and credential
information, which generally revolves around managing individuals, can be
handled by Tivoli Identity Manager and Tivoli Directory Integrator. These
products handle a multitude of integration aspects with all sorts of IT
infrastructures and application environments, which are detailed throughout this
part.

Part 3

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 507

508 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 17. Identity management

In this chapter we introduce another discipline in our enterprise security
architecture saga: identity or user lifecycle management.

Identity management is a comprehensive, process-oriented, and policy-driven
security approach that helps organizations consolidate identity data and
automate the deployment across the enterprise. In this chapter we attempt to
outline methods of identifying the key components of an identity management
architecture using IBM Tivoli Identity Manager.

17

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 509

17.1 Business drivers
In order to effectively compete in today’s business environment, companies are
increasing the number of users (customers, employees, partners, and suppliers)
who are allowed to access information. As IT is challenged to do more with fewer
resources, managing user identities and their access to resources throughout the
identity lifecycle is even more difficult. Typical IT environments have many local
administrators using manual processes to implement user changes across
multiple systems and applications. As identity management grows more costly, it
can inhibit the development and deployment of new business initiatives.

An integrated identity management solution can help get users, systems, and
applications online and productive fast, and maintain dynamic compliance to
increase the resiliency and security of the IT environment, while helping to
reduce costs and maximize return on investment. An identity management
solution has three key areas:

� Identity lifecycle management (user self-care, enrollment, and provisioning)

� Identity control (access and privacy control, single sign-on, and auditing)

� Identity foundation (directory, directory integration, and workflow)

As the world of on demand gains global acceptance, the traditional processes of
corporate user administration are no longer able to cope with the demands of
increased scale and scope expected from them. Identity management is a
super-set of older user provisioning systems that allows for the management of
identity and credential information for customers, partners, suppliers, automated
processes, corporate users, and others.

As organizations come to depend on their IT assets more, these assets attract
the attention of accounting and reporting standards. IT data and system assets
will increasingly become balance sheet line items, and therefore be subject to
different audit and compliance rules. Organizations must be able to demonstrate
due care, due diligence, improved security, and compliance with other financial
rules. We should realize that any entity using the IT systems run by an
organization must be included in the scope of identity management if we are to
have any chance of achieving these goals.

17.2 Issues affecting identity management solutions
Undertaking an identity management project reveals situations that are not
always readily apparent. Two major areas of interest: enabling user access
(session management, authorization, authentication, and so on) and user
lifecycle management (user administration, provisioning, and so on) stand at the

510 Enterprise Security Architecture Using IBM Tivoli Security Solutions

forefront. Each area has many facets of its own. Tivoli Identity Manager is
primarily concerned with user lifecycle management, and Tivoli Access Manager
is primarily concerned with session management.

Identity management takes a lifecycle approach to the management of an
identity and access control from the beginning of the process. Specifically,
identity management handles the changes that occur during the lifetime of the
user’s account. This specifically means that it has the ability to integrate with
pre-existing information sources within the enterprise, such as directories and
HR systems. This gives a complete approach to identity management by
leveraging the existing information in data directories as well as integrating and
utilizing the HR system to access information about an employee (hirings,
promotions, transfers, termination of employment). In this manner, the identity is
managed through all stages of the process to ensure consistent handling of the
identity. This holistic lifecycle approach helps to minimize the risk to the
enterprise because it is ordered rather than fragmented.

When managing identities and access control, an integrated approach should be
taken to ensure the integrity of the company and the protection of its assets.
Integration is the key to effectively managing an individual identity and access.
An easy example of the possible risk that could be encountered if the identity
management was not integrated is when updating the HR database to reflect the
termination of an employee. Because there is a lag time between the HR
department notifying the various systems administrators, the various systems
that the former employee had accounts on (company intranet, extranet) are still
active. This means that, effectively, the former employee has access to sensitive
company data. If this employee has taken a position with a competitor while still
having access to the data, this leaves the former employer open to risk.

Clearly, many obstacles exist but there are best practices that organizations can
follow to mitigate risk, optimize investment, achieve results, and ultimately
balance user experience with greater productivity and cost savings, allied to
increased IT security.

17.3 Security policies, risk, due care, and due diligence
The senior management team of an organization has to show due care in all
dealings, including security-related matters. Showing due care helps to create a
professionally managed organization, which in turn helps maintain shareholder
value. Due care can also be an important step toward avoiding claims of
negligence. From a security perspective, showing due care can be achieved by
having well-thought-out security policies.

 Chapter 17. Identity management 511

Security policies have to balance a number of conflicting interests. It is easy to
write security policies that deny access or make access controls so onerous that
either no business gain can be achieved or the security policies are ignored.
Security policies must set a sensible level of control that takes into account both
the culture and experience of the organization and an appreciation of the risks
involved.

Risk assessment is an important topic in its own right but is outside the scope of
this chapter. Briefly, risk is usually assessed either formally or informally using
quantitative or qualitative methods. This can be as structured as a full external
risk assessment, or simply based on the intuition of members of an organization
who know and understand how their business is constructed and the risks
involved. Risk can be dealt within any of four ways:

Transfer The most common way of transferring risk is through
insurance. In the current economic environment, the
availability and cost of insurance is variable. Currently, this
method is more volatile than in the past.

Mitigate Mitigation of risk can be achieved by identifying and
implementing the means to reduce the exposure to risk.
This includes the deployment of technologies that improve
the security cover within an organization. Deploying an
identity management tool mitigates the security risks
associated with poor identity management.

Accept An organization may chose to accept that the impact of
the risk is bearable without transferring or mitigating the
risk. This is often done where the risk or its impact is
small, or when the cost of mitigation is large.

Ignore Often confused with risk acceptance, ignoring risk is all
too common. The main difference between accepting risk
and ignoring risk is that assessment is an implicit part of
risk acceptance. If no valid risk assessment has been
done, this should raise a warning flag that points toward
the dangerous path of ignoring risk.

Understanding the risks that exist enables us to write appropriate security
policies. Having security policies shows the exercise of due care, but unless the
policies are implemented, due diligence cannot be shown. Many organizations
write good security policies only to fail at the implementation stage, because
implementation represents a difficult or costly challenge. In the next section, we
show how a centralized identity management solution can be used to enforce
security policies relating to identity management. This gives us demonstrable
due diligence with respect to identity management.

512 Enterprise Security Architecture Using IBM Tivoli Security Solutions

17.4 Centralized user management
Identity management is the process of managing the information for a user’s
interaction with an organization. As such, it is an important element of e-business
security and is vital to sustaining a healthy e-business. Without a solid identity
management solution, problems can occur when users—whether they are
employees, customers, business partners, or suppliers—require access to IT
resources. The benefits of centralizing the control over user management, while
still allowing for decentralized administration, affects two key business areas: the
cost of user management can be reduced and security policies can be enforced.

The capabilities of an identity management solution can be classified into eight
levels. These capability levels can readily be arranged into a pyramid as shown
in Figure 17-1, the base of which is the most core required capability of the
provisioning solution. After the capabilities in the lowest level are addressed, you
can move up to the next level in the pyramid, which provides increasingly more
powerful capabilities. The ideal provisioning solution addresses all eight levels.

Figure 17-1 The eight levels of identity management

Adapters to Access Controlled Systems

Password Management

Access Rights Accountability

Access Request Approval and Process Automation

Access Request Audit Trails

Distributed Administration

User Admin Policy Automation

Self-Regulating
User Admin

across
Organization

 Chapter 17. Identity management 513

17.4.1 Adapters to access controlled systems
In order to automate provisioning, the solution must communicate securely with
each target system being managed. If this adapter does not exist, then an
administrator must still make the required changes manually. The adapters are
the key mechanisms that translate the commands of the provisioning solution
into the proprietary language understood by the managed resources. Further, the
richness of the language used is important. Managed systems (SAP, for
example) support the definition of hundreds of parameters describing user
access. The adapter must support the needs of the managed system and the
needs of the organization in creating or changing accounts.

Communication between the provisioning solution and the managed system
must be bidirectional, secure, and bandwidth-efficient. Bidirectionality is critical to
capturing changes made directly to the managed system and reporting the
change to the provisioning solution for evaluation and response. The link must be
encrypted so that no one can listen in and steal authentication information such
as passwords. The link must also allow authentication of the source so that a new
command cannot be injected into the system by an imposter to create an
inappropriate account.

Last, because the managed resources are physically distributed across the
corporate wide area network (WAN) or the Internet, bandwidth efficiency must be
considered. These networks often have limited available capacity and are
expensive, requiring the provisioning solution to operate with as little overhead as
possible.

When we talk about managed systems, we have to look at two types of
repositories:

� User repositories
� Endpoint repositories

User repositories
User repositories contain data about people, and most companies have many
user repositories and will continue to add new ones due to new and custom
applications. These can be:

� Human Resources systems
� Applications
� LDAP and other directories
� Metadirectories

514 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Endpoint repositories
Endpoint repositories contain data about privileges and accounts, and most
companies have a great variety of these repositories implemented throughout
their environment. Some of these are:

� Operating systems, such as Linux, Windows XP and AIX
� Tivoli Access Manager
� Tivoli Federated Identity Manager
� Network devices
� RACF
� Lotus Notes
� ERPs
� Databases

Therefore, it is important when considering centralized identity management
systems to be sure that the coverage of the system takes both types of
repositories into full account. These repositories hold a wealth of identity-related
information. Tying all of the information together rather than duplicating it is
cost-effective and eliminates mistakes.

17.4.2 Password management
Password management is the ability to control password quality and change
passwords throughout an environment. As companies deploy more and more
systems that contain access controls, the number of passwords required to be
remembered by each user increases. This increase poses a risk to the
organization as more users have a tendency to write down their passwords in
order to keep track of them. A costly side effect of this is the increased workload
on the help desk to reset forgotten passwords. (Research shows that
approximately 30% of total calls to the average help desk are for password-reset
assistance.)

Password strength is also problematic for many organizations. Hackers possess
effective tools and techniques for cracking poorly constructed passwords.
Organizations desire to enforce stronger password formation rules across the
enterprise but must balance that desire against poor end-user experience and
increases in forgotten passwords.

Password management capabilities enable users to self-service their own
accounts. Users visit a Web-based system, authorize themselves, then may
reset or synchronize their passwords on all of their accounts. Further, the
passwords they select can be evaluated against rules on their formation to
ensure uniform conformance with organizational password policies. A user
typically has multiple accounts and passwords. The ability to synchronize
passwords across platforms and applications provides ease of use for the user. It

 Chapter 17. Identity management 515

can also improve the security of the environment because each user does not
have to remember multiple passwords and is therefore less likely to write them
down.

Key points to password management include:

� User self-service through the Web without logging onto the network

� Challenge-response system to authenticate a user with a forgotten password
by using shared secrets

� Ability to implement password formation rules to enforce password strength
across the organization

� Ability to synchronize passwords for multiple systems to the same value to
reduce the number of different passwords to be remembered by the user

� Delivery of password-change status (success or failure) to requestor

� Ability to securely deliver passwords to users for new accounts

17.4.3 Access rights accountability
Tracking precisely who has access to what information across an organization is
a critical function of the provisioning solution. Not only does it allow control of
sensitive systems but it should expose all accounts that have unapproved
authorizations or authorizations that are no longer necessary. These
inappropriate accounts pose one of the most serious threats to corporate
security because they are valid, active accounts so they cannot be detected as a
traditional cyber-attack. Access rights accountability provides configuration
control over all accounts and their specific authorities.

Orphan accounts are those active accounts found on many systems that cannot
be associated with a valid user. Improperly configured accounts are those
associated with valid users but granted improper authorities. These accounts
may appear at any time due to local administrators retaining rights to use local
administrative consoles. In enterprise-wide environments, these local consoles
cannot be disabled because of their multiple operational use. The key to the
control of improper and orphan accounts is, on a continuous basis, to associate
every account with a valid user and maintain a system-of-record detailing the
approved authorities of the account. When the user’s status with the organization
changes, their access rights must change too. If the account configuration
changes, it must be compared with an approved configuration and policy.

The ability to control orphan accounts requires that the provisioning system link
gather account information with authoritative information about the users
themselves. Authoritative user identity information is typically found in Human

516 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Resources and various databases and directories containing information about
users in other businesses.

The ability to control improper accounts is much more difficult. It requires a
comparison of the desired with reality at the account-authority level. Simple
existence of an account does not expose its capabilities. Accounts in
sophisticated IT systems include hundreds of parameters defining the
authorities; these are the details that must be controlled.

Accounts found to be orphaned or improperly configured must be reported and
corrected. Provisioning solutions should notify the proper personnel to fix
account settings.

Access rights should include:

� Flexible mechanisms to connect to multiple data stores containing accurate
information about valid users

� Ability to load identity store information about a scheduled or event basis

� Ability to detect and respond to identity store changes in near-real time

� Ability to retrieve account information from target managed resources on a
scheduled basis, both in bulk or in filtered subsets to preserve network
bandwidth

� Ability to detect and report in near-real-time local administrator account
maintenance (creation, deletion, changes) made directly on local resources

� Ability to compare local administrator changes against a system-of-record of
account states to determine whether changes comply with approved
authorities and policies

� Ability to notify designated personnel of access-rights changes made outside
the provisioning solution

� Ability to compare account user IDs with valid users to identify accounts
without owners (orphans)

� Ability to automatically suspend or delete a detected orphan account

� Ability to automatically suspend or roll back a reconfigured account that
violates policy

� Ability to examine reports on orphan accounts

� Ability to readily view the accounts associated with a user or a resource

� Ability to assign discovered orphan accounts to a valid user

 Chapter 17. Identity management 517

17.4.4 Access request approval and process automation
Access request approval and process automation is a key component in rapidly
and accurately changing user access rights. The approval processes are a
specialized form of workflow that determines, based on organizational policy, the
need to approve a requested change to access rights prior to its execution. Many
organizations still rely on paper and e-mail forwarded in many different paths
through the organization.

These approaches can be very slow. Requests can sit idle in an inbox or be
rejected because they are missing key information; consequently, the process
must begin again. A complete provisioning workflow solution automatically routes
requests to the proper approvers and escalates to alternates if action is not taken
on the request in a specified time. This workflow automation can turn a process
that typically takes a week into one that takes only minutes.

Some organizations also require that information about accounts or background
information be added to the request as it flows through the process. This
information may come from users involved in the process or it may be computed
or extracted from other systems.

A workflow automation tool should offer the following features:

� Web-based mechanism for requesting access to a system

� Automatic approval routing to the persons appropriate to the system access
requested and organizational structure

� Review and approval mechanisms that offer a zero-footprint client

� Ability to use defined organizational information to dynamically determine
routing of approvals

� Ability to delegate approval authority to another person

� Ability to escalate a request to an alternative approver if the allotted time
elapses

� Ability for different personnel to view different levels of information based on
their job duties

� Ability to request information from approval participants to define
account-specific information during the process

� Ability to determine service instances where a physical account should be
created

� Ability for the system to change account information in the managed
resources of a specific organization

518 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Ability to request information from specific participants in the workflow
process

� Ability to request information from external functions, applications, and data
stores during the process

� Ability to easily create, design, and modify a workflow via a graphical
drag-and-drop interface

17.4.5 Access request audit trails
Traditionally, many organizations have treated audit logs as places to look for the
cause of a security breach after the fact. Increasingly, this is seen as an
inadequate use of the information available to an organization, which would be
exhibiting better due diligence by monitoring and reacting to logged breaches in
as near to real time as possible.

Centralized audit trails of access requests are an important aspect of supporting
independent audits of security practices and procedures in an organization.
These audit trails capture all aspects of the administration of access rights, from
initial access requests to changes in account details. Security audits are part of
every organization, whether they are conducted by internal security audit teams
or are external audits supporting formal bookkeeping. If recordkeeping is
incomplete, inaccurate, or stored in multiple locations, then these audits can
consume extensive time and human effort to conduct. Audits are frequently
disruptive to daily work efforts but are mandatory for the safe and secure
operation of the organization. Among other things, audit teams look for orphan
accounts or inappropriate access privileges that exist on important systems.
Audits may occur from once a quarter to as frequently as once a week,
depending on the organization.

An access request tool must include the following:

� Time-stamped records of every access change request, approval or denial,
justification, and change to a managed resource

� Time-stamped record of every administrative and policy-driven change to
access rights

� Time-stamped record of any encountered orphan accounts and bypasses of
administrative systems

� Convenient, flexible means of running reports that show audit trails for users,
systems, administrators, and time periods

� Audit trail that is maintained in a tamper-proof environment

 Chapter 17. Identity management 519

17.4.6 Distributed administration
Distributed administration enables the administrative tasks involved with
provisioning, whether manual or automated, to be distributed securely among
various departments, organizations, or partners. This is important for two
reasons: accuracy and scale. It is wise to move the process of requesting and
approving access changes close to the people who know whether the resource is
truly needed by the individual.

Further, this distribution allows the workload to be balanced across a large
number of administrators rather than a single dedicated and centralized team.
This becomes fundamental in large organizations with multiple regional offices
and those with multiple business partners. Distribution should be performed all
the way down to the individual level when desired for self-service or
self-enrollment. To accomplish this, the system must support delegated
administration and user authentication. Delegated administration enables the
responsibilities for using and changing identity information to be delegated down
through an organization in a controlled manner.

Administrative tasks such as requesting access for a user, approving a change,
or defining local policies can be delegated to individuals throughout an
organization or its partner network. In this way, individuals that have the most
accurate knowledge of users’ needs can request or approve changes. Lower
levels can define local policies for access rights assignment within the guidelines
created by the organization. A key aspect of delegated administration is filtering
the information presented to an administrator on a need-to-know basis. Not only
does this make the system more usable to the administrator, but it also prevents
exposing information to personnel without a need to know. For example, external
business partners may be administering their own users into a common supplier
environment but each business partner must remain invisible to the other
business partners.

Authentication to the system becomes critical at this point. As widely dispersed
individuals may make changes affecting access rights for others, it is critical that
system security be maintained. Frequently these interfaces are accessible to
users over the Internet, and that requires stronger authentication approaches. To
meet the need for stronger authentication, the solution should enable you to use
your own custom authentication mechanisms.

An administration tool should be able to:

� Define organizational structures based on the access-granting authorities of
an organization

� Delegate each administrative task with fine-grained control (for example,
approval authority, user creation, workflow definition)

520 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Delegate administrative tasks to n-levels of depth

� Access all delegated capabilities over the Web with a zero-footprint client

� Create private, filtered views of information about users and available
resources

� Incorporate Web access control products to include the provisioning solution
within the Web single sign-on environment

� Incorporate custom user authentication approaches commensurate with
internal security policies

� Distribute provisioning components securely over WAN and Internet
environments, including crossing firewalls

17.4.7 User administration policy automation
User administration policy automation is the way to evaluate and enforce
business processes and rules for granting access. Role Based Access Control
(RBAC) is a method of granting access rights to users based on their assignment
to a defined role in the organization. Provisioning solutions that embody RBAC or
other types of rules that assign access rights to users based on certain
conditions and user characteristics are examples of user administration policy
automation.

Automation is key to managing large numbers of users across disparate
resources and assigning, monitoring, and revoking user entitlements. The
solution should enable users to be defined as members of groups, including
roles. Entitlements to resources for these groups of users are defined in the
security policies. Any change to information about a user should be evaluated to
determine whether it alters the user’s membership to a group. If there is an effect,
policies must be reviewed and changes to entitlements must be put into place
immediately. Likewise, a change in the definition of the set of resources in a
policy may also trigger a change in entitlements.

The following elements should be included in user administration policy
automation:

� Ability to associate access-rights definition with a role within the organization

� Ability to assign users to one or more roles

� Ability to implicitly define subsets of access to be unavailable to a role

� Ability to explicitly assign users individual access rights

� Ability to dynamically and automatically change access rights based on
changes in user roles

 Chapter 17. Identity management 521

� Ability to define implicit access rights available to users in a role upon their
request and approval

� Ability to use defined organizational information to dynamically determine
routing of approvals

� Ability to detect, evaluate, and respond to user authority changes made
directly to a managed resource

� Ability to report on roles, rights associated with roles, and users associated
with roles

� Ability to set designated times for changes in access rights or policies

� Ability to create unique user IDs consistent with policies and not in current
use or previous use by the organization

� Ability to create user authorizations extending an existing account

� Support for mandatory and optional entitlements (optional entitlements are
not automatically provisioned but may be requested by a user in the group)

� Support for entitlement defaults and constraints (each characteristic of an
entitlement may be set to a default value, or its range can be constrained,
depending on the capabilities of the entitlement to be granted)

� Ability to create a single account with multiple authorities governed by
different policies

� Ability to create user IDs using a set of consistent algorithms defined by the
organization

17.4.8 Self-regulating user administration across organizations
This ultimate level of the hierarchy is the ability to provision across multiple
organizations that each contain user groups and shared services. In this
environment, a change in a user’s status is automatically reflected in the access
rights inside the user’s organization and also in the outside services offered by
other organizations. As the provider of services to other organizations, user
access rights are automatically established based on your security policies and
the assertion of the users authenticity provided by the sponsor or a third party.

Key points of self-regulation include:

� Adherence to open standards

� Secure environment for transmitting access changes across the Internet

� Protection of private user information through secure facilities and sound
processes

� Auditing access rights changes

522 Enterprise Security Architecture Using IBM Tivoli Security Solutions

17.5 Lifecycle management
Identity management in general is the process of managing persons and their
accounts across all systems. The notion of lifecycle management introduces the
following concepts:

� The person exists as a person entity to the identity management solution.
From the time of its creation to its deletion, it will change over time due to
external events such as transfers, promotions, leaves of absences, temporary
assignments or any other identity-related business process.

� A person who uses an IT asset is considered an account from the identity
management perspective. The identity management solution sees this
accounts as an account entity owned by the person entity. The person entity
changes will affect its own accounts from the time they are created until the
time they are deleted. The person entitlements for each account owned are
verified every time the person or account entitlement definitions are changed.
There may also be a need to routinely verify that the account is compliant with
security policies.

A lifecycle is a term to describe how persons or accounts for a person are
created, managed, and terminated based on certain events or a time-based
paradigm.

Figure 17-2 on page 524 represents a closed-loop process where a person is
registered to use an IT asset, an account is created, and access provisioning
occurs to give this person account access to system resources. Over time
modifications occur where access to some resources is granted while access to
other resources may be revoked. The cycle ends when the person separates
from the business and the termination process removes access to resources,
suspends all accounts, and eventually deletes the accounts and the person from
the systems.

Provisioning solutions are the link between the classical central management
solution and the target resources. The capability to quickly negotiate provisioning
requirements that map to the identity models and processes of a business is
crucial when architecting a solution. The provisioning aspect garners much of the
focus and attention. User provisioning is where the process begins, and if
provisioning is sluggish or incomplete, users (employees, consultants,
customers) develop negative first impressions of the organization.

 Chapter 17. Identity management 523

Figure 17-2 User lifecycle management phases

17.5.1 The creation cycle
The creation cycle includes the following:

Person creation The person entity is created with the identity management
solution. In most cases person attributes, such as user
name, e-mail address, phone number, and other
identity-related data, are imported from a
person-authoritative system such as a Human Resources
(HR) system for employees, a contract system for
business partner persons, and other data sources for
customer persons.

Account creation The account entity is created on the managed platforms
using attributes from the person entity.

Termination

Registration/
Creation Provisioning

Modification

524 Enterprise Security Architecture Using IBM Tivoli Security Solutions

17.5.2 The provisioning cycle
The provisioning cycle includes the following:

� Identifying the sponsor (for example, sales or HR), determining the nature of
the relationship (customer, internal employee), verifying the user’s identity,
and assigning a role or roles.

� Fulfillment, which entails gaining approval for the appropriate systems,
creating the user’s identity in the appropriate directories and repositories, and
granting access to those accounts.

17.5.3 The modification cycle
During the maintenance phase of the lifecycle, administrators maintain the
following elements:

Person The person’s attributes, such as name, e-mail address,
and phone number.

Identity The user’s credentials, such as user name and password,
as well as information about the user that may be based
on person entity, including name, e-mail address, and
phone number.

Access rights The systems, accounts, and applications the user has
access to and the level of access.

Policy management Updating of access rights based on membership in a
particular group or department and consistent
enforcement of corporate policies.

Privacy Enactment of regulations that require enterprises to
secure the privacy of certain types of information that are
related to specific individuals.

Ideally, users should experience changes in access rights as the organization
changes and as their roles within the organization change. The maintenance
phase of the lifecycle offers significant opportunity for automation and efficiency
gains.

17.5.4 The termination cycle
Termination is the phase with which, from a security perspective, organizations
struggle the most. Auditors discovering hundreds or thousands of user accounts
that should have been disabled or deleted is common.

During the termination phase, organizations should verify that the relationship
between the user and the organization is, in fact, dissolving and disable access

 Chapter 17. Identity management 525

accordingly. Often, accounts are disabled for a term and then deleted.
Unfortunately, although this sounds simple, it demands process rigor.

17.5.5 Lifecycle rules
Lifecycle rules provide administrators with the ability to define lifecycle
operations (automated processes) to be executed as the result of an event.
Lifecycle rules are especially useful in automating recurring administrative tasks.
For example:

1. Password policy compliance checking.

2. Notifying users to change their password before it expires.

3. Identifying lifecycle changes such as accounts that are inactive for more than
30 consecutive days.

4. Identifying new accounts that were not used more than ten days following
their creation.

5. Notifying users to recertify their account’s access to a restricted resource
before it is revoked.

6. Identifying accounts that are candidates for deletion because they were
suspended for more than 30 days.

7. When a contract expires, identifying all accounts belonging to a business
partner or contractor’s employees and revoking their access rights.

Table 17-1 describes some lifecycle rules in more detail.

Table 17-1 Sample lifecycle rules

Event Lifecycle rule Lifecycle operation

Daily at 12:01 AM Password
expiration

Search all account entities for the Identity
Manager and the Access Manager
services and generate an e-mail for all user
accounts where the password will expire
within the next seven days. Where the
password is more than 45 days old,
suspend the account.

Contract expires Suspend contractor
accounts

Search for all accounts defined for a
specific contractor and suspend them at
the close of business on the day the
contract expires.

Monthly on the
first day at 01:01
AM

Recertify Linux
account holder

Search all accounts for the Linux service,
identify all accounts and send an e-mail to
the account holder asking them to recertify
their need to use the system.

526 Enterprise Security Architecture Using IBM Tivoli Security Solutions

17.6 Access control models
In 2.6, “Access control models” on page 40 we introduced some of the access
control models that are commonly found or are planned for use with a centralized
identity management solution—the Role Based Access Control (RBAC),
Discretionary Access Control (DAC), and Mandatory Access Control (MAC).

17.6.1 Selection process
The following questions and comments are some of the thought processes that
can help choose an access control model and centralized identity management
system. Figure 17-3 on page 528 and the questions following it should show the
path through the maze. Local, particularly non-functional requirements, may
modify the approach you need to take.

Note: There are many resources available that address access control
models. For our discussion we refer to the CISSP All-in-One Exam Guide by
Harris. Another source you might want to check out is the National Institute of
Standards and Technologies at the following Web site:

http://www.nist.gov/

 Chapter 17. Identity management 527

http://www.nist.gov/

Figure 17-3 Selection flow diagram

Key questions and comments:

1. Does your organization mandate the use of sensitivity silos (confidential,
secret, top secret, and so on)?

2. Your organization mandates the use of the sensitivity silos. Does it approve
the use of one centralized identity management solution bridging all of the
sensitivity silos?

3. If you cannot bridge the sensitivity silos with one solution, the only option is to
treat each silo as a separate organization. Will your organization change its
policy on the single centralized identity management system to allow bridging
in the future?

4. Does your organization have a high staff turnover, or have a large number of
contractors or out sourced staff?

Start

1 2 11 24

3 12 25

13

20

21

22

4

9 17 18 19 28

8 10 27

16

9 14 15 26
23

29

Yes Yes

No

Yes

No
No

No

No

Yes

Yes

Yes

5

6

7

No

No

No

No

YesYes Yes

No Yes

No

Yes

Yes

528 Enterprise Security Architecture Using IBM Tivoli Security Solutions

5. Is your organization large or does it have multiple geographies that are self
managing?

6. Does your organization already have a centralized or metadirectory in place
or is it planning one?

7. If your organization is already using the DAC model with resource
owners/administrators managing the identities of users, you could use a
centralized solution to imitate this or you could move to an RBAC solution. Do
you want to see further ROI and increased security?

8. If you chose to fully implement an RBAC model, will the political and business
structures within your organization fully support the design work involved?

9. DAC Design selected?

10.RBAC Design selected?

11.Implement a single centralized identity management system with users
assigned access rights based upon their approval to access one or many
sensitivity silos. This is a simple form of RBAC with one role per sensitivity
silo. It would be possible to make the silo model more granular, but this may
detract from the essentially simple nature of the implementation. It should be
noted that a user with access to one silo will gain access to all information
within that silo; therefore, in its purest form, this architecture does not address
the issues of Privacy or “Need to Know” management.

12.You can implement an identity management solution in each sensitivity silo,
but should your organization’s policy change, you will be able to place a
master Identity Manager over the existing silo Identity Managers to gain
maximum ROI. You should therefore select a centralized management
solution that is capable of supporting a hierarchy of identity management
systems.

13.Treat each sensitivity silo as a discrete problem and analyze the RBAC/DAC
requirements for each silo.

14.This selection is DAC. Make sure that the centralized identity management
tool you selected has the capability to securely delegate the administration of
users to the resource owner through an interface that does not require
onerous training nor does it need a thick client to be distributed.
Administration of the users should be delegated to the owners of the
resources. Delegated resource control should be in line with corporate
policies. Centralized audit for non compliance reports should be submitted to
the resources owner regularly for their action.

15.After deployed, assistance should be given to those business units that want
to develop an RBAC model within their “Owned” space. In addition,
maintaining up-to-date business cases and continuing to win greater political
influence for the RBAC model should be attempted.

 Chapter 17. Identity management 529

16.Has sufficient political ground been gained to implement an RBAC model?

17.Your organization chose to use DAC, which will not allow for some of the ROI
traditionally associated with RBAC. Other product features also show
savings, however, and you should favor products with good feature/function
coverage in these areas.

18.Workflow processing. The automation of the business processes for new
hires and so on should be seen as a priority. Reducing the waiting time for
provisioning new users will reduce productivity losses.

19.Even though DAC is the organizational model, it may still be possible to make
savings by using limited or default roles. For example, every new user would
automatically get LAN and e-mail accounts set up, while other systems
remain within the purview of the resource owners.

20.Has a period of more than 12 months passed since you last checked the
identity management system design?

21.Have any major infrastructure changes within your organization’s operational
systems taken place?

22.Has the nature of the external threat you face as an organization changed
significantly?

23.A change occurred within your operating environment or a long period of time
passed since you last validated your identity management system decisions.
Run through the algorithm again to check on your design and amend it, if
appropriate.

24.You selected a very simple type of RBAC to map onto the MAC model in
place within your organization. This means that you will also be placing
increased reliance upon the nature of your personnel and the vetting
processes applied to them. It is possible to improve the silo granularity, but it
will take time to design this granularity. Other software and hardware involved
with privacy management and networking, for example, may already be in use
within your organization. These should be factored into any design and
planning for the solution.

25.The selection flowchart seems to suggest that you will be treating each of the
sensitivity silos as a discrete identity management problem, but that you may
in the future get approval to bridge the silos. The suggested method is to use
a hierarchy, but if budgets and operational requirements allow, you could also
scrap the existing system and replace it with a single central identity
management model.

26.Reaching this point in the flowchart meant that owing to political limitations
within your organization, you were forced to use the DAC model rather then
the RBAC model, which you might naturally have selected. Using DAC,
however, should be seen as a stepping stone towards RBAC. In simple
terms, allowing the business owners to use the system may enable them to

530 Enterprise Security Architecture Using IBM Tivoli Security Solutions

create roles for their own systems. It may be possible to consolidate these
local roles into larger ones as time passes.

27.As you move into the real design and planning work involved in an RBAC
scenario, many of the “customer” business units are asked for their input into
the role design problem. It may only be at this point, that “customer” business
units realize exactly the impact of what you are proposing upon their “rights”
to manage their own systems in their own way, regardless of the
organizations security policies or of the costs involved. If this happens, you
should return to question 8 and answer that question.

28.The DAC was selected and the focus on methods (other then RBAC) of
saving costs. You should not lose sight of the fact that having a central tool
also brings centralized audit capabilities that will improve the security of an
organization. This risk mitigation, while difficult to quantify, still improves the
viability of a business.

29.Wait one month before continuing. This ensures a revitalization of your
identity management strategy every month. The length of time chosen should
be less than one year, but is at the discretion of your organization, taking into
account all of the threat/risk/resource issues you face.

17.6.2 Roles versus groups
One of the difficulties identity management system designers are facing is the
way in which the terms groups and roles are used, often interchangeably or
without a true understanding of their significance. They are defined as follows:

Roles A role describes the relationship or function of an individual to an
organization. Resource(s) relates to the role and not to the
individual.

Groups A group is specific to a target resource. It contains a subset of
the users provisioned to that resource and grants access rights
to a part of the resource.

Many identity management systems allow the users to be assigned to roles and
hence provisioned to services. In addition, they can also provision users directly
to services complete with group membership.

Even if the managed platform (the service) is working with a “group” concept,
each group can be defined as roles and then each one has the correct
permissions assigned. This can lead to some confusion or to much roles, so start
simple is a must.

For example, let us say you want to do some RBAC for a LDAP-enabled
directory Server. First you will define a role at the identity management solution
and then assign this role to people. Then you create a group at this

 Chapter 17. Identity management 531

LDAP-enabled directory that represents also the role already defined in the
identity management solution. Access Control for the role is defined at the
LDAP-enabled directory. Provisioning of people to this group is done when you
define a provisioning policy that has the role (provisioning policy membership)
assigned to the LDAP-enabled directory service with the corresponding group in
the group membership attribute (provisioning policy entitlements). The identity
management solution will take care of assigning the people that has this role to
the corresponding group (provisioning and modification cycles).

Figure 17-4 shows the relationship between users, roles, services, and groups.

Figure 17-4 User/Role/Service/Group relationships

Person Entities and Access Control

Identity Management Provisioning Abstractions

Real Objects
Organizational Roles Service “LDAP” Groups

Group “A” Group “B” Group “C”Role “B”Role “A” Role “C”

Monica

Role “B”Role “A” Role “C”

Group “A” Group “B” Group “C”

Monica entitlements for service
“LDAP”

Debora

Role “B”Role “A”

Group “A” Group “B”

Debora entitlements for service
“LDAP”

Provisioning Policy “C”

Role “C”
Entitlements for Role “C”:
· Group “C”

Provisioning Policy “B”

Entitlements for Role “B”:
· Group “B”Role “B”

Provisioning Policy “A”

Role “A”
Entitlements for Role “A”:
· Group “A”

532 Enterprise Security Architecture Using IBM Tivoli Security Solutions

You can therefore use these systems to merely provision users directly to
services, which is done in the absence of a valid RBAC design or in the case of
the use of pure DAC.

You can also design the RBAC system such that one service is represented by
one role. If each role represents only a single application, OS, database, and so
on, then it is technically still an RBAC system, but it is functionally closer to a
DAC system. This model is sometimes found within organizations that have not
been able to successfully overcome the underlying politics. They can therefore
claim to have upset no one and to have implemented a full RBAC system. The
down side to this is that you spent the time and resources on implementing an
RBAC system that will not deliver the expected ROI. This model is therefore
pointless and not recommended unless political considerations are more
important than cost concerns.

17.6.3 Designs
The process of designing an RBAC system is fairly straight forward.

If we had only two entitlements to access (“entitlement 1” has service “Corporate
Directory” with group A and “entitlement 2” has service “Corporate Directory”
with group B), then users could be placed into one of three roles: Role 1
(entitlement 1 only), Role 2 (entitlement 2 only), and Role 3 (entitlement 1 and 2).

In summary:

To access two entitlements, the number of possible roles are three:

� One role containing two entitlements
� Two roles containing one entitlement

Similarly, to access three entitlements, the number of possible roles are seven:

� One role containing three entitlements
� Three roles containing two entitlements
� Three roles containing one entitlement

To access four entitlements, the number of possible roles are 15:

� One role containing four entitlements
� Four roles containing three entitlements
� Six roles containing two entitlements
� Four roles containing one entitlement

As the number of entitlements increases, so does the potential number of roles.
By the time twenty entitlements are required, there are 1,048,575 possible roles.
It is clearly not practical to create all the possible roles and populate them. We

 Chapter 17. Identity management 533

must reduce the number of roles to those required rather than to all those
possible.

It seems that a common sense approach would be to list all the user repositories
and then to list all the users along with their account requirements. An example of
this kind of approach is shown in Table 17-2.

Table 17-2 User to repository mapping

User Group membership at “Corporate Directory”

Group “A” Group “B” Group “C” Group “D” Group “E”

Alwena Yes No Yes Yes No

Brian Yes No No Yes Yes

Claudette No Yes No No No

Daphne No Yes No No No

Elizabeth Yes No No Yes No

Francesca Yes No No Yes No

Geoff No Yes No No No

Helen Yes No No Yes No

Ian Yes No No Yes No

Jolina Yes No Yes Yes No

Katya Yes No No Yes Yes

Lupe No Yes No No No

Mike Yes Yes Yes Yes Yes

Neil Yes No Yes Yes No

Ondine No Yes No No No

Peter No Yes No No No

Queenie Yes Yes Yes Yes Yes

Ray Yes No Yes Yes No

Sarah No Yes No No No

Thomas Yes No No Yes Yes

Uist Yes No No Yes No

534 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Grouping these roles into similar access requirements reveals that there would
be six logical roles. So in this example, five entitlements give rise to six roles
instead of all 31 possible roles, as shown in Table 17-3.

Table 17-3 User to repository mapping with roles

Vera No Yes No No No

William Yes No No Yes Yes

Xerxces Yes Yes No Yes No

Yvette Yes No No Yes No

Zach Yes No No Yes Yes

User Group membership at “Corporate Directory”

Group “A” Group “B” Group “C” Group “D” Group “E”

User Role Group membership at “Corporate Directory”

Group “A” Group “B” Group “C” Group “D” Group “E”

Elizabeth Basic Yes No No Yes No

Francesca Basic Yes No No Yes No

Helen Basic Yes No No Yes No

Ian Basic Yes No No Yes No

Uist Basic Yes No No Yes No

Yvette Basic Yes No No Yes No

Mike CEO Yes Yes Yes Yes Yes

Queenie CEO Yes Yes Yes Yes Yes

Claudette Customer No Yes No No No

Daphne Customer No Yes No No No

Geoff Customer No Yes No No No

Lupe Customer No Yes No No No

Ondine Customer No Yes No No No

Peter Customer No Yes No No No

Sarah Customer No Yes No No No

 Chapter 17. Identity management 535

This is fine for 26 users and five entitlement, but the next problem that emerges is
one of scale. The mere collection task involved for 1000 users and a larger range
of entitlements becomes costly and, in larger cases, unrealistic. What is needed
is a single data source that is collected automatically and contains all
user/entitlement information, which can be used for reporting and analysis. Many
centralized identity management solutions provide this kind of collection and
reporting facility. As we saw in an earlier section, one way of countering the
political objections to RBAC is to implement centralized identity management
and progress towards RBAC as political support is developed. Once again,
deployment of a centralized identity management solution can be used as a tool
to develop a design for an RBAC model prior to the deployment of the RBAC
model itself.

Following are a few other things to be careful of:

� No matter how you collect the information, it has to be correct at the point of
collection. Examination of the user information in Table 17-3 on page 535
suggests that Queenie and Mike both have identical roles, in this case, CEO.

Vera Customer No Yes No No No

Xerxces EMP &
CUST

Yes Yes No Yes No

Alwena HR Yes No Yes Yes No

Jolina HR Yes No Yes Yes No

Neil HR Yes No Yes Yes No

Ray HR Yes No Yes Yes No

Brian System
Admin

Yes No No Yes Yes

Katya System
Admin

Yes No No Yes Yes

Thomas System
Admin

Yes No No Yes Yes

William System
Admin

Yes No No Yes Yes

Zach System
Admin

Yes No No Yes Yes

User Role Group membership at “Corporate Directory”

Group “A” Group “B” Group “C” Group “D” Group “E”

536 Enterprise Security Architecture Using IBM Tivoli Security Solutions

In practice, however, Queenie has the full access because she is the CEO,
while Mike has been with the organization since leaving school and acquired
a number of access permissions, as he has moved jobs within the
organization and his access rights have not been rescinded. He is not the
CEO.

� Similarly, Uist and Yvette both have the basic role, but neither worked for the
company for over a year. Both these cases highlight the need to carry out a
reality check audit as part of the process of designing an identity
management system (whether or not it is RBAC).

� Some entitlements may have no IT dependencies. If a service is provisioned
and the provisioning results in the involvement of a physical process (smart
card generation and issue, uniform manufacture, and so on), then care must
be taken not to include these potentially time delayed tasks into a workflow,
which could delay other provisioning requirements. An RBAC design should
take this type of entitlement into account.

� Up to now, we talked about each entitlement as a group of a service as
though it has no relationship with other services. If group’s definition are up to
each platform administration, you have a higher potential for a high number of
roles. If you can, however, do group definitions as “corporate groups” you will
lower this potential and basically each platform administration will have to
create the already-defined groups and then assign them correct access.

� Xerxces seems to be in a role of one person. He has picked up this unique
role because he is both a basic employee of the organization and he is also a
customer. We must therefore check with the security policy to see if he is
allowed this “double” role under one name. It makes sense in some
organizations to specifically separate Basic and Customer roles and disallow
the Emp & Cust role.

� Even if an immediate RBAC design cannot be achieved, some roles should
be self-evident. A basic corporate employee user (with network and e-mail
access) and an eCustomer role (with e-business application access) are
examples. Implementation of these roles will stimulate the RBAC design
process and reduce the scale of the problem.

In practice, given the likely scale of most RBAC designs, it is necessary to
include costing associated with the collection, clean up, and analysis of the
existing user/repository data. It is a strong recommendation that any centralized
identity management solution chosen should be capable of being deployed as a
tool to help with the design of the full RBAC model. While this RBAC design is in
preparation, some ROI can be gained from the automation of user provisioning
and workflow processes.

 Chapter 17. Identity management 537

17.6.4 Observations
Most enterprises use a blend of access control models based on the sensitivity of
the information or the level of effort required to change the applications. Ideally
the enterprise should have a predominant access control model such as RBAC
and use the other access control model to handle exceptions. As a rule of thumb,
the 80/20 ratio may be used. However, this ratio will vary based on the
enterprise’s business policies and security policies.

17.7 Planning the approach to the solution
In this section, we discuss the approach for architecting an identity and credential
management system as being part of an overall enterprise security architecture,
as well as the aspects of understanding and re-engineering enterprise business
processes for managing identities and credentials.

Beyond the capabilities that a provisioning solution provides to deliver return on
investment, it must also succeed in the complex, operational environment of an
organization. The provisioning solution interfaces with a number of external
systems and operates on a considerable amount of information distributed widely
across the organization. It is important that the features of the provisioning
solution be built on architectures and deployed in an environment appropriate to
the organization.

Background information about how to architect an enterprise security
architecture can be found in Chapter 2, “Common security architecture and
network models” on page 19, which is based upon use of the IBM Method for
Architecting Secure Solutions (MASS) covered in depth in Appendix A, “Method
for Architecting Secure Solutions” on page 947. More about business process
management can be obtained from the IBM Redbooks Continuous Business
Process Management with HOLOSOFX BPM Suite and IBM MQSeries
Workflow, SG24-6590.

17.8 Implementation plan
Any implementation should be part of a project and follow a standard set of steps
or phases. There may be a number of methodologies involved, such as a project
management methodology and one or more design and implementation
methodologies.

538 Enterprise Security Architecture Using IBM Tivoli Security Solutions

We are concerned with the architecture and design for an identity management
solution. The project to produce the architecture will normally follow one or more
of the following:

� A company conducts an enterprise-wide Software Architecture project to
review the entire IT environment and produce an enterprise architecture. The
resulting architecture may dictate the need for a solution around identity
management.

� A company conducts an enterprise-wide Security Architecture project. The
project will look at all security aspects of the enterprise (not just the IT
security). The resulting architecture will identify the security areas where the
enterprise needs to focus. This may include identifying the need for a solution
around identity management. This exercise should contribute to the
enterprise Security Policy document that dictates the security policy to be
applied to an enterprise, its employees, and its customers.

� A company purchases an identity management solution based on specific
business needs, such as cost-cutting, audit compliance, and consistent
application of corporate policies.

These leads to a project to deploy an identity management solution, which
includes developing a product-centric architecture and design document. This is
shown in Figure 17-5 on page 540.

 Chapter 17. Identity management 539

Figure 17-5 High-level and product-specific projects

Most projects involve business tasks (such as cost-benefit analysis and
budgeting), project management tasks (such as scheduling, resource allocation,
and risk management), and technical tasks (such as design and build). We
restrict our discussion to the technical tasks associated with the production of the
architecture and design document. Figure 17-6 on page 541 shows a set of
generic steps or phases that relate to the architecture and design document.

Security
Architecture

Project

Enterprise
Architecture

Project

Need for an
Identity

Management
Product

Security
Architecture
document

Product
selection and

purchase

IT
Architecture
document

RFP or other
requirement
specification
document

Product-centric
Implementation

Project

Product-centric
Architecture and
Design document

540 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 17-6 Generic implementation phases for a project

The steps are:

1. Initiation: This step normally involves identifying the project background and
requirements at a high level. The deliverable for this step is some sort of
Statement of Work (SoW) or Project Charter. The high-level requirements
come from a preceding project (such as an IT architecture or security
architecture project) or the software purchase requirements.

2. Definition: In this step, the project is defined in detail. This involves gathering
data about existing systems, users, procedures, and other information and
the detailed requirements of the solution. The deliverable for this step is one
or more documents defining the project. These may include a Project
Definition Report, a Requirements document, a Functional Specification, and
an Existing System Analysis document.

3. Design: This step involves designing the solution. The deliverable for this
phase is the Architecture and Design document.

4. Build: This is where the solution is built and implemented.

17.8.1 Definition of an identity management solution
The definition phase defines the project in detail, including the current
environment, the problem to be solved by the solution, and the detailed
requirements for the solution.

The initial project definition is based on the documentation that triggered this
project, such as the IT Architecture, Security Architecture, RFP, or equivalent.

Initiation Definition

SoW or
Charter

Definition
Report

Design

Architecture/
Design

Build

 Chapter 17. Identity management 541

These documents identify the business background, the business need for the
solution, and, normally, the business and technical requirements for the solution.

For an identity management solution, the following areas must be defined in this
phase (in no particular order):

� User management procedures: The procedures for managing users, who
manages users, and what is required of the solution for managing users

� Password management procedures: The procedures for managing account
passwords, who manages passwords, and what is required of the solution for
managing passwords

� Access control management procedures: The procedures for managing
access control, who manages access control definition, and what is required
of the solution for managing access control

� Security policy: What the corporate security policy defines for users,
accounts, passwords, and access control

� Target systems: The current system environment (including operating
systems, databases, applications, the network, firewalls, physical location,
and access control) and the system requirements of the solution

� Interfaces: The interfaces to the current identity management mechanisms
and procedures and the integration requirements of the solution

� Auditing and reporting procedures: The procedures for auditing and reporting,
who is involved in the auditing and reporting of users and their access, the
audit requirements for the solution, and the reporting requirements for the
solution

� Technical requirements: The other technical requirements for the solution,
such as availability and recovery

Gathering this information normally involves a series of interviews and
workshops with the people and teams involved in identity management. This may
include the CIO, IT executive, security management/administration team,
operations, help desk, key technical teams (UNIX sysadmin, Windows admin,
and so on), and any application development teams and business managers
involved in the project. The combination of these interviews and workshops
develop a picture of how the system currently works and how it could be
improved. The project owners should drive the requirements for the proposed
system, although others may contribute to an understanding of the need for the
requirements.

A key component of delineating the definition and design phases is that the
existing system and solution requirements are agreed on between the project
owner and the project team prior to the commencement of the design phase.

542 Enterprise Security Architecture Using IBM Tivoli Security Solutions

17.9 Business processes and identity management
The identity management solution comprises both business (or procedural) and
technical (security subsystem-specific) functionality. An implementation involves
installing an identity management tool, which could include integration with
existing business procedures and perhaps some business process
re-engineering (BPR). Both technical (product-related) and business
(process-related) skills are required in the definition and design phases.

To produce an effective identity management solution, the architect must
understand all identity processes involved in detail. Let us look at an example.

A new employee starts working for a company. How is the employee’s identity
information get created? Is there an HR database involved? How is that
connected to salary and benefits? How does HR tie in with the IT department?
How does that person get access to the applications needed to do the job?

The list of processes can include:

� A person joining a company and being defined to the HR system

� A person getting accounts to access applications

� A person getting passwords to use the accounts

� A person changing departments with bulk account changes

� A person changing a role with subtle account changes

� A person changing a surname and affecting accounts

� A person changing passwords

� A person resigning and being “marched out,” requiring locking of accounts

� A person resigning but others need to access their account

� A password being reset by an administrator

� A locked account being unlocked

� An account being locked

� All accounts for a user being deleted

� A set of accounts being moved from one system to another

� An access control group being changed and affecting a number of users

This list is just a sample of the business process review exercise that should be
performed as part of the Project Definition phase.

Implementing an identity management solution may involve designing a solution
that complements the existing business processes or it may involve significant

 Chapter 17. Identity management 543

business process re-engineering. The project requirements will indicate the level
of business process re-engineering.

Adoption of any re-engineered processes must involve analysis of the impact of
the solution on:

� The system owners. For an identity management solution, this will be the
company executive (for example, the owners of the security policy) and the IT
Security department.

� The system administrators. For an identity management solution, this will be
the security administrators, help desk staff, and technical support.

� The system users. For an identity management solution, this will be everyone
defined as IT users in an organization.

Any changes to processes could potentially affect every person in a company.
These changes may drive the implementation of an identity management system
(for example, reducing password-reset help desk calls by allowing users to
change their own passwords). If there are to be changes to the processes, the
architect and project team need to be cognizant of:

� Usability: Users of various skill levels may be using the solution, so the
usability of the components must be appropriate to all levels of users.

� Documentation: Process changes affecting a large number of users will
require greater documentation support than a change affecting a small team.
This may include procedure documents, intranet pages, and online help.

� Education: As with documentation, if you are deploying significant changes to
a large number of people, thought must be given to the education plan.

17.10 Conclusions
This chapter has examined the issues and circumstances that affect the design
of an identity management solution.

IBM Tivoli Identity Manager, IBM Tivoli Identity Manager Express, and IBM Tivoli
Directory Integrator are principally deployed to consolidate, provision, and
manage users and identities across disparate identity groups, domains, and
federated application repositories, regardless of whether these exist as singular
or multiple management realms. Frequently, these realms inherit or adopt a
commonly used role-based sphere of authority, whether hierarchical or scope of
authority. Some of the goals for centralized management are:

� Easing compliance with security audits

� Consolidating control of the user management processes

544 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Eliminating inconsistencies from human error and “management by mood”

� Reducing training costs and education requirements

� Reducing help desk and overall administration costs

� Involving fewer people in day-to-day management

� Dividing work along organizational or departmental structures

� Improving response to user changes

� Leveraging user information in all business processes

Tivoli Identity Manager and Identity Manager Express work to address this
structured approach to user and ID management by allowing a very high degree
of configuration to map functional roles and associated access control
provisioning to an organization’s IT business processes.

Tivoli Directory Integrator enables you to integrate many different applications
either in conjunction with Tivoli Identity Manager or on its own. Directory
Integrator offers a rich and easy set of tools that can help you get users, systems,
and applications online and productive quickly.

Combining Tivoli Identity Manager and Identity Manager Express with Directory
Integrator provides a robust and complete identity management solution. This
solution can provide lifecycle management (user self-care, enrollment, and
provisioning), identity control (access and privacy control, single sign-on, and
auditing), and identity foundation (directory and workflow) to effectively manage
internal users, as well as an increasing number of customers and partners
through the Internet.

 Chapter 17. Identity management 545

546 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 18. Identity Manager structure
and components

This chapter provides information about the structure and components of IBM
Tivoli Identity Manager. We discuss the concept of lifecycle management and
IBM Directory Integrator’s place in the context of identity management. Other
topics include:

� The high-level logical component architecture for IBM Tivoli Identity Manager

� The various internal modules and sub-processes of Identity Manager

� Role-Based-Access-Control

18

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 547

18.1 IBM Tivoli Identity Manager entities
Identity Manager’s role is to manage users and their accounts. Passwords, group
memberships, and other attributes are associated with the users and accounts.
These all relate to managed systems and applications. To enable management
of users, accounts, and associated information, Identity Manager uses an
organizational tree and roles, ACLs, and policies. Identity Manager also contains
workflow, audit logs, and reports. These are described in the following sections.

The entities managed by Identity Manager are:

� Users, accounts and attributes
� Passwords
� Group memberships
� Managed systems and applications

18.1.1 Users, accounts, and attributes
A user can be classified as a Person, a Business Partner Person (BPPerson), or
custom Person. A Person is typically an employee of the company or
organization. A BPPerson is typically an individual who needs access to an
organization's managed system or application but who is not considered an
employee. All classes of users are managed in the same way. However, more
information is required when adding a Person than when adding a BPPerson
when using Identity Manager standard entities. A custom Person is used when
the standard Person definition does not suit an organization and has to be
extended for the organization.

Figure 18-1 on page 549 shows the relationship between a user, person and
account. In the figure, a person, or an employee, Jane Doe is defined in the HR
system of the company. When Jane is defined to Identity Manager, user accounts
on managed resources such as UNIX, Microsoft Active Directory, and IBM Tivoli
Access Manager can be provisioned according to the provisioning policy.

548 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 18-1 Person, user, and account relationship

A person can be located anywhere in the organization tree, so the organization
tree represents the user structure of a company.

The personal information is defined as attributes on the person objects. This may
include first, last, and full names, phone numbers, employee number, supervisor,
and e-mail address.

An account is a person's access to Identity Manager or to a Service (managed
resource), such as Linux, Active Directory, Solaris, SAP, and so on. Accounts
have attributes that are defined by the managed resource.

Reconciliation is the process of determining the accounts existing at particular
managed resources and processing each against provisioning policies defined
within Identity Manager based on the owner.

An orphan account is an account that is not associated with a Person. Orphan
accounts are generated when the reconciliation process cannot automatically
associate the account with a person.

W in d o w s
U n ix

A c c e s s
M a n a g e r

J a n e D o e

H R S y s te m
N a m e: Ja n e D o e
D e p t: A cco u n tin g
M a n a g e r: J oh n S m ith
A d d re ss: 1 0 M ain S t.
T e l. N o: 55 5 -1 2 1 2

H R S y s te m
N a m e: Ja n e D o e
D e p t: A cco u n tin g
M a n a g e r: J oh n S m ith
A d d re ss: 1 0 M ain S t.
T e l. N o: 55 5 -1 2 1 2

 Chapter 18. Identity Manager structure and components 549

18.1.2 Identity feed
Identity Manager users are created either by importing identity records with the
use of an identity feed or by manually creating each user. An identity feed is the
process of synchronizing the data between an authoritative data source, such as
an HR system, and Identity Manager. The initial reconciliation populates Identity
Manager with new users, including their profile data. A subsequent reconciliation
creates new users and also updates the user profile of any duplicate users that
are found.

18.1.3 Passwords
All accounts have passwords. Account passwords can be centrally managed by
their owners or administrators using the Identity Manager Web interface.

Password management is a very important topic, since passwords represent
access to corporate applications, they have to be securely managed in their
whole lifecycle. IBM Tivoli Identity Manager provides a full set of features to
manage the passwords in a secure environment.

There are two options for application’s passwords managed by IBM Tivoli
Identity Manager, passwords can be synchronized or not. The synchronization
can be applied to all accounts associated with a user or with selected accounts.
For most passwords, this is a one-way synchronization. Identity Manager sets
the password and pushes it to the managed targets. Identity Manager cannot
accept a password change request from a target and push this to all associated
accounts. The exception to this is when there is a password synchronization
function for the platform, which intercepts a password change on the managed
platform and passes it through Identity Manager.

When the password synchronization property is enabled, there is only one global
password for all the applications managed by Tivoli Identity Manager. If an
account is being set up for first time, password synchronization does not apply;
there is only one account, and therefore, one password.

If a user has more than one account, password synchronization affects the
following user or administrator actions:

� Creating a new account

� Changing a password for an existing account

� Provisioning an account

� Resetting an expired or forgotten password for an existing account

� Restoring an account that was suspended

550 Enterprise Security Architecture Using IBM Tivoli Security Solutions

If you have enabled the password synchronization property, there is no way for
an user to change the password of only one account. All accounts receive the
password change. Without the password synchronization option enabled, users
could select which account or accounts are to be changed. Administrators can
always change passwords for selected accounts by using the service account
management, but, this would imply that a user will have different passwords
across platforms or applications, because the reconciliation process does not
synchronize passwords.

There is a process where Identity Manager generates a random password. This
can be displayed to an administrator or mailed to a user. Also, there is the option
where Tivoli Identity Manager could generate a password for an account, and
send a URL to the user for password pickup.

Tivoli Identity Manager uses a challenge/response function to verify a user’s
identity if they have forgotten their Identity Manager password. The challenge
questions can be picked from a standard list or defined by the user. When a user
logs into Identity Manager for the first time, they enter or select the challenge
questions (if configured) and responses. On subsequent logins to Identity
Manager, they can select a forgot password option and a subset of the challenge
responses are used to verify the user.

18.1.4 Group membership
Accounts are given access on target systems and applications via some form of
group membership. These may be groups on UNIX systems or Windows
domains, SAP groups or profiles, or another access control grouping
mechanism. Membership is granted by using a group attribute on accounts.

Group lists, for most managed targets, are updated with the reconciliation
function. Thus, administrators do not manually enter group names; they select
from a list that is in sync with the respective target.

Note that Identity Manager does not create or delete groups on managed targets.
Nor does it manage ACLs or resource access on the managed targets. This must
be performed by the local administrators or application owners using the native
system or application tools.

18.1.5 Managed systems and applications
Identity Manager manages users on many managed systems. These include
operating systems, such as many flavors of UNIX and Windows servers, and
applications, such as databases and business applications.

 Chapter 18. Identity Manager structure and components 551

Identity Manager deploys an adapter to perform the administration of accounts
on the system or application. Some adapters are deployed to the system or
application and interact locally. Others can operate remotely and be deployed
anywhere in the network.

On the server side, there is a set of definitions of each type of resource to be
managed; this set of definitions is called a profile or service profile. Each profile
must be deployed to the Tivoli Identity Manager Server before you can manage
this type of resource.

The adapter to server communication by default does not use SSL, however you
can enable SSL communication with one-way or two-way authentication.

On the Tivoli Identity Manager Server, WebSphere Application Server SSL
support is used.

Each adapter instance is defined as a service within the Identity Manager server.
Accounts are associated with specific services. For example, there is a service
for every Linux server. The services are defined within the organization tree and
can have ACLs attached to control administrative access to functions performed
against the service. A service can only be defined for a pre-existing managed
target.

There is a service profile for every type of service. For example, there is one
service profile for Linux services. The service profile defines the account
attributes for that type of service.

18.2 IBM Tivoli Identity Manager management entities
Identity Manager uses the following entities for management:

� Organizational tree and roles
� Identity Manager roles and ACLs
� Policy
� Workflow
� Audit logs
� Reports
� Lifecycle management

These are discussed in the following sections.

552 Enterprise Security Architecture Using IBM Tivoli Security Solutions

18.2.1 Organizational tree and roles
Central to Identity Manager is the organization tree (or org tree). It defines the
structure for the organization that Identity Manager is being deployed into. The
tree consists of:

� An organization: There is normally only one organization at the top of the org
tree.

� One or more locations: These are locations defined by the business.

� One or more organizational units: These are teams or departments as
defined by the business.

� One or more business partner organizations: These are business partners as
defined by the business.

� One or more admin domains: These are Identity Manager groupings for
administration.

There is no technical difference between locations, organizational units, or
business partner organizations. They use different icons and allow the org tree to
be modelled as the administrators want.

All people are attached to the org tree at a single point.

A policy is attached to points in the org tree and can apply to objects at that level
or to all objects at or below that level. This policy can control the provisioning of
accounts, account user ID generation and password strength. Thus, you could
have a corporate-wide password policy defined at the organization level in the
org tree and a specific password policy that applies to a specific branch or
department of the organization.

Identity Manager roles or organizational roles and ACLs are also attached to
points in the org tree, defining the scope of specific access rights within the
Identity Manager product.

Organizational roles are used to model job roles within an organization. They can
be used to map users to a set of accounts that are granted through a
provisioning policy. organizational roles can be static or dynamic. In static
organizational roles, assigning a person a static role is a manual process, and it
can be done every time it is needed, during an identity creation or through an
identity feed.

 Chapter 18. Identity Manager structure and components 553

Dynamic organizational roles set person membership to a specific role based on
valid LDAP filters. Dynamic organizational roles are evaluated at different times:

� When a new person is created in the Tivoli Identity Manager system.

� When a person information change in the Tivoli Identity Manager system.

� When a new dynamic organizational role is created.

Every time a dynamic organizational role is evaluated, all people who fit the
LDAP filter affected with the membership of the role, and their personal
information is updated with the membership information.

18.2.2 Identity Manager groups and ACIs
A user's access within Identity Manager (for example, the functions they can
perform in Identity Manager) is governed by the groups they belong to.

Identity Manager governs user access rights using Access Control Item (ACI).
An ACI controls user access by defining the access privileges of an Identity
Manager group or ACI principal. Members of an Identity Manager group or ACI
principal can view and perform operations on attributes within a target class
(context) as defined by the scope of the ACI.

This role-based access is for Identity Manager users assigned to the Identity
Manager groups. Identity Manager system administrators are not controlled by
ACIs because the administrator account, by default, has access to all functions in
the system. All other users, by default, do not have access to any functions or
features in the system.

18.2.3 Policy
Identity Manager employs four types of policy: provisioning policy, password
policy, identity policy, and service selection policy.

Provisioning policy
A provisioning policy confers access to many types of managed services
(Identity Manager, Windows 2003, Solaris, and so on) by granting a person
access based on an organization (for example, a person's location in the org.
tree, an organizational role, or all people not in any organizational role). In other
words, access to a target managed service is either:

� Granted to all persons in an organization

� Granted only to persons assigned to a specified organizational role

� Granted to persons not covered by any other provisioning policies on any of
the entitlement targets associated with the current policy

554 Enterprise Security Architecture Using IBM Tivoli Security Solutions

A provisioning policy is used to define what accounts can be created for a user
and it can, optionally and automatically, create the accounts on those systems. It
can also be used to define a specific approval workflow process that has to be
applied to the accounts.

At the time of creating a provisioning policy, there are many accounts that could
be affected by this new policy. In a test environment, it might not have major
implications, but, in a production environment, it could have implications based
on access granted because of the policy. To prevent any accidental behavior of a
provisioning policy there is a simulation function that helps you understand what
and who is affected by the creation or modification of a provisioning policy.

Service selection policy
A service selection policy extends the ability of provisioning policies by
provisioning accounts based on personal attributes. In order for a service
selection policy to be enforced, a provisioning policy must target it. The service
selection policy then identifies the service type to target and defines provisioning
based on a JavaScript.

Identity policy
An identity policy defines how a user's ID is created. Identity Manager
automatically generates user IDs from the identity policy. Identity policies can be
set as a global policy or as a service specific policy. If the identity policy is not a
global policy, the policy can be assigned on a per service basis (for example, it
only applies to specific service types) or it can be assigned to a combination of
service types or instances. For example, if all user IDs must be composed of the
user's first initial and last name, a global identity policy must be created for the
organization. If all user IDs for a specific service must contain a certain number,
a service specific identity policy must be created for the service.

Password policy
A password policy sets parameters that all passwords must meet, such as
length, type of characters allowed and disallowed, and so on. You can set up
password policies to apply to any of the following:

� Only one service instance or more than one service instances

� All service instances of only one service type or multiple service types

� All services, regardless of service type

18.2.4 Workflow
A workflow is a set of steps or activities that define a business process. You can
use the Tivoli Identity Manager workflows to customize account provisioning and

 Chapter 18. Identity Manager structure and components 555

lifecycle management, such as adding, removing, and modifying people and
accounts in IBM Tivoli Identity Manager. The workflow process is defined by a
workflow design. When a user places a request for a new account, new access
rights, or changes to an existing account, the request must be approved by
signature authorities defined by a workflow design.

A workflow design can be added to an entitlement in a provisioning policy when
the entitlement is defined or at a later time. This helps you customize how
resources (accounts, services and so on) are provisioned.

Workflow designs are built using the Identity Manager GUI. The design created
by the visual programming Java applet in the GUI actually produces an XML
implementation under the covers.

18.2.5 Logs and audit
Identity Manager employs logging features that log the events during specific
transactions. This facilitates isolating and debugging of problems, focused on
troubleshooting key Tivoli Identity Manager business processes, such as:

� Add, Modify, Suspend, Restore, Delete Person

� Add, Modify, Suspend, Restore, Delete Account

� Change Password

� Add, Modify, Delete Provisioning Policy

� Add, Modify, Delete Dynamic Role

� Add, Modify, Delete Service Selection Policy

� Reconciliation and Event Processing (including identities)

Reports can also be run against the audit logs. Any action taken by a Tivoli
Identity Manager user that changes a business object or the configuration of the
system is audited:

� ACI management

� User Management (People, Role and Container Management)

� Policy Management (Provisioning, Service Selection, Identity)

� Service Management

� Account Management

� Configuration Management

� Authentication Events

556 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Only non-workflow actions will be audited (workflow actions currently have an
audit trail). Workflow actions are also audited, but only at the high level. The audit
log for any activity can be viewed using the Identity Manager Web user interface.

18.2.6 Reports
Tivoli Identity Manager provides several different standard reports. These reports
use predefined templates that enable you to specify criteria that produce the
report details that you want:

� Account Operations: Shows account activities.

� Account Operations Performed by an Individual: Shows account operations
that have been requested by one or more individuals.

� Approvals and Rejections: Shows requests for which an approval activity has
occurred.

� Pending Approvals: Shows the status of pending approvals for access to
services.

� Operation Report: Shows requests by type of operation, date, who requested
the operation, and for whom the operation was requested.

� Individuals’ Accounts: Shows the account information of individuals.

� Individuals’ Accounts by Role: Shows the names of individuals associated
with a specified role.

� Entitlements Granted to an Individual: Shows entitlements that have been
provisioned to individuals and the provisioning policies that govern the
individuals.

� Policies Governing a Role: Shows roles and the policies that govern the roles.

� Suspended Accounts: Shows suspended accounts and associated persons
and services.

� Suspended Individuals: Shows person names that have been suspended.

� Policy Report: Shows policies and related information, including associated
services, organizational units, and roles.

� Dormant Accounts: Shows accounts with no activity.

� Access Control Items (ACIs): Shows ACI definitions and associated
information.

� Summary of Accounts on Services: Shows service types and corresponding
service names and accounts.

� Services: Shows requests for existing service instances.

 Chapter 18. Identity Manager structure and components 557

� Reconciliation Statistics: Shows the status of various accounts and account
activities.

� Rejected Report: Shows denied requests by date, who requested the
operation, and for whom the operation was requested.

� User Report: Shows all operations that meet the specified criteria.

� Account Report: Shows people and their associated accounts and whether or
not the accounts are in compliance with current policies.

� Audit Events: Shows audit records of user actions.

� Non-Compliant Accounts: Shows non-compliant accounts and associated
services.

Access to any of the reports is defined by the report ACIs. These ACIs govern
the availability of reports for all users, including access permission to view
reports and access permission to run reports.

18.3 Logical component architecture
The logical component design of Identity Manager may be separated into the
following layers of responsibility, which are shown in the center of Figure 18-2 on
page 559.

� The Web User Interface layer
� The Application layer
� The Service layer

Figure 18-2 on page 559 illustrates the graphical workings of the package.

558 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 18-2 Identity Manager logical architecture

18.3.1 Web User Interface layer
The Web User Interface module is a set of combined sub-processes that provide
the content to a user’s browser and initiating applets (both run on the client and
the server), such as the Workflow Design and the Form Creation. The Web User
Interface is the interconnecting layer between that of the user’s browser and the
identity management Application layer.

In Figure 18-2, there are three types of user interaction points: user, supervisor,
and administrator. These types are merely conceptual. Tivoli Identity Manager
enables customers to define as many different types of users with different
permissions as they like.

However, for this diagram, it is important to note that the system is built with a
general concept of the capabilities of the system users. For example, it is
assumed that the administrator needs advanced capabilities and requires a more
advanced user interface, possibly requiring a thicker client (applet). It is assumed
that the supervisor needs fewer capabilities but may still require concepts such

Application

Web User Interface

Service

LDAP Database

Application

Adapter

RDBMS

Adapter

Operating
System

Adapter

Account provisioning/reconciliation

Supervisor
Browser

Administrator
Browser

 End User
Browser

User/Administrator requests/responses

Entity puts/
gets

Transactional
info, schedule
reads/writes

Java API

 Chapter 18. Identity Manager structure and components 559

as an organizational chart. Because the number of supervisors in an enterprise
will vary, a thick client is not practical. Last, there are no assumptions made for
the end user. The interface presented to the end user must be a thin client with
very basic and intuitive capabilities.

The Web User Interface subsystem contains all modules necessary to provide a
Web-based front end to the applications of the Applications subsystem.

Figure 18-3 Web User Interface module subprocesses

18.3.2 Application layer
The core of the IBM Tivoli Identity Manager system is the Application Layer.
Residing on an application server, the application layer provides the
management functionality of all other process objects.

The Application subsystem contains all modules that provide provisioning
specific capabilities, such as identity management, account management, and
policy management. Each application makes use of the core services in the
Services layer to achieve its goals. It is the Applications module that provides the
external interface to the provisioning platform. Following is a brief description of
each module, as well as a graphical overview, as shown in Figure 18-4 on
page 561.

Interface

Web User Interface

Menu System Form
Rendering Search

Organization
Tree Desktop Workflow

Design

Form Design

Application
Interface

560 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 18-4 Applications module sub processes

Workflow Management module
The Workflow Management module provides the capabilities required to manage
workflow processes, such as their addition, modification, and removal. The ability
to view the status and details of active and historical processes is also provided
in this module.

Policy Management module
The Policy Management module provides the capabilities to manage the policies
in the system, including provisioning, \password, service selection, and identity
policies.

Account Management module
The Account Management module provides the capabilities required to manage
accounts, such as their addition, removal, suspension, reinstatement, and
modification.

A p p lica tio n s

W ork flow
M anagem ent

P o licy
M anagem ent

A ccoun t
M anagem en t

Iden tity
M anagem en t

S ys tem
C on figura tion

R epo rting

E n tity
M anagem ent

 Chapter 18. Identity Manager structure and components 561

Identity Management module
The Identity Management module provides the capabilities required to manage
identities, such as their addition, removal, suspension, reinstatement, transferal,
and modification, including the changing of roles. The definition of roles,
including dynamic roles, is also included in this module.

System Configuration module
The System Configuration module provides the capabilities required to manage
the IBM Tivoli Identity Manager system itself, such as defining behavioral
properties.

Reporting module
The Reporting module provides the canned report capabilities of the system.
This module provides the query and formatting of the reports driven from the
user interface.

Entity Management module
The Entity Management module provides the capabilities required to manage the
types of entities managed by the system, such as types of identities and
accounts. This includes the ability to define the schema for the entity type, the
operations the entity type can support, and the lifecycle of the entity type.

18.3.3 Service Layer
If the IBM Tivoli Identity Manager server is the application of complex rules that
have been developed, then the applications server is the engine that runs those
rules or objects. It is communicating not only to the user facing Web server, but
also to the adapters residing on the managed services and to directories for
storage of information.

The Core Services subsystem contains all modules that provide general services
that can be used within the context of provisioning, such as authentication,
authorization, workflow, and policy enforcement. These services often use other

Note: Sitting between the Web user interface and the Application layer in
Figure 18-2 on page 559 is the public Java API. This API provides a set of
Java classes that abstract the more commonly-used functions of the
provisioning platform such as identity management, password management,
and account management. The classes that make up this API are the same
classes the Identity Manager product uses for its out-of-the-box user interface.

For more information, refer to documentation provided with the Applications
API in the <ITIM_HOME>/extensions/doc/applications directory.

562 Enterprise Security Architecture Using IBM Tivoli Security Solutions

services to achieve their goals. A brief description of each module is given in the
following sections, as well as a graphical overview, as shown in Figure 18-5.

Figure 18-5 Core Services module sub-processes

Authentication module
The Authentication module provides a set of authentication implementations that
can be used by clients of the service. Examples of these implementations are
simple password authentication and X.509 certificate authentication. The module
is designed as a framework that can be extended by customers to provide their
own implementations.

Authorization module
The Authorization module provides an interface to enforce authorization rules as
clients attempt operations in the system. These rules apply to accessing data
within the system, as well as to operations that can be applied to the system
data.

Mail module
The Mail module provides an interface for notifying users via a messaging
system, such as e-mail. The module is configurable to accommodate different
messaging systems.

Messaging module
The Messaging module provides guaranteed asynchronous messaging to and
between internal modules in the architecture. The module relies heavily on the
Java Message Service (JMS) specification to provide support for multiple
messaging middleware vendor implementations.

Core Services

Managed Services

HR DatastoreWorkflow Database

Authentication

Authorization

Messaging

Scheduling

Policy

Workflow Data Services

MailRemote
Services

Orchestration

RoleLogging

Identity/Operational
Database

 Chapter 18. Identity Manager structure and components 563

Scheduling module
The Scheduling module provides a timer that notifies clients of timed events that
they have subscribed for. The Scheduling module uses the Messaging module to
notify those clients.

Policy module
The Policy module enforces the policies that associate users with services. The
module ensures that provisioning requests conform to the policies that are
defined. The module resolves the appropriate policies that apply to a user and
determines the services for which that user is authorized. The module validates
and generates passwords. The module generates identities for users and
accounts.

Workflow module
The Workflow module executes and tracks transactions within the system. This
would include the provisioning/de-provisioning of a service, a user's status
change, the custom process associated with a provisioning request in the
system, or any other transaction that affects a user's, or group of users', access
to services. Each of these transactions is persistent for fault-tolerant execution
and historical auditing purposes. Clients can query the Workflow module for the
status of the transactions being executed.

Remote Services module
The Remote Services module provides the interaction with the external systems
for provisioning and de-provisioning services. The synchronization of service
information and user information is also performed within this module. The
module is designed as a framework that can be extended by customers to
provide their own implementations of provisioning and de-provisioning of
services. This allows the platform to easily support different protocols and APIs
that may be supported by the resources to be provisioned.

Data Services module
The Data Services module provides a logical view of the data in persistent
storage (LDAPv3 directory) in a manner that is independent of the type of data
source that holds the data. The model abstracts the details of the stored data into
more usable constructs, such as Users, Groups, and Services. The model also
provides an extendable interface to allow for customized attributes that

Note: The clients discussed in this section are internal to Identity Manager.
For example workflow is a client to scheduling—it uses scheduling to allow
workflows to start at a later date instead of immediately.

564 Enterprise Security Architecture Using IBM Tivoli Security Solutions

correspond to these constructs. Meta-Data information about the persistent data
can also be retrieved using this module.

Logging module
The Logging module provides a common logging interface to all other modules.
The implementation of this logging interface is provided by the JLOG logging
toolkit.

Role module
The Role module evaluates dynamic memberships to roles. This module is
called upon when an identity or dynamic role definition changes to identify which
identities should be members of dynamic roles.

Orchestration module
The Orchestration module provides a coordination service for extensible
operations that are performed on entities and manages the lifecycles of those
entities. For instance, the orchestration module provides an abstraction layer to
the Account Management application for executing the steps needed to provision
an account of a given type. Regardless of the steps involved, which could be
customized or changed, the Account Management module would always use the
same interface to the Orchestration module.

18.3.4 LDAP directory
The IBM Tivoli Identity Manager system uses an LDAPv3 directory server as its
primary repository for storing the current state of the enterprise it is managing.
This state information includes the identities, accounts, roles, organization chart,
policies, and workflow designs.

More details on the LDAP Directory and its schema are available in the IBM
Tivoli Identity Manager Database and Schema Reference Version 4.6,
SC32-1769.

18.3.5 Database
A relational database is used to store all transactional and schedule information.
Typically, this information is temporary for the currently executing transactions,
but there is also historical information that is stored indefinitely to provide an
audit trail of all transactions that the system has executed.

More details on the database and its schema are available in IBM Tivoli Identity
Manager Database and Schema Reference Version 4.6, SC32-1769.

 Chapter 18. Identity Manager structure and components 565

18.3.6 Resource connectivity
The back-end resources that are being provisioned by IBM Tivoli Identity
Manager are generally very diverse in their capabilities and interfaces. The IBM
Tivoli Identity Manager system itself provides an extensible framework for
adapting to these differences in order to communicate directly with the resource.
For a more distributed computing alternative, a built-in capability to communicate
with a remote adapter is provided. The adapters typically use an XML-based
protocol, either Directory Access Markup Language (DAML) or Directory Service
Markup Language (DSML version 2) or Remote Method Invocation (RMI), as a
communications mechanism. Adapters are typically know as follows:

� ADK-based adapters

An ADK-based adapter is a Tivoli Identity Manager adapter typically
developed by Tivoli using the Tivoli Identity Manager Adapter Development
Kit. These adapters usually use the DAML protocol.

� Tivoli Directory Integrator-based adapters

A Tivoli Directory Integrator-based adapter is a Tivoli Identity Manager
adapter developed and running on Tivoli Directory Integrator. These adapters
usually use DSMLv2 or RMI protocols, being the RMI the new standard.

Directory Access Markup Language connectivity
DAML is a proprietary XML message format used when communicating with one
of IBM Tivoli Identity Manager’s standalone adapters. These adapters are
programs installed on either the managed resource, or on a host that can
manage the resource through a remote administration API.

DAML is a simple XML schema definition that enables the encoding of identity
information in the form of an XML document so that it can be easily shared via IP
protocols such as HTTP/S, as shown in Figure 18-7 on page 568.

566 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 18-6 DAML connectivity to a service

Transactions from the IBM Tivoli Identity Manager server are sent securely via
HTTPS to the service adapter and then processed by the adapter.

For example, if a service has just been connected to the IBM Tivoli Identity
Manager server, the accounts that already exist on the server may be reconciled
or pulled back in order to import the users’ details into the IBM Tivoli Identity
Manager LDAP directory. If a password change or a provisioning of a new user
occurs, the information is transferred to and then processed by the adapter. The
adapter deposits the new information within the application or operating system
that is managed.

Directory Services Markup Language connectivity
DSMLv2 is an industry standard XML message format for the representation of
directory data and operations. DSMLv2 is mostly used in conjunction with IBM
Tivoli Directory Integrator to create custom adapters.

Directory Integrator provides an easy and flexible way to link IBM Tivoli Identity
Manager to a wide variety of managed resources. Directory Integrator offers
connectors that can be used to manage data in files, directories, databases,
message queues, as well as many other data sources. It allows you to define,
using simple scripts, how DSMLv2 operations issued by IBM Tivoli Identity
Manager should be translated into operations on the managed resource.

IP
Network

DATA

Identity Manager
Server

Web Interface

Applications

Core Services

DAML over HTTP/S

DAML
Adapter

Service

 Chapter 18. Identity Manager structure and components 567

Figure 18-7 DSMLv2 service communication

Transactions from the Identity Manager server are sent securely via HTTPS to
the service adapter and then processed by the adapter example of this would be
if a service has just been connected to the IBM Tivoli Identity Manager server,
the accounts that already exist on the server may be reconciled or pulled back in
order to import the users’ details into the IBM Tivoli Identity Manager LDAP
directory. If a password change or a provisioning of a new user occurs, the
information is transferred to and then processed by the adapter. The adapter
deposits the new information within the application or operating system that is
managed.

Other DSMLv2 usage is for identity datafeeds.IBM Tivoli Directory Integrator can
be used to integrate identity sources such as HR, ERP, CRM, contractors
systems, directories, databases and many other identity sources to feed person
entities and keep them up-to-date at the identity management solution.

Remote Method Invocation connectivity
Additionally to DSMLv2, Tivoli Identity Manager can connect to Tivoli Directory
Integrator adapters using Java Remote Method Invocation (RMI) calls.

Figure 18-8 on page 569 shows the communication between Identity Manager
and a Director Integrator RMI-based adapter, possibly because of both products
having Java RMI available as a communication service.

IP Network

Service Identity Manager
Server

Applications

Core Services

Web Interface
DATA

DSML v2 over HTTP/S

Directory
Integrator

DSMLv2
Listener

Data
Connector

Scripts

568 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 18-8 Tivoli Identity Manager and Tivoli Directory Integrator RMI communication

Identity Manager reverse password synchronization
Identity Manager allows for password changes to be initiated from some
managed resources in addition to the standard password change screens within
the Identity Manager Web application. For example, a Windows password
change initiated via the native Windows mechanisms can be captured by the
Identity Manager Windows Active Directory reverse password synchronization
component which then sets the password directly to the Windows environment
and have the request sent to the Identity Manager server for processing. This
triggers a password change within Identity Manager and it is treated as a
standard Identity Manager password change with the only difference being that it
is not sent back to the originating managed resource. For example, in the case of
Windows, Identity Manager will not send a request for the user’s Windows
password to be changed again.

The Identity Manager reverse password synchronization component can be
configured to use the Identity Manager password policies to enforce password
rules.

18.3.7 Lifecycle example
With so many pieces it can be difficult to understand how these work together. In
the following example there is a view of major pieces and protocols.

In 17.5, “Lifecycle management” on page 523, we learned that Identity Manager
performs lifecycle management for person entities and their accounts.
Figure 18-9 on page 570 depicts a common example of how lifecycle
management works.

IP Network

Service Identity Manager
Server

Applications

Core Services

Web Interface
DATA RMI

Directory
Integrator

RMI
Interface

AssemblyLines
RMI

Interface

 Chapter 18. Identity Manager structure and components 569

Figure 18-9 Lifecycle management scenario

Lifecycle management follows this flow:

1. A Directory Integrator AssemblyLine called identity datafeed retrieves
identities from the HR system, also referred to as the authoritative source for
identities. Depending on the company requirements and HR system
technology, this can be a push or pull operation, based on schedule or even
triggered from an HR identity modification.

2. Depending on the required attributes, the identity datafeed can pull additional
data from other identity sources.

3. When identity data is ready, a DSMLv2 over http requisition with the person
entity and it‘s operations is sent to the Identity Manager server.

4. The server looks for a current person entity in it‘s LDAP repository and
creates a new entity or updates an existing entity if the person entity already
exists. According to the changes, the Identity Manager server recomputes

Identity
Manager
Server

LDAP
Master

Directory
Integrator

Server 3

Identity
Manager
Adapters

Identity
Manager

Web
Server

HR
System

5

6

1
5

Identity
Manager
Database

Directory
Integrator

Server

Services

Administrative
Clients

Services

6

End user

2

6

Account
Lifecycle

Management

Person
Lifecycle

Management

Other
Identity
Sources

Lifecycle
Management

4

Lifecycle rules

570 Enterprise Security Architecture Using IBM Tivoli Security Solutions

user entitlements and starts each account provisioning or modification cycle,
for example:

a. New person entities are created and accounts are provisioned.

b. Suspend operation suspends all accounts owned by this person.

c. Restore operation restores all accounts owned by this person.

d. Role changes triggers account provisioning, deprovisioning, and
modifications.

e. Attribute changes triggers account dependent attribute modifications.

f. Delete operations delete person entity and suspends user accounts until
some lifecycle rule deletes them.

Note that lifecycle rules may complement these operations but are not
dependent on an identity datafeed. It means they can be triggered anytime for
many different lifecycle management operations. The way operations are
executed can also be customized according to business requirements, for
example:

– Delete operations only suspend accounts.

– Delete operations also delete accounts.

5. Account lifecycle management operations are triggered based on person
lifecycle management results. Provisioning, deprovisioning, and account
modifications are triggered as separate subprocesses. In this example there
are services managed by Tivoli Identity Manager adapters and Tivoli
Directory Integrator custom adapters.

6. Each adapter knows how to manage its platform. The requests are executed,
completing the current lifecycle management. Note that HR system accounts
are also being managed by a Tivoli Identity Manager adapter. These
accounts are for HR system management and are independent of HR data.

This scenario is discussed in more depth in 19.5, “Importing and synchronizing
user data” on page 603.

18.4 Conclusion
As we have seen, lifecycle management is the process in which identities are
completely managed and where the view of the process is most evident. To
achieve a successful and complete automation process, the process itself must
be broken down into the many components that make up the final result.

Identity Manager is a very powerful tool that has many layers and modules within
its structure to enable a complete and successful solution for any environment.

 Chapter 18. Identity Manager structure and components 571

By employing an extensible framework to adapt to the many available data
sources and utilizing a standards-based approach, all of the resources in the
back-end data stores become accessible and linked.

572 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 19. Identity Manager scenarios

This chapter provides real-world examples of an IBM Tivoli Identity Manager
solution. Beginning with basic security architecture considerations and server
placements in network zones. It strives to take you through the business drivers,
concerns, and constraints you may encounter when implementing an identity
management solution.

This chapter also shows you processes and considerations when integrating with
other IBM Tivoli security packages as well as the use of IBM Tivoli Directory
Integrator in a complex environment.

19

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 573

19.1 Basic security architecture considerations
There are several steps involved in transitioning component-level specifications
into security subsystems. An IBM Tivoli Identity Manager system is part of an
enterprise environment and because of that, the architecture has to be flexible
enough to support different configuration options. This section discusses secure
component placement that must be included when creating an identity
management design.

19.1.1 Network considerations
Keep in mind that the network examples we are using do not necessarily include
all possible situations. There are organizations that extensively segment
functions into various networks. In general, the principles discussed here may be
easily translated into appropriate architectures for such environments.

Placement of various Identity Manager components within network zones is a
reflection of the security requirements of each organization. While requirement
issues may often be complex, especially with regard to the specific behavior of
certain applications, determination of a Identity Manager architecture that
appropriately places key components is generally not difficult. With a bit of
knowledge about the organization’s network environment and its security
policies, reasonable component placements are usually easily identifiable.

Figure 19-1 on page 575 summarizes the general Identity Manager component
type relationships to the network zones discussed above.

574 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 19-1 Network zones for Identity Manager placement

Because all Identity Manager components operate on information that should be
tightly secured we recommend that these components all be placed in a
restricted/management zone, except for the components that communicate with
other non-Identity Manager components. So one or more Web servers and
adapters may be deployed in the Production Zone and one or more Web servers
may be deployed in the DMZ to manage external requests from business
partners or customers if no general access control solution, such as Access
Manager WebSEAL is in place.

Remember, these are suggestions based on the common security architecture
subsystems and network models found in Chapter 2, “Common security
architecture and network models” on page 19. There are many models that may
be constructed. This is meant to be best practice. Walkthroughs of complete
business processes, including exceptions, can help you create a viable solution
and refine the requirements.

No components should be
deployed in an uncontrolled
network.

Place only things
that you are willing
to "lose" here. This
is an area of the
network that can
be compromised.

This is your intranet. It
is controlled, but not
restricted. While it is
possible to place
Identity Manager
components here, it is
not recommended.

Organizations may set
up specialized
restricted zones for
production systems,
which could include
Identity Manager
component servers and
supporting
components, such as
LDAP replicas and
Web servers.

Some organizations
set up special
networks to separate
various management
components from
production systems.
Identity Manager
servers should be
placed here with other
servers that should be
tightly secured.

Internet Internet DMZ Intranet Production
Zone

Management
Zone

LESS SECURE MORE SECURE

 Chapter 19. Identity Manager scenarios 575

19.2 An Identity Manager scenario
For this scenario, we revisit Areally Big Investment Corporation, first introduced in
16.1, “Company profile” on page 492.

Areally Big Investment Corp. has been aware for some time that managing their
information infrastructure more efficiently could produce a significant cost
savings. After examining operational costs and conducting a cost analysis study,
the company established that the cost savings are great enough to warrant an
identity management project. They have also established that IBM Tivoli Identity
Manager is the solution that will best fit their needs.

19.2.1 Business requirements
To reduce overall IT operational costs and to centralize user management,
Areally Big Investment Corp. established that implementing an IBM Tivoli Identity
Manager solution will mitigate security risks to an extent that the residual risk is
acceptable to the business. They have also established that the return on
investment is acceptable in the time frame needed to implement the solution.

Because of their worldwide presence, several languages will be supported. Also,
some help desk tasks and administration tasks need to be delegated to their
regional facilities.

The corporate vision is to continue to increase employee productivity and prevent
customers from becoming dissatisfied, while reducing overall costs of operations.
During the cost analysis, the need to apply uniform security policies across
platforms was also identified. To simplify the process, the CEO has prefaced the
requirements with three words: security, efficiency, productivity.

Keeping the three-word-directive in mind, we further refine the requirements into:

� Unified account management
� Single authoritative data source
� Simplified sign-on and unified user experience

� All administrative operations related to user and account management,
including creation, modification, suspension, and password reset, need to be
executed correctly and in a timely manner.

� Reduce the costs of administering users and their accounts. The CEO is keen
to gain cost savings by reducing the amount of work the administrators have
to do. The areas identified where savings could be made include:

– The effort required to reset passwords for users who have forgotten theirs.

– The effort required to manually create accounts when a person joins the
company.

576 Enterprise Security Architecture Using IBM Tivoli Security Solutions

– The effort required to add new accounts (and remove old accounts) when
an employee changes job roles.

� The corporate security policy should be enforced for all user accounts and
their attributes, access rights, and password rules. User accounts
inconsistent with the policy should generally not be allowed.

� The identity management solution must not be so rigid that it prevents the
bank from responding to emergencies and temporary exceptional needs.
Administrators must be able to override the system’s defaults and policies
when necessary.

� The user and account management historical data has to be available from a
corporate-wide perspective in order to verify whether the system works
according to the guidelines and policies. These logs can help understand
shortcomings and implement future improvements.

� Ease of compliance with regulations and audit requirements. Even the bank
has put a big effort in this, they fail on external audits. The solution needs to
address these problems:

– Many employees have access to systems that they should not because
they:

• Changed job roles and retained access from their old job role.

• They are friends with the system administrators and were granted
special access without any form of independent check or review of the
request.

• They have left the company, but their accounts have not been deleted.

– There is no reporting available to verify security compliance.

– There is no periodic certification of users’ access rights.

� The identity management solution must be implemented in a secure manner.
It must ensure that:

– Sensitive data is protected from unauthorized access.

– Audit data is protected from unauthorized alteration.

– The system is protected from unauthorized users.

� The identity management solution must be multilingual. Its user interface,
reports, and e-mail notifications and documentation must be available in the
user language.

19.2.2 Functional requirements
We extract functional requirements by mapping business requirements to their
underlying reasons. We expand the reasons in increasing detail until we find

 Chapter 19. Identity Manager scenarios 577

problems that can be solved using capabilities of Identity Manager. Our
functional requirements will tie these low level reasons for a business
requirement to the Identity Manager capability that will fulfill that business
requirement.

Let us examine business requirements, and search for reasons and the
functional requirements.

� Business requirement: Unified account management.

There is a different interface to every platform and system the bank has. Each
one has a way to manage its specific accounts. With so many platforms and
systems, Areally Big Investment Corp. wastes a lot of resources to manage
its accounts. This can be solved by the integration of every platform and
system into the Identity Manager solution.

This leads to the following functional requirements:

Table 19-1 Functional requirements for unified account management

� Business requirement: Single authoritative data source.

Areally Big Investment Corp. has several user data repositories. Even if this
data was eventually pulled from the HR System or a similar system for
business partners, several paths were followed and now they do not reflect
the same data. There is a need of a single authoritative data source that will
be the only source for all platform account attributes.

This leads to the following functional requirements:

Table 19-2 Functional requirements for unified account management

� Business requirement: Simplified sign-on and unified user experience.

After applying a new security policy for passwords, users have to change
passwords more frequently than before. This leads to users forgetting their
passwords more often, which results in many password reset requests. Users
are less likely to forget their passwords if they use the same password for all
of their accounts.

Password management should be done in a common interface, whatever
accounts users have.

Requirement Description

1 All platforms and systems accounts will be managed centrally.

Requirement Description

1 All platforms and systems accounts will be managed centrally.

2 All identity data will be pulled from a central point.

578 Enterprise Security Architecture Using IBM Tivoli Security Solutions

This leads to the first two functional requirements shown in Table 19-3.

Table 19-3 Functional requirements for timely password management

� Business requirement: Identity management should be executed quickly and
correctly.

There are two main problems in this area: system administrators are unable
to keep up with the volume of requests, and approvals are not being
processed in a timely manner.

The biggest burden on administrators is the increasing number of password
reset requests. We can reduce the burden on system administrators by
delegating the ability to do password resets. This may be done by users’
managers, or possibly by the users themselves. This leads to the first two
functional requirements shown in Table 19-4.

Table 19-4 Functional requirements for timely password management

Another reason that system administrators have trouble keeping up with the
rate of requests is that user and account management operations are time
consuming and skill intensive. Administrators must waste time manually
entering data that could be computed automatically. This is not only time
consuming, it is also error prone. This leads to administrators taking more
time to repeat requests that were done incorrectly.

Administrators must also learn different management interfaces for each type
of account. Administrative productivity could be enhanced by utilizing a
common interface to manage different types of accounts centrally.

This leads to the next set of functional requirements show in Table 19-5.

Table 19-5 Functional requirements for timely account management

Requirement Description

3 Users will have a single password for all of their accounts.

4 A common Web interface will be used for password management.

Requirement Description

3 Users will have a single password for all of their accounts.

5 Password resets will be delegated to users other than the system
administrators; possibly to the end users.

Requirement Description

6 Common values are entered automatically.

7 Manually entered values can be checked for correctness.

 Chapter 19. Identity Manager scenarios 579

The other major cause of delays in user and account management is the
request approval process. Areally Big Investment Corp. identified the
following three primary causes for delays in granting approvals:

– An approver may not be available at the time of a request. Requests
should not be delayed because an approver is out of the office. Approvers
should be able to delegate their responsibilities if they know they will be
unavailable.

– Approvers may be too busy or receive too many requests to respond
quickly. Approvals should be assigned to teams instead of to individuals. It
must be possible for the team members to assign and take ownership of
individual approval requests.

– Approvers may forget that they are responsible for a request. An approver
who doesn’t act on a request must be periodically reminded that the
request is waiting. If they still don’t respond, the request should be
escalated to a different approver.

These issues are addressed by the next set of functional requirements shown
in Table 19-6.

Table 19-6 Functional requirements for timely request approval

� Business requirement: Reduce administrative costs.

Areally Big Investment Corp. identified three areas in which they want to
reduce the costs associated with user and account administration: password
resets, account creation for new employees, and account maintenance for
users who change job roles. These three tasks occupy much of the time of
many high paid system administrators. We can reduce the number of
administrators, and allow the remaining administrators to focus on higher
value projects, if these tasks can be automated or delegated to other users.

Password resets have already been discussed in the context of the business
requirement to execute requests quickly and correctly. Functional requirement

8 Provide a common user interface for administration.

Requirement Description

9 Allow delegation of approval responsibilities.

10 Support collaboration by multiple approvers.

11 Remind approvers of waiting requests.

12 Escalate ignored requests.

Requirement Description

580 Enterprise Security Architecture Using IBM Tivoli Security Solutions

B (delegation of password resets) will also satisfy the cost reduction business
requirement.

Areally Big Investment Corporation’s administrators are responsible for
creating new accounts for newly hired employees. Some of these accounts,
such as e-mail and Windows access, are common to all employees and use
similar settings on all accounts. The automation of the setup of these
accounts would allow system administrators to concentrate on more useful
work.

The system administrators are also responsible for creating new accounts
and suspending existing accounts when employees change job roles. Many
job roles have a standard set of accounts and access rights that must be
given to a user when they enter the role, and must be removed when the user
leaves the role. This is another case where automation could relieve the
administrators from repetitive tasks.

The functional requirements for cost reduction are shown in Table 19-7.

Table 19-7 Functional requirements for cost reduction

� Business requirement: The corporate security policy should be enforced for
all user accounts.

Accounts sometimes have attributes that do not comply with the corporate
security policy. This may be accidental due to mistakes made by
administrators or ignorance of the violated policies. Some non-compliant
accounts may also be the result of intentional misconduct by administrators.
These may be cases of administrators who are too lazy to follow the policy, or
the administrators may have malicious reasons for violating the policies. In
either case, there is no verification of the values entered by system
administrators when they are creating and modifying accounts.

Violations of the corporate security policies can be reduced by setting the
values of account attributes automatically, when possible. Further reductions
in violations can achieved by introducing compliance checking on attribute
values that are set manually. Both of these strategies rely on having a
centralized user interface for account management, and a way to find
changes made to accounts outside of the central user interface.

Requirement Description

5 Password resets will be delegated to users other than the system
administrators; possibly to the end users.

13 Automatically create common accounts when a person is
employed.

14 Automatically add and remove accounts and access rights when a
user changes job role.

 Chapter 19. Identity Manager scenarios 581

There is substantial overlap between the functional requirements for insuring
compliance with security policies, and the functional requirements for timely
account management (shown in Table 19-5 on page 579). The requirements
for a common user interface, automatic calculation of common account
attribute values, and checking of manually entered values, all help to both
make system administrators more productive, and to enforce compliance with
the security policies. In addition there are requirements that the security
policies will still be enforced even if an account is changed outside of the
centralized account management tool, and if the policies themselves are
changed. The combined functional requirements for compliance with security
policies are shown in Table 19-8.

Table 19-8 Functional requirements for compliance with security policies

� Business requirement: Enforcement of security policies must be flexible
enough to allow for emergencies and exceptions.

Areally Big Investment Corp. realizes that there will always be cases where
an exception to a security policy will be needed. No set of policies will ever be
able to foresee every combination of account attributes that might be needed
by a user. When temporary or emergency needs arise, there must be a way
that the administrators can override the security policies.

Areally Big Investment Corp. anticipates two likely scenarios where
exceptions to the security policies will be needed. The first is when a user
needs temporary administrative rights in order to perform software installation
or maintenance. The second situation when this need will arise is when a
user changes their job role. The security policy may require that the person
lose some access rights when they leave their old job role. But such changes
in responsibilities are rarely instantaneous. A user who is changing
departments will often go through a transition period during which they will
need the access rights of both their new and old job roles. It must be possible
to detect accounts that are out of policy, and have a designated administrator
define how long the account may remain out of policy before it is brought into
compliance automatically.

Requirement Description

6 Common values are entered automatically.

7 Manually entered values can be checked for correctness.

8 Provide a common user interface for administration.

14 Account changes made outside of the common interface are
detected an checked against the security policies.

15 Changes to security policies are checked against existing
accounts.

582 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The functional requirements for flexibility in security policy enforcement are
listed in Table 19-9.

Table 19-9 Functional requirements for flexible compliance with security policies

� Business requirement: User and account management historical data has to
be available for verification and future improvements.

In the current system, account information is scattered all over the corporate
systems. It is not easy to understand how many user accounts are being used
in the enterprise, at what rate they are growing, and when the system should
be expanded due to increasing account numbers, and so on. The information
is indispensable for verifying the current system and for making future plans to
expand it. A central logging system can provide this information. This
requirement is shown in Table 19-10.

Table 19-10 Functional requirements for availability of historical data

� Business requirement: Improve audit compliance.

Areally Big Investment Corp. wants to improve their audit compliance in the
following three areas:

– Requiring users or their managers to periodically certify the users’
continuing need for their accounts and access rights.

– Removal of accounts or access rights that are no longer needed. This may
be divided into three different populations of accounts:

• Accounts belonging to users who have left the company.

• Accounts belonging to users who have changed job roles.

• Accounts that were not certified as still needed.

– Reporting capabilities for finding accounts that are in violation of the
corporate security policies.

Requirement Description

16 An administrator can create or change an account even if the
resulting account violates the corporate security policies.

17 Designated administrators will be notified when non-compliant
accounts are detected.

18 The designated administrators can decide how long the account
may remain non-compliant. After this period expires the account
will be automatically brought into compliance with the security
policies.

Requirement Description

19 A central logging system is needed.

 Chapter 19. Identity Manager scenarios 583

Requiring certification of need for accesses is the best way to prevent
temporary accesses from becoming forgotten accesses. Areally Big
Investment Corp. is concerned that users who are given temporary access to
an application or some data will keep that access even when the access is no
longer needed. It’s reasonable for people to do this if they aren’t certain that
they are finished with their work that requires the access. The problem is that
people will eventually forget that they have the access, and will never request
that it be removed. At worst, their unused accounts or access rights are left for
hackers to find. At best, determining who had access to some data or an
application becomes more difficult.

Removing obsolete accounts and access rights has obvious benefits for audit
compliance. The functional requirements for this area will have some overlap
with the functional requirements for flexible security policy enforcement
shown in Table 19-9 on page 583. The functional requirements that
administrators be notified of non-compliant accounts, and that the accounts
be brought into compliance at some point in time, help to satisfy both the
policy enforcement and audit compliance business requirements. This will
meet the need to remove accounts and access rights that result from a user
changing job roles.

Removing accounts belonging to people who leave the company requires that
Identity Manager receives regular updates from one or more authoritative
sources of identity data. This data must be updated in a timely manner so
Identity Manager can disable the accounts of former employees without
excessive delays.

The functional requirements for improved audit compliance are listed in
Table 19-11.

Table 19-11 Functional requirements for improved audit compliance

Requirement Description

20 Designated administrators will be notified when non-compliant
accounts are detected.

21 The designated administrators can decide how long the account
may remain non-compliant. After this period expires the account
will be automatically brought into compliance with the security
policies.

22 Account owners and/or their managers will be periodically asked to
certify their continuing need for their accounts and access rights.

23 Accounts and access rights that are not certified will be disabled or
removed.

24 A regular feed of identity data from authoritative Areally Big
Investment Corp sources into Identity Manager will be established.

584 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Business requirement: The identity management solution must be secure.

A poorly designed identity management solution poses a security risk. There
are three primary areas of concern:

– Confidentiality of sensitive data

Identity Manager stores sensitive data in its data stores. It also transmits
sensitive data between its individual components. The stored data and the
data in transit must be protected from unauthorized access.

– Integrity of audit data

Identity Manager administrators have a great deal of power. By
manipulating provisioning policies they could create accounts with almost
any rights they want on any platform controlled by Identity Manager. Since
it is difficult to prevent an administrator from abusing their powers, it’s
important that an audit trail be maintained of the administrator’s actions.
The administrators who are being monitored with this audit data must not
have the ability to manipulate the audit data.

– Authentication of system users and components

Identity Manager must be protected from access by unauthenticated or
unauthorized users. Each Identity Manager component must also
authenticate the other components with which it communicates.

The functional requirements for the security of the identity management
solution are shown in Table 19-12.

Table 19-12 Functional requirements for application security

25 An employee’s accounts will be disabled or removed when the
identity feed shows that an employee has become inactive.

26 A reporting mechanism will be available that identifies accounts
that are not in compliance with the corporate security policies.

Requirement Description

27 Stored sensitive data will be protected from unauthorized access.

28 Transmitted sensitive data will be protected from unauthorized
access.

29 The actions of Identity Manager users and administrators will be
tracked in an audit trail.

30 Identity Manager administrators will not be able to manipulate the
audit data or settings.

Requirement Description

 Chapter 19. Identity Manager scenarios 585

� Business requirement: The identity management solution must support
English and Spanish speaking users.

Areally Big Investment Corp. wants the employees of the Mexico offices to be
able to access the identity management solution in their native language. This
is important so that these employees will accurately understand the actions
they are performing with the system. The functional requirements for this area
are shown in Table 19-13.

Table 19-13 Functional requirements for national language support

19.2.3 Designing the solution
Given the mandate of security, efficiency, and productivity, and the 19.2.2,
“Functional requirements” on page 577, developing functional requirements for
the solution is the first place to begin. Creating a questionnaire that can be
administered in individual interviews or workshops is helpful for uncovering the
many contingencies to implement the solution. The place to begin is the lifecycle
management of an identity. How is an identity created? Who initiates the
process? Who maintains information up-to-date? What operating systems are in
play? How many systems will the user have access to? Who actually completes
the work? Is there an audit trail? Other areas that require focus include
passwords, group membership, organizational role membership, managed
systems and applications, policies, and workflows.

After the business and functional requirements are defined you can look at the
security design objectives. The security objectives and the associated
subsystems become the basis for the conceptual architecture and the
implementation phase. The security phase should include identity management,

31 Identity Manager components will be protected from access by
unauthenticated or unauthorized users.

Requirement Description

32 All displays, notifications, and online documentation of the identity
management solution must be available in both English and
Spanish.

Note: Some functional requirements overlap or are addressed by the Tivoli
Access Manager for Enterprise Single Sign-On implementation. Anyway,
Areally Big Investment Corporation decided to implement Tivoli Identity
Manager as their complete Identity Management solution and keep Tivoli
Access Manager for Enterprise Single Sign-On for single sign-on purposes.

Requirement Description

586 Enterprise Security Architecture Using IBM Tivoli Security Solutions

password management, policy management, business process management,
and audit management, as well as all standards, guidelines, and policies that
relate to operations.

Also, a review is needed of the existing job roles in the organization including
organizational structure, departments, and teams. This review should also
include the necessary system access requirements, attributes, applications, and
so on. Figure 19-2 gives an idea of how the process should begin to come
together.

Figure 19-2 IBM Tivoli Identity Manager relationships

How to collect the criteria and in what order to collect them will be defined by the
project or by utilizing a specific security architecture methodology. For this
scenario, we use very basic requirements for identity management.

Organization
Roles

Provisioning Policy
Defines level of access to one or more
Service (managed resources) for group

of users

Service

Access Control
Information

ITIM
Groups

Domain
Administrators

Organization IBM Tivoli Identity Manager System

ITIM System
Administrators

Services

ITIM: IBM Tivoli Identity Manager

People who are
ITIM users

People who are
governed by ITIM

policies

Operating Systems

Applications

Databases

People who are
ITIM users and

System
Administrators

People who are
ITIM users and

Domain
Administrators

TAM E-SSO

 Chapter 19. Identity Manager scenarios 587

Areally Big Investment Corporation set the criteria for the implementation of IBM
Tivoli Identity Manager. The goal is implement the features that give the most
valuable benefits, so the first implemented features are:

� Single authoritative data source
� Unified account management
� Simplified sign-on

Management has also stated that the ability to delegate administration tasks
based on security models is a requirement of the project, as well as having a
common user-friendly interface that is intuitive when changing passwords or
completing administrative tasks. They also want to integrate the business
process into the identity system with clear auditability of user activity and
resource usage, have a central location to manage all identities for all systems
within the company in one authoritative data source, and have the ability to
universally apply security policies to user accounts.

Given those requirements, a basic IBM Tivoli Identity Manager physical
architecture begins to take shape. Figure 19-3 on page 589 shows a sample
basic Identity Manager architecture, given the infrastructure we currently have
and the requirements we need to meet.

588 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 19-3 Basic physical architecture for Areally Big Investment Corporation

The IBM Tivoli Identity Manager server components are all located within the
management zone. Access to these systems is restricted and controlled.
However, the Identity Manager adapters reside in the production zone and also
the Web server for intranet users. There is also one Web server for internet users
that reside in DMZ.

Note the following:

� The authoritative source for identities is the HR system.

� HR system users are managed by IBM Tivoli Identity Manager.

� After communicating the necessary identity information to the adapters,
access for users is granted or denied by the resource itself, and not by the
Identity Manager adapter.

Internet DMZ

Identity
Manager

Web
Server

Intranet

 Management Zone

Identity
Manager
Database

Identity
Manager
Server

LDAP
Master

Directory
Integrator

Server

Production Zone

TAM
E-SSO

Provisioning
Adapter

Identity
Manager
Adapters

File
Server

Application
Server

Identity
Manager

Web
Server

HR
System

VPN
Server

Other
Directory

LDAP
Replica

Client

Client

Admin.
Client

Client

 Chapter 19. Identity Manager scenarios 589

Areally Big Investment Corporation decides to maintain Identity Manager
components in the main data center. The fact that Tivoli Identity Manager is a
Web application helps a lot with this. There is, however, one exception to this,
that is the deployment of an Identity Manager adapter server at each production
zone of a foreign data center.

Because of local regulations, each country has its own HR system. There is also
some contractor systems that are authoritative sources for identities of
non-employees. For each identity authoritative source there will be one process
that pulls identity data and push it to Tivoli Identity Manager.

Figure 19-4 shows the scenario for a sample worldwide implementation.

Figure 19-4 Worldwide implementation

IntranetProduction Zone
Internet DMZ

Identity
Manager

Web
Server

Intranet

 Management Zone

Identity
Manager
Database

Identity
Manager
Server

LDAP
Master

Directory
Integrator

Server

Production Zone

Identity
Manager
Adapters

Identity
Manager

Web
Server

HR
System

Managed
Services

Client

Admin.
Client

Client

Managed
Services

Other country Production Zone

Identity
Manager
Adapters

HR
SystemManaged

Services

Managed
Services

Other country
Intranet

Admin.
Client

Client

Contractor
System

590 Enterprise Security Architecture Using IBM Tivoli Security Solutions

19.3 Tivoli Access Manager for Enterprise Single
Sign-On Provisioning Adapter

Because of our previous Access Manager for Enterprise Single Sign-On
deployment, discussed in Chapter 16, “Tivoli Access Manager for Enterprise
Single Sign-On scenario” on page 491, Areally Big Investment Corporation
decided to automatically provision new users’ credentials along with their Tivoli
Identity Manager account provisioning process.

This can be done by implementing the Access Manager for Enterprise Single
Sign-On Provisioning Adapter, as introduced in 15.1.10, “Provisioning Adapter”
on page 472.

In this section, we focus on the Tivoli Identity Manager specific working details of
the Access Manager for Enterprise Single Sign-On Provisioning Adapter.

The integration is achieved through an update to the Access Manager for
Enterprise Single Sign-On credential repository for every successful provisioning
of account credentials done by Tivoli Identity Manager.

To accomplish this, the Access Manager for Enterprise Single Sign-On
Provisioning Adapter integration with Tivoli Identity Manager uses custom Tivoli
Identity Manager Entity Operations called Tivoli Identity Manager Workflow
Extensions. These workflow extensions call the Access Manager for Enterprise
Single Sign-On Provisioning Adapter itself. From a Tivoli Identity Manager
perspective, the Access Manager for Enterprise Single Sign-On user credentials
are not considered normal accounts but shadow accounts, which refer to a
provisioned credential that is not actually stored as an object in the Tivoli Identity
Manager account’s container. Tivoli Identity Manager does not store any Access
Manager for Enterprise Single Sign-On specific data, and the communications
only occur from Tivoli Identity Manager to the Access Manager for Enterprise
Single Sign-On Provisioning Adapter, never the other way around.

Figure 19-5 on page 592 shows the relationship between the Tivoli Identity
Manager server, Access Manager for Enterprise Single Sign-On Provisioning
Adapter Extension Classes, and Access Manager for Enterprise Single Sign-On
Provisioning Adapter through a change password Tivoli Identity Manager
operation. In this case the following occurs:

1. The change password operation starts.

2. The Tivoli Identity Manager Change Password Extension creates the account
password change request to a particular service, in this example, an Active
Directory.

 Chapter 19. Identity Manager scenarios 591

3. After successful password change, the Access Manager for Enterprise Single
Sign-On Provisioning Adapter Extension is executed. It provisions the same
password already updated in the previous item.

4. The Access Manager for Enterprise Single Sign-On Provisioning Adapter
Extension initiates a request to the Access Manager for Enterprise Single
Sign-On Provisioning Adapter, which updates the Access Manager for
Enterprise Single Sign-On credentials for that specific user.

Figure 19-5 Identity Manager server and Access Manager for Enterprise Single Sign-On
Provisioning Adapter relationship

Updates to the Access Manager for Enterprise Single Sign-On repository only
occurs after the update to the native repository is successful. Any failed Tivoli
Identity Manager account operation skips the Access Manager for Enterprise
Single Sign-On specific workflow extensions.

19.4 Tivoli Identity Manager high-availability
This discussion is about the high availability aspects of the Identity Manager
software components. For each component, the concepts of a fault tolerant
hardware configuration and high availability operating system based
infrastructure should be considered and evaluated and the costs weighed up
against the risks. These aspects however, are more generic systems design
concepts common to most projects and specific to an organization’s operational
environment. They are not necessarily specific to Identity Manager and hence
are not within the scope of this discussion. In most cases a combination of the
various approaches will be used, but no two environments will typically use a
standard uniform approach due to the unique constraints, dependencies and

Tivoli Identity Manager Server

TAM E-SSO
Provisioning Adapter

Extension

TIM ChangePassword Operational Workflow

TIM ChangePassword
Extension

TAM E-SSO
Provisioning Adapter

Active Directory

1

2

3

4

592 Enterprise Security Architecture Using IBM Tivoli Security Solutions

priorities of each and should be evaluated and planned for in by the project team
in consultation with stakeholders and system owners.

The software components relevant to an Identity Manager deployment when
considering a high availability solution are as follows:

� Application server
� Directory server
� Relational Database
� Identity Manager adapters
� Identity Manager Reverse Password Synchronization components

19.4.1 Application server high availability
The application server runs the Identity Manager application that performs all the
business related operations and provides the Web interface to users. The
application server used by Identity Manager is WebSphere Application Server,
which provides the ability to run as a WebSphere Application Server cluster
using the IBM WebSphere Application Server Network Deployment.

In IBM WebSphere Application Server Network Deployment, the distributed
administrative work is accomplished by the Node Agent server that resides on
each node and the Deployment Manager that acts as a central point for
administrative tasks.

The Node Agent server and the Deployment Manager server both use a
repository of XML files on their own nodes. The master repository data is stored
on the Deployment Manager node. That data is then replicated to each node in
the Administrative domain (or cell). The Deployment Manager server and the
Node Agent servers keep these files synchronized. The synchronization process
is unidirectional from the Deployment Manager to the Node Agents to ensure
repository integrity.

However, the first point of failure is the Web server. A network load balancer
device need to be deployed to balance https connections for two or more Web
servers. The Web servers communicate to WebSphere Application Server
through a plug-in that already has the capability to talk to a WebSphere
Application Server Cluster.

 Chapter 19. Identity Manager scenarios 593

Figure 19-6 shows a typical deployment of these components.

Figure 19-6 WebSphere Application Server Cluster

Using the native cluster will allow the Identity Manager application to run as a
clustered application and leverage the benefits that are provided with that, for
example, session failover in the event of a cluster member being unavailable, and
sharing the load between all cluster members.

For further details, refer to IBM WebSphere V5.1 Performance, Scalability, and
High Availability WebSphere Handbook Series, SG24-6198.

19.4.2 Directory server high availability
Identity Manager requires an LDAP server to store essential data such as users,
accounts, policies and so on. As a result, it is an extremely critical component.
Most LDAP servers have some level of functionality to allow for a high availability
deployment. This discussion is based on Tivoli Directory Server Version 6.

Note: It is a best practice to leverage the functionality available in a security
reverse proxy component such as Tivoli Access Manager WebSEAL to
perform the authentication and authorization for users into Identity Manager.
WebSEAL will also automatically perform the load balancing and failover
aspects in the event of an application server instance failure.

Management Zone

WebSphere cluster

IntranetProduction Zone

Identity
Manager

Web
Server

Admin.
Client

Client

Webserver cluster

Identity
Manager

Web
Server’

Identity
Manager

Web
Server

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

Identity Manager
Server

(Deployment Manager
Node A)

Identity Manager
Server

(Cluster Member
Node B)

594 Enterprise Security Architecture Using IBM Tivoli Security Solutions

IBM Tivoli Directory Server allows for multiple LDAP servers to be configured
with replication between them to ensure data integrity is maintained. Each Tivoli
Directory Server server can be configured as a read/write enabled server or as a
read-only replica. However, a read-only replica has low value for Identity
Manager. Most Identity Manager operations issues LDAP write operations. Even
a login process in Tivoli Identity Manager issue a write operation at the Directory
Server. So a high-available read/write directory is the goal of this discussion.

Identity Manager allows for configuration against a single “logical” LDAP. This
means that it needs to refer to a URI (Uniform Resource Identifier) that will allow
access to an LDAP server. Basically what is needed to achieve high availability is
to make this URI high available. The Tivoli Directory Server Proxy is a great
solution to make this logical URI point to a high-available Directory Server
infrastructure.

To eliminate any single point of failure all components are at least duplicated. To
maintain integrity, an NTP server (network time protocol) or any other time
synchronization process should be used, specially when multiple read/write
directory servers are being used.

Figure 19-7 shows a typical deployment of these components.

Figure 19-7 Directory Server high availability

19.4.3 Relational database high availability
Some potential relational database high availability scenarios for Identity
Manager are similar to the scenarios detailed in 19.4.2, “Directory server high

Management Zone

Multi-master
Directory Server

Failover
Directory Proxy

Server

Identity
Manager
Server

Directory
Server
Proxy

Directory
Server
Proxy’

LDAP
Master

LDAP
Master

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

 Chapter 19. Identity Manager scenarios 595

availability” on page 594. The concepts are similar and can be extrapolated from
the LDAP discussion.

However, the way a LDAP directory server is implemented simplify a lot the effort
to deploy a high availability scenario. Normally the high availability solutions
available for common relational database products (such as IBM DB2) are more
sophisticated than for LDAP products. Relational database high availability
strategies need generally to be more tightly coupled with high availability
operating system configuration options, systems management (automation,
virtualization), and storage solutions (for example, Storage Area Networks) to
achieve the desired results. There are prescribed methods to deploy a high
availability relational database within specific product documentation.

Taking IBM DB2 UDB version 8.2 as an example and using a combined
approach leveraging operating system high availability features, the solution
design team may choose to deploy DB2 as follows:

� Operating system cluster with DB2 active/standby configuration: In the event
of the active DB2 instance failing, the operating system clustering software
starts the same instance on another node in the operating system cluster.
This requires that all nodes in the operating system cluster have access to the
same shared disk. While relatively simple in terms of DB2 clustering, this
introduces delays during failover while the new processes are started and any
in-flight transactions are rolled back. The database is accessed through the
cluster address, so that no change in the Identity Manager database
configuration is required during failover.

� DB2 mutual takeover multiple partition configuration: All nodes in the
database cluster operate in parallel. The database is partitioned so that if any
server in the cluster fails, its partitions are failed over to the remaining nodes
in the cluster. As with other strategies, there are various considerations in
using this approach. The configuration still requires time for the “failed-over”
partitions to be recovered although as each partition has less than the whole
volume of data it is generally faster than an active/standby configuration.
There needs to be database analysis performed to determine an appropriate
database schema required for constructing a partitioned version of the
Identity Manager database. This approach also requires that all servers have
access to the file systems containing the database and transaction logs. The
database is accessed through the cluster address, so that no change in the
Identity Manager database configuration is required during failover.

� DB2 High Availability Disaster Recovery (HADR): This solution involves
using the DB2 automatic log shipping functionality to a secondary stand-by
server which applies the logs as it receives them. If the primary active server
fails then the DB2 client is automatically re-routed to the secondary failover
server. As no crash recovery is required, the failover to the secondary can be
achieved in a minimal amount of time. Note that only one server can be active

596 Enterprise Security Architecture Using IBM Tivoli Security Solutions

and read and written to by a client. The secondary stand-by servers cannot
participate in reads. There also needs to be careful planning if multiple
failover stand-by databases are to be receiving updates. The DB2 client takes
care of the failover hence there is no need for manual intervention in the
Identity Manager database configuration during failover. Figure 19-8 shows a
typical deployment of these components.

Figure 19-8 DB2 cluster using HADR

19.4.4 Identity Manager adapters high availability
Identity Manager manages accounts on managed resources through the use of
adapters. This section speaks generically about adapters in general. It should be
noted that there are different adapters for each distinct type of managed resource
but the concepts discussed can be generally applied across the different types of
adapters. For example, the concepts apply to the Active Directory adapter as well
as the Lotus Notes adapter and so on.

Account operations issued by Identity Manager are executed by the relevant
adapter for the type of managed resource the accounts reside on. This includes
provisioning, password management and reconciliation operations. It can be
argued that account operations are not mission critical and hence do not need to

Note: The DB2 options outlined are intended as examples. These are not the
exhaustive high availability strategies available with DB2. For specific details
and other options, refer to the DB2 8.2 product documentation.

Management Zone

DB2 cluster

Identity
Manager
Server

DB2
database

DB2
database

 Chapter 19. Identity Manager scenarios 597

have high availability requirements factored in for a solution design. In many
cases, this may be true. As with many things however, there are exceptions to the
rule. It is not our intention to debate the validity of the claims for and against the
need for highly available provisioning operations as this can at times become a
“religious” discussion. Each deployment has specific requirements and it may be
decided that certain operations must be highly available. For example, there may
be cases where password resets, account suspensions and account
de-provisioning are deemed to be critical operations and must be highly
available.

There are two aspects to consider when dealing with high availability for Identity
Manager interactions with its adapters and subsequently the adapter interactions
with the managed resource hosting the accounts being managed as illustrated in
Figure 19-9.

Figure 19-9 Identity Manager interactions with managed resources

The first is the adapter interactions with the managed resource. For example, the
Identity Manager Windows Active Directory adapter and its interactions with
Windows Active Directory. The high availability aspects between these two
components are not within the scope of this discussion as each managed
resource has different approaches to high availability and they can vary in
completely different ways. For example, a Windows Active Directory environment
has a different high availability design and implementation approach compared to
a Linux environment, both of which are different to a Tivoli Access Manager
environment, and so on. The managed resource is viewed as a logical entity in
the context of this discussion and assumed to have been designed for high
availability by the solution design team responsible for the managed resource in
question. The focus of this discussion is on the Identity Manager specific
components required for ensuring account operations are highly available.

Identity Manager, as per the approach taken with the LDAP and database,
references its adapters via a URI (Uniform Resource Identifier). As previously
mentioned, this is a logical location. Given this, consider the following scenarios:

Note: The following scenario considers the use of two adapters in each case.
This can be extrapolated to cases where it is determined that there is a need
for more than two adapter instances.

Identity
Manager Adapter Managed

Resource

598 Enterprise Security Architecture Using IBM Tivoli Security Solutions

This scenario relies on the secondary adapter being available to be used at all
times. There is also a requirement to leverage the use of a suitable TCP load
balancer. The Identity Manager server is configured to reference the URI of the
load balancer which then routes requests to the relevant available adapter as
shown in Figure 19-10.

Figure 19-10 Automated failover to secondary adapter

Note that the secondary adapter must be configured exactly the same way the
primary adapter is configured and using same encryption keys. If you use a
network load balancer that is “http-session-friendly” you should have no
problems at all doing load balance. In case of requests that need to run alone (for
example a reconciliation), Tivoli Identity Manager would just “lock the service” so
any other requests would be hold in the pending queue until the running request
finishes, even if there are idle adapters available.

The same scenario can be applied for custom Tivoli Directory Integrator
adapters.

Production Zone

Management Zone

Adapters Server
1

Adapter

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

Identity
Manager
Server

Service
Adapters Server

2

Adapter

 Chapter 19. Identity Manager scenarios 599

19.4.5 Reverse password synchronization high availability
In 18.3.7, “Lifecycle example” on page 569 we discussed the Identity Manager
reverse password synchronization. It can be configured to use the Identity
Manager password policies to enforce password rules. This relies on the Identity
Manager server being available. The implication of this is that password changes
are not possible without the availability of the Identity Manager server as the
password policies are required. Note that password rule enforcement by Identity
Manager is optional. If not enforced, password changes are possible without the
availability of the Identity Manager server. For example, consider a Windows
environment where password rule enforcement is enabled. A user presses
“Ctrl+Alt+Delete” on the Windows desktop and selects the option to change their
password. If the Identity Manager server is unavailable, no amount of attempts
will allow them to change their Windows password due to the fact that the new
password cannot be verified against the Identity Manager password policies. In
the case where password rule enforcement by Identity Manager is not enabled,
password changes are successful regardless of the Identity Manager server’s
availability. The implication in changing a Windows password without the Identity
Manager server being available is that the Windows password is no longer
synchronized with the user’s other accounts managed within Identity Manager.

A configuration setting within the Identity Manager reverse password
synchronization component specifies the location of the Identity Manager server
via a URI. This is typically the physical network location of the Identity Manager
server. In a natively clustered Application server environment (such as a
WebSphere Application Server cluster), the Identity Manager application is highly
available by virtue of the configuration. In the cases where Identity Manager is
not deployed into a native application server cluster and high availability is
required for reverse password synchronization, there is a requirement to leverage
the use of a suitable IP load balancer as detailed in 19.4.2, “Directory server high
availability” on page 594. The URI specified within the reverse password
synchronization component’s configuration should be the location of the load
balancer. There needs to be at least two instances of the Identity Manager
application (both using common logical data sources) for the load balancer to
leverage to support the requirement for high availability.

Attention: When using Tivoli Identity Manager adapter event notification,
make sure that it is enabled in only one adapter instance. This is necessary
because there is no mechanism to share the adapter event notification
database.

600 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Load balance Identity Manager application instances
A single reverse password synchronization request made to the Identity Manager
server is not typically a long running request. They are generally very short,
single communication session events and do not need to manage state between
requests hence it is acceptable to use a load balancing/sharing strategy as
opposed to being forced into a failover strategy. In the load balancing scenario,
both application instances are available and share the reverse password
synchronization requests being routed by the load balancer as shown in
Figure 19-11 on page 602. Failure of an Identity Manager instance will cause all
requests to be routed to the remaining available instance. Identity Manager
server unavailability may not be noticeable by the user.

Notes:

1. The following scenario considers the use of two Identity Manager
application instances. This can be extrapolated to cases where it is
determined that there is a need for more than two.

2. While possible, the option to manually reconfigure the Identity Manager
reverse password synchronization component to reference the URI of the
secondary Identity Manager in the event of the primary Identity Manager
failing (hence not requiring the use of a load balancer) is not being
considered as in some cases, this requires a restart of the managed
resource. This is typically considered unacceptable in cases where the
managed resource is a critical piece of corporate infrastructure. For
example, a reconfiguration of the Identity Manager reverse password
synchronization component for Windows Active Directory requires a restart
of the Active Directory domain controller it is installed on.

 Chapter 19. Identity Manager scenarios 601

Figure 19-11 Load balance between two Identity Manager server instances

19.4.6 Complete scenario
In the previous sections we have discussed some high-availability scenarios for
each component. It is not the goal of this book to discuss every high-availability
option, benefits, costs, or the level of availability required. More details about this
topic can be obtained in Chapter 8 of the IBM WebSphere V5.1 Performance,
Scalability, and High Availability WebSphere Handbook Series, SG24-6198.

Areally Big Investment Corporation has a worldwide Tivoli Identity Manager
implementation. They decided to implement a high-level availability within two
separate sites. Figure 19-12 on page 603 shows both sites and its components.

Management Zone

WebSphere cluster

Production Zone

Webserver cluster

Identity
Manager

Web
Server’

Identity
Manager

Web
Server

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

Identity Manager
Server

(Deployment Manager
Node A)

Identity Manager
Server

(Cluster Member
Node B)

Service

Reverse
Password

Synchronization
Adapter

602 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 19-12 Complete physical component distribution

19.5 Importing and synchronizing user data
Identity Manager is designed to be a central location for corporate identity
management. Because Identity Manager requires its own user registry and
cannot share the user objects that are in the user registry of another application
(such as Access Manager or a corporate directory), you have to create new user

Management Zone Site B

Multi-master
Directory Server

Failover
Directory Proxy

Server

Directory
Server
Proxy

Directory
Server
Proxy’

LDAP
Master

LDAP
Master

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

WebSphere cluster

Intranet

Production Zone Site B

Admin.
ClientClient

Webserver cluster

Identity
Manager

Web
Server’

Identity
Manager

Web
Server

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

Identity Manager
Server

(Cluster Member
Node C)

Identity Manager
Server

(Cluster Member
Node D)

ServiceReverse
Password

Synchronization
Adapter

Adapter

Service

Reverse
Password

Synchronization
Adapter

Adapter

DB2 cluster

DB2
database

DB2
database

Management Zone Site A

Multi-master
Directory Server

Failover
Directory Proxy

Server

Directory
Server
Proxy

Directory
Server
Proxy’

LDAP
Master

LDAP
Master

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

WebSphere cluster

Production Zone Site A

Webserver cluster

Identity
Manager

Web
Server’

Identity
Manager

Web
Server

Network
Load

Balance
Device

(standby)

Network
Load

Balance
Device

(primary)

Identity Manager
Server

(Deployment Manager
Node A)

Identity Manager
Server

(Cluster Member
Node B)

ServiceReverse
Password

Synchronization
Adapter

Adapter

Service

Reverse
Password

Synchronization
Adapter

Adapter

DB2 cluster

DB2
database

DB2
database

 Chapter 19. Identity Manager scenarios 603

records in Identity Manager or import existing user data records from other data
resources.

For Areally Big Investment Corp, there is more than one authoritative source for
identities:

� One HR system for every country

� Some countries also have a contractor system for non-employee persons

The process of importing and synchronizing identity data from this systems to
Tivoli Identity Manager is called identity data feed. This data will be available to
managed services through the Identity Manager solution. More than identities
and it‘s attributes, the integration of business process into Identity Manager relies
on the identity datafeed, so it is one of the most important pieces of the identity
management solution and need to be well designed and implemented.

IBM Tivoli Directory Integrator as identity data feed tool
Tivoli Directory Integrator is designed to synchronize identity data located in
directories, databases, collaborative systems, applications used for Human
Resources (HR), customer relationship management (CRM), Enterprise
Resource Planning (ERP), and other corporate applications. In Identity Manager,
a provisioning service type called an IDI Data Feed is supported for user data
exchange between Directory Integrator and the Identity Manager server, it is
based on the DSMLv2 protocol.

Each identity data feed process will be a Tivoli Directory Integrator
AssemblyLine. The AssemblyLine can pull data from other sources to complete
identity attributes if they are not all in the same system. Figure 19-13 on
page 605 shows an example of an identity data feed that pulls data from multiple
sources. Note that even data is pulled from other data sources, the HR system is
considered the authoritative identity data source.

604 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 19-13 Identity data feed example

It is also very common to have multiple authoritative identity data sources. For
example, if a company manages identities for employees, contractors and
customers, probably this implementation will have three authoritative identity
data sources. Figure 19-14 shows that three authoritative identity data sources
mean that three Tivoli Directory Integrator AssemblyLines must be developed.

Figure 19-14 Multiple authoritative identity data sources

Please note that it is possible, but uncommon, to have just one AssemblyLine
that pulls data from multiple identity data sources. It can be done if data from
these identity data sources and the process are very similar.

Domino

IBM Tivoli Directory
Integrator

IBM Tivoli Identity
Manager

Human Resources
Identity DataFeed

Other
DataSource

HR

HR specific attributes

Domino specific attributes

Other Datasorce specific attributes

Combined attributes

CRM
system

IBM Tivoli Directory
Integrator

IBM Tivoli Identity
Manager

Human Resources
Identity DataFeed

Contractors
system

JDBC

HR
system

System-specific API

Contractors
Identity DataFeed

Customers
Identity DataFeed

DSMLv2

DSMLv2LDAP

DSMLv2

 Chapter 19. Identity Manager scenarios 605

The identity data feed is not only about feeding identity data into Tivoli Identity
Manager. It is also about making decisions based on this data that will be a base
for the person entity’s lifecycle management. Table 19-14 shows some examples
of authoritative identity data sources that triggers lifecycle management events

Table 19-14 Identity data source events and corresponding lifecycle management events

Areally Big Investment Corp has three authoritative identity data sources for its
main location in United States for employee, contractor and customer identity
management. They also have other country specific authoritative identity data
sources for employee and contractor identity management.

Tivoli Directory Integrator can be deployed in a central location. But depending
on network speed and complexity of the communications, it may also be
deployed in remote locations and from there push data into Tivoli Identity
Manager. As seen in Figure 18-7 on page 568, Tivoli Directory Integrator and
Tivoli Identity Manager communicate using DSMLv2 over HTTPS, so the Tivoli
Directory Integrator location for this task is very flexible and firewall friendly. As
Tivoli Directory Integrator is simple to deploy and its license is based on what it
manages, it is not uncommon to have a dozen Directory Integrator instances
deployed based on best performance, security, and ease of administration.

Figure 19-15 on page 607 shows Areally Big Investment Corp identity data
feeds. Note that in Brazil they have a Lotus Notes contractors system and for
some Lotus Notes performance issue across the WAN they decided to install a
Tivoli Directory Integrator server in the Brazil production zone.

Event type Lifecycle Management event

Vacation start Suspend person entity and all its accounts

Vacation ends Restore person entity and all its accounts

Employee terminated Delete person entity and all its accounts

Contract expired Suspend all person entities and its
accounts of this contract

606 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 19-15 Areally Big Investment Corp identity data feed

Tivoli Directory Integrator is a high-value solution to integrate Tivoli Identity
Manager with business processes and identity data.

19.6 Integrating with Access Manager
As we discussed earlier in this book, IBM Tivoli Access Manager for e-business
provides policy-based access control enforcement for enterprise applications,
Web applications, and resources. IBM Tivoli Identity Manager provides
policy-based identity management (managing user IDs and passwords) and
provisioning (providing or revoking access to applications, resources, or
operating systems) within an enterprise. The important point here is that they can
and should be combined to utilize the specialized security features of both.

The major consideration when combining these environments is that you will
continue to manage access control for applications and resources using Access
Manager, but you will use Identity Manager to manage Access Manager users
and to manage the provisioning of applications and resources to those users.
Identity Manager becomes the central repository for information, as depicted in
Figure 19-16 on page 608.

Brazil Production Zone

United States Production Zone

Management Zone

CRM
system

IBM Tivoli Identity
Manager

Contractors
system

HR
system

IBM Tivoli Directory Integrator

HR
system Brazil HR Identity DataFeed

US HR Identity DataFeed

US Contractors Identity DataFeed

Worldwide Customers Identity DataFeed

IBM Tivoli Directory Integrator

Brazil Contractors
Identity DataFeed

System-specific API

JDBC

LDAP

DSMLv2

DSMLv2

DSMLv2

DSMLv2

JMS

Lotus Notes DSMLv2
Contractors

system

 Chapter 19. Identity Manager scenarios 607

Figure 19-16 Identity Manager as the central repository for user information

To link these products, you must perform some basic integration tasks and some
Identity Manager tasks.

Integration possibilities are:

� Tivoli Identity Manager manages Tivoli Access Manager users and groups,
exactly the same way it‘s done with all platforms managed by Tivoli Identity
Manager.

� Tivoli Access Manager WebSEAL protects Tivoli Identity Manager Web
interface, also doing single sign-on between products.

� Password changes executed with a WebSEAL password change transaction
are replicated to Tivoli Identity Manager. This feature is implemented by the
Reverse Password Synchronization for Tivoli Access Manager adapter.

� Data synchronization between Tivoli Access Manager user database and
Tivoli Identity Manager.

The integration of Identity Manager with Access Manager requires that we
consider the placement of all of their combined components. Figure 19-17 on

Z/OS
RACF

NT/
Windows

200x
Systems

IBM Tivoli
Access

Manager
AIX

UNIX

SybaseSAP

Lotus
Notes

Oracle

Novell

DB2

Exchange

IBM Tivoli
Identity

Manager

608 Enterprise Security Architecture Using IBM Tivoli Security Solutions

page 609 shows a sample architecture for integrating Identity Manager and
Access Manager. It shows, by zone, the recommended placement of main
Access Manager components.

Figure 19-17 Integrated architecture for Access Manager and Identity Manager

To achieve integration after installing Identity Manager in your Access Manager
environment, you should use Tivoli Identity Manager and its interface instead of
the Access Manager interfaces to manage the Access Manager system users,
exactly the same way as for other platforms.

If Identity Manager has to manage more than one Tivoli Access Manager secure
domain, you should create a service for each Tivoli Access Manager domain

To manage global sign-on access (that is, GSO resources and GSO resource
groups), the Tivoli Access Manager GSO Adapter is needed. This adapter
enables you to create services for GSO resources and GSO resource groups.

Internet DMZ Intranet

Management Zone

Identity
Manager
Database

LDAP
Master

Directory
Integrator

Server

Production Zone

Identity
Manager
Adapters

HR
System

LDAP
Replica Services

Access
Manager

WebSEAL

Access
Manager

Policy
Server

Access
Manager

WebSEAL

Identity
Manager
Server

Access
Manager

Policy
Proxy
Server

Client

Client

Client

Admin
Client

Component-specific comunicationshttps access

 Chapter 19. Identity Manager scenarios 609

19.6.1 Specialized integration tasks
Depending on the complexity of your integrated environment or your existing
Tivoli Access Manager system, you might need to complete specialized tasks
that are related to the integration. Some examples of specialized tasks include:

� Configuring Tivoli Identity Manager for single sign-on with WebSEAL.

� Synchronizing Tivoli Identity Manager user data with Tivoli Access Manager
user data.

� Creating a Web interface from which users can self-manage their user IDs
and passwords and request access to applications or resources.

� Deploy an LDAP adapter to manage attributes not managed by Tivoli Identity
Manager.

19.6.2 Integrated architecture with Identity Manager adapters
When the services are connected and integrated, Identity Manager becomes the
focal point for all user management disciplines, and Access Manager is the focal
point for access control disciplines. Note that in Figure 19-17 on page 609 the
Identity Manager server talks to the adapters in the Access Manager server
environment and not to the Access Manager servers themselves. Access
Manager is a service managed by Identity Manager. Identity Manager can utilize
the information that is stored in the Access Manager server environment. In other
words, Identity Manager has the capability to make password and all other
changes to the Access Manager environment.

With the deployment of Tivoli Access Manager Password Synchronization
Adapter, WebSEAL has the ability to check the password strength rules set in
Identity Manager and initiate the password change. Tivoli Identity Manager then
propagates the password change to other accounts managed. This ensures that
regardless of whether users change their password through Tivoli Identity
Manager or Tivoli Access Manager WebSEAL, password synchronization can be
maintained.

610 Enterprise Security Architecture Using IBM Tivoli Security Solutions

19.7 Conclusion
Alone, Tivoli Identity Manager is a powerful enterprise application for managing
the lifecycle of persons, accounts, and managed services from many different
facets. When coupled with Tivoli Access Manager, a powerful identity and
access control management foundation becomes available for the enterprise.

Tivoli Directory Integrator helps integrate current technology and business
processes into Tivoli Identity Manager and Tivoli Access Manager and it is a key
component to integrate diverse enterprise data sources and directories and keep
the information properly synchronized.

Identity Manager, Directory Integrator, and Access Manager offer extensive
opportunities to solve complex systems management and security needs.

 Chapter 19. Identity Manager scenarios 611

612 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 20. Identity Manager Express
structure and components

In this chapter we describe the IBM Tivoli Identity Manager Express concepts
and components. This includes the provisioning strategies employed by our
customers and where they apply to different contexts, the logical and physical
components, and the mechanisms to keep the solution secure.

At the heart of any identity management solution is the process of provisioning
and de-provisioning of accounts. IBM Tivoli Identity Manager Express introduces
a different provisioning paradigm to that used by Tivoli Identity Manager. Tivoli
Identity Manager Express provides a request based provisioning solution, as
opposed to using policy-based provisioning as per Tivoli Identity Manager. At the
heart of the product differences, this is the main shift in focus.

20

Note: This product is targeted at the small-to-medium business, with a
supported limit of 5000 users per deployment.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 613

20.1 Provisioning strategies for identity management
Identity management systems today approach the provisioning process in
different ways. In this section, we describe two of these approaches:
policy-based provisioning and request-based provisioning. Each approach has
its advantages and challenges. A number of factors determine which approach is
best suited for your implementation. We discuss these factors in this section. If
your organization is small, determine the best provisioning solution based on
your organization’s needs and in providing them with quick time to value.

20.1.1 Policy-based provisioning

On one end of the spectrum, there is the concept of policy-based or role-based
user provisioning. A popular term behind this principle is Role-Based Access
Control (RBAC).

RBAC is the process of granting access privileges to the users based on the
work that they do within an organization. This allows an administrator to assign
the users to one or more roles according to the job they do. Each role enables
access to specific resources based on a provisioning policy. Accounts or access
rights are granted to the role rather than to the user. A user has to be a member
of the role to be granted that account or access privilege.

Roles can be defined roughly covering a broad range of users, or they can be
finely tuned to cover many types of account and access rights. An example of a
rough classification of roles is employees versus contractors.

In the case of role-based provisioning, a significant amount of effort is spent in
the initial policy and role design to automate the provisioning processes.
However, when the policy design and roles are implemented, a high degree of
automation can occur in the management of the identity lifecycle.

� Benefits

– High degree of automation
– Quickly add and revoke privileges based on role changes

� Challenges

– Role engineering can be complex
– May not scale if too many user requirements are unique
– Too many roles have to be defined

Role-Based Access Control is discussed in 17.6, “Access control models” on
page 527.

614 Enterprise Security Architecture Using IBM Tivoli Security Solutions

20.1.2 Requests-based provisioning

On the other end of the spectrum, there is request-based user provisioning. This
method uses centralized management but decentralized administration. That is,
the users are responsible for requesting the account access they want to receive.
More operational labor is required because no automation of the provisioning
processes exists with request-based provisioning. Most systems implement a
workflow component to provide approvals for access rights.

� Benefits

– Easier, less expensive, and faster to implement
– Managers, application owners, and administrators control access rights

through approval process

� Challenges

– Users might not always know what they require
– May not scale in large environments based on the manual effort required

20.1.3 Combining policy-based and request-based provisioning

A composite approach is a hybrid of the two approaches. An example is where
temporary employees can be provisioned a set of services based on their roles,
and permanent employees request what services they want to receive. Some
elements of the roles are necessary as you move from manual to automated
provisioning.

An organization might want to start realizing the benefits of an identity
management system by implementing a request-based provisioning system first,
and then move to a policy-based system in a phased approach as the processes
and requirements become more well defined.

20.1.4 Features of IBM Tivoli Identity Manager Express

Identity Manager Express provides a request-based provisioning approach to
grant, modify, and remove access to resources throughout a business or
business unit, and to establish an effective audit trail using automated reports.
Users, or their managers, can request access to new accounts. Additionally,
managers or other administrators are alerted to unused accounts and given the
option to delete the accounts through a recertification process. This
recertification process ensures that over time users do not accumulate more
access rights than they require.

Identity Manager Express is designed for small-to-medium sized businesses and
decentralized departmental usage in large companies with 100 to 5000 users. In

 Chapter 20. Identity Manager Express structure and components 615

the next section, we describe the logical components of an identity management
system and those that are specific to Identity Manager Express.

20.2 Management and user terminology

Tivoli Identity Manager Express shares common definitions of entities with the
Tivoli Identity Manager product. The reader is encouraged to read the following
sections (rather than reproducing the content exactly here) provided within the
Tivoli Identity Manager chapter in order to grasp the concepts described later:

� People, person, accounts and user: For a complete description of person,
people, accounts and users, please refer to 18.1.1, “Users, accounts, and
attributes” on page 548. Keep in mind that Tivoli Identity Manager Express
provisioning is request-based.

� Identity Feed: For a complete description of identity feed, please refer to
18.1.2, “Identity feed” on page 550.

� Passwords: for a complete description of passwords, please refer to section
18.1.3, “Passwords” on page 550.

� Service: For a full description of a service, please refer to section 18.1.5,
“Managed systems and applications” on page 551.

Note: Some managed resource adapters can capture a password as it is
being changed directly on the managed resource and then pass it on to
Identity Manager Express for password synchronization. This requires the
installation of a plug-in on the managed resource. This process is know as
reverse password synchronization. Only one instance of reverse password
synchronization can be enabled for a deployment of Identity Manager
Express.

The following Identity Manager Express adapters enable reverse password
synchronization:

� Tivoli Access Manager
� Microsoft Windows Server® Active Directory
� IBM AIX
� IBM AS/400®

Changing a password in the master password store changes all the
passwords on accounts on other resources that Identity Manager Express
manages for that same user. The synchronization occurs irrespective of
whether the Identity Manager Express password synchronization is off or
on.

616 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The following sections outline those areas where Tivoli Identity Manager Express
contains subtle differences to its Tivoli Identity Manager product partner.

20.2.1 Setting policies in Identity Manager Express

Identity Manager Express provides for the definition of an identity policy and a
password policy. These policies can be defined at a system level (global) or at a
service-specific level.

Password policy
A password policy defines the rules that determine whether a new password is
acceptable. It sets the rules that passwords for a service must meet, such as
length and type of characters allowed. Additionally, the password policy might
specify that an entry is disallowed if the term is in a dictionary of unwanted terms.
To select this choice in the user interface, you must first load a dictionary.ldif file
into the Identity Manager Express server.

A password strength rule is a rule to which a password must conform. For
example, password strength rules might specify that the minimum number of
characters of a password must be five and the maximum number of characters
must be ten. You can specify the following rules for passwords:

� Minimum and maximum length
� Character restrictions
� Frequency of password reuse
� Disallowed user names or user IDs

Identity policy
An identity policy defines how a user's ID is created. Identity Manager Express
automatically generates account user IDs from the identity policy. Identity
policies can be set as a global policy for all accounts or as a service-specific
policy. For example, if all the user IDs for all accounts must be composed of the
user's first initial and last name, a global identity policy must be created for the
organization. If all user IDs for a specific service must contain a certain number,
a service-specific identity policy must be created for the service.

20.2.2 User categories

Identity Manager Express provides different categories of users, which are used
to define the default permissions and operations, and the views of the Identity
Manager Express application that the user can access. For each category of
user, Identity Manager Express defines default access control items (ACI) and
default views that the users can access.

 Chapter 20. Identity Manager Express structure and components 617

Identity Manager Express provides the following categories of users:

� User
� Manager
� Help desk assistant
� Service owner
� System administrator

Each category, except for user, has a corresponding group defined. All Identity
Manager Express users are automatically part of the user category and are
granted the base level of permissions and access to the base set of views.

For each category of user, except the system administrator category, you can
customize the views that are available to the users and create customized
groups based on that category of user. The users in the default system
administrator group always have access to all the views and can perform all
operations in Identity Manager Express. You cannot modify a category.

Categories have relationships with groups, access control items, and workflows,
which are defined in Table 20-1.

Table 20-1 User category relationships

Category Description

Manager Members of the manager group are users who manage the accounts, identity
profiles, and passwords of their direct subordinates, unless the person form is
customized to exclude some of the attributes for which the manager has
permission to read or write. Managers can manage and delegate activities on
their to-do lists.

Service owner Members of the service owner group manage a service, including the user
accounts and requests for that service. Additionally, on services they own,
service owners can view others’ requests, such as authorizing an account,
unless the person form is customized to exclude some of the attributes for
which the service owner has permission to read or write. Service owners can
manage and delegate activities on their to-do lists.

Help desk Members of the help desk assistant group can change or reset others’
passwords, profiles, and accounts, unless the person form is customized to
exclude some of the attributes for which the help desk assistant has
permission to read or write. Additionally, help desk assistants can restore
accounts, and also view others’ requests, and both manage and delegate
to-do lists.

User Users have basic privileges on their own identity and account information.
They can request accounts and change passwords.

618 Enterprise Security Architecture Using IBM Tivoli Security Solutions

20.2.3 Access control

Access control topics include views, groups, and access control items (ACIs).

Views
A view is a set of tasks that users can perform. The view defines what tasks are
available and visible when they use Identity Manager Express.

Groups
A group is a collection of users. Users can belong to one or more groups. Groups
are used to control user access to functions and data in Identity Manager
Express. Users can belong to default groups that Identity Manager Express
provides or you can also create additional, customized groups.

Groups grant specific access to functions and resources within Identity Manager
Express. For example, one group might have members who work directly with
data defined in a business application. Another group might have members who
provide a subset of the Help Desk group functions.

A user with no group membership sees a user interface that has tasks only for
the user category. A user with membership in a group can see an expanded user
interface that has tasks for the user and additional group tasks.

Using the groups
An ACI is defined to specify a set of operations and permissions, and then
identify which groups are governed by the ACI. A workflow is defined to specify
an approval cycle for account requests, and then identify one or more groups as
participants.

Access control item
An ACI is data that identifies the permissions that users have for a given type of
resource. You create an ACI that allows you to specify a set of operations and
permissions, and then identify which groups use the ACI.

An ACI defines the following items:

� The entity types to which the ACI applies
� Operations that users can perform on entity types

System administrator The system administrator performs both security and system administration
tasks. An Identity Manager Express administrator has access to the complete
portfolio of functions and tasks.

Category Description

 Chapter 20. Identity Manager Express structure and components 619

� Attributes of the entity types that users can read or write
� The set of users that is governed by the ACI

For example, you can create an ACI that prevents the help desk group from
creating or deleting users.

20.2.4 Workflow

A workflow defines the sequence of activities that represent a business process.
Workflows are used to provision accounts according to your specific business
practices. They generate to-do items that appear in the users activity list. Identity
Manager Express supports two types of workflows: account request workflows
and recertification workflows or policies.

Account request workflows
An account request workflow defines the activities for managing requests for
accounts. The workflow can consist of activities that route a request for approval,
provide e-mail notifications, or cause requests for information to occur.

Recertification policies
Identity Manager Express recertification simplifies and automates the process of
periodically revalidating user accounts and ensuring that users still have the
appropriate privileges. The recertification process automates the validating
process that each user account is still required for a valid business purpose. The
process sends recertification notification and approval events to the participants
who are specified in the policy.

The following actions can be taken on an account recertification activity. After a
recertification request occurs, an account can be as follows:

Active If the recipient takes no action and the approval times out,
the account remains active.

Suspended A recipient declines recertification. The workflow
suspends the account and issues suspension
notifications.

Deleted A recipient declines recertification. The workflow deletes
the account and issues deletion notifications.

620 Enterprise Security Architecture Using IBM Tivoli Security Solutions

20.3 Physical component architecture

The Identity Manager Express solution includes the Identity Manager Express
server, its required middleware components, and resource adapters. Deploying
Identity Manager Express requires a single-server configuration that includes all
the middleware components described in this section.

Figure 20-1 presents all the components of a typical Identity Manager Express
implementation.

Figure 20-1 Identity Manager Express architecture overview

 External Resources

External Resources

Tivoli Identity Manager Express Server

WebSphere Express

Tivoli Identity Manager
Express Application

Service

Tivoli
Directory
Server

DB2
Express

ADK-based
Adapter

Tivoli Directory
Integrator

Ac
co

un
t

pr
ov

is
io

ni
ng

Acc
ou

nt

pro
vis

ion
ing

User
Browser

Service

TDI-based
Adapter

Manual
Service

Identity
DataFeed

Identity
Authoritative

Source

Person management
Service

Managed
Resource
API’s or

Admin Client

N
ot

ifi
ca

tio
n

Managed
Resource

Managed
Resource

SMTP Server

 Chapter 20. Identity Manager Express structure and components 621

Identity Manager Express components
This section examines the single components in more detail.

IBM Tivoli Identity Manager Express Server
The IBM Tivoli Identity Manager Express 4.6 Server and its adapters enable you
to provision accounts to a set of computing resources, which can be operating
systems, data stores, or other applications. The Identity Manager Express
application is a Java 2 Platform, Enterprise Edition (J2EE) application that runs
on the IBM WebSphere Application Server Express.

IBM WebSphere Application Server Express
WebSphere Application Server is the primary component of the WebSphere
environment. It runs a Java Virtual Machine (JVM™) providing the runtime
environment for the enterprise application code, communication security,
logging, messaging, and Web services.

IBM DB2 Express database
Identity Manager Express stores transactional and historical data in the IBM DB2
Universal Database Express Edition Server, a relational database that maintains
the current and historical states of data. Every transaction done is placed here
and is used for the transactional purpose of current processes and historic data
for auditing purposes.

IBM Tivoli Directory Server
Identity Manager Express stores the current state of the managed identities in
IBM Tivoli Directory Server, an LDAP directory. This includes user account and
Identity Manager Express application configuration data such as policies and its
own access control mechanism.

IBM Tivoli Directory Server is discussed in 3.3, “IBM Tivoli Directory Server” on
page 72.

IBM Tivoli Directory Integrator
IBM Tivoli Directory Integrator can synchronize data in directories, databases,
and other repositories. This eliminates the need for a central data store and
provides flexible connection of data from repositories throughout an enterprise.

IBM Tivoli Directory Integrator is installed to run as a service on the Identity
Manager Express server to provide adapter communications. Adapters that are
created using Directory Integrator are implemented as Directory Integrator
AssemblyLines. Each of these lines is a single path of data transfer and
transformation. The following section on adapters contains more information
about Directory Integrator based adapters, called Tivoli Directory Integrator
adapters.

622 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Directory Integrator is also used for integration of one or multiple identity data
sources. Most implementations have at least an integration with the human
resources system.

IBM Tivoli Directory Integrator is discussed in 3.5, “IBM Tivoli Directory
Integrator” on page 96.

Adapters
Several Directory Integrator based agentless adapters are automatically installed
when you install Identity Manager Express. You can install additional agentless
or agent-based adapters that are either Directory Integrator based or
ADK-based.

For more information about adapters, please reference 18.3.6, “Resource
connectivity” on page 566.

20.4 Identity Manager Express security

The Identity Manager Express environment can be secured at every component
level. Although it is a single server identity management solution, it provides the
following benefits:

� Manages several distinct managed resources

– Uses encryption between Tivoli Identity Manager adapters and managed
resources where necessary.

– If remote adapters are in use, you can configure adapter access control.

� Because the Identity Manager Express environment is potentially accessed
by different types of users from different places, sometimes from insecure
networks, configure the following two mechanisms:

– Encryption
– Another layer of Web access security

� The Identity Manager Express environment requires near exclusive access to
the managed resources

To use most of its value as a single point of management and auditing
solution, enforce its use as the only identity management solution.

In the following sections, we discuss each one of these points, internal
components security, and Identity Manager Express server access security.

 Chapter 20. Identity Manager Express structure and components 623

Identity Manager Express server access security
All the components and installed adapters are typically located in a single server
configuration. When there are many components talking to each other through
TCP/IP, enabling encryption between them seems logical. However, because all
communications between components occur on the same physical machine and
are not transmitted over any kind of network, you can have good security with a
simple setup.

It is possible to have a fully working Identity Manager Express implementation
with only the Web server port open for incoming connections. The
communications between Identity Manager Express and managed resources
always originate from the Identity Manager Express server. Therefore, we can
accomplish Identity Manager Express server security by following these simple
rules:

� Secure Identity Manager Express server physical access

Prevent easy access by non-authorized personnel.

� Block all incoming connections to the Identity Manager Express server, with
the following exceptions:

– Web server plug-in or reverse proxy connections

– Push components such as password synchronization plug-ins or Directory
Services Markup Language v2.0 (DSMLv2) data feed

This allows users to gain access to the Identity Manager Express application, but
no other type of access is allowed, specifically to the LDAP and DB2
components, which are the components safeguarding all data.

Security for managed resources
Because we use TCP/IP communications between Identity Manager Express
and its adapters, and because all managed resources are remote, we have to
enable security between all types of adapters, Directory Integrator-based or
ADK-based.

624 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 20-2 shows a typical communication pattern between the Identity
Manager Express application and the managed resources. For each adapter
implemented, apply the managed resource specific security configurations.

Figure 20-2 Typical communication between Identity Manager Express and its resources

In this case, we have Linux, LDAP, and Lotus Notes or Domino adapters
deployed. Apply the following managed resource specific configurations:

� Linux adapter

The Linux adapter uses the SSH protocol, which is already a secure protocol.

� LDAP adapter

Configure the LDAP server and LDAP adapter to use LDAP with Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) protocol, which is
called LDAPS. It is also best practice to use an exclusive LDAP account for
the LDAP adapter.

� Lotus Notes adapter

The Lotus Notes adapter issues API calls to the locally installed Notes
Administration Client. To enable security, the Lotus Notes Administration
Client must have encryption enabled so that all communications from the
adapter to the Domino server are secured.

The same applies to other adapters. However, there are some cases where
encryption is not available, or the nature of the managed resource requires some
local code running.

Tivoli Identity Manager Express server

WebSphere
Express

Tivoli Identity
Manager

Express Application

Service

Tivoli Directory
Integrator

TDI-based UNIX
Adapter

Domino
Server

LDAP
Server

Linux
Server

ssh

ldaps

Service

Service

TDI-based LDAP
Adapter

Lotus Notes Adapter

Lotus Notes
Administration Client

Lotus Notes
protocol

Lotus Notes API calls

Managed resource-specific security

 Chapter 20. Identity Manager Express structure and components 625

Figure 20-3 shows two common examples, where accounts are stored in
file-based databases and files.

Figure 20-3 Remote communications with Tivoli Directory Integrator-based adapters

In these cases, there are no possible remote communications or the available
ones are insecure. Therefore, the custom developed Tivoli Directory
Integrator-based adapter has to be deployed together with the managed
resource. Identity Manager Express uses DSMLv2 over Hypertext Transfer
Protocol-Secure (HTTPS) to communicate with the remote Tivoli Directory
Integrator-based custom adapter.

To have the highest possible security in this scenario, ensure the following
prerequisites:

� Ensure managed resource server access. The custom adapter is an
Extensible Markup Language (XML) file and it is a best practice to protect it.

� Enable password authentication at the custom adapter so that it requires a
corresponding user name and password at the Identity Manager Express
service configuration.

� Set firewall rules so that only the Identity Manager Express server can
connect to the DSMLv2 Hypertext Transfer Protocol (HTTP) port configured
for the custom adapter.

� Enable SSL security at the custom adapter.

The same prerequisites are valid for remote ADK-based adapters.

Remote ServerTivoli Identity Manager Express server

WebSphere
Express

Tivoli Identity
Manager

Express Application

Service

Service

Tivoli Directory
Integrator

TDI-based Custom
Database Adapter

Tivoli Directory
Integrator

TDI-based Custom
File Adapter

DB

Accounts
File

DSMLv2
over
https

Remote Server

DSMLv2
over
https

626 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Identity Manager Express Web security
WebSphere Application Server Express Edition uses its own Web server.
However, add another HTTPS security layer so that browsers do not have direct
access to the Identity Manager Express Web server port. There are two options:

� Deploy a remote Web server and configure it with the WebSphere Application
Server plug-in.

� Deploy a reverse Web-proxy such as Tivoli Access Manager for e-business
WebSEAL.

Figure 20-4 shows a typical scenario using an IBM HTTP Server as a middle tier
between browsers and Tivoli Identity Manager Express.

Figure 20-4 Three-tier Web access using IBM HTTP Server

Identity Manager Express framework security
“Identity Manager Express server access security” on page 624 shows that it is
possible to have good middleware security locking the Identity Manager Express
server machine itself. However, it is possible to implement this by enabling
security at each one of the middleware components.

WebSphere Application Server security
The WebSphere Application Server installation program selects OFF as the
default value for WebSphere Application Server global security. However, your
environment might require that you provide WebSphere Application Server global
security. When enabled, WebSphere Application Server global security ensures
that authenticated users have the necessary permissions to access Tivoli Identity
Manager Express Enterprise JavaBeans™ (EJB) components.

HTTP Server

IBM HTTP Server
+

WebSphere
Application Server

Plugin

Tivoli Identity Manager
Express Server

WebSphere
Application Server

Express

User
Browser

FirewallFirewall Production ZoneDMZ

tls
tls

 Chapter 20. Identity Manager Express structure and components 627

Configuring this security component involves configuring an authentication
mechanism, a user registry, and optionally, Java 2 security. There are two types
of security to consider:

� WebSphere Application Server global security

Global security is primarily concerned with application security and enforces
authentication and role-based authorization. When global security is enabled,
you cannot log on to the WebSphere Application Server administration
console without a user ID and password.

Enabling global security introduces two important IDs to the WebSphere
Application Server environment:

– The server user ID

Basically this is a user in a user registry such as an LDAP or local
operating system user. The user is a member of the chosen user registry,
but also has special privileges in WebSphere Application Server. The
privileges for this ID and the privileges associated with the administrative
role ID are the same. The server user ID can access all protected
administrative methods.

On Windows systems, the ID must not be the same name as the machine
name of your system, because the registry sometimes returns
machine-specific information when querying a user of the same name. In
LDAP user registries, verify that the server user ID is a member of the
registry and not just the LDAP administrative role ID. The entry must be
searchable.

– The process ID

The WebSphere Application Server processes are run by the process ID
rather than the server user ID. The process ID is determined by the way
the process starts. For example, if you use a command line to start
processes, the user ID that is logged into the system is the process ID. If
running as a service, the user ID that is logged into the system is the user
ID running the service.

If you choose the local operating system registry, the process ID requires
special privileges to call the operating system APIs. Specifically, the
process ID must have the Act as Part of Operating System and
administrator privileges on Windows systems or root privileges on a UNIX
system.

� WebSphere Application Server Java 2 security

Java 2 security can optionally be turned on or off when global security is
enabled. It addresses the use of system resources such as writing to the file
system, listening on a socket, and calls to APIs. Java 2 security is configured
in a was.policy file.

628 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Enabling Java 2 security for the Tivoli Identity Manager Express application
causes Java 2 security to be enforced on all applications that are running on
the WebSphere Application Server. If you enable Java 2 security for the Tivoli
Identity Manager Express application, you must also appropriately configure
all other applications running on the WebSphere Application Server to
support Java 2 security.

The Java 2 security policy that Tivoli Identity Manager Express provides
grants Tivoli Identity Manager Express all permissions on the system. It does
not bring any security benefit for Identity Manager Express deployments
mainly because Identity Manager Express is always a single and dedicated
WebSphere deployment scenario.

Enabling Java 2 security can also cause some reduction in performance of
the WebSphere Application Server between 10% to 20%. If you have to
configure Java 2 security, refer to the IBM Tivoli Identity Manager Express
Installation Guide V4.6, SC32-2262.

If the chosen scenario follows the recommendations given in “Identity Manager
Express Web security” on page 627, and there are no open communications to
the Identity Manager Express server other than Identity Manager Express’ own
components, you can choose to not enable security at all for WebSphere
Application Server.

WebSphere Application Server Web server security
Block all incoming traffic to the Web server except from the WebSphere
Application Server plug-in deployed together with the HTTP server.

Directory Server security
You can easily make the Tivoli Directory Server that comes with Identity
Manager Express secure, if it is not used by any other applications, by
performing the following steps:

1. Block all incoming connections to LDAP ports. The default ports are as
follows:

– 389 for plain and TLS LDAP connections
– 636 for LDAP over SSL/TLS connections
– 3538 for the Tivoli Directory Server administration daemon

2. Disallow anonymous binds.

However, if this LDAP server is also used by external applications, perform the
following steps to make it secure:

1. Block all incoming connections to the Tivoli Directory Server administration
daemon on port 3538.

2. Enable and enforce SSL connection to it.

 Chapter 20. Identity Manager Express structure and components 629

3. If not necessary, disallow anonymous connections.

4. Create Tivoli Directory Server access control lists (ACLs) to prevent someone
from reading Identity Manager Express data.

DB2 security
The DB2 database that comes with Identity Manager Express must not be used
by any other applications. You can easily make it secure by blocking all incoming
connections to DB2 listening ports. The default ports are as follows:

� 3700 for the DB2 instance used by Tivoli Directory Server
� 50000 for the DB2 instance user by Tivoli Identity Manager Express

Administrative password security
Identity Manager Express has full administrator access to all managed
resources. Getting access to Identity Manager Express as an administrator
grants access to any type of account creation on any platform. Therefore, it is
important to choose and maintain good and secure passwords for Identity
Manager Express administrators.

Managed resource security
If deployed and in production, Identity Manager Express is considered to be the
only system to manage accounts. To take advantage of its capabilities and
security features, such as central auditing, disable all access at managed
platforms for account operations.

For example, if you have help desk users with account operator rights when
implementing Identity Manager Express, you can provide them access to the
Identity Manager Express help desk group and revoke their special privileges on
individual managed resources. This improves performance and ensures that
nobody manages accounts directly on the managed resources.

Adapter security
The Tivoli Identity Manager Express Server uses either SSL or SSH
communication to communicate securely with supported adapters. The following
measures protect adapters from misuse:

� Ensure that only the Identity Manager Express host can connect to the
adapter listening TCP port.

� Configure each remote adapter to use SSL. Refer to instructions about each
adapter to enable it.

� On ADK adapters, choose a good password for the following:

– Adapter configuration tool access (agentCfg)

630 Enterprise Security Architecture Using IBM Tivoli Security Solutions

– Directory Access Markup Language (DAML) protocol users and
passwords

20.5 Conclusion

This concludes the discussion on the Identity Manager Express structure and
components. You now understand the request-based user lifecycle management
approach of the solution and how to provision accounts and people to managed
resources. You learned about the logical and physical component architecture of
the Identity Manager Express environment and how to secure this infrastructure
within your own deployment.

If you want more information about this solution with a scenario discussion and
complete deployment solution check out the IBM Redbooks publication
Deployment Guide Series: IBM Tivoli Identity Manager Express 4.6, SG24-7233.

 Chapter 20. Identity Manager Express structure and components 631

632 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 21. Synchronizing the
enterprise

Synchronizing security-related information within an enterprise can be a
challenge. IBM Tivoli Identity Manager, Directory Integrator, and Directory Server
combine for a viable set of tools for integrating with almost every data repository
available in the market today.

In this chapter we map some of the important security architecture attributes to
the available IBM Tivoli solutions in the Identity and Credential Management field
and provide a variety of customer scenarios that all require some security-related
data synchronization.

21

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 633

21.1 Identity data management service context
We identified common security architecture subsystems to provide security
functionality and services (as described in 2.1, “Common security architecture
subsystems” on page 20). We established five functional categories (see
Figure 21-1) that form interrelated subsystems. IBM Tivoli Directory Integrator
and IBM Tivoli Identity Manager are products that satisfy component criteria in
the Identity and Credential subsystem.

Figure 21-1 Security architecture subsystems

The purpose of a credential subsystem in an IT solution is to generate, distribute,
and manage the data objects that convey identity and permissions across
networks and among the platforms, the processes, and the security subsystems
within a computing solution. In some applications, credential systems may be
required to adhere to legal criteria for creation and maintenance of trusted
identity used within legally binding transactions.

A credential subsystem may rely on other subsystems in order to manage the
distribution, integrity, and accuracy of credentials. A credential subsystem has,
potentially, a more direct link to operational business activities than the other
security subsystems, owing to the fact that enrollment and user support are
integral parts of the control processes it contains.

Manage
Access Control

Manage
Security Audit

Manage
Solution Integrity

Manage
Identities and
Credentials

Manage
Information Flow

634 Enterprise Security Architecture Using IBM Tivoli Security Solutions

21.2 Identity data repositories
Authoritative identity information is the cornerstone of a secure and efficient
enterprise infrastructure and is extremely dependent on a high-performing, highly
available security data infrastructure. In this book, we described several
applications that rely on directory data for operations (Access Manager, Identity
Manager and Federated Identity Manager) in addition to any application within a
business system that requires authentication and authorization services. While
these application directories are authoritative sources for identity data and
resource entitlements in their own domains, other directory sources exist in the
enterprise that may be the original source of the information contained within. In
fact, research studies found that a typical Fortune 500 customer can have as
many as 150 directories.

21.3 Managing identities and credentials
The purpose of the Identity and Credential subsystem in an IT solution is to
generate, distribute, and manage the data objects that convey identity and
permissions across networks and among the platforms and security subsystems
within a computing solution. Managing the identity data lifecycle and keeping the
data in various repositories synchronized are important components of the
Identity and Credential subsystem. Managing identities and credentials, as well
as access, must be done in an integrated way in order to protect the integrity of
the enterprise. IBM Tivoli Directory Integrator and Identity Manager both provide
services to manage identities and data. Depending on the organization’s
business requirements, security policies, and operational needs, one product
may be a better fit than the other or both products may be required.

21.4 Business value
When defining the architecture, breaking down the requirements into the different
views, the technologies required for the solution become clearer.

For managing identity data, an integration solution can reduce the administrative
burden of managing multiple directories and increase the accuracy of the data.
For user provisioning, workflow, and policy enforcement, a more feature-rich
application may be required to incorporate business process flows such as
approvals. While Tivoli Identity Manager and Tivoli Directory Integrator could be
used in similar scenarios, they are distinct and yet complementary products.

 Chapter 21. Synchronizing the enterprise 635

Table 21-1 lists some of the components, processes, and properties of the
Identity and Credential subsystem. The features of Tivoli Identity Manager and
Tivoli Directory integrator are mapped to the groupings.

Table 21-1 Identity and credential mappings

Process/function Tivoli Identity Manager Tivoli Directory
Integrator

User enrollment X X

Manage identities and
secrets

X X

Credential creation X X

Credential lifecycle
management

X X

Specification of secrets X

Verification of secrets X

Credential validation X X

Identification/authorization X X

Access control

Information flow control X X

Data confidentiality X X

Data integrity X X

Guaranteed delivery

Import/export between
domains

X

Event awareness X X

Event data capture X X

Alarms and alerts X X

Prioritization of service

Automated policy
enforcement/workflow

X

Policy enforcement X X

Policy administration X

636 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Both solutions can provide significant business value. This can be in the form of
cost savings from increased productivity and reduced administration
requirements. In addition, data duplication and errors can be reduced through
synchronization and policy enforcement, thus providing more data integrity.

The environment’s degree of security increases as user IDs are removed from
systems and applications when no longer needed due to employee turnover. And
as a person’s roles are changed within an organization, it is quickly reflected in
their access rights to systems and applications. Policy enforcement ensures that
corporate security policies are followed.

21.5 Identity data management scenarios
The following section describes some scenarios where the business requirement
to provide identity data management was solved through the use of IBM Tivoli
Directory Integrator, IBM Tivoli Identity Manager, or both products. The selection
of which product to use should come from the analysis of the business
requirements, processes or need for processes, functional requirements of the
environment, and operational and support requirements for identity data
management.

Policies provide the guidance, rules, and procedures for implementing a secure
environment. Operational view deals with how the organization does things.
Functional requirements are implemented through product features.

21.5.1 Providing metadirectory services
More than a specific product, metadirectory is a broad term that covers many
technical and business scenarios that have in common a need to combine,
reconcile, or synchronize information from multiple identity sources. In one case,
a metadirectory solution can consist of a new directory containing information
from multiple sources, where the sources are still in control of maintaining the
information itself. In another scenario, a metadirectory solution keeps a number

Systems management X

Anomaly handling X

After-the-fact analysis and
reporting

X

Process/function Tivoli Identity Manager Tivoli Directory
Integrator

 Chapter 21. Synchronizing the enterprise 637

of existing directories synchronized with each other as business requirements
keep them separate.

Organizations building e-business applications are becoming increasingly
directory-enabled or directory-centric. Identity data can be stored in and used by
many applications, all seeking an authoritative data source. But research has
shown that large corporations can have more than 100 disparate repositories for
user data.

Directory Integrator’s strength is providing for the distributed management of
information while maintaining data integrity. Directory Integrator can be used as a
tool to provide a metadirectory solution that is based on building a new directory
or by keeping existing directories synchronized.

The idea is to bring data together from multiple sources and to join the pieces
together into a new coherent repository, often called the enterprise directory.
Ongoing changes in the source systems are continuously propagated into the
enterprise directory so that it always represents a correct and consistent view
across the company. From this new source, authoritative data is distributed to all
other systems that cannot directly access the enterprise directory.

In the following scenario, a company has a number of disparate systems that
contain user IDs, passwords, and other user data such as department
information, addresses, and telephone numbers. Keeping all of the systems up to
date and synchronized was nearly impossible. The company wanted to develop a
central system that housed all of this data and was accessible to employees (for
contact information updates and changes) and to administrators (for password
resets and additions or deletions). The company also wanted to simplify access
to its multiple applications while maintaining high security standards. Password
synchronization was desired to reduce help desk calls for forgotten passwords
and better security. The solution was to implement a metadirectory that
contained information synchronized from each of the separate repositories. This
data store is commonly referred to as the corporate directory.

The corporate directory, shown in Figure 21-2 on page 639 as IBM Directory
Server, is loaded with data from the Human Resources database. The initial data
load imports the entire user population. The data is also merged with existing
information in Active Directory and Lotus Domino. This provides data cleanup for
the Active Directory and Domino systems.

638 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 21-2 Metadirectory services with Directory Integrator

For updates, a nightly extract of the changes is built and presented as a CSV file.
When a new user is added to the HR system, the user is created in the
enterprise directory as well as Active Directory and Domino. Updates also take
place in all three repositories.

Some business logic can be added to take into account terminated employees.
For example, if in the HR extract their status is set to Inactive, the Active
Directory logon will be disabled.

Finally, password synchronization is implemented, and Active Directory will drive
all other password changes as being the authoritative password store. When a
user changes his Active Directory password (via normal Windows mechanisms)
the Directory Integrator password plug-in for Active Directory captures the
password and updates it in LDAP and Domino.

This is a very common scenario for using Directory Integrator for metadirectory
services.

Active Directory Domino

IBM Directory
Server

Human
Resources
Data Feed

(CSV)

IBM Directory
Integrator
Services

WWhhiitteeppaaggeess//
GGlloobbaall AAddddrreessss LLiisstt

HHRR

 Chapter 21. Synchronizing the enterprise 639

21.5.2 Accelerating Identity Manager deployments
Tivoli Identity Manager can bring significant benefits to an organization by
providing centralized identity management.

Identity Manager is used to manage the lifecycle of the person as it relates to the
access to systems and applications. Businesses are dynamic and over the
course of a person’s employment there will be many changes such as
promotions, transfers, changing job duties, and perhaps termination due to
downsizing, retirement, or resignation.

However, to begin this process, an initial data load must be performed to
populate Identity Manager with the Person information of the identities to be
managed. This usually involves a large number of entries, so manually entering
the data is not an option, and an automated process must be developed. A
DSML file could be used to bulk-load the data, but what if the information is
coming from more than one source? A custom program could be written, but the
goal is to get Identity Manager deployed quickly so the company can begin
reaping the benefits that Identity Manager provides in terms of security,
efficiency, and productivity.

Directory Integrator can provide the initial data load for Identity Manager
identities and maintains this data by synchronizing with an authoritative data
source.

In this scenario, a company uses the Human Resources database as the
authoritative source for identity information for employees and contractors.
Employment status (active, inactive), job roles, location, and supervisor are some
of the important attributes about a person that are important to determining the
access they need to systems and applications. These attributes can drive role
assignments and provisioning policies, so it is imperative that these attributes are
updated in a timely manner. A good example is that when a contractor’s term
expires, access to all accounts should be suspended to enforce security policies.

640 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 21-3 illustrates two different use cases of Directory Integrator for identity
data management in Identity Manager.

Figure 21-3 Accelerating Identity Manager deployments

Initial data load
In Tivoli Identity Manager, integration with Tivoli Directory Integrator is built into
the Identity Manager server and into Directory Integrator components. One of
these components is the DSMLv2 EventHandler in Directory Integrator that
enables Identity Manager to make reconciliation requests to Directory Integrator,
where Directory Integrator is configured to read data from a connected data

Identity data
source

 (HR database)

Directory Integator
DSMLV2 Event

Handler receives
reconciliation
request from

Identity Manager

Directory
Integrator

AssemblyLine
initiates data feed

into Identity
Manager

Identity Manager/
Directory

Integrator data
feed service

AssemblyLine is
started. Connector
reads data
(search request)
from data source
and returns data
to Identity
Manager

Connector to
identity source

(JDBC connector
for database)

JNDI connector to
Identity Manager

Initial Identity Data Load
Identity Manager requests data from
Directory Integrator.
Directory Integrator EventHandler
receives the request.
Assembly line is called to retrieve data
from data source via the configured
connector. Identity Manager create/
update the Identity Manager person data.

Identity Data Maintenance
Directory Integrator initiates data update
to Identity Manager.
Directory Integrator EventHandler
receives the request.
Assembly line is called to retrieve data
from data source via the configured
connector. Identity Manager create/
update the Identity Manager person data.

Identity Data Source Examples
SAP
PeopleSoft
File Extract
Database Application
Corporate Directory

Event Handler
Detects changes
to employee data

 Chapter 21. Synchronizing the enterprise 641

source. DSMLv2 is a standard that describes directory operations in an XML
format. This is one of the quickest ways to implement a bulk data load of user
information into Identity Manager. Another example to use DSMLv2 is for Tivoli
Directory Integrator to push data into Tivoli Identity Manager using a DSMLv2
connector to a Director Integrator service definition in Identity Manager.

The integration task is made by Directory Integrator that is flexible in that the
connected source can be another directory, an HR database, a flat file, or a
DSML(v1) file, to name a few options.

The data flow for Identity Manager pulling data from Director Integrator is as
follows:

1. A service is created in Identity Manager to connect to the URL for the
Directory Integrator EventHandler.

2. When the reconciliation request is scheduled, Identity Manager contacts the
Directory Integrator EventHandler with a DSMLv2 search request.

3. The Directory Integrator EventHandler is configured to start an AssemblyLine
for the search request.

4. The AssemblyLine has a connector that iterates through the desired data
source. Additional attributes and logic can be added in the connector’s hooks
or AssemblyLine flow. An example might be assigning a role or alias.

5. Data is returned to Identity Manager and person entries are created or
modified.

The data flow for Director Integrator pushing data into Identity Manager is as
follows:

1. A service is created in Identity Manager so a Directory Integrator DSMLv2
connector can connect to an Identity Manager URL.

2. Some event starts the Directory Integrator AssemblyLine.

3. The AssemblyLine has a connector that iterates through the desired data
source. Additional attributes and logic can be added in the connector’s hooks
or AssemblyLine flow. An example might be assigning a role or alias.

4. Data is pushed into Identity Manager through a DSMLv2 over an HTTPS
transaction and person entries are created or modified.

Identity data maintenance
After the person information has been populated into Identity Manager, how do
you keep that data updated? Directory Integrator can also contact Identity
Manager directly and send updates to Identity Manager using a DSMLv2 JNDI
connector. Again, DSMLv2 specifies directory operations such as add, modify,
delete, and search.

642 Enterprise Security Architecture Using IBM Tivoli Security Solutions

An example of a dataflow might be:

1. The Human Resources database is configured to detect changes to certain
pieces of person information via a trigger or stored procedure. An
AssemblyLine is configured using the database change connector in
Directory Integrator. Not all changes to person data may have to be passed to
Identity Manager, and Directory Integrator would be configured to only work
with the attributes of interest to the Identity Manager information store.

2. The output connector would be configured to use the DSMLv2 JNDI
connector to Identity Manager. This connector would be configured in the
appropriate mode (for example, whether you are sending changes or
deletions). In the case where a person might be terminated in the HR
database, you may not want to delete them in the Identity Manager
application but instead, mark their accounts as suspended. This is done
straightforward with Directory Integrator as logic can be added to the
AssemblyLine to set certain attributes to be a value based on the value of
another attribute. For example, if employee status=TERM, you may want to
change Identity Manager person status attribute to a value which would
suspend the person and all of their accounts.

Identity Manager data maintenance
Another interesting use of Directory Integrator is to keep Identity Manager
information synchronized. Suppose for a given company that the Active Directory
account is the authoritative account for a person’s e-mail address. If a user’s
e-mail address changes, it will be updated eventually in the HR database, but this
process may take days or is a manual process. Changes made to Active
Directory are reflected in the person’s Identity Manager Active Directory service
account information. This information is updated upon a reconciliation, which
may happen on a daily (or more or less frequent) basis.

Using the LDAP changelog connector, these changes can be used to update the
person information branch.

This is important because Identity Manager uses the person’s e-mail address for
notifications and possibly for password-reset information. Using Directory
Integrator in this capacity helps to ensure that a user’s e-mail address is always
updated, based on this scenario’s requirements.

21.5.3 Multiple directories and Tivoli Access Manager
Tivoli Access Manager requires a repository for storing identity and credential
information. There are several choices as to which repository can be used (IBM
Tivoli Directory Server, Active Directory, Novell e-Directory, to name a few).
However, for business or technical reasons, the company may choose to not use
the directory that is the authoritative source for the users, but instead build a new

 Chapter 21. Synchronizing the enterprise 643

directory and keep it and the authoritative directory synchronized. This
separation of enterprise data and application data may also provide a more
secure solution.

In this scenario a company is using Access Manager for Web access control and
single sign-on. However, the authoritative source for user identity information is in
Active Directory. But for technical reasons (the Active Directory is configured into
multiple domains) and policy reasons (no changes are allowed to the Active
Directory schema) a separate directory is required for Tivoli Access Manager,
and IBM Directory Server will be used as the repository for Access Manager.

To keep the identity information synchronized, IBM Directory Integrator is used. A
simple AssemblyLine is built using two connectors:

� Active Directory Changelog Connector to detect and read changes.

� LDAP Connector to update Directory Server (adds/updates/deletes) with user
information including selected attributes, and to create and update the Tivoli
Access Manager through the use of the Access Manager Java Admin API.

Figure 21-4 on page 645 depicts the solution overview with the data flow as
follows:

1. A change is made to Active Directory. This can be add, modify, or delete of an
entry.

2. A Directory Integrator AssemblyLine is running with an Active Directory
Changelog Connector. The Active Directory Changelog Connector is a
specialized instance of the LDAP Connector. This connector contains logic to
poll Active Directory for changed objects. The Active Directory Changelog
Connector adds the changeType attribute to every Entry returned. The
possible values of the changeType attribute are add, modify and delete.
These are used to represent new, changed, and deleted objects, respectively.

3. The entry information of the change is passed to the next connector in the
AssemblyLine, and that connector updates Directory Server. The connector
implements two important functions:

a. The connector updates or adds attribute information to the person used by
Tivoli Access Manager.

b. Use the Tivoli Access Manager Java Administration API to create and
modify the entry information that is used by Access Manager.

644 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 21-4 Multiple directories and Tivoli Access Manager

From this example you can see the power of Directory Integrator by its ability to
incorporate Java functions directly within the logic flow of the solution. Most
applications today have some kind of API interface available to extend the
functionality of the product. Directory Integrator can fully exploit these APIs to
provide a deeper and more precise level of integration where none may exist.

21.5.4 Password synchronization services
It is estimated that a company’s Help Desk costs for password management can
reach hundreds of thousands of dollars a year. For some companies, most of the
ROI can be achieved with an identity management solution that focuses on
password management alone. Savings can come in the form of reduced number
of calls, reduced staff, and productivity savings.

The types of services that bring these savings to an organization are self-service
password resets and password synchronization. Password synchronization is the

Active Directory

Access
Manager

IBM Directory
Server

Connector
Reads changes from
Active Directory

Detects changes in Active
Directory

Connector

Creates and updates user info in IBM
Directory Server
Creates and updates Tivoli Access
Manager user info in IBM Directory
Server

IBM Directory
Integrator
Services

 Chapter 21. Synchronizing the enterprise 645

ability to detect a password change on one system and propagate that change to
other password-protected accounts associated with the user.

IBM Tivoli Directory Integrator can detect password changes through the use of
plug-ins. Directory Integrator can detect password creation and replacement for
IBM Directory Server and IBM Lotus Domino HTTP passwords. The Password
Synchronizer for Windows intercepts changes in user accounts for this platform.

Another feature is the ability to provide password interception for RACF. When
RACF is configured to encrypt and store password changes into z/OS LDAP
store for RACF, the Directory Integrator z/OS LDAP changelog EventHandler can
detect the change and provide synchronization with other identity stores.

IBM Tivoli Identity Manager also has the ability to detect password changes from
Windows systems, RACF when RACF is configured to encrypt and store
password changes into z/OS LDAP store for RACF, and Tivoli Access Manager
for e-business WebSeal. In Identity Manager, the server provides a standard
interface that accepts password synchronization requests from other programs
such as Directory Integrator.

Our company scenario has a simple single requirement: when a user changes a
Tivoli Directory Server password, synchronize that password with all of the user’s
other accounts.

Identity Manager alone would not be able to provide the solution as there is no
capability to synch Tivoli Directory Server passwords. Directory Integrator alone
could sync the passwords, but there would be no knowledge of other accounts
the person may have. By combining the two products, we can build a complete
end-to-end solution to meet the company’s requirement.

The diagram in Figure 21-5 on page 647 provides an overview of the solution.

646 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 21-5 Password synchronization services

Identity Manager
Server receives the

synchronization
request and the

user`s password is
updated for all

accounts owned by
this person

Identity
Manager
Adapter
for Linux

Identity
Manager
Adapter
for AD

Identity
Manager
Adapter
for SAP

Directory Integrator Services

AssemblyLine

Connector posts
password change
request to Identity

Manager over a
secure connection

Connector gets
the password

change

Tivoli Directory Server

User changes LDAP password

Directory Integrator
password plugin

captures changed
password

MQe

Data in encrypted,
signed and posted to

a MQe queue

 Chapter 21. Synchronizing the enterprise 647

The event flow is as follows:

1. The user changes a password in Tivoli Directory Server. This change is
captured by the LDAP changelog plug-in, and the password is encrypted,
signed and posted in am MQe queue.

2. The EventHandler calls a Directory Integrator AssemblyLine that is composed
of two connectors.

3. The first connector securely retrieves the encrypted password attribute and
decrypts it with the supplied API in Directory Integrator.

4. The next connector builds the XML-structured request to Identity Manager to
request the change. The connector does an HTTP post to the Identity
Manager password-synch servlet to make the password change request.

5. Identity Manager receives the password synch request and checks to see
what other accounts are eligible for password synchronization. Password
change requests are then automatically initiated for the eligible systems (for
example, Linux, SAP or Active Directory).

As you can see from this example, Identity Manager and Directory Integrator
complement each other in functionality and provide the synergy to implement
complex solutions quickly.

21.5.5 Migration services
Tivoli Directory Integrator is a powerful tool that can be used for many
integrations, including migration services. The following scenario shows an
Active Directory to Samba/Ldap migration using Tivoli Directory Server as the
LDAP Server for Samba.

Figure 21-6 on page 649 shows how migration requests are generated.

648 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 21-6 Active Directory to Samba/LDAP migration

21.5.6 Enabling Web portals
Most companies today are implementing portal applications. Portal solutions
typically require a use repository to provide authentication and authorization
information. One of the biggest challenges a company faces when implementing
the portal is populating the repository for user access. A company may already
have information for authentication and authorization in a single repository or
multiple repositories.

The following scenario describes how Directory Integrator can be used to assist
in a portal implementation where the authentication data may be stored in one
directory, such as Active Directory, but the authorization and personalization data
is stored in another directory (for example, IBM Directory Server).

WebSphere Application Server and WebSphere Portal are limited to using a
single copy of a directory for authentication and authorization, so a solution is
needed to work around this limitation by putting the authentication information
into IBM Directory Server and then using one store only. We face an additional
challenge as passwords are not transferable because they are one-way hashed.
Even if password synchronization were available, it would solve only the problem
of catching the password when it was changed. How can the user ID and
password information get put into one directory to allow for authentication and
authorization to happen for WebSphere Portal?

Directory Integrator Services

AssemblyLine

Active Directory
attributes are

mapped to Samba
attributes

Tivoli Directory ServerActive Directory

Connector add
entries to Tivoli
Directory Server

Connector gets
Active Directory

Entries

Samba
uses LDAP

entries
migrated

from
Active

Directory

 Chapter 21. Synchronizing the enterprise 649

An approach would be to have WebSphere Application Server and WebSphere
Portal use a plug-in to Directory Integrator to verify the authentication process
and then use the IBM Directory Server for the authorization and personalization
information.

Figure 21-7 Enabling Web portals

Conceptually, the solution flow depicted in Figure 21-7 works as follows:

1. A user logs into the portal and provides an Active Directory user ID and
password.

2. Instead of forwarding the request to WebSphere Application Server for
authentication, the login page redirects the user ID and password information
to Directory Integrator. Directory Integrator starts an AssemblyLine with
connectors to Active Directory and IBM Directory Server.

3. Directory Integrator validates the user ID and password by performing a bind
to the user in the Active Directory. If the bind is successful, the password
proves to be valid.

4. The Active Directory user ID and password information is added to the
corresponding user information in IBM Directory Server.

5. Directory Integrator returns a response back to WebSphere Portal indicating
success or failure.

6. If successful, control is returned to the standard user authentication process
within WebSphere.

LDAP

WebSphere Portal

User Logs
 into Portal

5

Active Directory

Directory Integrator

4

2

1

3

650 Enterprise Security Architecture Using IBM Tivoli Security Solutions

During further processing, WebSphere Portal performs regular user
authentication and authorization against the IBM Directory Server LDAP as
configured in the security settings. No further interaction with Directory Integrator
is required as the user ID and password are now stored in the main LDAP
directory.

From this example, the flexibility of Directory Integrator is illustrated by the ability
to provide just-in-time processing that overcomes some of the technical
challenges presented in this company’s situation.

21.6 Conclusion
Synchronizing security-related information within an enterprise can be somewhat
of a challenge. With IBM Tivoli Identity Manager, Directory Integrator, and
Directory Server you have a set of viable tools at your disposal to integrate with
almost every data repository available in the market today.

In addition to functionality, the scenarios provide a good overview of how you can
tackle synchronization challenges with adequate resources in an always-tight
budgetary environment.

For more detailed information about Tivoli Directory Integrator, refer to the
Robust Data Synchronization with IBM Tivoli Directory Integrator, SG24-6164.

 Chapter 21. Synchronizing the enterprise 651

652 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Part 4 Managing
federations

In Part 4 we take a look into the rapidly expanding world of federated identity
management, Web services security and provisioning by introducing the IBM
Tivoli Federated Identity Manager solution.

Part 4

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 653

654 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 22. Business context for identity
federation

The increasing ease and prominence of electronic commerce encouraged the
trend for organizations to share and consume business services in order to meet
their business needs. An organization may have relationships with business
partners, customers, suppliers, and service provides. This same organization
may also provide services to other organizations as well. All of these
relationships involve various forms of trust between the organizations. These
include electronic trust as well as traditional contractual obligations that define
trust in terms of legal parameters around the business relationship. Identity
federation uses the electronic trust relationships to allow organizations to
securely execute business services across the organizational boundaries.

22

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 655

22.1 The business context
To describe the business context we look at some common business drivers for
federated identity management. An organization is not an isolated entity. It will
agree to provide or purchase services to other firms. Business partnerships will
require interfacing IT systems between both companies to collaborate. Suppliers
may be required to interface with the organizations system as part of contracts.
The organization itself may also be required by customers to interface with the
customer systems as well. We start to see a service oriented look to these
arrangements. Each relationship represents a provided, delivered or shared
service between different organizations.

These relationships and services include areas that require the exchange of
extremely private and sensitive information. A strategy that allows for real time
dynamic changes to integrate the services and identities in these services is
needed.

Figure 22-1 Business relationships involve many organizations

Figure 22-1 illustrates some of the integration points that must be addressed for
these services to support new or existing business processes. A company
(intranet in Figure 22-1) out-sources the administration of its telecom and related
services (to service provider) and also its payroll services (to Payroll, shown in
Figure 22-1). Service provider in turn has similar relationships with other

Other
Enterprises

Service provider

Other
Enterprises

Intranet

Payroll

Supplier

Supplier

SupplierMain employee facing
web site

Portlet

Employees/
Public users

Service
Application

Service

Service

Service
Application

Web Service invocation

Webbased service

User interaction

Other
Enterprises

656 Enterprise Security Architecture Using IBM Tivoli Security Solutions

customers, and with its own suppliers. Note that service provider also out
sources its payroll activities to the Payroll entity.

These kinds of relationships are in place today at many businesses but it is a
difficult process to implement, customize, and maintain. For example, a business
process that must be shared across organizational domains presents several
follow-on challenges such as workflow across company boundaries. The
administration provider must aggregate services provided by its suppliers into a
coherent set of unified services that it in turn supplies to its customers.

Furthermore, the supplier must ensure and guarantee that information is secure,
segmented, and private among its customers. The suppliers must communicate
with one another on behalf of the employees, maintaining privacy. The supplier
may need to know its users, which may be numerous.

Understanding and control of complex dynamics and collective behavior will
become increasingly important to avoid system instability and set the stage for
both global and local optimization. A fundamentally new approach needs to be
implemented to provide a secure foundation for the transformation to on demand
that includes federation and containment.

So, the interactions required to fulfill the new business processes requirements
will be a mix of application to application and user interactions, requiring the full
set of federated identity management capabilities to handle the challenges of
identity, trust, and security.

The business context involves a changing dynamic business climate with shared
services. An underlying concern is trust and assurance found in 22.3.1, “The
relationship - trust and assurance” on page 662. There are also business models
for federated identity, which are discussed in 22.2, “Business models for
federated identity” on page 657. The role of identity management is discussed in
22.4, “The role of identity management” on page 664.

22.2 Business models for federated identity
The business context presented some of the business relationship challenges
found today. The following are business models or areas, that show a need for
federated identity management.

Mergers and acquisitions
In this scenario a company is implementing a growth strategy using mergers and
acquisitions. The indicator of the success of the merger or the acquisition is
predicated on how quickly the companies can knit together their IT
infrastructures to target and cross-market to the new customer base. Identity

 Chapter 22. Business context for identity federation 657

management is one of the most complex activities in such mergers. Rather than
having to forklift all of the acquired users in the various systems, an integration
strategy based on identity federation can simplify the user experience. The
combined users of the merged customers can have access to the shared assets
of the merged companies without impacting user experience, customer care, or
the quality of support. Federating the identities between the merged companies
provides a quick and seamless way to integrate the customers of the two
companies to drive merged growth scenarios.

Collaboration between autonomous cross-business units
Many large companies have independent business units that want to directly
maintain ownership and relationship with their users. This may be due to
organizational structure, or to political, competitive, or regulatory reasons. A
large global manufacturing company may be organized as independent
companies with regional management consolidated in the Americas, Europe,
Africa, Middle East and Asia. However, these business units may also need to
have their users (employees) needing access to cross-business unit resources.
For example, employees in Asia need access to ordering and parts information in
other regions. Federated identity management enables business units to retain
autonomy and control of their users, yet have a flexible way to federate data to
cross-business unit resources.

Customer acquisition strategy via partnerships
A company whose growth strategy is based on acquiring new customers needs
to either obtain these customers outright or have partnerships with other
companies to target their customers. A financial services provider may form a
partnership with a mobile wireless provider (with millions of subscribers) to
deliver paperless e-billing to these customers. The incentive for the mobile
wireless provider in this partnership is to reduce their non-core expenses by
outsourcing billing functions to the financial provider. In return the mobile
provider would offer a 5 percent discount for customers subscribing to the new
e-billing service, thereby offering an incentive for the customers to sign up for
e-billing. Through this partnership, the financial services company now has
acquired a million new customers to which it can target its e-billing service.
Federated identity management will enable the financial service company to
access large pools of customers having a well-established identity.

Employee access to outsourced provider services
Employee self-service is a major initiative for many companies looking to reduce
user provisioning or user care costs. Most organizations outsource non-critical
competencies to third-party providers. The services that are being outsourced
include human resources, employee savings plan, healthcare, payroll, travel and
procurement services. Using the corporate intranet portal to connect the

658 Enterprise Security Architecture Using IBM Tivoli Security Solutions

employees directly with these external service providers enables the
organization only the administration of these outsourced services. Organizations
outsource these services to reduce these service administration costs. However,
the inability to directly connect the employee to these service providers means
that the organization is now required to support and maintain staging systems
(help desk) for employee enrollment to savings plans (401K or super-annuation),
healthcare or payroll. Employers spend significant amount of plan administration
costs in employee 401K administration, employee stock options, employee
healthcare and travel. These services are typically outsourced to various outside
providers. However, the company stills ends up manually administering these
plans or having to staff customer care personnel for employee management.

Federated identity management provides a compelling value proposition in this
scenario by enabling employees to access and manage their data on the various
third-party service provider Web sites by simply signing on to the employee
portal. Access through an existing portal can simplify the user experience, and
enables the user to interact with various employee provider sites without
requiring additional enrollment, registration or authentication to these business
partner sites. The employer in turn can lower their employee support and plan
administration costs by enabling employees to interact directly with the various
providers.

Service provider automation with B2B clients
A larger service provider managing retirement accounts for employees, pension
plans, employee stock options, or healthcare for their institutional clients may
incur tremendous cost of user lifecycle management of its clients' employees.
These costs can result from having to register and provision online accounts for
client employees, manage passwords, and staff a help desk for dealing with user
access problems resulting from forgotten user names, credentials or passwords.
Assume an average password reset call costs $20, and that there exists a
service provider who manages 100 Fortune clients, each of whom on average
have 10,000 employees. Even if only a quarter of these employees forget their
password just once a year, this would represent a $5 million annual cost in
managing user accounts and passwords. The service provider is heavily
motivated to move to a federated model where the service provider leverages the
employee's corporate portal authentication to provide access to their services. In
this model, the employer (client) is responsible for managing its users and
passwords (the client does not face additional costs, because they already have
to manage these users and passwords), and the service provider offloads the
cost of user administration to its clients. This approach also benefits the
employee tremendously, as the employee does not have to register or remember
a separate sign on and password to manage their 401K or healthcare.

 Chapter 22. Business context for identity federation 659

Portal-based integration of software-as-services
A new generation of Internet-based providers now delivers software-as-services
to companies or corporations. Examples of these software-as-services are
providers like WebEX, Salesforce.com, Siebel CRM On Demand,
Travelocity.com, etc. These services enable companies and small businesses to
access Internet hosted services without having to undertake the IT infrastructure
cost of managing these services locally. Federated identity plays a critical role in
this system by enabling employees of the companies to access various
software-based services using their employee identity sign on. As more and
more non-core business services are being outsourced or offloaded with
providers, federated identity management fulfills the role of an identity integration
technology that enables the user to seamlessly access third-party services that
may be locally hosted, remote-hosted or accessed by a software-as-services
provider.

Government collaboration
Governments have high demands on efficiency and ability to collaborate. Many
processes will span multiple governments, institutions, authorities or agencies in
many regions, who will need to share data, but due to political, organizational or
other challenges will not be able to consolidate or internally integrate. All these
entities may also need to have their users (employees, citizens) have access to
cross-governmental entities resources. For example, authorities in one European
country may need to find relevant information about a person in an other
countries data source, but each country would not like to manage all other
countries authorities users (to maintain traceability on citizens person data).
Federated identity enables authorities to retain autonomy and control of their
users, yet have a flexible way to federate data to cross-governmental entities
resources.

Improved corporate governance
Corporate governance and complying with various regulations may be major
initiatives at companies. Compliance with Sarbanes-Oxley (SoX), Basel II, and
HIPAA are at the forefront of the concerns of many executives.

One of the key impediments to passing an audit and achieving compliance is lack
of accountability for granting user rights and permissions to access business
systems. A primary reason for failing an audit is the inability to account for access
rights granted to business partner users.

Federated identity can ease some of the burden associated with the following
compliance pain points:

� Organizations cannot account for access rights granted in their internal
systems for third-party users; there is no proof of whether a third-party user
actually exists or even needs access.

660 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� No accountability on why a third-party user was granted access in the first
place; failure to demonstrate and document the business reason for the
request and which company officer approved the request.

� No procedures in place to delete entitlements or purge user access rights
belonging to third parties and their users. This results in users accumulating
access rights far beyond what they were originally authorized.

� No procedures in place to de-provision user accounts when users turn over.
This issue is magnified when dealing with third parties when the company
does not control the third-party user and no process typically exists by which
third-party companies will notify of user turnover.

� No way to re-certify third-party user access. Does this third-party user still
need access beyond three months or six months? Why do they still need
access?

� No way to audit request for third-party access. Most companies are not able
to audit third-party user access in a centralized fashion because there is no
one single tool that is being used to grant third-party access.

In today's model where the company takes on the management burden of
third-party user administration and provisioning, these audit issues are magnified
when these third-party users turn over and this identity is not propagated to the
company for de-provisioning. There must be a way for the company to know that
a business partner employee is no longer employed. Federated identity improves
compliance by offloading user administration costs to business partners. Since
the company does not own the user account management accountability,
approvals and re-certification are now offloaded to business partners. The
company relies upon its business partners to authenticate and issue credentials
that vouch for its users. The burden of proof now belongs to the business partner
for vouching for its own access rights. Federated identity provides a strategic
alternative for companies to simplify their administration and improve governance
by offloading third-party user management to their clients.

22.3 Federated identity
Federated identity technology is used for creating a globally interoperable online
business identity and driving relationships or affinity-driven business models
between companies. The concept is nothing new, as we have real-world models
for federated identities of individuals—a passport is a global identity credential
that vouches for one's identity in a country; an ATM card is a credential that
vouches for one's bank account; a driver's license vouches for one's ability to
operate a motor vehicle and is also frequently used as a proof of identity in many
business transactions.

 Chapter 22. Business context for identity federation 661

Federated identity management is based on the business agreements, technical
agreements, and policy agreements that allow companies to interoperate based
on shared identity management, depicted in Figure 22-2. This helps companies
to lower their overall identity management costs and provide an improved user
experience. It leverages the concept of a portable identity to simplify the
administration of users and to manage security and trust in a federated business
relationship. The simplification of the administration and the lifecycle
management in a federation leads to the following value proposition:

� Identity management costs can be lowered because companies are no longer
in the business of managing users or identities that are not under their control,
including the delegate administrator identities currently managed by many
first-generation federation attempts. Businesses need to manage access to
data but do not have to manage accounts and user account data.

� User experience can be improved because users can navigate easily
between Web sites while maintaining a global login identity.

� Inter-enterprise application integration within federations benefit from the end
to end security and trust capabilities.

Figure 22-2 Federated identity management

Integration can be simplified because there is a common way to network
identities between companies or between applications. Organizations can
implement business strategies that drive organic market and customer growth by
eliminating the friction caused by incompatible identity and security management
between companies.

22.3.1 The relationship - trust and assurance
A federated business model mandates a foundation of trust. In a federated
model an organization is willing to provide access to an identity that is not vetted
by the organization's own internal security processes. Instead the organization is
trusting an identity asserted by a third party, a model that introduces risk and
uncertainty in the overall confidence of the business transaction.

Service Provider
SP

Identity Provider
IdP

Federation

Service Provider
SP

Service Provider
SP

business agreements,
technical agreements, and

policy agreements

End to end user lifecycle management

662 Enterprise Security Architecture Using IBM Tivoli Security Solutions

An organization will not engage in a federated business model if they do not have
the visibility into their business partners' identity and access management
systems and processes. An organization needs to evaluate the risk of conducting
business with business partners and needs to assess their business partner's
processes and vetting procedures for 1) business partner identity proofing, 2)
business partner accreditation, and 3) business partner reputation evaluation.
These procedures provide the visibility and the qualitative assessment of how
third-party identity can be parlayed into business decisions about access control
and the rules of engagement around trust that the organization is willing to enter
with the business partner company.

Business partner identity proofing is the process of verifying the physical identity
of a prospective federation business partner both before entering into an online
business relationship with that business partner and when engaged in runtime
transactions with the business partner. Part of the business partner identity
proofing process involves verification of the physical identity of the business—but
who is the business?

� Is there a legitimate business with the stated name?
� Is this the party making the request?
� Is the specific employee making the request authorized?

Once the physical identity has been verified, some form of online token is issued
to the business partner and then bound to the physical identity of the business.

Various forms of business partner identity verification techniques and processes
can be used, including the following:

� Self-assertion
� Leverage of an existing relationship
� Confirmation of electronic or postal address
� Credit agency, business bureau ratings
� As the name suggests, identity verification

Business partner accreditation addresses the question what do we know about
the company? And more specifically, what do we expect of this company?
Accreditation is based on a well-defined policy that defines the criteria that a
company must satisfy. A company that wants to enter into a federation may
publish a policy that defines the criteria that prospective business partners must
match; likewise, a business partner wanting to enter a federation may publish a
policy that defines the criteria that IT satisfies (a policy describing its own
features). Evaluating the fit of these two policies is an action that is undertaken
by a trusted party specializing in business accreditation.

 Chapter 22. Business context for identity federation 663

Examples of the types of characteristics that are evaluated as part of the
accreditation process include:

� Is the company credit worthy?
� Is the company considered to be a reputable business?
� Is the company approved by relevant professional/trade bodies?
� Is the company part of the federation?
� Has the company authenticated and issued credentials in a standardized

trustworthy fashion?

Reputation is an alternate means of knowing additional qualitative information
about a business. The primary difference between a reputation service and
accreditation is that reputation typically is measured on an ongoing basis using
behavioral information about the business or an individual. Another difference is
that reputation is typically measured by an independent entity and typically does
not involve the participation of subject (business or individual being measured).
The reputation service may develop an automated framework for measuring
reputation based on transactional visibility. Alternatively, a more explicit
feedback-based mechanism is used. The reputation service will usually assign a
simple score that is derived using a well-defined procedure and is easy to
understand.

Organizations face critical challenges in determining the risk/return relationship
in a federated model. Business partner identity verification, accreditation and
reputation are basic tenets that help companies determine their level of trust and
assurance in their business partners' identity management solution

22.4 The role of identity management
Identity management has become a hot topic these days with many
organizations. From business unit executives to CIO’s to IT administrators, the
focus is on improving the integrity of identity-driven transactions, improve
efficiency, and lower IT costs. Identities pervade every aspect of e-business.
Corporate IT accounts (e-mail, NOS, LDAP, UNIX, Linux, Windows, RACF,
Desktop), HR accounts, supply-chain accounts, healthcare, 401K, online travel,
and VPN accounts are all essential accounts that need to be provisioned for a
new employee or a user to do their job. Few of these identities or accounts work
together, so they add substantial administrative and customer support costs and
deliver poor end-user experience due to multiple sign-ons to systems and
applications. With increased corporate governance and regulatory hurdles, the
management of these identities and account data introduces new business
compliance issues and security exposures. Taking on identity management
means dealing with these privacy, compliance, legal and regulatory issues.

664 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The cost and complexity of identity administration in today's environment is
primarily due to a single reason: To provide access to a user for a service or an
application means giving the user an account within the service or
application-specific repository. The fundamental practice of creating and
managing user accounts leads to various administration, single sign-on, and
compliance issues.

User lifecycle management of identities
Federated Identity Management (FIM) addresses this problem by providing a
standardized way of managing the end-to-end lifecycle management of identities
both within and between organizations. This end-to-end user lifecycle
management extends a company's identity management practices and
procedures to simplify identity and access administration for third-party user
access and simplify user access to simplify third-party resources.

Figure 22-3 End-to-end user lifecycle management

This lifecycle management approach builds on a foundation of trust and
incorporates standards for user identification, authentication, access control, and
the exchange of identity and attribute information between services providers
and service consumers. This approach helps companies to lower identity
management, access management, and administration costs related to
third-party user access or third-party service access.

Federated identity
At a fundamental level, the term federated identity has various meanings. The
term identity used in a federated context is composed of federated attributes that
can be sourced across multiple federated and authoritative data sources. There
are many attributes that can represent a particular identity. The concept of
identity needs to be thought of as a distributed concept where multiple attributes
of an identity are federated across multiple data repositories.

Service Provider
SP

Identity Provider
IdP

Federation

Service Provider
SP

Service Provider
SP

Trust

End to end user lifecycle management

 Chapter 22. Business context for identity federation 665

To an individual user, federated identity means the ability to associate his various
application and system identities with one another. To a business, federated
identity provides a standardized means for allowing businesses to directly
provide services for trusted third-party users or users that they do not directly
manage. It refers to the ability of one business to associate with one or more
others in a federation, such that the identities from one business domain (or
identity provider) are granted access to the services of another business (or
service provider).

Partnership-based solutions
Federation enables businesses to deliver solutions that can be more functional
and cost-effective, and better customer acquisition strategies via federated
business models. The federated business model enables service providers to be
able to federate data to large established clients, business partners, and
customers that they normally would not have access to.

Federated identity management refers to the set of business agreements,
technical agreements, and policies that enable companies to lower their overall
identity management costs, improve user experience, and mitigate security risks
for Web services-based interactions.

IBM has recognized that federated identity management is a technology that can
help companies simplify their user administration and security administration
while improving security and corporate compliance. This lifecycle management
approach enables company administrators and auditors to have the visibility,
controls, and the workflow to engage in federated administration with their
business partners.

Security characteristics
In a B2C or B2E1 environment where consumers and employees communicate
with one company as a focal point for multiple business partners, it is important to
secure access to all involved parties. In B2B environments business partners
and applications must also be used in a secure and reliable way.

Managing identities in this dynamic environment with many different
organizations interlinked becomes problematic when using today’s traditional,
static models. For this reason is it necessary to organize federations in order to
propagate identities across multiple organizations dynamically in a seamless
management infrastructure.

In such a dynamic environment, trust relationships between business partners
are essential. Traditionally, IT infrastructures have dealt almost exclusively with
their own environments—not necessarily reflecting the needs of interoperation

1 B2C: Business to Consumer, B2E: Business to Employee, B2B: Business to Business

666 Enterprise Security Architecture Using IBM Tivoli Security Solutions

and integration with other parties. In an truly dynamic business environment all
parties must interact seamlessly to meet the requirements of a dynamic
business. Figure 22-4 highlights a security triangle that these three elements
form.

Figure 22-4 Security triangle: Trust - Interoperation - Integration

Traditional security issues, of course, still apply, but need to be expanded in many
ways. In an on demand world closer convergence of IT and interlocked business
require flexible architectures to reflect the needs of these virtual organizations.

Perhaps the most significant change, is the move from a static security
environment to a highly dynamic environment reflecting fast changes in this
world. These new security challenges span multiple organizations and are no
longer bound to persons, but extend to applications and devices, as well.

New federated identity management specifications, that extend existing Web
services and federation-related standards, form the basis for a solution to the
new identity management issues that arise in an dynamic business
environments. These solutions will be discussed in more detail throughout the
remainder of this book.

Trust

Trust management
Trust establishment

Presumed Trust
Assertions

Interoperate

Secure interoperability
Protocol mapping
Publishing QoP

Federation

Integration

Extensible architecture
Existing services

Implementaion Agnostic

 Chapter 22. Business context for identity federation 667

22.4.1 Dealing with identities
Figure 22-5 shows a typical business that deals with at least three major clusters
of identities.

Figure 22-5 Dealing with identities - A corporate view

Attaining these goals using IT as a productivity lever has been both problematic
and challenging. In the IT world seemingly simple things like managing identities
or exchanging identity information within a firm's heterogeneous systems is a
challenge today, not to mention trying to deliver data transparently to users from
across a network of business partners and affiliates Fundamental issues like
end-to-end identity propagation are lacking today and present significant
challenges to integrating identities (and identity management techniques)
seamlessly into the application and middleware.

A quick survey within a typical large organization reveals many forms of identity
accounts that are provisioned by the employer to employees (including
employee-like users such as contractors), consultants, and contractors.

Corporate identities
A corporation typically has a number of systems and applications where their
users need identities. The user needs to sign on to her workstation, possibly
again to her corporate intranet, and may need to sign on again to the back-end

-

Employee Access to
Enterprise systems

Employee Access to
Employer outsourced Services

Access to Customer,
Supplier, Distributors,

 Dealers, Agents,
Contractors, Partners

etc.

Corporate
Employee
Identities

Employee Provider
Identities

B2B Identities
B2C Identities

668 Enterprise Security Architecture Using IBM Tivoli Security Solutions

systems. These sign-ins may need multiple identities, which need to be
managed as well as the user needs to remember all of them.

� Network identities (Remote Access, VPN or Wi-Fi Accounts) to enable users
to access the network

� Desktop identities to sign on to the workstation (Windows credentials)

� Corporate e-mail and white pages accounts

� Existing accounts for mainframe accounts

� HR accounts (PeopleSoft, SAP, Oracle)

� Supply Chain/CRM accounts (SAP, Siebel, etc.)

� Identities that are managed in middleware and database solutions (Oracle
accounts, WebSphere accounts, Portal accounts, and so on).

Employee to employer-outsourced provider identities
Many employee services (such as employee savings plans, retirement accounts,
pension, employee stock options, healthcare, payroll, and travel services) are
typically outsourced. However, employees need to register and enroll at these
third-party Web sites to get a login account before they can access these
services. Many small- and medium-sized businesses typically outsource many
aspects of their non-core services such as customer management, payroll, and
financial accounting, and so on.

� Employee benefits accounts (401K, pension, stock options, healthcare, online
travel, and so on.).

� Employee access to Software-as-Services identities. These are identities to
access hosted software like WebEX, ADP, quicken.com, Salesforce.com,
Siebel CRM On Demand, and so on.

� Accounts at financial service providers (IRA, 401K).

� Online banking/bill payment accounts.

� Accounts with credit card providers.

Business to consumer identities
Companies have to deal with many forms of identities to deal with suppliers,
business partners, distributors, dealers, and so on. Customers need login
identities to access various applications in the company portal.

� Suppliers need login accounts to access procurement systems such as SAP,
and so on.

� Business Partners need accounts in various systems.

� Distributors and dealers need access to various line of business applications.

 Chapter 22. Business context for identity federation 669

The unique element about business-to-consumer is the scale of millions of these
B2C identities and accounts that need to be maintained.

22.4.2 User lifecycle management
One of the biggest challenges customers face today is cost and complexity of
user lifecycle management. User lifecycle management is also referred to as the
multiple identity account problem, as users in most large companies have to
deal with fifty plus accounts. The customer pain points today can be
characterized in these facts:

� Improve and increase confidence in business transactions

Identity is the basis of security; poor identity management means weak
security

� Lower administrative cost

Soaring costs with account information administration and password
administration, user registration, and help desk support

� Risk, compliance, security exposure

– Business, legal and privacy issues with user data access (for example,
Sarbanes-Oxley, HIPAA, Graham-Leach-Bliley, CA SB1386)

– Issues with unauthorized access from users

– Audit failures due to inactive user account exposure

– Identity and password theft

� Poor market reach

– No standard mechanism to trust identities from M&A, business partners,
and third parties

– High cost of integration applications that deal with identities

The fundamental issue pervading identity management is that every time a user
requests access to an application or a system, an IT administrator ends up
creating an account for the user in the target system or application. A company
takes on a significant cost of user administration and management when creating
accounts for users.

To a great extent, these issues all involve the subject of identity management.

User provisioning and account management costs
The cost of provisioning users with account data is one of the more expensive
and manual activities that take people, time, and a significant IT budget. While
automated user provisioning tools automate (synchronize) many aspects of user

670 Enterprise Security Architecture Using IBM Tivoli Security Solutions

provisioning, the fundamental issue still remains that a company takes on user
ownership costs when provisioning account data. While a company may need to
take on this user ownership cost for employees, this approach may not be
correct when dealing with external identities that are currently being provisioned
in the internal systems.

Let us take a look at the various provisioning activities that a company is
undertaking when they decide to give access by creating an account.

� Create an account in each target system for the user.

� Enroll or register user in accounts.

� Establish access rights or credentials ensuring the privacy and integrity of
account data.

� Establish initial password/PIN.

� Help desk or customer care support to handle the following:

– Manage forgotten user name
– Forgotten passwords
– Managing password resets
– Requesting new access

� Manage password synchronization.

� Manage changes to access rights as user changes roles, and to entitlements
due to organizational changes.

� Eliminate access rights.

� De-provisioning accounts when user leaves the company.

� Ensure the privacy and integrity of account data.

Every time an account is created an IT provider is buying into a set of
management pain points. The key question for an IT provider becomes to decide
whether he has to manage this account or is there a better way to manage
access to this set of users?

There exists an opportunity for the company to reduce the cost of provisioning
suppliers, business partners, consultants, brokers and third-party users. By
federating user access to these third-party users, companies can effectively off
load user administration costs back to the provider who has direct responsibility
for managing the user.

User registration and enrollment costs
There are costs associated with registering and enrolling a new user in the
systems. User registration and enrollment costs accrue from the administrative
processes that need to be deployed across the Interactive Voice Recognition

 Chapter 22. Business context for identity federation 671

(IVR), Web, and sales channels. These administrative processes require
evaluating of the user registration data, collecting approvals, and integrating
customer care processes to handle user access issues. Many service providers
such as managed health care providers incur significant customer care costs (for
their client employees) every year during plan enrollment times. These managed
healthcare or financial providers deliver services to employees of their clients. As
a result, in today's business model, these providers end up with the responsibility
of identity management, password management, and customer care for their
client employees. Users call into the service provider support desk when they
cannot remember their online user name or ID or PIN number, or are having
difficulties with registration at the last minute.

This cost of user administration can be significant for most service providers and
presents a recurring cost overhead. If a provider has 500 fortune clients (a client
refers to a company), and each client on average has 20,000 employees whose
healthcare need to be managed, the provider is now supporting and servicing 10
million accounts. A federated model where the service provider trusts its clients
to provide the user information can considerably simplify user administration
costs because user service costs are being handled by their clients, not the
provider. In this model when an employee cannot access the healthcare
enrollment page (for whatever reason, such as forgotten user ID or password,
etc.) they call their local help desk for assistance. This approach greatly reduces
the cost of user administration, service, and ongoing customer.

Password management costs
A significant pain point for most companies is cost of password management.
Each call to the help desk results, on average, between $20 to $30 per call in
support costs (shown by various studies).

Therefore most providers have an incentive to lower password management cost
by either automating password resets or avoiding this password management
problem all together. Federated identity presents an opportunity to avoid this
problem altogether by enabling organizations to leverage their business partner
to manage these passwords and credentials.

22.4.3 Inter-enterprise application to application integration
As mentioned in 22.1, “The business context” on page 656 businesses are
interacting with services, and the Service Oriented Architecture, SOA, is a key
strategy that the market is adopting to support the businesses drive towards
becoming on demand businesses. Here we focus on the application to
application integration challenges within SOA. SOA as mentioned earlier spans
the own private business into new inter-enterprise interactions.

672 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The SOA strategy touches on many key elements relevant for e-business on
demand®:

� Interfaces are provided to wrap service endpoints to provide a
system-independent architecture to promote cross-industry communication.

� SOA can provide dynamic service discovery and binding, which means that
service integration can occur on demand.

� SOA provides a standard method of invoking Web services (business logic
and functionality) for disparate organizations to share across network
boundaries.

� Web services use open standards to allow inter-enterprise connectivity
across networks and the Internet:

– Messaging protocols (SOAP)

– Transport protocols (including HTTP, HTTPS, JMS)

– Security can be handled at both the transport level (HTTPS) and at a
protocol level (WS-Security)

� WSDL allows Web services to be self-describing for a loosely coupled
architecture.

� A key principle of SOA is that services should be invoked by service
requesters that are oblivious to service implementation details, including
location, platform, and if appropriate to the business scenario, even the
identity of the service provider.

� Standards bodies, including WS-I, W3C and OASIS exist using technologists
from industry leading software vendors (IBM, BEA, Oracle, Microsoft and so
forth) to accelerate and guide open standards creation and adoption.

Important: While Web services provide the technology that is used for
application to application interactions, they are not a requirement for an SOA
or ESB environment. Federated identity management techniques can be used
within a Web services environment, be it SOA, ESB or based on other
technologies.

 Chapter 22. Business context for identity federation 673

The Enterprise Service Bus
A core component of realizing an on demand infrastructure enabling support of
the emerging on demand business models is the Enterprise Service Bus (ESB).
The ESB is to SOA as SOA is to e-business on demand. So how does the
Enterprise Service Bus addresses the vision of an on demand business?

The Enterprise Service Bus is emerging as a service-oriented infrastructure
component that makes large-scale implementation of the SOA principles
manageable in a heterogeneous world.

On demand applications are business services built from services that provide a
set of capabilities that are worth advertising for use by other services. Typically, a
business service relies on many other services in its implementation. Services
interact via the Enterprise Service Bus, which facilitates mediated interactions.

When extending the ESB to support the inter-enterprise interactions driven by
SOA, trust and security is required. If using Web services, which are assumed
here, Web services security is a desired capability to allow businesses to
exchange sensitive data in a secure and trusted manner. This includes secure
communications across a multi-hop environment enabling application end to end
security and trust.

Web services security removes the dependency on transport-level security that
has been an artifact of HTTP-based communications and extends it to an end to
end application interaction security solution.

22.4.4 Open standards
Open standards are a key component when enabling inter-enterprise interactions
especially if they are to be dynamic and loosely coupled. Just as the Web
browser based user interactions have benefitted from HTLM and java-based
technologies, federated identity management benefits from the defined SSO
protocols and Web services standards.

See more detailed description of open standards relating to federated identity
management in 23.3, “FIM standards and efforts” on page 698.

F-SSO standards
Federated Single Sign-On (F-SSO) standards relate to how parties involved in a
federation communicate with each other and how the assert identities. In the
SSO standards there are also standards relating to single sign-out and account
linking capabilities.

674 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Web services
Web services have emerged as the most promising development to address
cross-enterprise, cross-platform, and cross-vendor business integration issues.
Web services is a family of emerging technologies that enable easy
interoperability of programmed information technology (IT) services and
integration of applications into a company’s broader business processes. Web
services technology enables companies to describe available services and
provide access to those services over standard Web protocols and
communications boundaries.

Web services security specifications
In April of 2002, IBM and Microsoft published a Web services security roadmap.
This roadmap describes a modular set of Web services specifications that allow
customers to build secure Web services according to their individual needs.
Several of these specifications have since been published and are described in
this section. You can download the roadmap from the Web at:

http://www.ibm.com/developerworks/library/ws-secmap

The Web services security roadmap defines and describes a set of specifications
designed to provide a security standard foundation. This foundation is based on
WS-Security, WS-Trust, WS-Policy and WS-Federation specifications. These
specifications provide a high-level view of all the pieces needed for security in a
Web services environment. In addition, these security specifications are factored
with the rest of the Web services architecture. This allows customers to easily
add other critical functionalities such as reliable messaging or transactions to a
Web service.

Web services provisioning specification
WS-Provisioning is a specification authored by IBM to provide a Web service
interface to communicate provisioning requests and responses. It includes
operations for adding, modifying, deleting, and querying provisioning data. It also
specifies a notification interface for subscribing to provisioning events.
Provisioning data is described using XML and other types of schema. This
facilitates the translation of data between different provisioning systems.

The specification is publicly available on the IBM developerWorks® Web site:

http://www.ibm.com/developerworks/webservices/library/ws-provis/

 Chapter 22. Business context for identity federation 675

http://www.ibm.com/developerworks/library/ws-secmap
http://www.ibm.com/developerworks/webservices/library/ws-provis/

22.5 Conclusion
Organizations are looking to increase productivity and efficiency in both their
intra-enterprise and inter-enterprise interactions. Keys to productivity are to
reduce cost, reduce friction and promote reuse. Most organizations are moving
to a services-based delivery model or service-oriented architecture where
business services are available through the integration of loosely coupled
application platforms.

Federated identity management delivers clear and compelling business
productivity by reducing the friction caused by incompatible identity management
systems. Since identity is a fundamental tenet of business and since
organizations have a business need to integrate their systems and applications
together, federated identity offers a strategic opportunity for companies to
address both issues. It provides the glue that enables organizations to network
and integrate their application platforms securely using Web services. Federated
identity management enables companies to securely link, join, or extend their IT
infrastructures with those of their business partners rather than create and
manage redundant identity and security infrastructures.

IBM recognized that federated identity management is a user lifecycle
management and administration problem. This approach enables companies to
simplify their user administration and security administration while improving
security and corporate compliance. This lifecycle management approach
enables company administrators and auditors to have the visibility, controls, and
the workflow to engage in federated administration with their business partners.

A federated model provides the platform for companies to deliver identity-driven
transactions to deal with solution extends the user lifecycle management of
organizations to include trusted business partners and members. Built on open
federated SSO and Web services standards, this integrated approach to user
lifecycle management provides an optimized and cost-effective approach to
managing identities and access control rights while simplifying the user
experience.

By choosing to operate in business federations, companies do the following:

� Reduce identity and security management costs through linkage and reuse
between companies. Companies no longer need to separately manage users
or identities that are not under their control, reducing identity lifecycle
management costs.

� Achieve order of magnitude increases in efficiency through reuse of security
infrastructure and end-to-end business process integration.

� Deliver simplified and trusted user experience with single registration, single
sign-on because users can navigate easily between Web sites with a single

676 Enterprise Security Architecture Using IBM Tivoli Security Solutions

identity and explicitly control release of their personal data. Implement
business strategies that drive organic market and customer growth by
eliminating the friction caused by incompatible identity and security
management between companies.

The IBM federated identity management solution delivers concurrent support for
key identity management specifications, such as Liberty, WS-Federation and
SAML. The IBM federated identity is built on the trust foundation of the
WS-Security family of specifications. Integration of federated identity
management capabilities with IBM middleware solutions, such as WebSphere
enables application platforms to be integrated using industry standards.

In this chapter we have given a view of the business context of federated identity
management. We discussed the customer pain points of managing identities. We
also described some possible business models where identity federation will
bring a real benefit to particular businesses.

 Chapter 22. Business context for identity federation 677

678 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 23. Federation concepts

A federation is a group of two or more trusted business partners with business
and legal agreements, including liability restrictions placed on the business
partners. Participation in a federation allows a user from one federation business
partner to seamlessly access resources of another business partner in a secure
and trustworthy manner, be it directly using a Web browser or accessing a local
application integrated to another business partner’s application. This allows end
users to easily accomplish the tasks they need to complete cross-company
business transactions. This in turn promotes cross-company business in a
loosely coupled environment.

This chapter discusses architecting a federated identity management solution
between trusted business partners. It also gives some aspects to understanding
how the user lifecycle management of identities and the provisioning of user
information need to be designed in the federation context.

The different standards involved with federated identity management are
described. The end of the chapter briefly explains the on demand Security
Reference Architecture and the WebSphere Integration Reference Architecture,
and how federated identity management relates to it.

The base for discussing how to architect a solution will be an example used
throughout this book. Based on the example, the federated identity architecture
is studied and terminology is explained along with the specifics of federated
identity solutions.

23

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 679

23.1 Federation example
The potential benefits of federation and federated identity management are best
described by an example. Consider a scenario with the following entities:

� An employer, BigCorp, and an employee, Employee One
� A travel provider, RBTravel
� A service provider, RBTelco
� A bank, RBBanking
� A stock information provider, RBStocks
� A user John Public coming over the internet

The involved businesses interact with each other creating a value net of services
available to users, both public users or employees of a business, see
Figure 23-1.

Figure 23-1 Federation example environment

BigCorp BigCorp is a large company with many employees. As
part of providing benefits for its employees, BigCorp
provides (subsidizes) health care, retirement saving
plans, and other employment related services (such as
subsidized mobile phone accounts). As part of reducing
its “employee costs”, BigCorp has out sourced these
employee benefits to third-party benefit providers. As

Telecom service provider

Intranet

Travel service

Teleconf.
Application

View Bill
Application

Stock service
provider

Banking service
provider

Ticketing service
provider

Main employee
facing web site

Portlet

Employees/
Public users Other

EnterprisesOther
EnterprisesOther

Enterprises

Service
Application

Portal

Portlet

Web Service invocation

Web based interaction

User interaction

680 Enterprise Security Architecture Using IBM Tivoli Security Solutions

BigCorp is responsible for the management of its users,
from account creation (initial hiring) to account
deletion/inactivation (dismissal/retirement/other
severance), it is nature for BigCorp One to continue to
assume this functionality but to leverage this in its
relationships with third-party benefit providers.

Employee One Employee One is a typical BigCorp employee. He has
access to the typical BigCorp provided (brokered)
services. Employee One also leverages additional
services brokered by BigCorp and provided by third-party
providers, including travel services, a BigCorp sponsored
mobile phone plan, participation in a stock plan and online
banking.

RBTravel RBTravel manages travel related services for other
businesses, allowing them to order and pay for flights,
trains, car rental, hotels and much more. RBTravel have
agreements with the businesses using there service to
allow anybody from their business who are directed to
their Web site to allow them to automatically get an
account.

RBTelco RBTelco is a telecommunications service provider that
offers telephony services and also has a portal where
RBTelco users or business partner users can choose
among offered services to which RBTelco will act as
identity provider, offering SSO to the services. RBTelco
also has services in their portal connecting to external
service partners Web services and presenting them in the
portal. RBTelco also acts as a service provider to large
enterprises, like BigCorp.

RBBanking RBBanking offers banking services to its own customers
directly and also to RBTelco customers through their
portal.

RBStocks RBStocks offers a stock quote service. The service offers
different service levels depending on the user of the
service. The stock service is a Web service. RBTelco
offers this stock service on their portal.

BigCorp is one of the identity providers in these federation relationships. It
manages a user registry containing information about all of its employees.
BigCorp is responsible for managing the lifecycle of its employees, from account
creation to account deletion/inactivation.

 Chapter 23. Federation concepts 681

BigCorp enters into a business federation with a travel services provider,
RBTravel. RBTravel is to manage a set of services for all of BigCorp's employees.
RBTravel is required to manage information about all of these employees as this
information is relevant to RBTravel's day-to-day management of the employee
travel specific information, like preferences, frequent flier information and so on.

Employee One has an account at BigCorp that he uses to access the BigCorp
resources he needs to complete his job. This account is based on his
employment at BigCorp. Should Mr. One go on a leave of absence, this account
may be suspended. Should he seek employment elsewhere, this account may be
terminated.

Mr. One, by virtue of being an BigCorp employee, also has a sponsored account
with RBTravel, a travel service company that acts as a third-party service
provider to BigCorp. Mr. One's account with RBTravel is sponsored in that it is
created as a direct result of Mr. One's status as an employee of BigCorp. Mr. One
is able to access his travel information through the BigCorp employee portal.
That is, the BigCorp employee portal has a link to RBTravel’s Web portal that
redirects Mr. One from BigCorp to RBTravel in order to access his externally
available services and information.

Without federation, Mr. One has to explicitly authenticate to the RBTravel site to
access his account even though he has already authenticated to BigCorp and
has accessed the RBTravel.com services through his employee portal.

By entering into a federation relationship RBTravel can reduce its overall cost of
managing users. The bulk of this is achieved by participating in single sign-on
and no longer directly managing Mr. One's authentication credentials, which, by
many reports, is an expensive part of user lifecycle management.

From Mr. One's point of view, having RBTravel and BigCorp participate in a
federation relationship with reduced sign-on allows Mr. One to authenticate once
to BigCorp and then access his travel information without having to explicitly
re-authenticate. This is achieved with federated reduced sign-on.

Federated reduced sign-on between an issuing domain (BigCorp) and a relying
domain (the federated service provider RBTravel) facilitates the secure and
trusted transfer of user identifiers and other attribute-related information (such as
authorization roles, group memberships, user entitlements, and user attributes
such as Employee ID and credit card number).

What is required is that RBTravel is able to participate in a runtime exchange of
information with BigCorp which results in some assertion from BigCorp (note that
this exchange of information requires no interaction with Mr. One). This assertion
is then trusted by RBTravel and used to uniquely identify Mr. One based on an

682 Enterprise Security Architecture Using IBM Tivoli Security Solutions

BigCorp asserted unique identifier. Using this information, RBTravel is able to
locally identify and provide access to Mr. One's benefits account information.

Note that both BigCorp and RBTravel need to maintain information about Mr.
One. There will be attributes about Mr. One that are best managed by BigCorp,
such as Mr. One's home address and telephone number. Likewise, there will be
information about Mr. One's travel preferences that are clearly not appropriate for
BigCorp to manage on behalf of RBTravel. Thus it is possible for RBTravel to
personalize a user's experience based on RBTravel maintained attributes.

The second major player in this example is RBTelco. RBTelco offers services to
businesses and public users. When offering services to businesses it does not
necessarily care about the individual employee at the business but will treat them
all as one user with regards to authentication. Offering the ability to book
teleconferences may be a service only available to businesses. Attributes that
are forwarded from businesses would allow RBTelco to personalize the user
experience further if necessary.

Public users to the RBTelco portal would have an personal account. Public users
who are customers of RBTelco would benefit from its partners service offerings
presented by the portal. The services would allow for reduced sign-on allow the
user only to log on to the RBTelco portal and then selecting that service by
clicking on the link in the portal and then connecting to the offered services
without having to log on again. One such service is the RBBanking, offering its
customers access to their bank services through the RBTelco portal with reduced
sign-on, in the same way as RBTravel offered its services to BigCorp employees.

Some services at the telecommunications portal would be consumed Web
services from partners to RBTelco. Web services are not accessed by the user
being redirected to another Web site and benefitting from reduced sign-on but
instead it is accessed by a local RBTelco application. The RBTelco application
benefits from the end to end security offered by the Web services security
interaction

Information about the user, that is necessary for the stock application to be able
to deliver the quality of service based information relevant to the users
credentials at RBTelco, are included in the request from RBTelco.

23.2 Federated identity management architecture
Federated identity management (FIM) functionality enables companies and
business partners to lower their overall identity management costs, improve user
experience, reduce the company pain points, and mitigate security risks for
transactions. When discussing identity federation, identity federation splits into a

 Chapter 23. Federation concepts 683

few different solution areas shown in Figure 23-2. The solution areas are as
follows:

� Web-based single sign-on—federated single sign-on referred to as F-SSO
� Application based Web services security—Secure Web services referred to

as Web services security management
� Identity lifecycle—federated provisioning

Figure 23-2 Federated identity management solution areas

In this section the common fundamentals and terminology for the three solution
areas will be covered, starting with a background on FIM, an architecture
overview and finishing of with the general architectural FIM terminology and
concepts.

In the sections following this one, the specifics of the three solution areas will be
studied in a little more detail with regards to their functional specifics, 23.4,
“Federated single sign-on” on page 705, 23.5, “Web services security
management” on page 711 and 23.6, “Federated identity provisioning” on
page 716.

Chapter 24, “Federated Identity Manager” on page 721 will do the same, but
focuses on the IBM Tivoli Federated Identity product specific approach.

23.2.1 Background to federation
Federation solutions are successful when they allow customers, business
partners and end users to integrate easily between the federation business
partners without having to constantly manage security and identity in the process
in a per relationship proprietary way. Unfortunately, current implementations for
managing security and identity data often force users and businesses to
manually manage access, trust, transport and identity attributes. Often this
burden has a heavy impact on both ability to execute and growing administrative
cost due to that each business has to administer a large and rapidly changing
base of identities. Such a model is an impediment to the adoption of federations
and is a pain point for both users and businesses, as we discussed in 22.2,

Identity Federation

Web based Single
Sign-On

Application based Web
Services Security

Identity Lifecycle

684 Enterprise Security Architecture Using IBM Tivoli Security Solutions

“Business models for federated identity” on page 657 and 22.3, “Federated
identity” on page 661.

Federation technology is used to do the following:

� Provide a simple mechanism to identify and validate users from business
partner organizations and provide them with seamless access to Web sites
within that trusted Federation.

� Support standards based end to end trust and security for applications
exposed as Web services between businesses

� Off load the expensive part of the user management—the cost of user
enrollment, account creation, password management and user care—to one
business partner (an identity provider).

� Standardize the provisioning of users and attributes to support both user and
application based interactions, extending enterprise identity management to
inter enterprise identity management

� Reduce business partners need to manage large sets of user data, including
the cost of managing authentication credentials for large numbers of users.

The goal of federation is to support a dynamic and seamless integration of
services and resources between businesses within a federation.

An organization typically is willing to pursue a federation model when they can
rationalize the benefits of such a solution against the risks of supporting a
business model based fundamentally on third-party trust. An organization will
find it extremely difficult to engage in a federated model when it does not have
the same visibility of lifecycle management of third-party users as they do with
their direct users. Therefore federated identity lifecycle management is an
approach to deliver the same kind of visibility around an identity-related business
process when organizations begin to loosely couple very disparate identity
management systems across trust domains.

One of the most pressing questions for an IT administrator is how to implement
the technical policies and operational best practices; how to implement and
enforce security and identity agreements, audit and privacy agreements, such
that the federated relationships look like an extension of their existing identity
management procedures.

23.2.2 Architecture overview
Federated relationships can be based on proprietary technologies that allow
business partners to communicate and collaborate. In general, a proprietary
approach is not scalable or maintainable across a large set of partners. For this
reason, standards and specification based approaches are rapidly gaining in

 Chapter 23. Federation concepts 685

popularity. Federations facilitate an integrated approach to business.
Federations are entered in to facilitate two major types of functionality:

� Seamless and secure user interaction across federation business partners
(aka, federated single sign-on)

� Seamless and secure business interaction across application platform
integration (aka, Web services security management for Service Oriented
Architectures)

Both of these functionality types leverage the same basic functionality, namely
both require a trust infrastructure. The trust infrastructure provides the technical
representation and implementation of the business and legal agreements
between business partners, as shown in Figure 23-3. Both federated single
sign-on and Web services security solutions are built on a trust infrastructure.

Figure 23-3 Base trust infrastructure for secure services

Federated identity management often refers to user-driven, browser-based
interaction between organizations. This space is reference to as federated single
sign-on (F-SSO) even though it has largely matured beyond just single sign-on
functionality. Standards and specifications such as the SAML specification and
WS-Federation and Liberty Alliance ID-FF specifications all now include an
aspect of session lifecycle management (single sign-on and single logout) as
well as single sign-on enablement through account linking. This comprehensive
approach and enablement of a single sign-on environment is designed to ease
the user experience and reduce the cost of management of these users. For
example, previously a user had to establish an account, including username and
password, at each business partner; the business partner in turn had to assume
the cost of managing this user and their access to their system. Federation
solutions ease this cost by reducing the amount of information that must be
managed for each user and the overall cost of managing this information.

Federated single sign-on
Secure user interaction

Secure Web services
Secure business interaction

Trust infrastructure

Tokens:
sign/encrypt

Message:
sign/

encrypt

Business
agreements

Legal
agreements

Technical implementation

Transport:
SSL/TLS,
WS-Sec

Web Application

Web Portal

Web Portal

ESB
App

App

App

Portal

Gateway

686 Enterprise Security Architecture Using IBM Tivoli Security Solutions

As Web services evolve, currently boosted by the industries drive towards
building service oriented architectures, the need to expose them to external
businesses will increase rapidly. Web services security targets the secure
inter-operability of applications or programs. Web services provide a flexible and
easily adoptable means of integrating applications. Web services security
defines how to do this in a secure manner. This includes securing the message
through signatures and encryption. It also includes authenticating and
authorizing requests based on the Web services invoker's claimed identity. This
identity is represented with a Web services security token; this process of
authenticating a principal's identity (be it user or application) is a form of
reduced-sign-on.

Unlike the federated identity management single sign-on described above,
however, this occurs in what is often referred to as an active client environment.
This means that the applications that are invoking Web services are able to
assert their claimed identities in a Web services request without having to
negotiate a separate (dedicated) single-sign-on protocol.

IBM provides the necessary functionality to implement the trust infrastructure
used by both of these solutions; this functionality is provided by a trust service.
Layered over the trust service functionality are two (largely independent yet
complementary) solutions: Federated single sign-on and Web services security
management.

To design a solution, the following areas need to be understood, and are covered
in this section:

� The roles of identity and service provider: The definition who is the
authoritative source of the user identity information

� Identity/attribute mapping: The definition of the attributes to be shared and the
mapping of them in the business partner systems

� User account management/provisioning: The procedures for managing user
identity data, agree what information can be shared, and what information is
independently managed by users, and will the users be provisioned
automatically to the new endpoint (a priori or runtime)

� Account linking: The procedures for managing the account linking, to agree
on some common unique identifier for the user, which can be bounded with
the internal, local user identity at the service provider. This step also involves
the definition of the account de-linking/de-provisioning procedures

� Trust: The process of ensuring security for connections/transport, messages
and tokens

� Selection of the federation protocol profile(s): The definition of the federation
protocol profiles to be used between the two business partners

 Chapter 23. Federation concepts 687

23.2.3 Roles
Within a federation, business partners play one of two roles: Identity provider
and service provider. The identity provider (IdP) is the authoritative site
responsible for authenticating an end user and asserting an identity for that user
in a trusted fashion to trusted business partners. Those business partners who
offer services but do not act as identity providers are known as service providers.
See Figure 23-4. The identity provider takes on the bulk of the user's lifecycle
management issues. The service provider (SP) relies on the IdP to assert
information about a user, leaving the SP to manage only those user attributes
that are relevant to the SP.

Figure 23-4 Identity provider and service provider in the federated model

Identity provider
The identity provider (IdP) is responsible for account creation, provisioning,
password management, and general account management, and also acts as a
collection point or client to trusted identity providers. Having one federation
business partner act as a user's IdP relieves the remaining business partners of
the burden of managing equivalent data for the user. These non-IdP business
partners act as service providers (SPs). These service providers will leverage
their trust relationships with an IdP to accept and trust vouch-for information
provided by an IdP on behalf of a user, without the direct involvement of the user.
This enables businesses (service providers) to off load identity and access
management costs to business partners within the federation.

In 23.1, “Federation example” on page 680, both BigCorp and RBTelco act as an
identity providers. RBTelco is also a service provider.

To achieve the overall user lifecycle management required for a full federated
identity management solution, the identity provider assumes the management of
user account creation, account provisioning, password management, and
identity assertion. The identity provider and service provider cooperate to

Service Provider
SP

Identity Provider
IdP

Federation

Service Provider
SP

Service Provider
SP

Partnership

688 Enterprise Security Architecture Using IBM Tivoli Security Solutions

provide a rich user experience by leveraging distinct federated identity
management profiles that together provide a seamless federation functionality
for a user.

Service provider
A service provider (SP) may still manage local information for a user, even within
the context of a federation. For example, entering into a federated identity
management relationship may allow a service provider to handle account
management (including password management) to an IdP while the SP focuses
on the management of its user-specific data (for example, SP-side
service-specific attributes and personalization related information). In general, a
service provider will off-load identity management to an identity provider to
minimize its identity management requirements while still enabling full service
provider functionality.

23.2.4 Identity models
Shared and distinct identity models refer to the nature of the identity data
management. A shared identity data management solution implies that
information can be managed by one business partner (the identity provider).
Distinct identity data management solutions imply that information is replicated
across business partners and managed separately across business partners.

Shared
A shared identity approach to federated business interactions may be
appropriate when one business partner is able to trust and rely on the assertion
of a user's identity data by an identity provider. In this model, federation allows
the user (and the federation business partners) to establish a common unique
identifier, used to refer to the user. Based on this common identifier, an identity
provider is able to manage a user's identity data, acting as the authoritative
source of this information to trusted service providers.

The fundamental question with respect to identity and attribute provisioning
between business partners is what information can they share and what are the
benefits of sharing? In an optimistic scenario an IdP and SP share every piece of
information about the user as in Figure 23-5 on page 690.

 Chapter 23. Federation concepts 689

Figure 23-5 Shared identity model

� Sharing authentication credentials between the identity provider and service
provider means that the service provider can rely upon the identity provider to
authenticate the user. This frees up the service provider from managing the
password and credentials for the user. If identity account data cannot be
shared then both identity provider and service provider must manage a
separate identity account for the user, forcing the user to remember multiple
accounts and passwords.

� Sharing transactional attributes requires that the identity provider and service
provider agree upon the roles and entitlements or groups that the user
belongs to up front. This is a difficult proposition to implement, as two
independent providers typically have different ways to group identities or
manage role information. Rather than sharing transactional attributes, a
provider may map their transactional attributes in a form that their business
partner understands. In this approach identity metadata is maintained
separately at both identity provider and service provider.

� Sharing profile attributes between identity provider and service provider is
usually a function of user consent. This is more dictated by user preference
and user privacy concerns. Sharing of attributes in many cases will require
user consent (OPT in) and the ability to prove user consent. In a pragmatic
sense, some attributes may be shared (such as e-mail address), while some
attributes will not be shared. If attributes cannot be shared then the attributes
need to be replicated between the identity provider and service provider. So
if, for example, a user's home address is replicated, both business partners
must independently manage this information. If the user moves, and one of

Note: Regardless of the sharing of account data, both an identity provider
and service provider will usually maintain (at least) a set of transactional
attributes associated with a user's identity.

Service Provider
SP

Identity Provider
IdP

Shared identity model

Shared and
private

attributes

Private
transactional

attributes

sharing

690 Enterprise Security Architecture Using IBM Tivoli Security Solutions

the business partners knows about the updated address, in a distinct identity
model, the business partner cannot notify/provision this information to other
business partners.

Provisioning plays a key role in determining all three of the above scenarios
when the identity information cannot be shared between IdP and SP. This will be
discussed in more detail in 23.2.6, “Trust” on page 695and 23.6, “Federated
identity provisioning” on page 716.

Distinct
A distinct identity approach to federated business interactions may be
appropriate when the two organizations cannot share identity information. This
may happen because of anti-competitive practices, separation of data,
dis-intermediation (companies unwilling to share customer data with business
partners for competitive reasons), political reasons, or because the user has an
independent relationship with both providers.

With a distinct identity data management model, identity data may be initially
provisioned across business partners as part of the initial account setup,
although it will be managed independently (outside the scope of a provisioning
solution) after this as in Figure 23-6.

Figure 23-6 Distinct identity model

23.2.5 Identity attributes
In a federated model an identity provider and service provider need to agree on
what information they can share with respect to a user identity and what
information must be independently managed. This information is composed of
classes of data that concern an identity:

� Authentication credentials
� Transaction attributes

Service Provider
SP

Identity Provider
IdP

Distinct identity model

Full set of
private

attributes

Full set of
private

attributes

 1 time provisioning

 Chapter 23. Federation concepts 691

� Profile attributes
� Provider-specific attributes

For each class of identity data, we can allow for a shared or distinct identity data
management solution as shown in Figure 23-7. Thus when examining the
provisioning requirements for a federated model, we evaluate the shared/distinct
nature of each of the classes of identity data.

Figure 23-7 Shared and distinct identity data and attributes

Authentication credentials
Authentication credentials are the information used to authenticate an identity.
This information is bound to a user's identifier (such as a user name or logon
identifier). The authentication credentials themselves are represented by data
such as a password or a one-time-generated PIN number from a hardware token.
These credentials are presented by a user as part of the authentication process
and used to prove (authenticate) the user's claimed identity. This implies that to
authenticate a user, a federation business partner must have a copy of the user's
authentication credentials, or some other means of validating the user's
authentication credentials. Thus current models of authentication require a
distinct identity data model, meaning that each business partner has a copy of
the user's authentication credentials.

One goal of a federated model is to move to a shared identity data model. With
authentication credentials, this implies that a federation business partner be able
to trust a third party (an identity provider) to evaluate the user's authentication
credentials and to assert some form of secure, trusted information that can be
used to vouch for the user's successful authentication at the identity provider.
Thus in a federated model, authentication credentials may be extended to
include security tokens from an identity provider asserting the user's identity.

IdP Identity

Authentication

Transaction

Profile

Provider
specific

Authentication

Transaction

Profile

Provider
specific

Attributes:

shared/distinct

shared

shared

distinct

Provisioning Attributes:

SP Identity

692 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Moving to a shared model for authentication credentials means that federation
business partners are able to act as service providers and no longer have to
manage the class of identity data, including authentication credentials.
Provisioning solutions are used to tie the identity account management at an
identity provider to that at a service provider.

A shared identity approach to federated business interactions may be
appropriate when one business partner is able to trust and rely on the assertion
of a user's identity by an identity provider without having to independently
validate the user's authentication credentials. In this model, federation allows the
user (and the federation business partners) to establish a common unique
identifier to use to refer to the user, where this identifier reveals no information
about the user at either business partner. Based on this common identifier, an
identity provider is able to issue single sign-on information to federation business
partners.

In a shared identity model there is no need to provision authentication
credentials. There is, however, a need to somehow establish a user's local
identity and the common identifier used by the two business partners. This is
handled through a provisioning solution. In general, a distinct identity account
data model does not involve a provisioning solution. The user in this federation
model has distinct identity accounts at both of these business partners,
maintained and administered independently at both the identity provider and
service provider. With a distinct identity data management model, identity data
may be initially provisioned across business partners as part of the initial account
setup, although it will be managed independently (outside the scope of a
provisioning solution) after this.

There may be some cases where this is not true, for example, if the user does not
already have a distinct, authenticable account at both the identity provider and
the service provider. In this case, the identity provider may trigger a provisioning
event at a business partner to create a local identity account and identity account
data for a user. Part of this action may including establishing a common identifier
used by the two business partners. As with the shared data approach,
provisioning solutions when invoked within a distinct identity model may come in
one of two flavors: Runtime (or just-in-time) and a priority provisioning, described
in 23.6, “Federated identity provisioning” on page 716.

Transactional attributes
Transactional attributes include information that describes a user and his
affiliations and entitlements. This information is bound to a user's identifier. This
may include groups that the user belongs to or roles that he can assume. This
data may also include additional identifiers (such as customer ID number, 401K
account number, frequent flier status level, health care number, supplier ID, or
billing or credit card number, etc.), specific organizational roles (such as HR

 Chapter 23. Federation concepts 693

manager, stock broker, benefits administrator, primary care physician, executive,
supervisor, travel exception approver, and so on).

This information is often used as part of authorization/access control decisions at
the transactional level (for example, can this HR manager update this employee's
personnel evaluation?). This information about a user is not normally managed
by the user. In general, a user's transaction attributes are not common across all
identity and service providers;- not all of these attributes are relevant to all
identity/service providers.

Sharing of transactional attributes allows one of the parties (usually the identity
provider) to act as the authoritative source of transactional attribute information
about a user. This attribute information can then be provisioned to a service
provider in an a priori manner, meaning that whenever this information is
updated at the identity provider, an a priori provisioning request will attempt to
update this information at the service provider. This attribute information can also
be provisioned in a dynamic, or just-in-time, manner, meaning that updated/new
information is included as part of a single sign-on response to the service
provider, or in response to a direct request from the service provider.

When transactional attributes are distinctly managed within a federation, each
federation business partner is responsible for the day-to-day management of
these attributes. This means that a provisioning solution is not implemented as
part of the day-to-day management of these attributes. With a distinct identity
data management model, transactional attributes may be initially provisioned
across business partners as part of the initial account setup, although it will be
managed independently (outside the scope of a provisioning solution) after this.
Note that because transactional attributes are typically not managed by the end
user, this day-to-day management must be handled by the service provider's
administrators.

Profile attributes
Profile attributes represent auxiliary information that is not primarily tied to
authentication or authorization decisions. Profile attributes may be information
specific to the user identity such as e-mail address, home address, birth date,
and telephone number. Identity profile attributes also include preference or
personalization attributes such as a user's frequent flier number, location
information, and preferences and subscription information (for example, user
subscribes to a newspaper, and so on). This information may be used as part of
secondary user identity validation (as part of a lost password recovery process).

This information may be used as part of an access control decision in scenarios
where access is controlled by (for example) a user's age or state of residence.
This information about a user is normally managed by a user. In general, a user's
profile attributes are consistent across identity and service providers.

694 Enterprise Security Architecture Using IBM Tivoli Security Solutions

To put this into a familiar context, consider a the BigCorp employee, Mr. One,
who participates in a frequent flier program with his airline of choice. Mr. One has
an online travel account at RBTravel that he uses to book his air travel; this
account is bound to his identity. Associated with this user name is Mr. One's
password (authentication credentials) used to authenticate, these are not known
by Mr. One because they were setup as part of his provisioning from BigCorp.
Associated with Mr. One's travel account, are Mr. One's profile attributes (for
example, his billing address, e-mail, telephone number).

Based on Mr. One's travel account, the travel service will assign (and manage)
Mr. One's frequent flier status (a transactional attribute). When attempting to
book a flight Mr. Ones attributes will be used to assist him in booking the flight
and also enable the ticket to by issued to his frequent flier card. When Mr. One
attempts to book a trip, his travel class may be based on attributes with regards
to his airline points or position at BigCorp. Once Mr. One has selected his desired
travel and is about to book it, secondary evaluating of Mr. One's identity will be
accomplished as part of the specification of Mr. One's billing address (to which
the ticket confirmation information is to be sent).

Provisioning solutions allow the identity provider to create or update user profile
attribute information such as e-mail, personal information, address, membership
or subscriber information, and service-specific attributes about a user to service
providers. These attributes are typically managed by the end-user by managing
their profile information at their identity provider.

Provider-specific attributes
Provider specific attributes include both transactional and profile attributes that
are relevant for a given user at a given service provider; these attributes have not
been shared with other service providers. Examples of provider-specific
transactional attributes may include a user's buying history maintained with an
online auction house and the bonuses (free shipping) associated with this user's
transaction history. Examples of provider-specific profile attributes may include a
user's preference to always search for new auction items within the “Toys less
than $25” category.

A user's provider-specific attributes are just that: They are distinct attributes that
are not shared across federation business partners and are not required to be
managed through a provisioning solution across business partners.

23.2.6 Trust
Trust is a key capability for all three solution areas, and therefore a key area for
FIM. Trust Services are also discussed in some detail in 24.2.4, “Trust services”
on page 729.

 Chapter 23. Federation concepts 695

A trust relationship is represented at a technical level by cryptographic keys used
to sign and encrypt messages. These types of cryptographic techniques provide
a trust infrastructure over which other services can be layered.

To help ensure a desirable user experience, business partners within a federation
need to communicate information about a user in a secure and trusted fashion.
This is accomplished by leveraging a trust infrastructure.

Figure 23-8 Layers of trust

A trust infrastructure enables the protection of a message at all levels, as shown
in Figure 23-8:

Transport Using SSL to protect user based FIM communications or
WS-Security to protect application based FIM
communications

Message Using encryption and signing to provide confidentiality
and integrity protection on messages within a FIM flow

Token Using secure tokens to communicate information about a
user as part of specific steps within a FIM flow

The trust infrastructure provides protection against invalid or fraudulent FIM flows
while allowing for a single point of management of the trust information.

Tokens:
sign/encrypt

Message:
sign/

encrypt

Transport:
SSL/TLS

Tokens:
sign/encrypt

Message:
sign/

encrypt

Transport:
WS-

Security
MQ/JMS

Web Service invocation

Web based interaction

696 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Transport
The simplest form of trust infrastructure is that provided by the transport layer
SSL protocol, used to encrypt communications at the transport layer between
two business partners. Enterprises generally understand how to manage SSL
certificates and how to use them to authenticate other enterprises with
techniques such as mutually authenticated SSL. SSL-based trust infrastructures
suffer from some limitations, notably that they are (at best) point-to-point based,
not end-to-end.

Web services, however, may not always run over SSL-compatible transport
protocols; Web services may be invoked via transport layer protocols such as
JMS or MQ. Thus a Web services trust infrastructure requires more flexibility
than offered by SSL. This flexibility is provided by encryption and signing of Web
services requests themselves in addition to any transport level protection that
may be applied.

Federated identity management requests will usually run over HTTP (and thus
be able to take advantage of SSL). They are not point-to-point communications,
however, meaning that an additional layer of protection is required. This is
provided by encryption and signing of the FIM requests themselves in addition to
any transport level protection that may be applied.

Message
For both Web services and federated identity management solutions, a
non-transport based trust infrastructure is required. This is provided by the use of
signing and encryption of requests at the message layer. The trust service
provides the infrastructure to manage the keys and certificates used for this
signing and encryption.

The trust service provides a means of managing one's own keys and certificates,
and of binding a business partner's certificates (validated by a third-party
Certificate Authority) to the local, business-agreement validated, business
partner identity. These keys and certificates are then used to sign/validate and
encrypt/decrypt messages between business partners, independent of any
transport layer security.

Token
In addition to message layer security, security tokens may be included in a
message to convey security-specific information (used for authentication and/or
authorization purposes, for example) about a requestor. This information is part
of the trust infrastructure in the same way that keys are used for
signing/encryption purposes: The proper use of these tokens conveys
information about the holder of these tokens.

 Chapter 23. Federation concepts 697

The trust service provides a means of managing these security tokens. These
tokens are common to (at least) one other business partner and contain
pre-arranged security-relevant information. These tokens are themselves
protected through signing and encryption, often using the same keying material
as used at the message layer.

23.2.7 Federation protocol
When creating a federation an agreement needs to be made on a technical level
of what FIM standard to use within the federation. An identity provider will most
likely support several and even service providers may do the same, but one
needs to be defined for each federation partnership.

The different standards and efforts in this space are discussed in 23.3, “FIM
standards and efforts” on page 698. The different standards have different
capabilities that govern the choice of protocol, made. Use the table in 23.3.9,
“Selecting Federation standards” on page 703 to help select SSO protocol.

23.3 FIM standards and efforts
Reduced sign-on techniques and solutions have been in place for many years
now. Federated identity management has its roots in reduced sign-on
technologies. IBM Tivoli first introduced reduced sign-on support in Tivoli Access
Manager as early as 2001.

The first standards-based efforts in this space where by Internet (Shibboleth) and
OASIS (SAML). Since then, federation efforts have been lead by the Liberty
Alliance (Liberty ID-FF) and through the Web services work of IBM and
Microsoft and partners (WS-Federation). Each of these efforts is introduced and
briefly discussed in the following sections. The more recent Web services
standards including WS-Security, WS-Trust and WS-Provisioning are presented
as well.

23.3.1 SSL/TLS
Secure Sockets Layer (SSL, standardized as Transport Layer Security, TLS)
provides session-level security through the use of encryption. While not often
thought of as an identity management protocol, SSL can be used to authenticate
senders and receivers through digital certificates, verify data integrity, and ensure
confidentiality. As such, SSL is often the first (and only) option considered in
securing transactions over the Internet. It can be used in both browser-to-Web
server and server-to-server communications.

698 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Despite its popularity, SSL has some shortcomings in the following areas:

Granularity Either all the data over the session is encrypted or none
is. This can impact throughput in cases where large
amounts of data are exchanged but only small portions
actually need to incur the overhead of
encryption/decryption.

End-to-end SSL protection ends if intermediate components need to
examine transactions. No provision is made for encrypting
end-to-end across intervening components.

Web services Security (discussed elsewhere in this section), however,
overcomes these issues.

23.3.2 Security Assertion Markup Language
Security Assertions Markup Language (SAML) is a specification designed to
provide cross-vendor single-sign-on interoperability. SAML was developed by a
consortium of vendors (including IBM) under the auspices of OASIS, through the
OASIS SSTC (Security Services Technical Council). SAML has two major
components: It describes SAML assertions used to transfer information within a
single sign-on protocol and SAML bindings and profiles for a single sign-on
protocol.

A SAML assertion is an XML-formatted token that is used to transfer user identity
(and attribute) information from a user's identity provider to trusted service
providers as part of the completion of a single sign-on request. A SAML
assertion provides a vendor-neutral means of transferring information between
federation business partners. As such, SAML assertions have a lot of traction in
the overall federation space.

As a protocol, SAML has three versions, SAML 1.0, 1.1 and SAML 2.0. SAML
1.0 and SAML 1.1 (collectively, SAML 1.x) focus on single sign-on functionality.
SAML 2.0 represents a major functional improvement over SAML 1.x.

As the most recent release, SAML 2.0 takes as input both the Shibboleth work
and Liberty ID-FF 1.2. SAML 2.0 takes into account more of the identity lifecycle
functionality than previous versions. Likewise, based on the Shibboleth input,
SAML 2.0 has functionality that addresses some of the privacy concerns
associated with a federated environment. SAML 2.0 is still largely in development
with customer adoption/deployment expected to take off in mid-2006.

More information about the SAML specification is available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

 Chapter 23. Federation concepts 699

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

23.3.3 Shibboleth
Shibboleth is related to SAML but is specific to the higher-education sector.
Shibboleth uses some of the SAML protocols but includes additional features
specific to the higher-education community. Shibboleth introduces the notion of
Where are You From? processing, allowing a service provider to implement both
push- and pull-based SSO protocols. Shibboleth has been submitted as a
contributor to the SAML 2.0 specification.

For example, within the higher-education community, there are very strict rules
on the release of information about an institution's students, even to other
higher-education institutions.

23.3.4 Liberty
The Liberty Alliance Project was formed to deliver and support a federated
network identity solution for the Internet that enables single sign-on for
consumers and business users in an open, federated way.

The Liberty Identify Framework, ID-FF, describes federation functionality that
goes beyond single sign-on. Initially released as Liberty Alliance ID-FF 1.0 in July
2002, the latest release of the Liberty specification is Version 1.2, released
November 2003.

The Liberty approach is based on business affiliates forming circles of trust. The
Liberty circles of trust is defined as “a group of service providers that share linked
identities and have pertinent business agreements in place regarding how to do
business and interact with identities.”

This is an excerpt from:

http://www.projectliberty.org/about/faq.php#07

For more information about Liberty Alliance, see:

http://www.projectliberty.org

23.3.5 WS-Federation
WS-Federation is a specification defined by IBM, Microsoft, VeriSign, and RSA
within the scope of the IBM-Microsoft Web services Security Roadmap.
WS-Federation was published on July 8, 2003. WS-Federation interoperability
between IBM and Microsoft has been demonstrated several times, including by
Bill Gates and Steve Mills in New York City in September of 2003. Subsequent to
that, a public interoperability exercise was held on March 29–30, 2004 between
IBM, Microsoft, and other third-party vendors.

700 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.projectliberty.org
http://www.projectliberty.org/about/faq.php#07

WS-Federation describes how to use the existing Web services security building
blocks to provide federation functionality, including trust, single sign-on (and
single logout), and attribute management across a federation. WS-Federation is
really a family of three specifications: WS-Federation, WS-Federation Passive
Client, and WS-Federation Active Client.

WS-Federation itself describes how to implement a federation in a Web services
world. In particular, WS-Federation focuses on the relationships between parties,
and the high-level architecture that supports these relationships. The two
individual documents, WS-Federation Active and WS-Federation Passive,
describe how to implement individual federation solutions.

WS-Federation Active describes how to implement federation functionality in the
active client environment. Active clients are those that are Web services enabled,
that is, able to issue Web services requests and react to a Web services
response. Leveraging the Web services security stack, WS-Federation Active
describes how to implement the advantages of a federation relationship,
including single sign-on, in an active client environment.

WS-Federation Passive describes how to implement federation functionality in a
passive client environment. A passive client is one that is not Web services
enabled. The most commonly encountered example of a passive client is a
vanilla HTTP browser. WS-Fed Passive describes how to leverage the
advantages of a federation relationship such as single- sign-on in a passive client
environment. Because this solution leverages the WS-Security foundation of the
infrastructure support, the same components used to provide a passive client
solution may be leveraged for an active client solution.

The three specifications that make up WS-Federation are available for download
from IBM DeveloperWorks at the following Web sites:

� WS-FED:

http://www.ibm.com/developerworks/webservices/library/ws-fed/

� WS-FEDACT:

http://www.ibm.com/developerworks/webservices/library/ws-fedact/

� WS-FEDPASS:

http://www.ibm.com/developerworks/webservices/library/ws-fedpass/

The logical architecture described in WS-Federation, together with the
functionality described in the Web services security stack, supports both the
active and passive client scenarios. The complete family of WS-Security
specifications provides companies with a standards-based interoperable secure
digital identity and trust platform for Web services- based architecture.
Furthermore, these specifications promote reusability of existing IT security

 Chapter 23. Federation concepts 701

http://www.ibm.com/developerworks/webservices/library/ws-fed/
http://www.ibm.com/developerworks/webservices/library/ws-fedact/
http://www.ibm.com/developerworks/webservices/library/ws-fedpass/
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/
http://www-106.ibm.com/developerworks/webservices/library/ws-fedact/
http://www-106.ibm.com/developerworks/webservices/library/ws-fedpass/

investments, enabling companies to work with multiple security token types and
multiple scenarios including vanilla browsers, enhanced browsers, active clients,
and application-to-application connectivity.

There is also more information about WS-Federation in 24.3.5, “Federated single
sign-on approaches” on page 753.

23.3.6 WS-Trust
The Web Services Trust Language (WS-Trust) uses the secure messaging
mechanisms of WS-Security to define additional primitives and extensions for the
issuance, exchange and validation of security tokens. WS-Trust also enables the
issuance and dissemination of credentials within different trust domains.

In order to secure a communication between two parties, the two parties must
exchange security credentials (either directly or indirectly). However, each party
needs to determine if they can trust the asserted credentials of the other party.
This specification defines extensions to WS-Security for issuing and exchanging
security tokens and ways to establish and access the presence of trust
relationships. Using these extensions, applications can engage in secure
communication designed to work with the general Web Services framework,
including WSDL service descriptions, UDDI businessServices and
bindingTemplates, and SOAP messages.

The specification that makes up WS-Trust is available for download from IBM
DeveloperWorks at:

http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/

This is an excerpt from the IBM DeveloperWorks definition of WS-Trust.

Note that in July 2005 IBM and Microsoft announced that WS-Trust would be
submitted to the OASIS standards organization. The announcement of Technical
Committee (TC) formation is expected in September 2005, after which the
normal OASIS process for standardization will begin.

23.3.7 WS-Security
While WS-Security itself is not a federation or single sign-on specification, it does
define the binding of Web services security tokens. This binding is leveraged
within the WS-Federation profile (see the next section).

The OASIS Security Services Technical Council, together with the OASIS Web
services Security Technical Council, has defined a Web services Security SAML
Token Profile. This describes how to bind a SAML assertion in the context of
WSS:SOAP Message Security, for securing SOAP message exchanges.

702 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

The OASIS WSS-TC issued OASIS Web services Security as a specification in
April 2004. Included in this specification are SOAP message security, a user
name token profile, and an X.509 token profile. More information about the
OASIS Web services Security specification is available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

There is also more information about WS-Security in 24.4.2, “WS-Security” on
page 770.

23.3.8 WS-Provisioning
WS-Provisioning describes the APIs and schemas necessary to facilitate
interoperability between provisioning systems and to allow software vendors to
provide provisioning facilities in a consistent way. The specification addresses
many of the problems faced by provisioning vendors in their use of existing
protocols, commonly based on directory concepts, and confronts the challenges
involved in provisioning Web services described using WSDL and XML Schema.

The WS-Provisioning interface is an open standard that is available to other
companies that want to develop interoperable provisioning scenarios and
systems. The specification is publicly available on the IBM developerWorks Web
site:

http://www.ibm.com/developerworks/webservices/library/ws-provis/

WS-Provisioning has been submitted to the Organization for the Advancement of
Structured Information Standards (OASIS) Provisioning Service Technical
Committee.

Tivoli Federated Identity Manager supports draft version 0.7 of the
WS-Provisioning specification.

This is an excerpt from the IBM DeveloperWorks definition of WS-Provisioning.

There is also more information about WS-Provisioning in 24.5, “Provisioning
services” on page 775.

23.3.9 Selecting Federation standards
To help in selecting which F-SSO profile to use, see Table 23-1 on page 704.
Table 23-1 on page 704 highlights some of the characteristics of each protocol:
SAML 1.0 and 1.1 (OASIS standards), Liberty ID-FF 1.0, 1.1and 1.2 (Liberty
Alliance published specifications), and WS-Federation (WS-Fed) Passive (IBM,
Microsoft, RSA, VeriSign published specification).

 Chapter 23. Federation concepts 703

http://www.ibm.com/developerworks/webservices/library/ws-provis/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Table 23-1 Characteristics per SSO protocol

Supported characteristic SAML 1.0,
1.1

SAML 2.0 Liberty
ID-FF 1.0,

1.1, 1.2

WS-
Federation

PUSH SSO - Identity provider (IdP)
initiated SSO

Yesa

a. While not explicitly part of SAML, this can be implemented by a vendor. This type of implementa-
tion will almost certainly break cross-vendor interoperability.

Yes Nob

b. This is not part of the Liberty ID-FF conformance profile. This can be implemented by a vendor,
but will almost certainly break cross-vendor interoperability.

Yes

PULL SSO - Service provider (SP)
initiated SSO

Yes Yes Yes Yes

Front channel security token exchange Yes Yes Yes Yes

Back channel security token exchange Yes Yes Yes Noc

Choice of security token type No No No Yes

Where are you from? (WAYF) support N/A Yes Yes Yes

Accounts at IdP and SP are required to
initiate SSO

Yesd Yes Yesd No

Accounts at IdP and SP are required to
initiate account linking process

N/A Yes Yes No

IdP-initiated account linking (federation)
within SSO process

No Yes No Yes

SP-initiated account linking (federation)
within SSO process

No Yes Yes Yes

Support for Single log out (SLO) or single
logout

No Yes Yes Yes

Create account on SP-side as part of
IdP-initiated SSO or account linking - Just
in time provisioning (JITP)

Yes Yes No Yes

Account de-linking where user had
pre-existing accounts before account
linking

Yes Yes Yes Yes

Account de-linking where user did not
have pre-existing accounts before
account linking

Yese,f Yes Yese,f Yesf

704 Enterprise Security Architecture Using IBM Tivoli Security Solutions

You can find more information about SAML, Liberty ID-FF, and WS-Federation in
24.3, “Federated single sign-on” on page 740.

23.4 Federated single sign-on
Federated single sign-on is the process by which a user authenticates to a
federation business partner (an identity provider) and has the IdP assert a
relevant identity (and attributes) to any/all required (and trusted business partner)
service providers as part of the user's online federation experience. Global
sign-on itself is provided by a federated single sign-on protocol (see 23.3.9,
“Selecting Federation standards” on page 703). These protocols provide
standard, interoperable means for multiple federation business partners to
negotiate the presentation of credentials about a user from an identity provider to
a (trusted) federation service provider.

In this section federated single sign-on functionality is discussed, this is also
studied more in detail, out of an IBM Tivoli Federated Identity Management
product point of view, in 24.3, “Federated single sign-on” on page 740.

c. The WS-Federation Passive scenario used to demonstrate interoperability employed a front-chan-
nel token exchange. Back-channel exchange can be supported using a direct trust server to trust
server security token request, replacing the information passed in the front channel with an arti-
fact-type security token.
d. The profiles for SAML and Liberty ID-FF explicitly require accounts at both the IdP and SP side as
a prerequisite for SSO and account linking. A particular vendor implementation may not require this
(see item 9 for more details).
e. This is somewhat out of the scope of SAML and Liberty ID-FF implementation as they both require
that a user had accounts at both sides before the account linking process was initiated.
f. Assuming that the SP side account was created in response to runtime provisioning, this account
must have been created in a manner that allows it to be converted from an SSO account to a di-
rect-authentication account.

 Chapter 23. Federation concepts 705

Figure 23-9 Secure user interaction - F-SSO

A simplified view of a user interaction is illustrated in Figure 23-9, where a user
interacts with Enterprise A who acts as the IdP and two businesses Enterprise B
and C who act as SP’s. The user interactions are all Web browser based and
F-SSO is used to reduce sign-on for the user. The reduced sign-on may be
accomplished with any of the SSO protocols, SAML, Liberty ID-FF or
WS-Federation, see Table 23-1 on page 704 for help on selecting SSO protocol
suitable for the federation partnership to be set up.

In the attempt to explain the different functionality in Federated single sign-on,
the example in 23.1, “Federation example” on page 680 will be used in this
section.

Functionality relevant to F-SSO are; pull and push SSO protocols, account
linking, WAYF, session management, logout, credential clean up, global
good-bye and account de-linking.

23.4.1 Push and pull SSO
There are two different ways of doing SSO, push and pull. Pull SSO is available
in SAML 1.x and 2.0, Liberty ID-FF and WS-Federation. Push is available in
SAML 1.x (with custom coding in Liberty ID-FF) and WS-Federation, see 23.3,
“FIM standards and efforts” on page 698 for details.

Push SSO means that the SSO exchange is triggered by a request to the identity
provider, which then PUSHes a security token (or an artifact that can be used to
obtain the Security Token) to the service provider.

Web based interaction

User interaction Enterprise B

Enterprise C

Enterprise A

Web Portal

Web Portal

Web Application

706 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Pull SSO means that the SSO exchange is triggered by a request to the service
provider, which then PULL’s a security token (or an artifact that can be used to
obtain the Security Token) from the identity provider.

BigCorp uses pull SSO when its employees sign on to RBTravel.

23.4.2 Account linking
When a user has multiple login accounts at various sites or companies,
navigating between these Web sites can be a cumbersome activity, not to
mention the poor user experience. The user has to remember multiple site
identity account names and passwords to access services on these Web sites.
Account linking provides a simple mechanism for the user to link these distinct
identity accounts that they have with different Web sites as long as the various
companies or Web sites agree to this concept. The purpose of account linking is
to deliver a single sign-on user experience with these various providers who are
part of this agreement. Once accounts are linked, the user can authenticate to
one provider and then navigate seamlessly to various service providers with
whom they have linked accounts without having to re-authenticate or enroll.

At a technical level account linking is the process by which an identity provider
and service provider agree on some common unique identifier, and then each
bind their internal, local user identity to this common unique identifier (CUID).
This allows the identity provider and service provider to refer to the user by their
CUID during single sign-on without disclosing information about their local
internal representation of the user.

Consider RBTelco and RBBanking, where John Public has distinct
(authenticate-able) identity accounts at each company. When the two companies
agree to join a federation, they must somehow enable RB Telco’s users for SSO
to RBBanking. In general, this will happen based on functionality at RBBanking.
This happens through a two-step process, in this case initiated from the RBTelco
site. RBTelco changes the functionality at the portal, so that instead of a simple
redirection to RBBanking, the clicking of a link to RBBanking initiates single
sign-on to RBBanking. RBBanking receives this single sign-on request but is not
able to map the user to a locally known user. This will cause RBBanking to
prompt John for his RBBanking authentication credentials. Successful
authentication by John will now give RBBanking the RBTelco asserted CUID
(from the SSO request) and its own local representation of the user (from John's
direct authentication). RBBanking is now able to establish the account linking
that will allow this user to SSO from RBTelco.

Should users directly access RBBanking during the roll-over period, they will be
authenticated by RBBanking as usual. After this, RBBanking will request SSO
from RBTelco (for the already authenticated user). The corresponding SSO

 Chapter 23. Federation concepts 707

response will contain the common user identifier (CUID) so that RBBanking has
the RBTelco asserted CUID (from the SSO request) and its own local
representation of the user (from John's direct authentication). RBBanking.com is
now able to establish the account linking that will allow this user to SSO from
RBTelco.

RBBanking may choose to disable the user's local password, so that direct
authentication to RBBanking is no longer possible as long as the user's account
is linked with RBTelco. The next time this user attempts to directly access
RBBanking, RBBanking will request an SSO from RBTelco.

Part of the account linking process is normally the establishment of some
long-term/persistent piece of information, such as an HTTP cookie, that identifies
RBTelco as this user's identity provider. During the roll-over period, this is also
used to distinguish between already linked and yet-to-be-linked users from
RBTelco. Once the roll-over period has completed, all users without this
persistent information must be queried to determine if RBTelco really is their
identity provider (see the following section for more information).

23.4.3 Where are you from?
Some service providers may have trust relationships with multiple identity
providers. This means that a user may possibly initiate SSO from one of many
IdP’s. For the service provider, the process of determining which IdP to request
SSO from is referred to as Where are you from? (WAYF). This is a process by
which a user may specify a preference for a given IdP for SSO purposes. This
information is maintained by the SP so that it can easily determine, without user
interaction, which IdP to request SSO from for future requests.

In the case of RBBanking, the WAYF information is established during the
roll-over period. During the roll-over period, RBBanking is acting as both a
service provider (for already federated users) and an identity provider (for not yet
federated users). That is, both RBBanking and RBTelco are acting as identity
providers for the single service provider, RBBanking.

If RBBanking was a SP to several IdP’s, it must rely on some form of persistent
information associated with a user (such as an HTTP cookie) to identify to which
identity provider an SSO request is to be directed. If this cookie is absent, then
RBBanking must engage in some form of user-interactive WAYF processing.
RBBanking may choose to prompt John to select such an identity provider from a
list of known/trusted identity providers.

In some cases, a service provider may not be willing to expose a list of trusted
identity providers. In this case, John would be given instructions by RBBanking to

708 Enterprise Security Architecture Using IBM Tivoli Security Solutions

directly access his identity provider (RBTelco) and initiate a SSO request through
an identity provider based mechanism.

While this does involve a level of interaction with the user, neither situation is as
intrusive as requiring that the user remember a password for RBBanking. Ideally,
user-interactive WAYF processing should not be required every time John
accesses RBBanking.

23.4.4 Session management and access rights
Once a user has single signed-on to a service provider, the SP is responsible for
managing the user's local session at the SP. This includes authorization
decisions on the user's requested actions and also session management itself,
such as logoff or session time-out.

This implies that the service provider is able to manage some level of attributes
or credentials for a user. These attributes are used to determine a user's local
access privileges. Access privileges may be asserted by the identity provider in
the form of asserted attributes about a user, such as group membership. This
information may be used by the service provider as an indication of the types of
actions considered allowable by the identity provider (or, actions that will be
honored by the IdP on the user's behalf). The service provider is able to honor or
disregard these attributes as required for its local behavior.

23.4.5 Logout
In some federation scenarios, the notion of single logout (SLO) is also required,
allowing a user to invoke a logout of all sessions asserted by a given identity
provider. Global logout can be requested by a user from either the IdP or an SP;
the process of global logout is controlled by the identity provider. The IdP is
responsible for maintaining a list of all SPs to which the user under went SSO in
a given session. The IdP will then send a logout request to each of these SPs on
behalf of the user.

It may be the case, for example, that if John logs off of RBTelco's portal, that
RBTelco is no longer willing to honor any transactions that John may undertake
as a result of his RBTelco vouched SSO actions. In this case, RBTelco will trigger
a logout request to all business partners to which an SSO request has been
issued within John's current session.

Global logout does not imply that local logout goes away. It is possible that a user
will want to log out of a session at a service provider without destroying their
session at the identity provider. Note that this requires that the user know and
understand the nature and workings of the federation. The more likely alternative
to a local logout at a service provider is to provide a shorter session

 Chapter 23. Federation concepts 709

lifetime/inactivity time out than is used in a standard, directly authenticated
session. A shorter inactivity time out for an SSO user may be acceptable, as the
user is not forced to explicitly re-authenticate. Instead, the SP will simply
re-request an SSO from the user's IdP.

23.4.6 Credentials clean up
Logout, be it global or local, often implies the destruction of a session at a
service provider. This session is often maintained at the edge of a network and
may be independent of sessions with back-end applications. Back-end
application sessions may be used to maintain a state between
request/responses of a multi-step transaction. Logout, at both the identity
provider, and service provider should ensure that not only edge sessions, but
back-end application sessions (and session tracking artifacts), are destroyed.

Consider what happens when John logs out of the RBTelco portal and is single
logged-out of the RBBanking site. If John had started a transaction (to transfer
assets, for example) and then forgotten about this, this transaction needs to be
cleaned up (this is a form of garbage collection). If this does not happen,
RBBanking may be left with orphaned sessions that can tie up resources at its
back-end applications.

23.4.7 Global good-bye
Global good-bye deals with de-provisioning of a user's access rights and
entitlements within a federation scenario. Global good-bye is used when a
relationship between an identity provider and a service provider is broken, all of
the user's attributes (including transactional, profile and provider specific
attributes) that are relevant to the destroyed relationship are also destroyed. Note
that federation relationships may be terminated in several ways: A user may
chose to terminate his binding of an identity provider to a service provider or an
IdP and SP may chose to no longer do business together, breaking the binding
for all of the IdP's users.

For example, consider Employee One as an employee of BigCorp. If Mr. One
changes employers (now working for SmallCo), Mr. One's access rights and
entitlements to BigCorp’s sponsored travel rates must be cleaned up as part of
the global good-bye between BigCorp and RBTravel. Note that global good-bye
does not imply that Mr. One's account, including provider-specific attributes, at
RBTravel is removed. It simply implies that all of the BigCorp attributes, including
BigCorp-relevant transactional and profile attributes, are de-provisioned (deleted)
from Mr. One's account at RBTravel.

In general, global good-bye is accomplished together with account delinking.

710 Enterprise Security Architecture Using IBM Tivoli Security Solutions

23.4.8 Account delinking
Account delinking is the process by which the common unique identifier is
destroyed, removing the ability of an IdP and SP to uniquely refer to a given user.
One result of account de-linking is that a user will no longer experience SSO
from the IdP to the SP. Note that account delinking is independent of how a
user's account/registry record was created at the service provider, meaning that
account delinking is possible whether an account was explicitly created by a user
and then linked, or created based on provisioning from the IdP to the SP. After
delinking an account, a user or service provider may choose to link an account
with a different identity provider, or the SP may choose to resume direct
authentication of the user.

At some point, John Public may chose to close his RBTelco account. This may
happen because John moves or changes network provider, and so on. In this
case, John is no longer able to SSO to RBBanking from RBTelco because he is
no longer able to sign on to RBTelco. In this case, John's information at RBTelco
and RBBanking should be delinked (sometimes referred to as de-federated). The
result of this process will be that the common, unique identifier for John will be
destroyed, the ability of John to single sign-on from RBTelco will be lost, and
John will be reinstated as a user who is able to directly authenticate to
RBBanking (in turn implying some form of self-registration process by
RBBanking to allow John to re/set a password for RBBanking).

23.5 Web services security management
Businesses need a standard way for service requestors (suppliers, customers
and partners) to securely find the right Web services of a given business.
Business service providers need to be able to securely identify and expose the
right Web service to only authorized requestors.

Web services security management functionality allows the establishment and
management of federation relationships for application to application
interactions, see Figure 23-10 on page 712, enabling the required trust and
security. In this solution, an application is able to generate a Web services
request, acting as a Web services client. This request can then be secured
(encrypted and signed) to provide message-level confidentiality and integrity.

Web services security management provides the key capability to be able to
realize a service oriented architecture (SOA), where businesses seamlessly and
dynamically interact with each other as part of new horizontally integrated
process.

 Chapter 23. Federation concepts 711

Web services security management adds the ability for message-level
authentication and authorization, in the context of a federation relationship. This
is studied in detail, out of a IBM Tivoli Federated Identity Management product
point of view, in 24.4, “Web services security management” on page 766.

Figure 23-10 Secure business interaction - Federated Web services security

A simplified view of a user interaction is illustrated in Figure 23-10, where a user
interacts with the portal in Enterprise A. The portal renders an application that
uses Web services to integrate with any of the two businesses Enterprise B and
C, which have exposed an application as a Web service. The interactions are all
application-to-application based and Web services security management is used
to enable security in the end-to-end integration.

In the attempt to explain the different functionality in Web services security
management, the example in 23.1, “Federation example” on page 680 will be
used in this section.

Technology relevant to Web services security management are as follows: Web
services, WS-Security and gateways.

23.5.1 Web services
Web services have emerged as the most promising development to address
cross-enterprise, platform, and vendor business integration issues. Web services
is a family of emerging technologies that enable easy interoperability of
programmed IT services and integration of applications into a businesses
increasingly horizontal business processes.

Web services technology enables businesses to describe available services and
provide access to those services over standard Web protocols and
communications boundaries. Web services has inherited and learned from the

ESB

ESB

Web service invocation

Web based interaction

User interaction

App

App

App

Portal

Enterprise B

Enterprise C

Enterprise A

Gateway

712 Enterprise Security Architecture Using IBM Tivoli Security Solutions

way the World Wide Web revolutionized how people talk to systems. The new
customers and business models, extensions of opportunity, new transparency
and improved collaboration within enterprises and in some cases simplification in
infrastructure and sometimes reduced cost. The key to these successes was a
general server-to-client model in a highly distributed environment, and most
importantly based on simple open standards and industry support.

Web services promises to do the same thing for the way systems talk to systems:
integrating one business directly with another. This should be done in a dynamic
way without waiting for human intervention. It is about getting your own business
talking to itself or your suppliers, customers or partners, to provide integrated IT
systems, with the potential for dramatic reductions in infrastructure complexity
and costs. The key, here as well, is a general application-to-application
communication model based on simple open standards and industry support.

Figure 23-11 Basic Web services

Figure 23-11 shows the basic interaction model supported by Web services.
Basic Web services define interactions among service requesters, service
providers, and service directories as follows:

Service requesters find Web services in a UDDI service directory. They retrieve
WSDL descriptions of Web services offered by service providers, who previously
published those descriptions to the service directory. After the WSDL is
retrieved, the service requester binds to the service provider by invoking the
service through SOAP.

Service
Directory

Service
Requester

Service
Provider

UDDI W
SDL

SOAP

Client Server

1. Publish2. Find

3. Use

Directory/
Namespace

 Chapter 23. Federation concepts 713

When a user like John Public access RBTelco to view his stock service, RBTelco
uses a Java application to collect the stock information from RBStocks and
present it in the portal. The application at RBTelco then acts as a Web service
service requester making a SOAP request to the service prover RBStocks who
based on the passed identity and attributes returns the requested data.

The basic Web services are often described in terms of SOAP, WSDL, and
UDDI. However, it should be noted that each of these standards can be used in
isolation, and there are many successful implementations of SOAP alone, or
SOAP and WSDL, in particular.

For more information about Web services, see the IBM Redbooks publication
Using Web Services for Business Integration, SG24-6583, or Web services
architecture - W3C Working Draft at the following Web address:

http://www.w3.org/TR/ws-arch/

23.5.2 Web services security
Web services security (WS-Security) defines a standard set of SOAP extensions
that can be used when building secure Web services to implement integrity and
confidentiality. This allows for sending security tokens to authenticate requests
and signing data to ensure data integrity and verify sender. To ensure privacy of
data, the data is encrypted. All this with the goal to accomplish end-to-end
message content security.

For more on the SOAP message security specification is called “Web Services
Security: SOAP Message Security 1.0”, and it can be found at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1
.0.pdf

This standard defines a set of SOAP extensions, seen in Figure 23-12 on
page 715, that provide the ability to do the following:

� Send security tokens as part of a message

� Include an XML Digital Signature as part of a message

� Encrypt all or part of the message using XML Encryption

714 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.w3.org/TR/ws-arch/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Figure 23-12 WS-Security: SOAP message security, extensions to the header

These elements can be used to achieve message-based security for a SOAP
message. That is, the message in and of itself is tamper-proof and confidential.
The origin of the message is provided by the Token Element. Any change to the
message will cause the signature validation to fail so content integrity is provided.
An observer of the message cannot read it if it is encrypted, providing message
privacy.

When RBTelco securely passes the client identity and attribute information to
RBStocks, the request will use Web Services Security Management on the
outbound side. A SAML assertion is added as a security token in the Web
services request and then signing and encrypting it.

This allows for the request to be honored by the federated Web service hosted at
RBStocks by having the token processed by RBStocks, including the verification,
user ID and attribute mapping, authorization, and token transformation that is
associated with being a security token consumer.

23.5.3 Web services gateways
For service providers, a Web services gateway (also known as XML gateway or
XML firewall) acts much the same as an HTTP reverse proxy. Rather than
proxying the HTTP protocol, the Web services gateway proxies SOAP traffic.
SOAP (Simple Object Access Protocol) is a protocol for exchanging XML-based
messages over computer networks and forms the messaging foundation for Web
service communications.

A Web services gateway examines Web service requests leaving the boundary
of an enterprise network or entering the boundary of an enterprise network. It

Envelope

Body

Header

<application data>

Security Element

Security Token

Signature

Encrypted Data

Security Element

 Chapter 23. Federation concepts 715

inspects the XML messages and performs access control checks based on
policies configured in the authentication and authorization services.

RBTelco deployed a Web services gateway that it uses for inbound Web
services requests from BigCorp. This gateway controls access to the RBTelco’s
Web service-based offerings as well as providing identity transformations to map
the identity supplied by BigCorp in the request to a locally understood identity at
RBTelco.

On the Web services requestor side, an XML gateway can be used as an
outgoing proxy for Web services. The use of a gateway in this role allows the
requestor applications to use security tokens and identities relevant to the local
domain and ignore the complexities and differences involved in exchanging
messages with partner organizations over an untrusted network.

RBTelco deployed a Web services gateway that it uses when the application
server needs to pass client identity and attribute information to an external
application at, for example, RBStocks. The gateway then, on the outbound side,
adds a SAML assertion as a security token in a Web services request allowing
that request to be honored by the federated Web service hosted at RBStocks.

For more details on how to use the IBM WebSphere DataPower® XML Security
Gateway XS40 as a Web services gateway in the context of federated identities,
see 24.4.3, “Web services gateway” on page 771.

In section 26.2.3, “XML gateway pattern” on page 828, there is a more complete
discussion of the service requester/provider scenarios and there are some
examples of gateways available in the market.

23.6 Federated identity provisioning
Provisioning is about remotely having the capability of managing attributes of for
example a user as part of an identity management process. The same
provisioning definition is also valid for provisioning of other services or resources
for example applications or servers. Within federated identity management the
focus is on the user/identity. This is studied in more detail, out of a IBM Tivoli
Federated Identity Management product point of view, in 24.5, “Provisioning
services” on page 775.

In the attempt to explain the different functionality in provisioning, the example in
23.1, “Federation example” on page 680 will be used in this section.

Federated identity provisioning extends these provisioning management
activities beyond an internal trust domain, see Figure 23-13 on page 718.
Federated identity provisioning makes it possible to extend local account

716 Enterprise Security Architecture Using IBM Tivoli Security Solutions

provisioning at an identity provider to include federated account provisioning out
to multiple service provider partners. A service provider, when notified of the
federated provisioning request, can perform the local provisioning necessary to
supply its service to the specified employee.

When used with provisioning of account data and authentication credentials,
provisioning solutions generally come in one of two flavors: Runtime (or
just-in-time) and a priori provisioning. Runtime provisioning solutions are also
referred to as enrollment solutions as a user is registered, or enrolled, for a set of
services, as part of the fulfillment of a single sign-on request. Sometimes this is
referred to as silent registration because the users do not see a separate
registration/enrollment step in their user experience.

A priori provisioning is the process by which a user account creation request can
be sent to federation business partners outside of the scope of a single sign-on
request. This allows both the identity provider and service provider to create local
accounts/registry records for a user in response to some action at the IdP. A
priori provisioning is often triggered by an account creation event at the identity
provider. A priori provisioning may also be triggered by other events, such as a
change in a user's status that in turn gives him access to more business partner
resources, or a subscription event by a user, signing up for services that the
identity provider in turn out sources to a third-party service provider. Note that
like runtime provisioning, a common user identifier is established for a user
automatically as part of a priori provisioning.

Runtime, or just-in-time provisioning allows a service provider to create a user
account/record in her local registry in response to a single-sign-on request from
a trusted identity provider. This may happen when an SP receives a SSO request
from a trusted identity provider but does not have any record of the user claimed
in the SSO request. Instead of rejecting the SSO request, the SP may choose to
create a user record based on the claimed common unique identifier (CUID).
The CUID-local identity mapping is therefore established at this time; in fact, the
SP is not required to ever establish its own, non-CUID local identity for this user.

In the case of BigCorp, provisioning a new employee within the BigCorp system
will cause account creation of the user's BigCorp required accounts. A federated
provisioning solution could also cause the sending of a provisioning trigger
request to RBTravel, but in this case just-in-time provisioning is used instead and
the user is provisioned at RBTravel on the fly if no user exists there. As this
account is created during the single sign-on from the user in BigCorp, the
common user identifier information will have been included with the provisioning
request and so no account linking step is required by this new user.

Provisioning solutions allow the identity provider to create or update a user's
transactional attributes, such as entitlements to service providers, as required.
These attributes are typically managed by the end user's identity provider. In the

 Chapter 23. Federation concepts 717

case of BigCorp, employee Mr. Employee One may have a corporate credit card
used for travel purposes. If this credit card number changes, BigCorp may be
required to provision this transactional attribute to BigCorp's travel agency
RBTravel. Similarly, Mr. One’s salary may be considered a transactional attribute,
as it will be used by benefits providers to determine Mr. One's eligibility for
services. As such, it must be provisioned to BigCorp's benefits providers if/when
it changes.

Provisioning requests sent between identity providers and service providers must
be secure and be based on open standards. A standard that satisfies these
requirements is WS-Provisioning. See Figure 23-13. These requirements may be
satisfied by an implementation of the WS-Provisioning standard.
WS-Provisioning is a specification authored by IBM to provide a Web service
interface to communicate provisioning requests and responses. See 23.3.8,
“WS-Provisioning” on page 703 for more details on the WS-Provisioning
standard.

Figure 23-13 Federated provisioning overview

WS-Provisioning includes operations for adding, modifying, deleting, and
querying provisioning data. It also specifies a notification interface for subscribing
to provisioning events. Provisioning data is described using XML and other types
of schema. This facilitates the translation of data between different provisioning
systems.

FIM
Provisioning

P
ro

vi
si

on

Tr
ig

ge
r

Identity Provider Service Provider

FIM
Provisioning

Provisioning

Identity
management

Identity
management

P
ro

vi
si

on

Tr
ig

ge
r

718 Enterprise Security Architecture Using IBM Tivoli Security Solutions

23.7 Conclusion
In this chapter we have discussed the architecture and design of a federated
identity management solution between trusted business partners. In the
beginning we stated that, in general, building a particular design is just one part
of an overall implementation of a certain solution. The whole project consists of a
number of steps, starting from the definition of the business context, gathering
the requirements (both the functional and non-functional), creating the
architectural design, and finally building the solution. This chapter focused on the
architectural design aspect of an overall project.

In order to help our customers build a FIM solution, IBM has created a
methodology for building a security solution, including the architecture and
design, and which is used by IBM Global Services employees in security
architecture engagements.

We also discussed some of the architectural considerations when building a FIM
solution. We discussed some of the FIM-specific functionality to give a better
understanding to the reader of the federation-related features like single sign-on,
account linking, single logout, protocol profiles, provisioning, and so on.

At the end of the chapter we described the FIM standards and interoperability at
the time of writing this redbook, which again demonstrates that complete FIM
solutions can be implemented today.

 Chapter 23. Federation concepts 719

720 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 24. Federated Identity Manager

The previous chapter described an overview of the capabilities of a general
federated identity management solution. These capabilities are treated as
individual logical functions that may be leveraged in a federated identity
management solution. The capabilities are logical in that they are not
implemented by one-to-one corresponding functional components. Instead,
federation functionality is provided by a set of services that are composable in
order to create the functional capabilities described earlier.

In this chapter we introduce the high-level components and new concepts for the
design of a federated identity management solution using IBM software
technology.

This chapter provides you with an understanding of the following topics:

� The high-level logical services architecture for IBM Tivoli Federated Identity
Manager

� A more detailed look into federated single sign-on (F-SSO), Web services
Security Management and Provisioning solutions

24

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 721

24.1 Federated Identity Manager functionality
Tivoli Federated Identity Manager delivers a key functionality called Trust Service
to enable identity federation solutions. This service is the basis for providing
federated provisioning, Web single sign-on, and Web service security
management solutions. Each of these solutions may be deployed independently
or can be deployed together within a SOA environment to deliver
standards-based identity federation solution.

As shown in Figure 24-1, Tivoli Federated Identity Manager provides overall
functionality for identity federation that includes the following:

� Federated provisioning
� Web single sign-on (SSO)
� Web services security

Figure 24-1 Tivoli Federated Identity Manager runtime services

Federated Identity Manager service components are described in 24.2,
“Federation services” on page 723. These components represent individual
services that may exist as distinct services or as logical services within Tivoli
Federated Identity Manager. Each of these functional components is
represented by a logical service, so that the following applies:

� Federated provisioning functionality is provided by the provisioning service
� Web SSO is provided by the single sign-on protocol service
� Web services security is provided by the trust service

Identity Federation

Federated
Provisioning

Web Single
Sign-On

Web Services
Security

Trust
Service

Provisioning
Service

SSO Protocol
Service

Web Services
Security Manager

Access ControlIdentity Lifecycle

722 Enterprise Security Architecture Using IBM Tivoli Security Solutions

IBM also offers the Tivoli Federated Identity Manager Business Gateway, a
suitable offering to deliver cross-company single sign-on for small-to-medium
businesses or cross-domain single sign-on for department or project-level
requirements. This offering commonly fits organizations looking to support
standards-based federation protocols with a minimal footprint and without the
requirements of a highly available deployment.

Another gateway that plays an integral part of some Web services security
solutions is the WebSphere DataPower XML Security Gateway XS40. This
hardware device provides Web services access control, XML encryption and
digital signature, WS-Security, and content-based routing. The XS40 may call
out to the trust service in Tivoli Federated Identity Manager to perform complex
identity mappings, mediation, and authorization to access Web-applications and
services in a SOA environment. The WebSphere DataPower XML Security
Gateway XS40 can be used whenever an architecture calls for a Web services
gateway.

Note that the Web services security management functionality of Tivoli Federated
Identity Manager directly leverages the trust service. The single sign-on protocol
service (SPS) in turn leverages the trust service as an internal SPS service. The
provisioning service (PS) may or may not leverage the trust service, based on the
requirement to secure (via Web services security management) the provisioning
requests.

24.2 Federation services
Tivoli Federated Identity Manager services facilitates a standardized means for
allowing businesses to:

� Engage in trust relationships that facilitate direct integration of business
processes in the most efficient fashion. The concept of business federations
directly provides services for customers registered at other (business partner)
businesses or institutions by establishing business trust relationships.

� Share identity information and entitlements in a trusted fashion between
companies. Current approaches to identity management generally rely on
companies incurring user lifecycle management costs by maintaining
redundant identities to manage employees, business partners, and
customers. The relationship between the business and these individuals can
change fairly frequently. Each change requires an administrative action that
can result in a high cost of user lifecycle management.

� Exchange, in a secure and trusted manner, tokens referring to a Principal,
their attributes, privileges, and so on. These tokens are used to communicate

 Chapter 24. Federated Identity Manager 723

information used for the authentication and authorization of a Principal to a
business partner.

� Maintain security in a Web services oriented architecture, allowing for secure
standards based application-to-application inter-enterprise communication.

The following sections give an overview of each of the services components
represented in Figure 24-2, which is the Federated Identity Manager services
architecture used in Tivoli Federated Identity Manager. The complete set of Tivoli
Federated Identity Manager services allows for creation of federated SSO, Web
services security management and provisioning solutions. The dark-grey boxes
are non core Tivoli Federated Identity Manager services that are used as part of
different Federated Identity Manager solutions.

Figure 24-2 Federated Identity Manager services architecture—The full picture

A different view of the services is found in Figure 24-3 on page 725, where the
layers Point of Contact (PoC), SSO protocol service (SPS) and Trust service are
shown in their external communication interfaces over standardized protocols.
Both user and application based interactions are shown, since they differ in
layering and protocols.

In the application-based interaction to the left in Figure 24-3 on page 725 the
PoC is represented by a Web services (WS) handler interfacing with the Trust

SSO Protocol
Services

Trust
Services

Key
Services

Identity and
Attribute
Services

Authorization
Services

Protected
resources

Management
Services

Authentication
Services

Session
Management

Services

LDAP User
Registry

Application
Server WS

Handler

WS-Trust
Handler
Services

Web Service
Application

Federated Identity Manager Runtime

Provisioning
Services

Application Server

Point of Contact

WS Client

Browser
Client

Identity
Management

Services

Web Server
Application

Browser
Client Console

724 Enterprise Security Architecture Using IBM Tivoli Security Solutions

service, and may be represented by a WS gateway. The provisioning service may
be viewed as an application exposed as a Web service.

Figure 24-3 User and application based interaction components and their communication

24.2.1 HTTP point of contact
The HTTP point of contact is used for HTTP-based user interactions. The point
of contact service provides authentication service and the session management
service functionality. These services are typically provided by Tivoli Access
Manager for e-business through the Access Manager for e-business reverse
proxy or the Access Manager for e-business Web plug-in. With the recent
introduction of the Federated Identity Manager Business Gateway offering, the
point of contact service may be Microsoft’s Internet Information Service (IIS) or
the IBM WebSphere Application Server, thereby, removing the dependency on
Tivoli Access Manager for e-business.

Authentication services
Authentication services provide the functionality required to evaluate and validate
user-provided credentials. Authentication services evaluate credentials such as a
username and password, secure ID token pass phrases, X.509 certifications,
Kerberos ticket and so on, provided by the user agent on behalf of a user.

SSO
Protocol
Service

Trust
Service

HTTP

Point of
Contact

HTTP

SSO Messages

Security Tokens

W
S-

Tr
us

t
H

TT
P

Protected
Resources

Alias
Service

Key
Encryption

Signing Service

IB
M

 or 3
rdP

arty
standards-based S

S
O

 S
olution

SOAP over HTTP

Trust
Client

Trust
Service

W
S-

Tr
us

t

WS-Security

Security Tokens

SOAP
Protected

Web Services

Authorization
Service

Key
Encryption

Signing Service

F-SSO

User based interaction

Standards
based

communication

Standards
based

communication

WS-Provision
Provisioning

Service

Identity
Manager
Service

Web
Services/
XML Point
of Contact

 Chapter 24. Federated Identity Manager 725

Authentication services are able to invoke some back end data store such as a
LDAP registry, or a secure ID token server, to validate these credentials.

The protocol used to collect authentication credentials from a user requires a
simple challenge/response interaction with the user. The process of evaluating
these credentials is typically a simple action such as an LDAP based validation of
presented credentials. After the successful validation of authentication
credentials, the authentication service presents the session management service
with the information required to build a session for a user.

In a simple user authentication environment, a challenge/response protocol to
collect the user’s authentication credentials is negotiated directly between the
user (or a user agent such as the browser) and the authentication service.

Within a F-SSO environment, the challenge/response protocol is not always
negotiated with the user but may be negotiated with a third party acting on behalf
of the user. This third party will usually assert some form of security token or
assertion about the user based in its own (local) authentication of the end user.
This security token acts as the equivalent of the user-presented credentials. This
security token must be validated, but this validation is based on the trust
relationship between the business partners.

Instead of incorporating support for each of these federation protocols (both the
interaction with the business partner and the evaluation of the presented token)
within the authentication service, an external SSO service is used. SSO services
(described in 24.2.3, “Single sign-on protocol services” on page 728) provide the
run time for the federation protocols necessary to implement the
challenge/response interaction with a third party.

In response to the evaluation of user provided or federation provided
authentication credentials, an authentication service will generate information
that is used by a session management service to govern a user’s session. This
information is typically represented as a set of user credentials, or user
privileges. This information is used by a session management service and by
authorization services, as described in section 24.2.7, “Authorization services”
on page 735.

Session management services
The purpose of a session management service is to manage a user's session
lifecycle, from session creation, to session access, to session deletion (in
response to session logout services). These services typically sit at the edge of a
network where they guide a user's access requests and access experience
within an enterprise.

726 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Sessions are created at a Session Management Service in response to a
successful authentication event. These events may include the initial user
authentication, step-up authentication, re-authentication or a successful security
token validation amongst others. Implementations of Session Management
Services often incorporate authentication services, so that an authentication
service exists as a logical service; however, this is not always the case.

24.2.2 SOAP/XML point of contact
Web services gateways are used for federated application-to-application
communications and serve the role of an XML point of contact. A Web services
Gateway is much the same as an HTTP reverse proxy. Figure 24-4 shows the
similarity between the HTTP reverse proxy and the Web services gateway as a
point of contact.

Figure 24-4 Web services Gateway: A reverse-proxy for Web services

Among the key features, the XML point of contact service provides filtering of
bad requests, Web services access control, XML encryption and digital
signature, WS-Security, and content-based routing. These services are typically
provided by the IBM WebSphere DataPower XML Security Gateway XS40.

While the WSSM solution is part of Tivoli Federated Identity Manager and
discussed elsewhere in this document, the WebSphere DataPower XML Security
Gateway XS40 is a separate hardware solution that tightly integrates with Tivoli
Federated Identity Manager. For more information about these products see
24.4.3, “Web services gateway” on page 771.

HTTP Reverse Proxy

HTTP
Server

HTTP
Client

end-user
(browser)

HTTP

HTTP Server

HTTPmapping

Web Services Gateway

Web
Service
Provider

Service
Requestor

Web Service
Requestor

SOAP

Web Service
Provider

SOAPmapping

 Chapter 24. Federated Identity Manager 727

Web services gateways offer the following deployment characteristics:

� Decouple deployment from invocation

Separate the actual implementation of a service from how another service
accesses it. These include the following:

– Process abstraction

The service invocation approach must be flexible enough to cope with
events, such as switching frequently between external providers of a
similar service without requiring changes to the application.

– Flexibility

As a service provider, you need the flexibility of changing your deployment
infrastructure without notifying all the service requestors. Say a Web
service is deployed in a machine that later fails during operation. There
needs to be a process to route the invocations to an alternate service in
your infrastructure.

� Protocol transformation

An enterprise may be using a specific messaging infrastructure within their
network to meet the business requirements. However, your partners and
customers may be using different protocols to invoke your Web service. You
need a mechanism to reconcile the different service invocations to match the
needs of the internal infrastructure.

24.2.3 Single sign-on protocol services
Within a federation environment, federated identity management protocols are
used to communicate information about a user between federation business
partners. For example, with F-SSO, the result of this communication is some
form of security token that must be validated. This token provides the information
required to determine a user's local identity. Federation single sign-on protocols
provide a vendor-neutral means of establishing the communications required to
exchange this security token.

728 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-5 Externalized SSO services

In Tivoli Federated Identity Manager, the responsibility for handling SSO protocol
messages is off-loaded from the point of contact server as shown in Figure 24-5.
SSO protocol endpoints are instead hosted by a separate service, the SPS. The
point of contact server still maintains control of user sessions, providing session
management services.

The point of contact server has a number of interfaces to the SPS but these do
not need to be modified in order to support different (or new) SSO standards.
Only the SPS has to be modified if changes to SSO behavior are needed.

External Authentication Interface
Tivoli Federated Identity Manager provides an authentication mechanism
through its SPS with the capability that allows clients to sign in with credentials
generated by another party—the identity provider. By integrating Tivoli Federated
Identity Manager with the point of contact, the F-SSO can be treated as just
another point of contact authentication mechanism, thus having the SPS create a
point of contact login session. When used with Tivoli Access Manager as the
point of contact service, the External Authentication Interface (EAI) is used as the
integration point with Tivoli Federated Identity Manager. See 9.4.6, “External
Authentication Interface” on page 297 for a detailed description of the EAI.

24.2.4 Trust services
Federation relationships require a trust relationship-based federation between
business partners. A trust relationship is represented by the combination of the
security tokens used to exchange information about a user, the cryptographic

Proprietary
Web Security

Solution
(Vendor B)

Point
of

Contact

Protected
Resource

Protected
Resource

Client

Proprietary
Web Security

Solution
(Vendor A)

Point
of

Contact

Protected
Resource

Protected
Resource

Client

Standard SSO
Format

SSO
Service

SSO
Service

H
TTP

SSO Messages

H
TT

P

 Chapter 24. Federated Identity Manager 729

information used to protect these security tokens (and the communications used
to broker token exchange) and optionally the identity mapping rules applied to
the information contained within this token.

The Trust Service provides the management of this overall trust relationship,
including the binding of a trust relationship to a particular partner. As part of this
trust relationship management, the Trust Service provides a means of managing
one's own keys and certificates (through a Key Service), and of binding a
business partner's certificates (validated by a third-party Certificate Authority) to
the local, business-agreement validated, business partner identity. These keys
and certificates are then used to sign/validate and encrypt/decrypt messages
between business partners, independent of any transport layer security. These
services provide the trust infrastructure over which other federation services are
layered.

Trust services require more than just the management of cryptographic
elements. This is because trust relationships are also bound to security tokens
exchanged between business partners. Security tokens are managed by a
security token service (STS). Within Tivoli Federated Identity Manager, the STS it
is implemented as a logical service contained within the trust management
service. We call out the notion of a security token service as a separate service
to highlight the difference in management required for cryptographic elements
and security tokens. Below is the trust service studied in more detail.

Figure 24-6 Trust service components and connections

Key Service

<stsuuser:Attribute name=“…"
type=“…">

Identity/Attribute Service

Key Store

Key/Cert Pair

WS-Trust Interface
exposed as WSDL and Java API)

Trust Service

Trust ModulesModule Definition

Module Instance

Public CertPublic CertTrust ChainTrust Chain

Module1 Module2 Module3

Trust
Client

Trust
Client

Authorization Service

Trust Chain Mapping

Identity Mapping
(ID/Attributes <-> ID/Attributes)

730 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-6 on page 730 shows the logical components and connections of the
Tivoli Federated Identity Manager trust service. The trust services performs
security token related function, such as token creation, validation and exchange,
also it does authorization for Web services. The trust service is accessed by trust
clients using either SOAP requests or direct JAVA API calls.

Trust service modules
All trust service functionality is performed by chains of modules. There are
modules that can process incoming tokens, modules that create tokens, modules
that perform identity mapping, and modules that perform authorization. A module
definition points to the implementation of a module and a module instance
contains the specific configuration.

Trust service modules can make calls out to other Tivoli Federated Identity
Manager components. For example, most token modules call the key service for
signature creation and validation. Liberty token modules call out to the identity
service for alias lookup. Access Manager credential modules and authorization
modules call out to the authorization service. Support is provided for the following
token modules within Federated Identity Manager 6.1:

� SAML 1.0, 1.1 and 2.0 (Generate and Consume)

� Liberty 1.1 and Liberty 1.2 Assertion (Generate and Consume)

� Access Manager Credential (Generate and Consume)

� JAAS Subject (Consume)

� Kerberos Token (Consume)

� X.509 Token (Consume)

� RACF PassTicket (Generate and Consume)

Support for custom modules (for additional token support, customization of
mapping functions, and custom trust chains) is also provided.

When exchanging security tokens with partners, it is not enough to simply
understand the different token standards. It is just as important to know what
information a particular partner is expecting in tokens from your site, and what
information you should expect to receive from partners.

For example, two different partners in the same federation might format a user
account number in two different ways, and might use a different attribute in the
security token to exchange it. Both partners use the same token standard for
example SAML 1.1 but the information within the token is different.

The Tivoli Federated Identity Manager trust service has a very flexible identity
mapping function that allows it to exchange tokens using a different identity

 Chapter 24. Federated Identity Manager 731

mapping rule with each partner. The trust service mapping module is called to
perform the mapping and it looks up the configured identity mapping for the
partner in question.

Information from the incoming token can be manipulated and mapped into the
outgoing token in any way required. In addition, hard-coded information can be
added to the outgoing token. It is even possible to use javascript or Java to
acquire information from external sources. This flexibility is achieved by using
XSL transformations for identity mapping. XSL is a very powerful transformation
language and the trust service mapping module takes full advantage of its
capabilities.

The trust service defines an abstract format for identity information. This format is
an XML document called the STS Universal User. There are two reasons for
having this abstract format:

� First, to allow conversion from any supported token type to any other type.
The most scalable way to do this is to have each token module be able to
convert from its native token type into the abstract type – and to be able to
convert from the abstract type into its native token type. Then is possible to
convert from any token to any other token via the abstract format.

� Second, to be able to perform identity mapping. This mapping is made much
simpler if the mapping module only has to deal with one abstract identity
format – rather than multiple real identity formats. Leveraging an XML
formatted STS Universal User allows us to leverage techniques such as XSLT
and the many XML editors and XSLT tools for the management of this
functionality.

The STS Universal User is an XML document that contains identity information in
a generic way. It contains three sections – one for principal information, one from
group information, and one for attribute information. In a standard SSO Trust
Chain, an incoming token is converted to this format, the identity mapping is
performed, and then the outgoing token is created.

Figure 24-7 on page 733 shows how the trust service performs a token
exchange. Trust chains like the one shown here are used for all federated SSO
operations. These trust chains are created automatically when you configure
federated SSO.

The input to the trust chain is the input security token. The first module in the
trust chain converts the input token to an STS Universal User (STSUUSER). This
creates an XML document with known structure. All of the attributes from the
incoming token are available in the STSUUSER document.

The STSUUSER document is now used as input to the identity mapping module.
The mapping used by the module is particular to the partner we are dealing with

732 Enterprise Security Architecture Using IBM Tivoli Security Solutions

and so is tailored to the particular attributes and information formats used by that
partner. The output of the mapping module is another STSUUSER document -
one that is suitable for creation of the outgoing token (or another mapping
module or other trust chain module). The output STSUUSER document can now
be converted into the output token format by the final token module.

Figure 24-7 Trust service processing for F-SSO

Figure 24-8 on page 734 shows how the identity mapping module is
implemented using an XSL parser.

The input STSUUSER document is generated by the input token module. This is
an XML document. The input token module handles the token validation process
and is responsible for correctly extracting information from the input token and
building the contents of the STSUU. This STSUU is fed into the XSL parser along
with the configured XSL mapping rule for the transformation.

The output of the XSL parser is another XML document. In fact, the XSL
mapping rule must be such that the output document is another STSUUSER
document. This STSUUSER document is fed into the output token module in
order to create the required output token.

As mentioned previously, the information in the input STSUUSER document, and
the information required in the STSUUSER document, is dependent on the token
modules in use. The configured mapping must take both of these things into
account.

Trust Chain

Input STS
Universal User

Output STS
Universal User

Input Token

Output Token

Token Module
(Convert to

STSUUSER)

Token Module
(Convert to

Output format)

Identity Mappng
Module

(Process STSUU)

 Chapter 24. Federated Identity Manager 733

Figure 24-8 Trust service transformation engine

24.2.5 Key services (KESS)
Key services are leveraged to provide access to key stores used by a trust
service and the SPS. This allows the trust service and SPS to plug in/access
different key stores as required. It also provides a single point through which key
management may be accomplished. Key services are often implemented as
logical components within a trust service.

24.2.6 Identity services
An identity services is a generic term for those services that provide the interface
to local data stores, including user registries and databases, for identity related
information management. Typically an identity service is able to add, delete, and
look up information against some backing data store.

Identity services are leveraged by many different services within a federation
environment. The authentication service will leverage identity service
functionality as part of the evaluation of user-presented authentication
credentials and to build the privilege credentials used by the session
management service. These privileges are based on the attributes of a user
stored within a data store (these attributes includes information such as group
membership, roles, personal attributes such as age, and so on).

WIthin a Tivoli Federated Identity Manager environment, identity service
functionality is leveraged as part of the identity management functionality within
the trust service. This refinement of an identity service, namely an Identity and
Attribute Service (IdAS) provides the functionality required to manage the
attributes required for a security token.

STS
Universal

User

XML

STS
Universal

User

XML

Identity Mapping
Module

XSL Parser

Configured
Mapping

XSL
Input

Token
Module

Output
Token
Module

734 Enterprise Security Architecture Using IBM Tivoli Security Solutions

An IdAS will normally access an enterprise directory or other shared repository;
this will allow the attribute services to leverage existing attribute stores and
attribute management techniques.

Alias services
A specialized form of identity service is an alias service. Alias services are part of
SSO service functionality; they are used to provide the mapping between an
alias and a local user identity. Aliases are often included in the security tokens
exchanged within an SSO protocol. They are a provider-neutral means of
referring to a user. An alias service may leverage an external data store, such as
an enterprise directory, for the storage of SSO aliases, or it may leverage a
private, internal data store.

24.2.7 Authorization services
Authorization services are responsible for providing access decision point
functionality within a security model. The authorization service itself may not act
as an access enforcement function (AEF). AEF functionality is typically provided
by Session Management Services. Tivoli Access Manager provides AEF
functionality with Tivoli Access Manager WebSEAL acting as an access decision
point (ADP).

At their simplest, authorization services implement an access decision
functionality, taking in a request for access and evaluating this request based on
a user's session privileges. The authorization service may respond with a simple
yes/no, indicating if an access request is allowed or not. Based on this response,
session management services act as the authorization enforcement point by
allowing/disallowing the actual request for access.

24.2.8 Provisioning services
Provisioning services are used within a federated environment for both a priori
and run-time provisioning solutions. Provisioning services interact with both local
identity management systems (such as Tivoli Identity Manager, see Chapter 17,
“Identity management” on page 509, and Chapter 18, “Identity Manager
structure and components” on page 547, for more information about Tivoli
Identity Manager) and local data stores (access via identity services).
Provisioning services are leveraged to federate local identity management
systems across federation business partners and to provide federated
management of identity data, including transactional and profile attributes.

Provisioning services are leveraged as part of the identity management
functionality within an enterprise; as such, they are often integrated with a local
identity management system. This allows a local identity management system to

 Chapter 24. Federated Identity Manager 735

treat a federation business partner as a local provisioning endpoint, including this
endpoint in any workflow-based approval processes that are in place. A local
identity management system can then provision information about a user to a
federation business partner, including provisioning changes to a user’s personal
profile (for example, home address), status (for example, on leave of absence),
or subscriptions (for example, signed up for corporate sponsored cell phone
service). This allows an identity provider to have a seamless and consistent view
of managing a user across a federation while allowing federation business
partners to benefit from the management functionality assumed by the identity
provider.

24.2.9 Management services
The management services are used for Tivoli Federated Identity Manager runtime
configuration and deployment. The interfaces are:

� ISC: The new IBM Integrated Solutions Console providing a single portal style
administrative console for Tivoli Federated Identity Manager

� API: Used by for example the InfoService, see 24.3.6, “InfoService” on
page 763

This combination of API and (Web-based) management console provides
management flexibility and allows a customer to tailor their management
experience as appropriate.

Console
Tivoli Federated Identity Manager uses a new console framework called the IBM
Integrated Solutions Console (ISC). Many IBM products are moving to use this
framework with an aim of providing a single portal style administrative console
that can be used to manage multiple IBM products from one place.

The ISC is based on cut-down versions of WebSphere Application Server 5.1
and WebSphere Portal. All of this is installed as part of the installation of the ISC.
Since Federated Identity Manager components require WebSphere Application
Server 6.0, the ISC cannot share the same WebSphere Application Server
instance as Federated Identity Manager components. However, WebSphere 6.0
and the ISC can be installed on the same machine without conflict.

After the ISC is installed, console plug-ins are deployed into the ISC, see
Figure 24-9 on page 737. The Federated Identity Manager Console is one such
plug-in. The ISC is accessed over HTTP(S). This means that the Tivoli Federated
Identity Manager administration console can be accessed from any client that
has connectivity to the machine where the ISC is installed.

736 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-9 IBM Tivoli Federated Identity Manager Console within the ISC

Deployment manager
The ISC console interface uses the deployment manager to push deployment
and configuration to remote Tivoli Federated Identity Manager nodes, as shown
in Figure 24-10 on page 738. The deployment manager supports multiple
domains and clustered nodes, more on clustered nodes in 26.1.5, “Highly
available architecture patterns” on page 815. WebSphere Application Server
functionality used to synchronize the configuration files to clusters and the Tivoli
Federated Identity Manager runtimes on the WebSphere Application Servers
read the files locally.

Integrated Solutions Console

IBM Tivoli Federated Identity Manager Console

Admin
Portlet

Admin
Portlet

Admin
Portlet

Other
Consoles

Users
and Groups Security Portal

Management

 Chapter 24. Federated Identity Manager 737

Figure 24-10 Federated Identity Manager deployment and configuration

24.2.10 Audit Services
Tivoli Federated Identity Manager (unlike the Federated Identity Manager
Business Gateway at this time) can use the Common Auditing and Reporting
Service for consolidating and centralizing audit log information.

Common Auditing and Reporting Service
The Common Auditing and Reporting Service has the following features:

� Provides auditing support

– Defines a consistent format for events that can be audited using the
Common Base Event (CBE) format

– Provides a centralized collection point for events that can be audited from
various sources

– Provides consistent management of the lifecycle of audit data

� Facilitates reporting of audit data

– Provides interfaces to stage audit data into custom report tables

– Enables customers to use a reporting tool of their choice to build custom
audit reports

Deployment
Manager

TFIM Config

TFIM Config

Domain 1

Domain 2

Managed Node

TFIM Runtime

TFIM Config

Managed Node
TFIM Runtime

TFIM Config

Cluster

Cluster

ISC
Federated

Identity Manager
Console

Configure

Managed Node

TFIM Runtime

TFIM Config
Federated

Identity Manager
Management

Service

TFIM – Tivoli Federated Identity Manager

738 Enterprise Security Architecture Using IBM Tivoli Security Solutions

– Facilitates cross-product audit reports

– Exploits IBM products to provide audit reports for immediate use

� Provides interfaces for IBM products to create and submit data that needs to
be audited

For more information about the Common Auditing and Reporting System, refer to
Chapter 27, “Introducing IBM Tivoli Common Auditing and Reporting Service” on
page 845.

Federated Identity Manager provides support for sending audit events to the
local file system or to the central Common Auditing and Reporting Event Server.
The following section outlines the events that can be audited from within
Federated Identity Manager.

Auditable Events
Federated Identity Manager contains various points of interest from an auditing
perspective. When used in conjunction with the Web security server audit
records, some analyses needs to be performed about the optimal point for
configuring auditing. A good example is the complexities around authentication.

� As a service provider, where single sign-on to the point of contact server is
provided through the federated single sign-on protocols, it is necessary to
audit the events at the Federated Identity Manager product rather than the
point of contact. Auditing the event at the Web security server point of contact
only provides a credential inheritance event rather than an authentication
event.

� As the identity provider, the authentication event actually occurs at the Web
security server, so appropriate Common Auditing and Reporting audit needs
to be configured there rather than the federated single sign-on service. At the
single sign-on service perspective, it simply receives a single sign-on token
from the Web security server, which is not considered part of the
authentication event.

By using the Common Auditing and Reporting solution, a customer has the
opportunity to combine audit records from Web security servers, such as
WebSEAL, with Federated Identity Manager records to produce more meaningful
audit reports for management.

 Chapter 24. Federated Identity Manager 739

That being said, it is worth considering the audit points that are available with
Federated Identity Manager and what events are available at those points so that
the audit solution can be architected appropriately.

Audit events that can be configured to be generated from Federated Identity
Manager include:

� Single sign-on audit event: This audit event shows the authentication
information from a resulted SSO operation. It includes information about
partners, the initiating Web security server, and so on.

� Single logout audit event: This audit event includes all information related to a
user initiated single logout event.

� Name Identifier Management audit event: This audit event can be generated
when a user identity mapping is created, when a user consents to federation,
when a de-federate operation occurs, and when a user mapping is updated.
Obviously, when an audit event of this type is generated, the event contains
tags that identify the operation as well as all other information relevant to the
type of operation that occurred.

� Trust service events: These audit events are generated when a Federated
Identity Manager server validates a token, issues a token, maps an identity or
authorizes a Web service access.

� Encryption audit events: These audit events are generated whenever
encryption events occur.

� Signing audit events: These audit events are generated whenever data is
signed.

� Management audit events: These audit events are generated when a
Federated Identity Manager server creates a new federation, modifies an
existing federation, a federation is deleted, a partner is added or deleted,
when the properties of a partner are modified, and when Web service
partners are created or deleted.

It is up to the implementor to customize their own audit reports for Federated
Identity Manager. Instructions for doing so are outlined within the User Guides.

24.3 Federated single sign-on
F-SSO is the process by which a Web based user authenticates to a federation
business partner, identity provider (IdP), and has the IdP assert a relevant
identity (and attributes) to any/all required service providers (SP) as part of the
user's online federation experience.

740 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Global sign-on itself is provided by a federated single-sign-on protocol which
provides standard, interoperable means for multiple federation business partners
to negotiate the presentation of credentials about a user from an identity provider
to a (trusted) federation service provider. These protocols will be explained in
more detail in this chapter.

When considering an SSO solution, there are two main areas where participants
must agree on the technology choice in order to achieve interoperability.

The first area is the format and content of the security token that will be passed
between the partners. The security token generated by the sending partner must
be understandable by the receiving partner. Also, there must be an agreement as
to what information is sent in the token and how it is interpreted. Typically the
security token format is bound to the SSO protocol (SAML protocols use SAML
assertions, Liberty ID-FF protocols use Liberty specializations of SAML
assertions). With Tivoli Federated Identity Manager, security token generation
and consumption is handled by the trust service as invoked internally by the
SPS. This is discussed in more detail in 24.2.4, “Trust services” on page 729.

The second area is the SSO protocol. This defines how the parties will
communicate. An SSO server must know how a client will request a security
token and how the token should be packaged and returned. The server must also
know how a client will present an incoming security token in order to initiate an
authenticated session. In Tivoli Federated Identity Manager, all SSO protocol
messages are handled by the SPS.

Note that an SSO standard does not only deal with a profile for SSO, but also
profiles for single logout, federation and alias management. The SPS is also
responsible for handling these messages. These areas are discussed more later
in this chapter.

 Chapter 24. Federated Identity Manager 741

Figure 24-11 SSO components and communication

Figure 24-11 shows the communications and exchanges that take place at each
layer of Federated Identity Manager when performing Web-based SSO. Note that
no internal details are shown for the third-party side because their architecture is
not known (and not important).

At the communication layer, HTTP messages are being handled by the point of
contact server. In the Federated Identity Manager solution, this is either
WebSEAL or the Web Server Plugins. For Federated Identity Manager Business
Gateway, this can be either WebSphere Application Server or IIS (as a service
provider only). All real communication is via the point of contact server. It must
support the HTTP standard in order to interoperate with the client and with the
third-party solution.

At the protocol later, SSO messages are being exchanged between Federated
Identity Manager and the third-party solution. In Federated Identity Manager, this
layer is handled by the SPS. It exchanges SSO messages with the third-party
solution via the point of contact server.

At the trust layer, security tokens are being exchanged between Federated
Identity Manager and the third-party solution. In Federated Identity Manager, this
layer is handled by the trust service. The trust service exchanges security tokens
with the third-party solution via the SPS.

SSO
Protocol
Service

Trust
Service

Point of
Contact
Server

HTTPHTTP

SSO Messages

Security Tokens

W
S

-T
ru

st
H

TT
P

Protected
Resources

HTTP

Alias
Service

Key
Encryption

Signing Service
IBM or

3rd Party
standards-based

SSO Solution

SOAP over HTTP (back-channel)

742 Enterprise Security Architecture Using IBM Tivoli Security Solutions

24.3.1 Architecture overview
Figure 24-12 shows the Federated Identity Manager architecture required to
support Web-based SSO protocols such as Liberty, WS-Federation, and SAML
1.0, 1.1 and 2.0.

Figure 24-12 Federated Identity Manager components for federated SSO

All outside communication with the environment comes via the HTTP point of
contact server. The following sections outline the configuration and message
flows for a Federated Identity Manager configuration and a Federated Identity
Manager Business Gateway configuration.

Federated Identity Manager message flow
Within Federated Identity Manager, the point of contact is WebSEAL or the Web
Server Plugins for the remainder of this section, which uses WebSEAL in the
description. WebSEAL maintains the Web session with the client and manages
authorization. WebSEAL also triggers authentication (either local or SSO) when
protected resources are requested. WebSEAL authorization is managed by the
authorization service, in our case Tivoli Access Manager.

WebSEAL has a junction to the SPS. Incoming SSO messages are directed to
the junction that connects to the SPS. WebSEAL will simply forward these as
usual. WebSEAL can also re-direct the client to the SPS in order to initiate SSO
processes itself.

The SPS communicates with the trust infrastructure components in order to build
and consume SSO messages and uses the Access Manager administration APIs

TFIM Runtime

Federated
Identity Manager

Console

Federated Identity Manager Runtime

Trust
Service

Alias Service

LDAP User
Registry

Federated
Identity Manager

Management
Service

Authorization Service

Protected
Resources

Point of Contact

Key Encryption
Signing Service

SSO
Protocol
Service Trust Service

STS

 Chapter 24. Federated Identity Manager 743

in the authorization service to terminate WebSEAL sessions during single logout
(SLO) operations. In latter versions of the SPS, the EAI function is used to logout
users as an alternative to the Access Manager administration API.

The Federated Identity Manager environment is managed using the Federated
Identity Manager Console. When a federation that includes SSO functionality is
configured the console updates the SPS configuration as appropriate to support
this.

Federated Identity Manager Business Gateway message flow
Within Federated Identity Manager Business Gateway, the point of contact is
either WebSphere Application Server or IIS. Let us consider the two separately.

WebSphere Application Server
Within Federated Identity Manager Business Gateway, the WebSphere
Application server can act as either the identity provider or service provider within
a configured federation. As such, its features include the ability to provide
authentication services as well as authorization, session management, and
content presentation.

When acting as an identity provider, WebSphere Application Server must provide
authentication services on behalf of the service provider partner. The actual
authentication can be performed using any of the WebSphere Application Server
out-of-the-box authentication solutions, as of WebSphere 6.1, this now includes
SPNEGO support. After a user is authenticated, the request for F-SSO is sent to
the SPS for token generation based on the partner configuration.

When acting as a Service Provider, WebSphere Application Server must provide
unauthenticated access to the F-SSO endpoint. This enables the SPS to
authenticate the incoming token and assert an identity to the point of contact
server, in this case WebSphere Application Server. WebSphere Application
Server is then responsible for managing the user’s session, performing
authorization and providing the requested content.

IIS
Within Federated Identity Manager Business Gateway, IIS is supported for use as
a point of contact in a service provider configured federation. As such, IIS is not
responsible for providing authentication services direct to the user, rather it must
be able to communicate with the SPS to process incoming authentication tokens.
Federated Identity Manager Business Gateway configured with IIS can be
configured as a partner of either a Federated Identity Manager identity provider,
a Federated Identity Manager Business Gateway identity provider, or a
third-party identity provider.

744 Enterprise Security Architecture Using IBM Tivoli Security Solutions

As part of the Federated Identity Manager Business Gateway solution, a Web
server plugin is provided to route configured F-SSO requests to the SPS. The
SPS is configured to return headers that contain the required information for IIS
to establish a session for a local identity. It then forwards the request to the
appropriate target for content delivery.

In the following chapter the different types of F-SSO protocol functionality will be
covered.

24.3.2 Trust in F-SSO
Security tokens are included in a message to pass an identity and to convey
security-specific information (used for authentication or authorization purposes,
for example) about a requestor. See Figure 24-13. These tokens are common to
(at least) one other business partner and contain pre-arranged security-relevant
information.

These tokens are themselves protected through signing and encryption, often
using the same keying material as used at the message layer. This information is
part of the trust infrastructure in the same way that keys are used for
signing/encryption purposes: The proper use of these tokens conveys
information about the holder of these tokens. The trust service provides a means
of managing these security tokens and the trust relationships bound to these
security tokens.

Figure 24-13 Using trust service in F-SSO

Token management is based on information such as the issuer of a token, the
intended destination of the token, and the intended use of the token. This allows

Protected
ResourceClient

Trust

Pass Identity

Trust
Service

Point
of

Contact

Point
of

Contact

Trust
Service

Authenticate Authorize

Issue Token for
use with

protected
resource

Locally valid
token/ID

Protected
Resource Token
with Client’s
authenticated ID

Exchange
presented token

for locally valid
token/ID

 Chapter 24. Federated Identity Manager 745

the trust service to manage a business partner's token meta-data together with
the business partner's cryptographic material.

24.3.3 F-SSO protocol functionality
Tivoli Federated Identity Manager and Access Manager for e-business together
provide support for browser-based F-SSO protocols. F-SSO protocols differ from
earlier attempts at cross-domain single-sign-on protocols in their enhanced
functionality, for example, providing single logout (SLO). In this section we briefly
describe the type of functionality found in SSO and F-SSO protocols.

Tivoli Federated Identity Manager Business Gateway provides a refined set of
protocol support, without the requirement for Access Manager for e-business.
The concepts presented within this section are equally applicable to Tivoli
Federated Identity Manager as Tivoli Federated Identity Manager Business
Gateway.

Single sign-on
SSO is a well-understood process. This is the process of allowing a user,
authenticated to one domain (their home domain in Access Manager terms, also
known as their identity provider) to present an assertion or token (a vouch for
token in Access Manager terms) to a business partner (also known as a service
provider) as proof of authentication. This token is used to identify the user and
build a locally valid session (including credentials) for the user without having to
prompt the user for authentication credentials.

746 Enterprise Security Architecture Using IBM Tivoli Security Solutions

In general, F-SSO protocols (as all other CD-SSO protocols) come in two flavors:
push and pull.
Push protocol In push protocol the user invokes a remote resource from

within the control of their home domain (through a link on a
portal page, for example), and is redirected to the remote
resource, carrying their vouch-for token with their request.
This means that the service provider (site of the remote
resource) does not need to prompt the user for information
about their home domain or prompt the user's home domain
for vouch-for information. Push protocols are limited in that
they must be invoked from within the control of the user's
home domain; push protocol scenarios do not handle book
marked URLs or direct-typed URLs.

Pull protocol In pull protocol a user invokes a (remote) resource at a site
other than their home domain (the service provider domain).
As the service provider is not able to authenticate the user,
the service provider must determine the user's home domain
and then request SSO information from the user's home
domain.

The process of determining the user's home domain is often
referred to as WAYF, or Where Are You From. WAYF may be
established based on a long-term set of information carried
around by the user (for example, in the form of a domain
cookie identifying the user's home domain) or by an explicit
user interaction, where the user is prompted to identify their
home domain (for example, from a pre-configured list of
service provider-trusted home domains). Pull protocols are
limited in that if the service provider is not able to determine
the user’s identity provider without user interaction, then a
user-driven WAYF sequence is required (for example, on first
access to a service provider or after a cookie-cache-flush).

Once a user's SSO information has been established and validated at a service
provider, the service provider will maintain a local session (including credentials)
for the user. This will allow the service provider to implement local access control
policies, for example, for the user's session.

Single logout
Previous attempts at SSO have often neglected the corresponding single logout
functionality. Logout can be of two forms: local and global. In general, logout from
the user's identity provider should force a global logout, whether the user
requests a global or local logout. This is a strong recommendation/requirement

 Chapter 24. Federated Identity Manager 747

that stems in large part from the liability normally assumed by an identity provider
for a user within a F-SSO relationship.

It is not always the case that logout should be an allowable service provider
action. This follows in that if a user has single signed-on to the service provider,
he may well have no notion that he has a separate session with this service
provider. Rather than confuse the user by offering a logout action at the service
provider, we expect that most scenarios will set a short session lifetime (inactivity
time-out) at a service provider and rely on SSO to re-establish a session at a
service provider, perhaps many times within the lifetime of the user’s identity
provider session.

If a user is presented with a global logout option at the service provider, this
should trigger a logout notification to the user's identity provider and then a
logout attempt from the service provider. The global logout received at the
identity provider should then invoke global logout functionality by the identity
provider, followed by local logout at the identity provider.

Note that logout in general has implications for things such as session duration
(differing durations at identity providers and service providers). In general, the
inactivity time-out set for an identity provider should be longer than that set for its
service provider business partners. This will prevent a user from timing out at the
identity provider when executing a lengthy transaction with a given service
provider.

Account linking
Account linking is the process of the run-time linking of a user’s accounts at
different business partners. Accounts are linked by establishing some form of
“common unique identifier” that is shared by different business partners, and
locally mapped at the business partner site to the user’s local identity. This
common unique identifier is usually defined to contain no information about the
user, so that it cannot be easily reproduced by outside parties (including
malicious third parties). As such, this common unique identifier is often referred
to as an alias or a pseudonym. Account linking is also known as name federation
within Liberty Alliance specifications.

Account linking is a required functionality when a user desires participation in a
federation but already has existing accounts at both federation business partners
(assuming a federation of two). In order for SSO to succeed, the identity provider
and service provider need to have some common way of identifying the user.
Account linkage is the process of establishing this linkage, based on an initial
user interaction at both the identity provider and service provider side. This
means that as part of the account linking process, there will be a write operation
to an identity store to allow the saving of the linking/mapping information.

748 Enterprise Security Architecture Using IBM Tivoli Security Solutions

It some cases, the account linking process will set a user's authentication
information at the service provider to a disabled state. This means that as a
result of the federation, the service provider will no longer directly authenticate
the user but will always refer to the linked identity provider for this information.
The service provider may choose to keep the user's pre-account linking
password so that if/when a user de-federates the accounts, she may still access
her service provider information based on direct authentication to the service
provider (or SSO from a new, different identity provider).

Note that account linking is sometimes referred to as provisioning, where the
linkage between existing accounts is the information being provisioned. This is
not provisioning for two important reasons: One, it requires that the user already
has pre-existing accounts at both the identity and service provider. Two, the
account linking requires that a user be actively involved in the process of
establishing the account linking at both providers.

Tivoli Federated Identity Manager does provide a Web services provisioning
solution, as described in 24.5, “Provisioning services” on page 775. This Web
services-based provisioning allows the linking of two identity management
systems for a complete user lifecycle management solution, including the
provisioning of information (attributes, subscriptions, account status, and so on)
between federation business partners.

Password synchronization
Password synchronization may be a requirement for some relationships that
entail both federated user lifecycle and Web services provisioning management
solutions. As password synchronization may require provisioning functionality, it
is also discussed in the Web services provisioning section.

With F-SSO, a service provider may be reluctant or unable to turn off direct
access to their resources, meaning that they must allow a user to authenticate to
the service provider as well as gain access as the result of federated SSO. In
order to achieve the benefits of federation (which often revolve around the cost of
password management and password reset), some companies will synchronize
passwords across participants. This at least will allow the service providers to
rely on the identity provider for password management, including Help Desk
calls. It will also simplify password management for the user as it has the same
effect as a user-enforced global password. Note that password synchronization is
not as simple of a solution to implement, as differing password management
policies must be taken into account.

We expect that password synchronization solutions will not be common. What is
more likely is that a service provider will disable the password at the service
provider side once account linkage has been accomplished (without disabling the
user's account). This means that the user can only access the service provider

 Chapter 24. Federated Identity Manager 749

resources from their identity provider. If/when account de-linking (see the next
section) occurs, user self-care can be invoked to allow the user to re-establish a
password for local access.

Account de-linking (name de-federation)
Just as account linking is the process of establishing a linking, or mapping,
between a user's accounts across federations, account de-linking is the process
of removing any reference to or knowledge of that mapping.

Account de-linking may occur in a B2C scenario when a user changes his
identity provider (moving from Internet service provider A to Internet service
provider B, and therefore forcing a change of identity provider, for example), or
when a user changes service providers (changing his bank account from Bank A
to Bank B).

Account de-linking may occur in a B2B2E scenario when an employer changes
service providers (moving from Benefits A to Benefits B as medical benefits
providers, for example), or when a user changes employers (moving from
Company A to Company B but keeping his account with Pension Fund A for
retirement fund purposes).

Account de-linking may be triggered at the identity provider (for scenarios where
the user is changing service providers or simply wants to remove F-SSO
functionality between the IdP and SP) or at the service provider (when the user
wants to establish a new IdP or wants to remove F-SSO functionality at that SP).

Note that account de-linking is a single step and does not require/force a user to
establish a new account linking relationship.

Where are you from
Where are you from (WAYF) is the process of determining (by a service provider)
where a user's home domain (or identity provider) is located. Where are you from
has two profiles: Active and passive.

With a passive WAYF, the service provider has already established some form of
(long-term) information that it can access to determine a user's identity provider.
This simplest form of WAYF information is configured into the URLs associated
with SSO, so that a request for single sign-on received at
http://www.fabrikam.com/fim/idpAsso.html is always associated with IdP A.

A more likely form of storing WAYF information is in the form of a domain cookie
that identifies the user's identity provider and nothing else. There is no
security-relevant information of any form stored in this cookie. If a user attempts
to access a service provider resource and is not carrying some form of F-SSO
token, the service provider will look for a WAYF cookie to determine the user's

750 Enterprise Security Architecture Using IBM Tivoli Security Solutions

home domain. Based on the identity provider information stored in this cookie,
the service provider will be able to determine (based on local configuration) the
corresponding F-SSO endpoint at the identity provider.

If there is no WAYF cookie present, the service provider must invoke the active
WAYF process. Just as SSO profiles allow for push and pull variants, so does
WAYF processing. The WAYF pull variant has a service provider presenting the
user with a list of (trusted) identity providers for the user to select from. The
WAYF push variant has the service provider presenting the user with a notice to
attempt to SSO from their IdP (using a push-based SSO). The WAYF push
variant may be employed in situations where a service provider is not able to
advertise all of their trusted identity providers (for competitive reasons, for
example).

24.3.4 Point of contacts for SSO
As discussed, Tivoli caters to differing customer requirements by providing two
F-SSO products, Tivoli Federated Identity Manager and Tivoli Federated Identity
Manager Business Gateway. This section provides an overview of one of the
fundamental differences between the two products, being the point of contact
support each provides. While these offerings are separate products, the F-SSO
concepts previously described are relevant in each implementation.

Tivoli Federated Identity Manager provides the run-time implementation of
supported SSO profiles. Access Manager for e-business provides the HTTP
point of contact functionality for Federated Identity Manager. As such, Tivoli
Federated Identity Manager has dependencies on Access Manager for
e-business, and Access Manager for e-business has dependencies on Tivoli
Federated Identity Manager.

Tivoli Federated Identity Manager Business Gateway uses the WebSphere
Application Server or Microsoft Internet Information Services as the point of
contact server, while providing the suite of F-SSO protocol support through the
Federated Identity Manager runtime. As such, there is no dependency on Tivoli
Access Manager for providing the point of contact, authorization, or auditing
capabilities. This is completely off-loaded as a responsibility of the point of
contact implementation.

In the next section, we briefly discuss the relationships introduced in this section.

SSO with Access Manager for e-business
Federated Identity Manager relies on the point of contact for session
management for all users, whether Federated Identity Manager is acting as the
identity provider or service provider. As part of the user’s session management,
Access Manager for e-business is responsible for only allowing authorized users

 Chapter 24. Federated Identity Manager 751

to participate in SSO relationships (for example, not all of an identity provider’s
users may be entitled to F-SSO functionality) and will subsequently audit these
accesses.

When configured in an identity provider environment, Federated Identity
Manager expects that Access Manager for e-business correctly authenticates
users, and asserts the user’s identity to Federated Identity Manager as part of an
SSO request. This implies that from an Access Manager for e-business point of
view, access to the Federated Identity Manager SSO endpoints must be treated
as protected resources.

When configured in a service provider environment, Federated Identity Manager
must be able to determine a user’s local identity and create an Access Manager
for e-business credential for this user. This implies that the SPS is an unprotected
resource.

SSO with Microsoft Internet Information Services (IIS)
Federated Identity Manager Business Gateway can be configured with IIS as the
point of contact server at the service provider. In this configuration, IIS is
responsible for providing the authorization, session management and content
delivery to the end user. When SSO requests are made to the F-SSO endpoint
on IIS at the service provider, the request is routed to the Federated Identity
Manager services for validation. As such, this resource is required to be
unprotected.

SSO with WebSphere Application Server
Federated Identity Manager Business Gateway can be configured with
WebSphere Application Server (stand-alone, no cluster support) as the point of
contact server within a federation. This includes configuration support for the
WebSphere Application Server to act as either the point of contact as an identity
provider or service provider, while Federated Identity Manager Business
Gateway provides the F-SSO services.

When configured as an identity provider, Federated Identity Manager Business
Gateway expects that WebSphere Application Server will correctly authenticate
users based on the customer’s configuration requirements, and will assert this
user’s identity to Federated Identity Manager Business Gateway as part of an
SSO request. Federated Identity Manager Business Gateway will provide the
F-SSO token generation (and management) capabilities for the requested
service provider partner. This implies that the Federated Identity Manager
Business Gateway SSO endpoint be protected.

When configured as a service provider, Federated Identity Manager Business
Gateway attempts to determine a user’s local identity from the incoming token
and create a local identity for the WebSphere Application Server. The

752 Enterprise Security Architecture Using IBM Tivoli Security Solutions

WebSphere Application Server is responsible for authorization, content delivery,
and session management based on the established user identity. This implies
that the Federated Identity Manager Business Gateway SSO endpoint be
unprotected.

24.3.5 Federated single sign-on approaches
F-SSO may use a variety of methods to communicate and assert identity. The
different methods will not have support for all functionality described in 24.3.3,
“F-SSO protocol functionality” on page 746. The standards were introduced in
23.3, “FIM standards and efforts” on page 698, and some of the characteristics
of each protocol are highlighted in Table 23-1 on page 704. For detailed
examples, refer to Part 2 “Customer environment” in the IBM Redbooks
publication Federated Identity Management and Web Services Security with IBM
Tivoli Security Solutions, SG24-6394. In general, aside from proprietary
solutions, there are three approaches to Web-based browser SSO and
federation:

� SAML
� Liberty ID-FF
� WS-Federation

SAML
Security Association Markup Language (SAML) is a standard produced by the
Security Services Technical Committee (SSTC) within the Oasis Standards
Organization. SAML consists of two distinct pieces of “functionality”: The SAML
assertion (used to transfer information about a user) and the SAML protocol (the
means of exchanging a SAML assertion). Full details on SAML are available
from:

http://www.oasis-open.org/committees/security

SAML 1.0 and 1.1 (both ratified as standards) define push-based protocols,
meaning that the SSO request is initiated from the identity provider and pushed
to the service provider. SAML provides for:

� Browser/POST profile
� Browser/Artifact profile

The difference between these two is how the actual security information
(vouch-for-token) is exchanged between an identity provider and service
provider.

With a Browser/POST profile, a SAML assertion (vouch-for-token) is included in
the response that is sent to the service provider as part of an HTML form as

 Chapter 24. Federated Identity Manager 753

http://www.oasis-open.org/committees/security
http://www.oasis-open.org/committees/security

shown in Figure 24-14 on page 754. This is called a front channel exchange of
the SAML assertion.

Figure 24-14 SAML SSO: Browser POST

With a Browser/Artifact profile, a pointer to the SAML assertion (called an
artifact) is included in the query_string of an HTTP 302 redirect to the service
provider. The service provider in turn issues a direct SOAP/HTTP request back
to the identity provider, exchanging the artifact for the actual SAML assertion.

Both SAML profiles are invoked by a user being directed to an Inter-Site Transfer
Service at the identity provider. The Inter-Site Transfer Service is a URL that
corresponds to a Federated Identity Manager endpoint.

Service
Provider

Identity
Provider

SSO Message SSO Message

Generate
SSO Message

Scripted POST

Validate
SSO Message

Re-direct to TARGET

Authentication
if unauthenticated

SSO Trigger

754 Enterprise Security Architecture Using IBM Tivoli Security Solutions

In Figure 24-15, the Browser/Artifact profile is shown. The step wherein a direct
SOAP/HTTP request is made from the service provider to the identity provider to
exchange the browser-artifact for the appropriate SAML assertion is done over
the mutually authenticated connection—the back channel.

Figure 24-15 SAML SSO: Browser/Artifact

Liberty Alliance Identity Federation Framework
The Liberty Alliance Identity Federation Framework (ID-FF) extends SAML
functionality beyond the push-based SSO of SAML. Federated Identity Manager
SPS supports Liberty 1.1 and 1.2 ID-FF. The Federated Identity Manager trust
service supports Liberty Assertions. The ID-FF defines:

� Pull-based SSO protocols

� Functionality for single logout (SLO)

� Account linking and de-linking:

– Liberty Register Name Identifier profile (RNI)

– Liberty Federation Termination Notification profile (FTN)

� Where are you from? (WAYF)

– Liberty identity provider introduction profile (IPI)

� Unsolicited authentication response

– This allows a push SSO to take place; SSO initiated by the identity
provider.

Service
Provider

Identity
Provider

Generate
Assertion

Store Assertion
link to Artifact

Send Artifact

Authentication
if unauthenticated

Artifact

SSO Request

ArtifactRedirect

Validate
Response

Lookup
Assertion

Validate
Assertion

Assertion Request

Assertion Response Mutually authenticated connection

Re-direct to TARGET

 Chapter 24. Federated Identity Manager 755

The ID-FF SSO protocols have three flavors:

� Browser/Artifact (B/A)

� Browser/POST (B/P)

� Liberty-Enabled Client/Proxy (LECP)

Details of the Liberty profiles are given in the following Liberty Alliance
specifications: [liberty-architecture-bindings-profiles-v1.1] and
[liberty-architecture-protocols-schema-v1.1], and:

http://www.projectliberty.org/

Browser/Artifact SSO profile
The flows of the Liberty Browser/POST SSO profile are shown in Figure 24-16.

Figure 24-16 Liberty: Browser POST profile

In this profile the identity provider sends the Liberty Assertion (or SAML status
message) in the Authentication Response.

Note the Where Are You From (WAYF) functionality embedded in this SSO
profile. This is required so that the service provider can figure out which identity
provider it should direct the client to in order to obtain a Liberty Assertion. This
might involve reading information from a previously stored cookie, or it might

Service
Provider

Identity
Provider

Identify
Identity Provider

Redirect

Generate
Assertion

Store Assertion
link to Artifact

Send Artifact

Authn Request Authn Request

Authentication
if unauthenticated

SSO Request

Redirect

Where are you from
(if required)

Authn Response
(Artifact)

Authn Response
(Artifact)

Validate
Response

Lookup
Assertion

Validate
Assertion

Response

Assertion Request

Assertion Response

756 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.projectliberty.org/

require interaction with the user to prompt them for the appropriate identity
provider.

In order to generate a Liberty Assertion for the client, the identity provider must
have an authenticated session. If the session is not already authenticated when
the Auth Request arrives then the identity provider needs to authenticate the user
at that point. Note that some options in the Auth Request may prevent the identity
provider from authenticating the user. If this is the case then the identity provider
will send an error in the Auth Response.

The Auth Response in this profile is sent in an HTML form. Scripting is included
so that the form is automatically POSTed to the service provider.

Liberty Register Name Identifier
The Liberty Register Name Identifier (RNI) profile is used to manage a user’s
pseudonym (NameIdentifier). The Liberty NameIdentifier is used for account
linking purposes. In a Liberty environment, the establishment of such a
pseudonym is part of the process of federation; without this process, an SSO
protocol cannot be completed.

The Liberty NameIdentity is set during a specialized SSO request, a federation
request. Subsequent NameIdentifier management processing may be initiated
by an identity provider or a service provider.

In general, an identity or service provider may automatically reset the name
identifier values on a periodic basis (as defined within the relationship) in
response to an end-user-initiated request, or in response to some administrator
trigger. An example of an administrator trigger at an identity provider would be a
request to set new (identity provider-provided) name identifiers for all users
federated with a particular service provider.

Liberty Federation Termination Notification
The Liberty Federation Termination Notification (FTN) profile defines the process
by which an account linking is removed. This is also referred to as de-federation.
De-federation removes the account linking maintained by a NameIdentifier.

In general, an identity or service provider will initiate a FTN request in response
to an end-user-initiated request or in response to some administrator trigger. An
example of an administrator trigger at an identity provider would be a request to
terminate the account linking information for all users federated with a particular
service provider (perhaps in response to a high-level termination of the overall
business relationship).

 Chapter 24. Federated Identity Manager 757

Liberty Single Sign-Out
The Liberty Single Sign-Out (SLO) profile defines the process by which a (set of)
valid session(s) for a user is destroyed. Single sign-out can be initiated in
response to a user request at an identity provider or a service provider with
whom he has a currently valid session. An SLO request received at a service
provider will in turn cause an SLO action at the identify provider, where the IdP in
turn logs the user off of all currently valid SP sessions except the SP session that
initiated the IdP logout.

Note that while sign-out is almost always an end-user-initiated process, there
may be situations in which either business partner must immediately terminate
all sessions and thus issue a logout request on behalf of the end user. This may
occur, for example, within a business environment, in which an employee is fired
for misconduct; all currently valid sessions for the user must be terminated as the
employee is escorted off the employer's premises. In this case, the SOAP SLO
profile may be leveraged, as it may occur out-of-band (without waiting for a user
interaction at either side).

Identity provider introduction
The Liberty identity provider introduction (IPI) profile defines the process by
which an identity provider can set and a service provider retrieve, a common
domain cookie (CDC). This cookie is defined for a common domain, a DNS alias
shared by identity business partners and service providers within a circle of trust.
it is used to store information accessible/required by all business partners within
the circle of trust, in particular, the user’s identity provider. Once retrieved, the
information contained in the cookie is extracted and returned to the requested
domain using techniques such as URL re-writing.

Liberty-enabled client/proxy
The Liberty-enabled client/proxy (LECP) profile is designed to address devices
that are not able to accommodate the query-string length requirements of the
B/A profile or the form post requirements of the B/P profile. These devices are
generally mobile devices, such as query-string length limited mobile devices or
older mobile devices not capable of automating a form post.

A Liberty-enabled client is a client that has, or knows, how to obtain knowledge
about the identity provider that the Principal wants to use with the service
provider. This may be implemented as a client (for example, code downloaded to
a mobile handset) or as a proxy (for example, an HTTP proxy embedded in a
WAP gateway). In addition, a Liberty-enabled client receives and sends Liberty
messages in the body of HTTP requests and responses. Therefore,
Liberty-enabled clients have no restrictions on the size of the Liberty protocol
messages.

758 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-17 shows the role of Federated Identity Manager in a LECP profile,
where a WAP Gateway is acting as the LECP. Note that in this scenario,
Federated Identity Manager need only accommodate steps 4 and 6 when acting
as an identity provider, and steps 1, 3, 7, and 11 when acting as a service
provider.

Figure 24-17 Liberty enabled client proxy (LECP) example

Details of the LECP profile are given in the following Liberty Alliance
specifications [liberty-architecture-bindings-profiles-v1.1] and
[liberty-architecture-protocols-schema-v1.1].

Unsolicited authentication response
Liberty 1.2 allows for an identity provider to send an unsolicited authentication
response to a service provider. This allows a push SSO to take place—SSO
initiated by the identity provider. The trigger for this is not specified so it is up to
who implements it to decide.

WS-Federation passive client
The WS-Federation passive client specification, published by IBM and Microsoft,
is available at the following Web site:

http://www.ibm.com/developerworks/library/ws-fedpass/

The specification states the following:

TFIM Runtime
Federated Identity Manager Runtime

Trust
Service

Alias Service

LDAP User
Registry

Authorization Service

Protected
Resources

Point of Contact

Key Encryption
Signing ServiceSSO

Protocol
Service Trust Service

STS

3rd Party SP

WAP GW

LECP

IdP

1,7

3,11

10

5

4
6

 Chapter 24. Federated Identity Manager 759

http://www-106.ibm.com/developerworks/library/ws-fedpass/
http://www.ibm.com/developerworks/library/ws-fedpass/

The WS-Federation specification defines an integrated model for federating
identity, authentication and authorization across different trust realms and
protocols. This specification defines how the WS-Federation model is applied
to passive requestors such as Web browsers that support the HTTP protocol.

The WS-Federation allows for both pull and push for SSO.

� Pull means that the SSO is initiated at service provider, the service provider
determines identity provider then the service provider requests SSO from
identity provider and identity provider responds with SSO token. See
Figure 24-18.

� Push means that the SSO is initiated at identity provider and then the identity
provider sends SSO token to service provider. See Figure 24-19 on page 761.

Pull
In Figure 24-18 an SSO is triggered at the service provider by sending a special
SSO trigger message to the service provider WS-Federation endpoint. If the
service provider has multiple identity providers configured then it must determine
which to send the client to for authentication. It can do this either by reading a
cookie set on a previous visit, checking for a parameter in the query string of the
SSO trigger, or by sending the user a list of identity providers to choose from.

Figure 24-18 WS-Federation: Select ID Provider and SSO (Pull)

Once the service provider has determined the correct identity provider, it builds
an SSO Request message which is send to the identity provider. The SSO
message is send in the query-string of a re-direct to the WS-Federation endpoint

Service
Provider

Identity
Provider

Which Identity
Provider?

RedirectSSO Request

SSO Trigger

List of IdPs
Select Identity

Provider Selected IdP
Initiate
SSO

Cookie
SSO Request

SSO Response SSO Response
Generate

SSO Message Scripted POST

Validate
SSO MessageResponse

Authentication
if unauthenticated

760 Enterprise Security Architecture Using IBM Tivoli Security Solutions

of the identity provider. A cookie set in the redirect identifies the identity provider.
It is a persistent cookie which will allow the service provider to determine the
correct identity provider next time without having to prompt the user. The SSO
request shown here is being sent as a result of a redirect from the service
provider.

When the identity provider receives the SSO request at its WS-Federation
endpoint, it will first authenticate the user (if they are currently unauthenticated).
It must have an authenticated session in order to process an SSO request. The
identity provider reads the SSO request from the service provider and builds an
appropriate SSO response message for that provider. This message will include
a security token that is valid for the service provider.

The SSO response (including the security token) is returned to the service
provider as a scripted post. The SSO message is sent to the client in the hidden
inputs of an HTML form. Scripting in the form causes it to automatically be
POSTed to the WS-Federation endpoint of the service provider. The service
provider validates the received security token and uses it to build an
authenticated session. It is then able to authorize the original request.

Push
Figure 24-19 shows the protocol flow for a WS-Federation PULL operation. The
WS-Federation protocol really starts with the SSO request received from the
client. However, it is useful to see what causes the SSO request to be received,
so this is also included.

Figure 24-19 WS-Federation: SSO (Push)

Service
Provider

Identity
Provider

SSO Response SSO Response
Generate

SSO Message Scripted POST

Validate
SSO MessageResponse

SSO Request

Authentication

Page with SSO Link

User selects
SSO Link

 Chapter 24. Federated Identity Manager 761

It is unlikely that a user would manually type an SSO request message into their
browser (although they could). It is much more likely that an identity provider will
include a link on their site that a user can select in order to access some service
provider resource (for example, for BigCorp you would see - Click here to book a
hotel with our preferred partner RBTravel). Rather than direct the user straight to
the service provider (only for it to have to direct the user back to perform SSO),
this special link generates an SSO request to the WS-Federation endpoint of the
identity provider, which immediately triggers the SSO exchange.

This SSO request generated by the link has exactly the same format as the SSO
request that would have been received from the service provider had it generated
the SSO message (in a PULL operation). From here, processing is the same as
for a PULL operation. The identity provider generates the appropriate security
token for the service provider and sends to the service provider, via the client,
using a HTML form.

WS-Federation also supports single sign-out at both the SP and IdP.

SAML 2.0
SAML 2.0 is a merge of SAML 1.0 and 1.1 with the specifications provided by
Liberty 1.x. The emergence of SAML 2.0 is shown in Figure 24-20.

Figure 24-20 Standards evolution towards SAML 2.0

762 Enterprise Security Architecture Using IBM Tivoli Security Solutions

SAML 2.0 is a progression of these standards. The following is a brief description
of the profiles supported by SAML 2.0. They include the following:

� Web browser SSO profile. This includes the browser artifact and browser post
protocols as defined in “SAML” on page 753. Also added within SAML 2.0 is
the ability to perform service provider initiated SSO as well as the associated
message techniques (including re-direct, POST and artifact).

� Enhanced client or proxy profile: This profile defines the mechanism by which
mobile devices, with limited user agent functionality, can operate in a
federation.

� Identity provider discovery profile: This profile defines the “Where are you
from?” message formats, allowing for the identification of your preferred
identity provider site for single sign-on.

� Single logout profile: This profile defines messages for performing session
logout on all services where a single sign-on operation occurred.

� Name identifier management profile: This is the account management profile
used for account linking, alias management, delinking, and so on.

SAML 2.0 also provides the following additional features:

� XML format for storing away federation relationships. This makes it simpler for
customers to manage their federations and reduces user error, allowing for
definitions of federation attributes to be distributed to partners in an XML
format.

� Provides the ability for encryption.

� Provides support for consent to federate. This removes the ability of a service
provider to force a user to federate without the user’s knowledge. If enabled
within the protocol, the IdP prompts the user to federate.

� Forced authentication: Even if a user is authenticated at the IdP, the SP can
order the IdP to authenticate the user again.

� Passive IdP: The SP can force the IdP to not authenticate a user upon a
redirect. This assumes that the user is already authenticated, and thus is
required to return a valid token.

As you can see, SAML 2.0 merges the sets of profiles found most appropriate by
the field, with some additions. Naturally then, it is emerging as the protocol of
choice for customers.

24.3.6 InfoService
The InfoService is used to build a user interface reflecting the users defined
federations. If a portal has many services where user have the possibility to use

 Chapter 24. Federated Identity Manager 763

F-SSO then it is necessary to be able to present the choices in a relevant manor,
as not to confuse the user.

The Info Service provides an interface that can be used to determine a user’s
federations. This then allows customized and personalized Web pages, listing
the sites to which the user can SSO, and presenting the list of sites to which the
user can federate (and subsequently SSO). This can also be used to control the
presented interactions, such as when de-federation is presented as a possible
action (so that a user is not given the option of de-federating from a provider to
whom they have not federated in the first place).

The InfoService makes Web services calls to the Management service to get this
information. See Figure 24-21.

Figure 24-21 InfoService access to the Management Service

24.3.7 Specified level view of F-SSO architecture
There are many ways to deploy a F-SSO solution. This pattern gives an attempt
to show how it could be accomplished.

The specified view for a Federated Identity Manager architecture for F-SSO is
shown below in Figure 24-22 on page 765. A specified view describes the key
nodes and the connections between them.

Alias Service

Federated Identity
Manager

Management Service

Authorization Service

Resources

Key Encryption
Signing Service

InfoService SOAP over HTTP

LDAP User
Registry

Trust Service
STS

SSO Protocol
Service

Federated Identity Manager Runtime

Point of Contact

Federated Identity
Manager
Console

764 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-22 Generic Federated Identity Manager specified level view of F-SSO

The specified view for a Federated Identity Manager Business Gateway
architecture for F-SSO is shown below in Figure 24-23. Care must be taken
when deploying the Business Gateway solution in an HA environment. Support is
only provided in a stand-alone server configuration, so when considering the
protocols to use for SSO, if there is a dependency on any cluster function (such
as in SAML browser-artifact exchange) this may have implications for the design.

Figure 24-23 Federated Identity Manager Business Gateway level view of F-SSO

Web Portal
Node

Access
Manager
Policy &

Authorization
NodeClient

Node

Network
Intrusion

Detection Node

.

WebSEAL

Directory
NodeFederated

Identity
Management

Node

Enterprise
Systems

Internet DMZ

Controlled

Internet

Restricted SecureUncontrolled

Production Zone Management
Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

E
dge S

erver N
ode

Local
Directory

Node

Client
Node

Network
Intrusion

Detection Node

.

Point of
Contact (IIS or

WAS)

Federated
Identity

Management
Business

Gateway Node

Internet DMZ

Controlled

Internet

Restricted SecureUncontrolled

Production Zone Management
Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

Directory
Proxy

Text Text

E
dge S

erver N
ode

 Chapter 24. Federated Identity Manager 765

A more detailed look at F-SSO deployment is available in section 26.1,
“Federated SSO architecture patterns” on page 804.

24.4 Web services security management
Web services security management functionality allows the establishment and
management of federation relationships for the “active client” scenario. In an
active client scenario, an active client, such as an application, is able to generate
a Web services request. This request can then be secured (encrypted and
signed) to provide message-level confidentiality and integrity. Web services
security management adds the ability for message-level authentication,
identification and authorization, in the context of a federation relationship. Web
services security management also adds the benefits of the Federated Identity
Manager trust service, including token services, identity services, and key
services.

Web services security management layers over existing WS-Security
functionality, providing a WS-Trust (standards-based) approach to the
management of security tokens used for authentication purposes within a
secured Web services request.

Figure 24-24 on page 767 shows the communications and exchanges that take
place at each layer of Tivoli Federated Identity Manager when performing Web
services Security Management.

Note that no internal details are shown for the third-party side because their
architecture is not known (and not important). Integration is at a protocol level.

766 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-24 Web services security: Components and communication

At the Communication layer, SOAP messages are being handled by the
Application Server, in this case WebSphere Application Server or WebSphere
Web services Gateway. All real communication is via the Web services handlers
in the Application Server. This component could just as easily be a third-party
vendor XML firewall or gateway that has the ability to act as a trust client to the
Tivoli Federated Identity Manager trust service.

At the Protocol layer, the WS-Security header in the SOAP request are handled
by the Tivoli Federated Identity Manager trust handler (or the third-party XML
FW/GW Trust Client). It must read the WS-Security headers sent by the
third-party solution (incoming) or include headers for the third-party solution
(outgoing).

At the Trust layer, Security Tokens are being exchanged between Tivoli
Federated Identity Manager and the third-party solution. In Tivoli Federated
Identity Manager, this layer is handled by the trust service. The trust service
exchanges security tokens with the third-party solution in the WS-Security
header of SOAP requests (as handled by the trust handler).

Trust
Handler

Trust
Service

Application
Server

Web Services
Handler

WS-Security

Security Tokens

W
S

-T
ru

st

Authorization
Service

Key
Encryption

Signing Service

IBM or
3rd Party

standards-based
solution

SOAP

WS-Provisioning Provisioning
Service

Identity
Manager
Service

 Chapter 24. Federated Identity Manager 767

24.4.1 Architecture overview
Figure 24-25 shows the components required for Web services security
management with Tivoli Federated Identity Manager.

Figure 24-25 Components for Web services security management

The Tivoli Federated Identity Manager Web services trust client is called by the
Application Server Web services handler during processing of Web services
requests. This is triggered by entries in the application’s deployment descriptors.
The trust client builds a WS-Trust based request to the trust service based on the
information contained in the Web services request. The trust service will validate
existing security tokens and generate new security tokens as required.

In addition to validating incoming security tokens, the trust service may also
optionally invoke the authorization service. This authorization decision is used to
determine if the identity claimed (and mapped) from the incoming token is
allowed to invoke the requested Web services as defined by the WSDL abstract
binding.

Assuming the incoming security token is valid and the authorization is
successful, the Federated Identity Manager trust client passes control back to the
Web services handler. The trust client also passes back identity information that
is used to populate the subject associated with the request for J2EE security
within the Application Server.

Figure 24-26 on page 769 shows a user at Company A, accessing a resource at
Company B via a Web service request.

Application Server

Federated
Identity Manager

Console

Federated Identity
Manager Runtime

Web
Service

App

LDAP User
Registry

Federated
Identity Manager

Management
Service

Authorization Service

Key Encryption
Signing Service

ITFIM
Client

Web Services
Requests

Alias Service

Web
Services/XML

Point of
Contact

Trust Service
STS

Auth Service

768 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-26 Web service security management (WSSM): Solution Architecture

1. User at Company A invokes a Web service using their local ID.

2. The edge of Company A could be an XML/WS Firewall or Gateway or similar.
The general requirement for this node is to standardize outbound requests
such that they can be processed by the receiving Company B. Its functionality
may include:

– Mapping of identity claimed in incoming locally valid id to a token

– Mapping of local valid attributes such as groups/roles to agreed attributes

– Exchange of presented local valid token for a token format agreed in the
relationship to Company B

3. Over the Internet a number of different technologies can be used to provide
message privacy and integrity (SSL, SOAP-Security, VPN tunnel, and so on).

4. Web services functionality at Company B side will do authorization and
identity/attribute mapping as part of creating a local ID token to be added to
the Request. The Request invokes the back end application as a Web service
or as a local application (for example, J2EE or .NET).

To understand the Web services security management solution it is necessary to
explain WS-Security, WS-Trust, and the high level functionality of a Web services
firewall/gateway component and the Tivoli Federated Identity Manager
Authorization service.

InternetInternetW
eb S

ervice
Firew

all or
G

atew
ay

Company A
User

Web Security
Server

• Identity Mapping
• Attribute Mapping
• Token Management
• Authorization Control

SOAP
Request

SOAP
Request

ITFIM/WSSM

• Identity Mapping
• Attribute Mapping
• Token Management
• Authorization Control

ITFIM/WSSM

Web Service
Application

local ID

Token

Token local ID

local ID

Token

W
eb S

ervice
A

pplication

local ID

local ID

ITFIM – IBM Tivoli Federated Identity Manager

 Chapter 24. Federated Identity Manager 769

24.4.2 WS-Security
WS-Security is used to accomplish end-to-end message security.
Message-based security does not rely on secure transport because:

� The message itself is encrypted - message privacy

� The message itself is signed - message integrity

� The message contains user identity -proof of origin

In Figure 24-27, end-to-end message security is illustrated. The lock on the
SOAP message is meant to imply that the SOAP message is inherently secure in
and of itself. The SOAP message can be transported in any way and its security
is not affected. The SOAP message could be sent as an e-mail attachment,
carried on a floppy-disk, and so on, and the properties of privacy, integrity, proof
of origin are not affected.

Figure 24-27 Message-based Security: End-to-End Security

In contrast, the security of a message that relies on transport security is exposed
when that transport security has gaps, as would occur when multiple SSL hops
are required to move the message from the origin to the ultimate receiver.

The gaps in the transport security may or may not be an issue, depending on the
trust assigned to the nodes that provide the transport compared to the trust
required for the message.

For more on the topic WS-Security, and SOAP header extensions, see 23.5.2,
“Web services security” on page 714.

The elements defined in the OASIS standard “Web services Security: SOAP
Message Security 1.0” and provides the ability to achieve message-based
security for a SOAP message. That is, the message in and of itself is
tamper-proof and confidential.

HTTPS HTTPS

SOAP Message

Connection
Integrity/Privacy

Connection
Integrity/Privacy

?

770 Enterprise Security Architecture Using IBM Tivoli Security Solutions

24.4.3 Web services gateway
As mentioned in 24.2.2, “SOAP/XML point of contact” on page 727, the Web
services gateway acts as a reverse proxy for SOAP traffic for service providers.
On the Web services requestor side, an XML gateway can be used as an
outgoing proxy for Web services. The primary IBM product used as a Web
services gateway is the WebSphere DataPower XML Security Gateway XS40.

In the context of federated Web services, the purpose of this device is to do the
following:

� Filter out bad requests

� Provide identity mapping between security domains

� Execute authorization decisions on Web service requests

As a hardware device, the XS40 is optimized for XML processing. This makes it
ideal as a high-volume point of contact, which can rapidly filter out bad requests.
Even though it offers its own identity mapping and authorization functions, a
robust enterprise solution is to use the XS40 as the XML point of contact and
configure it to call out to Tivoli Federated Identity Manager for identity mapping,
mediation, and authorization.

Take the case of a request coming in from the external service provider. As
shown in Figure 24-28 on page 772, the DataPower XS40 provides a Web
services gateway to the incoming requests. In the figure, the request arrives
carrying a SAML security token, which carries identity information for the user
homejoe. The point of contact calls into the trust service to exchange the security
token format to one supported by the enterprise. In this case, the SAML security
token is exchanged for a username token. Additionally the trust service can map
the incoming identity information to one suitable for the enterprise. In the figure,
the homejoe identity is mapped to the enterprise identity of joesmith.

 Chapter 24. Federated Identity Manager 771

Figure 24-28 DataPower XS-40 as Web services gateway

In addition, an authorization service may be employed to verify whether the
requesting entity is allowed access to the requested service. The trust service
queries the authorization service with the name of the requester and the
resource being requested. The authorization service returns a yes/no response
and the trust service communicates the results back to the Web services
gateway. In this way the gateway prevents unnecessary Web service requests
from burdening the XML point of contact service with extra load. Figure 24-29 on
page 773 extends the previous example to include authorization.

772 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 24-29 DataPower XS-40 as Web services gateway with authorization

For a thorough discussion on the Web services gateway architecture pattern,
including how the gateway is used on the service requester side, read section
26.2.3, “XML gateway pattern” on page 828.

24.4.4 WS-Trust
The WS-Trust specification defines the interface used to manage the security
tokens defined by the WS-Security specification. The Tivoli Federated Identity
Manager Trust Service interface is defined by WS-Trust. It may be accessed by
trust clients using either SOAP requests or direct JAVA API calls. The trust client
can be the one in Web services security management, SPS or a custom client as
long as it conforms to the Tivoli Federated Identity Manager WS-Trust profile.
This interface allows any conferment Trust Client to request security tokens from
the Tivoli Federated Identity Manager Trust Service, where the Trust Service can
provide the appropriate token translation, identity translation, and request
authorization as part of its token functionality. For more on the Trust Service see
24.2.4, “Trust services” on page 729.

 Chapter 24. Federated Identity Manager 773

24.4.5 Authorization services
When used within the context of Web services security management, the trust
service can be configured with authorization services (AS). The authorization
services may be used to determine if a user (as validated and identified by the
Trust Service) is authorized to access requested resources. This allows an
implementation-independent decision on the access of a Web service; that is, it
does not matter if the Web service exposes a J2EE-based resource, a CICS®
resource, or some other proprietary resource.

24.4.6 Web services security management architecture approach
There are many ways to deploy a Web services security management solution.
This view gives an attempt to show how it could be accomplished using Tivoli
Federated Identity Manager based nodes, using a Web service gateway. The
selected nodes and there connections are represented to illustrate there place
meant in the logical network zones.

Figure 24-30 Specified level view of Web services security management

A more detailed look at Web services security management deployment is
available in 26.2, “Federated Web services architecture patterns” on page 824.

Application
Server
Node

Access Manager
Policy &

Authorization Node

External
Provisioning

Node

Network
Intrusion

Detection Node

Web Services
Gateway Node

Directory
Node

Federated
Identity

Management
Node

Integration
Hub Node

Internet DMZ

Controlled

Internet

Restricted SecureUncontrolled

Production Zone Management
Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

Database
Server
Node

Enterprise
Systems

Node

774 Enterprise Security Architecture Using IBM Tivoli Security Solutions

24.5 Provisioning services
Provisioning services are used within a federated environment for both a prior
and run-time provisioning solutions, as described in 23.6, “Federated identity
provisioning” on page 716. Provisioning services interact with both local identity
management systems (such as Tivoli Identity Manager) and local data stores
(access via identity services). Provisioning services are leveraged to federate
local identity management systems across federation business partners and to
provide federated management of identity data, including transactional and
profile attributes, see 23.2.5, “Identity attributes” on page 691.

There are few widely accepted standards for provisioning. The most important
effort to date is probably the work done by the Provisioning Service Technical
Committee (PSTC) at OASIS. The PSTC has defined a set of Use Cases that
reflect the operational requirements of a provisioning system. WS-Provisioning is
compatible with those use cases.

WS-Provisioning describes the APIs and schemas necessary to facilitate
interoperability between provisioning systems and to allow software vendors to
provide provisioning facilities in a consistent way. The specification addresses
many of the problems faced by provisioning vendors in their use of existing
protocols, commonly based on directory concepts, and confronts the challenges
involved in provisioning Web services described using WSDL and XML Schema.

The specification defines a model for the primary entities and operations
common to provisioning systems including the provisioning and de-provisioning
of resources, retrieval of target data and target schema information, and provides
a mechanism to describe and control the lifecycle of provisioned state.

 Chapter 24. Federated Identity Manager 775

Figure 24-31 shows the communications and exchanges that take place at each
layer of Federated Identity Manager when performing Web services Provisioning.

Note that no internal details are shown for the third-party side because their
architecture is not known (and not important). Integration is at a protocol level.

Figure 24-31 Web services Provisioning: Components and communication

At the Communication layer, SOAP messages are being handled by the
Application Server, in this case WebSphere Application Server or WebSphere
Web services Gateway. All real communication is via the Web services handlers
in the Application Server.

At the “Protocol” layer, the WS-Security header in the SOAP request are handled
by the Tivoli Federated Identity Manager Trust Handler. It must read the
WS-Security headers sent by the third-party solution (incoming) or include
headers for the third-party solution (outgoing).

At the “Trust” layer, Security Tokens are being exchanged between Tivoli
Federated Identity Manager and the third-party solution. In Tivoli Federated
Identity Manager, this layer is handled by the Trust Service. The Trust Service
exchanges security tokens with the third-party solution in the WS-Security
header of SOAP requests (as handled by the Trust Handler).

Trust
Handler

Trust
Service

Application
Server

Web Services
Handler

WS-Security

Security Tokens

W
S

-T
ru

st

Authorization
Service

Key
Encryption

Signing Service

IBM or
3rd Party

standards-based
solution

SOAP

WS-Provisioning Provisioning
Service

Identity
Manager
Service

776 Enterprise Security Architecture Using IBM Tivoli Security Solutions

SOAP Security is used to protect WS-Provisioning messages and the
Provisioning service acts as a secured Web service, accessing the IBM Tivoli
Director Integrator in the back-end.

24.5.1 Architecture overview
Figure 24-32 shows the components required in order to implement secure,
cross-enterprise, provisioning using Tivoli Federated Identity Manager.

Figure 24-32 Components for federated user provisioning

It is important to note here that many of the components shown here are the
same as required to secure any Web service, the provisioning service is just
another Web service in that respect.

The only components specifically related to provisioning are the provisioning
service itself and Identity Management Service which is the enterprise Identity
Management Service, in this case the IBM Tivoli Directory Integrator, but it could
also be a bespoke identity provisioning capability. The Federated Identity
Manager Alias Service and LDAP registry are also needed if provisioning for
Liberty SSO with account linkage.

WS-Provisioning messages are received by the application server Web services
handler, in this case the WebSphere Services handler, and are authorized using
Federated Identity Manager and authorization service, here Tivoli Access
Manager. If authorized, the request is passed on to the Federated Identity
Manager provisioning service. The provisioning service validates the request and

Application Server

Federated
Identity Manager

Console

Federated Identity
Manager Runtime

Federated
Identity Manager

Provisioning
Service

LDAP User
Registry

Federated
Identity Manager

Management
Service

Authorization Service

Identity
Management

Service

Key Encryption
Signing Service

Federated
Identity Manager

Trust Client

WS-Provisioning
Messages

Alias Service

Trust Service
STS

Auth Service

Web
Services/XML

Point of Contact

 Chapter 24. Federated Identity Manager 777

then passes it on to Directory Integrator. A Directory Integrator AssemblyLine
extracts the identity information from the provisioning request and handles as
appropriate. If the request is to provision a local account for Liberty SSO then the
alias service is called to associate the newly created user with the received
Liberty alias.

Although the diagram in Figure 24-32 on page 777 shows Directory Integrator
interfacing directly to the LDAP user registry this is just an example. Directory
Integrator could be configured to interface with any supported endpoint including
IBM Tivoli Identity Manager.

Figure 24-33 provides an overview of the WS-Provisioning support provided in
Federated Identity Manager. The Federated Identity Manager components are:

� The Tivoli Federated Identity Manager WS-Provisioning Web service that
runs on WebSphere Application Server 6.0

� The Tivoli Federated Identity Manager WS-Provisioning connector that runs
on IBM Tivoli Directory Integrator

Both of these provide a full implementation of the three interfaces defined by the
WS-Provisioning standard.

Figure 24-33 Federated provisioning - Overview

Enterprise
Provisioning

WebSphere

Directory Integrator

AssemblyLine

Local
Provision

Trigger

Identity Provider Service Provider

WebSphere

Directory Integrator

AssemblyLine1

2

3

4

5

7

Secure SOAP
Message with

Token

Federated
Identity

Manager
WS-

Provisioning
Connector

WS-Provisioning
SAML

Federated
Identity Manager

WS-Provisioning

W
S

-P
ro

vi
si

on
in

g

W
S

-P
ro

vi
si

on
in

g

6

Federated
Identity Manager

WS-Provisioning

778 Enterprise Security Architecture Using IBM Tivoli Security Solutions

A provisioning event is sent from the identity provider to the service provider via
this sequence:

1. Some type of provisioning trigger at the IP initiates an Tivoli Directory
Integrator AssemblyLine. Tivoli Directory Integrator provides several
mechanisms to start an AssemblyLine: the creation of a new entry in an LDAP
directory is detected by a monitoring agent, a DSMLv2 request from Identity
Manager or another enterprise provisioning service, and so on.

2. The Tivoli Directory Integrator AssemblyLine collects data to form a
WS-Provisioning message. The AssemblyLine can use any of the standard
Tivoli Directory Integrator facilities for this including the many standard Tivoli
Directory Integrator connectors.

3. The Tivoli Federated Identity Manager WS-Provisioning connector sends a
WS-Provisioning message to the Tivoli Federated Identity Manager
WS-Provisioning Service.

4. The Tivoli Federated Identity Manager WS-Provisioning Service uses the
Tivoli Federated Identity Manager trust server to create a SAML token for a
configured identity and uses the WebSphere SOAP Security support to
forward the WS-Provisioning message to the target service provider.

5. The Tivoli Federated Identity Manager WS-Provisioning Service on the SP
receives the message and forwards it to a configured WS-Provisioning
Connector on a local Tivoli Directory Integrator. This Tivoli Federated Identity
Manager WS-Provisioning Service may be configured to use Tivoli Federated
Identity Manager Web services security management for identity validation
and request authorization with Tivoli Access Manager.

6. The Tivoli Federated Identity Manager WS-Provisioning Tivoli Directory
Integrator connector receives the WS-Provisioning message and starts a
configured Tivoli Directory Integrator AssemblyLine.

7. The Tivoli Directory Integrator AssemblyLine on the SP collects whatever
local data is required and initiates local provisioning, using an enterprise
provisioning system such IBM Tivoli Identity Manager if necessary.

Note that the WS-Provisioning messages sent between Tivoli Directory
Integrator and Tivoli Federated Identity Manager do not include SOAP Security
headers because they are assumed to be in a trusted environment. The
WS-Provisioning messages from Tivoli Federated Identity Manager-to-Tivoli
Federated Identity Manager do use the SOAP security support of WebSphere.

 Chapter 24. Federated Identity Manager 779

24.5.2 Provisioning architecture approach
There are many ways to deploy a provisioning solution. This view gives an
attempt to show how it could be accomplished leveraging Web services security
management.

Figure 24-34 Generic IBM Tivoli Federated Identity Manager specified level view of
provisioning

24.6 Conclusion
At the beginning of this chapter we discussed the federated identity management
functionality and how that functionality consists of a set of services. Then we
described three solution areas, F-SSO, Web services security management, and
Provisioning, studying functional details within each solution area.

The focus of the chapter was to give a description of how the Tivoli Federated
Identity Manager solution is implemented to meet the overall Federated Identity
Manager challenge. We discussed how the Tivoli Federated Identity Manager
product set is built around the trust infrastructure implemented by the trust
service and provides point of contact servers for varying customer requirements.
SSO services provide the implementation of federation protocols, and also the
interface between the point of contact (PoC) and the trust service.

Provisioning
Node

Access
Manager
Policy &

Authorization
Node

External
Provisioning

Node

Network
Intrusion

Detection Node

.

Web Services
Gateway Node Directory

Node

Federated
Identity

Management
Node

Identity
Management

Node

Internet DMZ

Controlled

Internet

Restricted SecureUncontrolled

Production Zone Management
Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

780 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 25. Cross enterprise federated
single sign-on scenario

Federated single sign-on represents the process of providing single sign-on
credentials to partner enterprises in order for users to have a seamless transition
from one enterprise to the next or from one domain to the other.

The deployment characteristics of the enterprises involved mean that typically
there are numerous methods of single sign-on that could be employed by
security architects.

In this chapter we attempt to identify some of these integration opportunities and
the benefits and challenges of each. We focus not only on integration between
Tivoli Security products, but we also highlight a typical scenario of an enterprise
implementing a standards-based federated security solution.

25

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 781

25.1 Business context
BankWithUs is a large bank. They have customers around the US, and as such,
have many partner services to offer their customers. These partners manage
such things as stock trading, credit card point systems, retirement investment
management, to name a few. BankWithUs has 3.2 million registered online
customers for their banking services.

Recently, BankWithUs conducted online surveys for their customers to discover
how they can improve their services. One of the most common complaints from
their customers was that they have to remember so many passwords when using
BankWithUs’ partner services. The argument generally was “BankWithUs
wanted me to join the partner and even though they introduced me to them, I had
to register independently and then remember another username and password.”

To address this problem, BankWithUs engaged some of their partners in order to
discover how best they improve their online services. The initial partners targeted
include the following:

� StocksMustGain Corporation: StocksMustGain Corporation provides stock
trading services to a set of BankWithUs customers. They also have their own
independent customer base.

� PointsTech Corporation: PointsTech provides a purchase points system
(similar to frequent flier points) to a small set of privileged BankWithUs
customers with a particular type of business credit card.

� RetireNowPlease Corporation: RetireNowPlease manages retirement
services for customers of BankWithUs. They also have their own independent
customer base.

Currently, customers of BankWithUs maintain login identities and passwords for
each of the partner sites that they want to access.

BankWithUs’ customer base also includes customers that were introduced to
them by either StocksMustGain or RetireNowPlease. Hence, BankWithUs saw
an opportunity to minimize the cost of managing identities for the numerous
partners, while increasing end-customer services and satisfaction.

BankWithUs corporation engaged with StocksMustGain, PointsTech, and
RetireNowPlease corporations to gauge their positions to participate in this
transformation. At the business levels, there is support between the
organizations to enter into such an engagement. However, there is concern from
the partners’ management teams about the integration effort and whether they
have the resources to successfully complete and support such.

782 Enterprise Security Architecture Using IBM Tivoli Security Solutions

As part of the business agreement, the next step was a technical appraisal for
each partnership with the aim to satisfy the following requirements:

� Perform single sign-on for shared users within the solutions.

� Identify any identity management related cost savings for all parties.

� Provide the actions in the first two bullets without disproportionate investment
in IT infrastructure or skills.

This chapter aims to provide conceptual designs for satisfying these core
requirements.

25.2 Technical specifications
Each of the partners have differing levels of maturity when it comes to their online
strategies. This section outlines the technical implementation of each
corporation’s online services as it currently stands.

25.2.1 BankWithUs Corporation
BankWithUs Corporation considers itself a leader in its evolution of online
identity management, having established services for its customers in the late
1990s and extending this to include support for federated relationships with
some of its business partners. Its SOA strategy is in progress, providing an
access point for customers with active client user agents to leverage
BankWithUs’ applications. For providing external automated user provisioning
services, BankWithUs implemented a WS-Provisioning solution to support real
time provisioning requests. All of these strategies are underpinned by a security
solution from Tivoli Security.

BankWithUs constructs their login identifies with first name, followed by “-”
followed by surname. For example, John Howard would be provisioned a login
identifier as john-howard.

Figure 25-1 on page 784 shows the BankWithUs corporation high level outline of
components.

 Chapter 25. Cross enterprise federated single sign-on scenario 783

Figure 25-1 BankWithUs technical environment

As can be seen, the customer has a high maturity level from a security
deployment perspective, with all the infrastructure in place to provide single
sign-on to partners.

Functionally, from a security perspective, they are able to provide the following
interfaces for customers to interact with:

� Tivoli Access Manager for e-business single sign-on options are outlined in
9.6, “Enterprise single sign-on mechanisms” on page 313. This includes the
ability to provide support for a range of authentication mechanisms from the
client.

� Federated Identity Manager SSO options outlined in section 26.1, “Federated
SSO architecture patterns” on page 804. This includes the ability to act as an
identity provider or a service provider in a federation relationship.

� Support for WS-provisioning requests through their SOA devices as outlined
in 24.2.8, “Provisioning services” on page 735.

Let us now consider the partner’s implementations in order to determine the
complexities for integration.

784 Enterprise Security Architecture Using IBM Tivoli Security Solutions

25.2.2 StocksMustGain Corporation
StocksMustGain provides online stock trading to Internet customers. They
provide this service for customers of BankWithUs. At this time, initial estimates
identified the customers targeted user population for integration to be around
100,000.

Figure 25-2 shows StocksMustGain corporation’s deployment.

Figure 25-2 StocksMustGain technical environment

It shows a deployment of Access Manager, which protects the application
infrastructure. This infrastructure includes stock trading services as well as other
investment applications. StocksMustGain has a stringent audit requirement,
hence, they extended Tivoli Access Manager for e-business to generate
customized audit records through the Common Auditing and Reporting Service.
For more information see Chapter 27, “Introducing IBM Tivoli Common Auditing
and Reporting Service” on page 845. As shown, they also have a WebSphere
cluster deployed that implements the Tivoli Access Manager Session
Management Server to provide centralized session management.

StocksMustGain provisions login identifiers with first name, followed by an
underscore (_) character, followed by surname. So, a user with the full name of
John Howard is constructed as john_howard.

 Chapter 25. Cross enterprise federated single sign-on scenario 785

StocksMustGain provides a number of applications to their customers, the most
significant for this integration is the WebSphere Application Servers, which host
the stock trading services.

25.2.3 PointsTech Corporation
PointsTech Corporation won the business to host the credit card points system
for BankWithUs’ privileged business credit card customers in late 2005.
BankWithUs does not consider its point system a revenue stream, hence their
focus was to out source and focus on its revenue generating core banking
services. The concurrency and service level requirements for the application are
low. Redundant infrastructure was not required in order to support the service
level requirements of BankWithUs.

Customers accrue (build up) points by spending money using the bank’s
platinum credit card. Once they have enough points, they can be used to
purchase rewards. The application provides customers a way to view their points
balance online. At this time there is no automation that allows purchases to be
made using these points online.

In addition to the customer view of the application, some management services
are provided for PointsTech help desk personnel for them to process purchases
made with points by the customers. All reward purchases are made via a free call
number to PointsTech Corporation.

PointsTech built the required application, and has been running successfully
since. PointsTech has dedicated hardware and software for BankWithUs’
customers. The initial customer set is 30,000 customers in total, with a low
concurrency requirement. The application is the only Web-based application that
they host externally. Their decision to deploy a simple infrastructure that uses
Microsoft IIS with an inhouse developed .NET application. Active Directory holds
the user records.

Figure 25-3 on page 787 shows PointsTech Corporation’s architecture.

Note: StocksMustGain is in the process of trying to attain funding for building
an SOA environment, including a Web services presence. Unfortunately, at
StocksMustGain, there are tight budget controls in place, meaning acquiring
funds for new IT projects is difficult, so this strategy is stalled somewhat.

786 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 25-3 PointsTech’s deployment environment

As can be seen, the security design is quite simple, with an IIS .NET
infrastructure deployed to support this one application using Active Directory as
the authentication identity store. The database is uploaded nightly with points
and identity information from BankWithUs. As part of this process, Active
Directory is loaded with new users’ details as subscribed by BankWithUs. During
this upload, a password is generated and e-mailed to customers for initial login to
PointsTech.

PointsTech has no strategy for Web Services Support but is being driven by
BankWithUs and other partners to create a plan for doing this. Currently, identity
management is performed by their Help Desk staff.

25.2.4 RetireNowPlease Corporation
RetireNowPlease provides retirement investment services (superannuation,
401K, and so on) for customers of BankWithUs. Initial estimates of a shared
customer set reach 350,000; however, this number may expand after
RetireNowPlease and BankWithUs advertise the capability of performing single
sign-on to its customers.

RetireNowPlease corporation embraced open standards. They invest in open
source solutions and rely on their internal staff to support and build required
functions for deployment. This model means that they are generally slower to
adjust to change. It also means that from a support perspective, they must be
self-sufficient. As with their infrastructure, their security solution is developed
internally.

 Chapter 25. Cross enterprise federated single sign-on scenario 787

RetireNowPlease constructs user identities based on a user’s account number.

Figure 25-4 shows RetireNowPlease’s conceptual architecture.

Figure 25-4 RetireNowPlease’s technical environment

RetireNowPlease uses the OpenSAML source tool-kit as their federated single
sign-on solution with openLDAP as the directory of choice, which you can find
out more about at the following Web sites:

http://www.opensaml.org
http://www.openldap.org

The application is hosted by Apache with the mod-proxy plugin. The JBoss
application server is used to host the single sign-on application, with Apache
Web servers hosting the financial applications. Learn more about The JBoss
application server at the following Web site:

http://www.jboss.org

Given the open source approach, BankWithUs expressed some concern with
linking their customers with the RetireNowPlease Web site. BankWithUs
corporation was reassured by the management of RetireNowPlease that every
effort is made to minimize vulnerabilities within the software solution. As part of
this commitment, RetireNowPlease’s applications are subjected to the same
penetration tests that BankWithUs performs regularly on their own applications.

The following sections show the technical solutions for integrating each of the
partner sites with BankWithUs Corporation. Having understood the business

788 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.opensaml.org
http://www.openldap.org
http://www.jboss.org

requirements and current infrastructure as previously outlined, the solutions vary
based on both of these variants.

25.3 BankWithUs engages PointsTech
BankWithUs’ technical infrastructure and security specialists engage with
PointsTech’s technical specialists to determine how to address the business
requirements. They understand that this change of requirements will cause
additional up front costs, but they hope to make up that initial cost in on going
reduction in identity management.

On the other hand, PointsTech has limited technical experience and are
concerned about having to manage an enterprise security product deployment.
Their desire with the solution is that it does not tie their implementation down to a
single vendor solution.

PointsTech also does not own identities, nor do they have permission from
BankWithUs to target any promotional or advertising content at their customers.
Hence, they feel somewhat burdened by having to store and manage credential
information for the site’s users. They prefer to be able to just inherit some trust
information from BankWithUs and use header content to identify the user.

25.3.1 Design decisions
The design considerations are as follows:

� Given there is no enterprise security solution deployed at PointsTech and no
desire for such, a federated model is considered.

� Given BankWithUs is a Tivoli customer and has an awareness of the software
capabilities of Tivoli Federated Identity Manager Business Gateway, this
software is proposed to provide the federation management.

� SAML 1.1 is to be chosen as the specification. The additional features of
SAML 2.0 were considered overhead for the simple requirements of single
sign-on. For more information about the different protocols, read section
24.3.5, “Federated single sign-on approaches” on page 753.

� The customer is running an IIS infrastructure, with a .NET application, and will
be a service provider in any federation relationship.

Note: The figures representing the organizations described above are
simplified in the following sections in order to eliminate details that are not
relevant within the configuration. For a full outline of the corporations’
deployment, please refer back to this section.

 Chapter 25. Cross enterprise federated single sign-on scenario 789

� Browser Post artifact will be used to remove the dependency on the
WebSphere Cluster at the service provider.

� All users would be forced to perform single sign-on through the BankWithUs,
removing the authentication requirements at PointsTech.

� No user lifecycle management processes (for example, change password)
will be performed at PointsTech.

Figure 25-5 shows the conceptual design.

Figure 25-5 PointsTech new deployment environment

790 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The following sections outline the scope of changes at each of BankWithUs and
PointsTech.

25.3.2 Changes required
Let us shed some light into the required changes for both BankWithUs and
PointsTech.

BankWithUs
There are no infrastructure changes for BankWithUs. Changes require a new
federation partnership within Federated Identity Manager.

The following configuration changes are required in order to satisfy the business
requirements:

� A new Federation needs to be configured. The identity provider will be
BankWithUs. The service provider will be PointsTech.

� New keys for the federation need to be created and deployed to each partner.

� Identity mapping will be configured on the identity provider to map all users to
a single user, adding the actual PointsTech identity as a SAML attribute.

The following application changes are required in order to satisfy the business
requirements:

� The online application will require a new link to the single sign-on protocol
browser post endpoint.

� Delinking of the federation will take place as part of deprovisioning of the
actual credit card. Customers will not be given the option to have a login
identity and password at both sites.

As far as process changes required, a general awareness for dealing with
customers with linked accounts needs to be created. There is no real identity
management or Help Desk processes that need updating. The expectations are
that customers may generate Help Desk calls early in the deployment stage to
query about the changes in user experiences. The process of transferring points
information to PointsTech does not change.

PointsTech
The following infrastructure changes are required to support the business
requirements:

� New hardware will be deployed with WebSphere Application Server (single
server) to host the Federated Identity Manager Business Gateway.

 Chapter 25. Cross enterprise federated single sign-on scenario 791

� Federated Identity Manager Business Gateway software will be configured on
the new hardware.

The new infrastructure is shown below, notice the infrastructure changes made in
the PointsTech environment. The process of single sign-on is shown in the steps
highlighted.

The IIS instance now has an additional Web server plugin that communicates
with the Business Gateway when an incoming token is provided. Customers can
now login once to the BankWithUs corporations Web site and single sign-on to
the PointsTech application in order to view their points online.

The following configuration changes are required to support the business
requirements:

� Federated Identity Manager Business Gateway software will be configured on
the new hardware.

� The Web Server Plugin for IIS will be configured for the Business Gateway,
hence it will be configured as a service provider.

� Federated Identity Manager Business Gateway needs to be configured as the
service provider partner to BankWithUs.

The following application changes are required to support the business
requirements:

� A header identifying the user is passed to the downstream .NET application.
A generic user is used as the authenticated context with IIS and Active
Directory.

� Identity Management processes for outside users is disabled at PointsTech.
All users come into PointsTech via the BankWithUs channel.

� For help desk users, the .NET application is configured to challenge the user
to provide authentication credentials via username and password.

� Help Desk staff focuses on points redemption rather than identity
management. No identity management Help Desk routines will exist.

The following process changes are required to support the business
requirements:

� Help Desk staff is educated about the new function scope within the
application.

� Processes for identity loading of account information into Active Directory will
be eliminated. All Internet customer accounts are deleted from Active
Directory.

792 Enterprise Security Architecture Using IBM Tivoli Security Solutions

25.4 BankWithUs engages RetireNowPlease
BankWithUs and RetireNowPlease both compete in the finance industry and
provide complimentary services for some individuals.

The organizations often run joint advertising campaigns on each other’s Web
sites in order to attract business from their partner’s user base. Typically,
customers with a relationship with BankWithUs request retirement account
services with RetireNowPlease. Conversely, although less frequently, customers
of RetireNowPlease wish to open accounts with BankWithUs.

Both corporations like to think that they have established strong relationships
with their customers, and see this relationship as being a key driver for new
cross-enterprise business opportunities.

For both organizations, managing their large user base is costly. Those
customers with accounts at both organizations require each organization to keep
different username and passwords for a single customer. From a customer’s
perspective, this does not make much sense, as the driver for having to acquire
an account at one corporation often comes from the other corporation (through
advertising for example). One comment by a customer in the recent survey is
quoted as saying:

“BankWithUs wanted me to sign up for RetireNowPlease services, and now I
have to manage user-name and identities at both corporations. Surely there is
some way that you could collaborate to allow me to continue my strong and
trusted relationship with BankWithUs. This situation seems ridiculous to me.”

From a technical perspective, their approach to open standards adoption is
similar on both sides, although their philosophy towards technical
implementation is different. From a security perspective, they both implemented
solutions that provide SAML 2.0 support for federated single sign-on.
BankWithUs implemented Tivoli Federated Identity Manager, and
RetireNowPlease uses open SAML as a toolkit implementation.

Let us now look at some of the integration decisions and the resulting benefits
and challenges for each corporation.

25.4.1 Design decisions
The technical team started out by analyzing the two corporation’s user
population and found approximately 25% of all users possess login identities at
both sites. This is more than they had expected. If federated, this presents a
potentially large cost savings for each organization.

 Chapter 25. Cross enterprise federated single sign-on scenario 793

Having performed this analysis, and coupling that with the business
requirements presented earlier, the following design decisions were made:

� Both BankWithUs and RetireNowPlease will be identity providers.

� Both BankWithUs and RetireNowPlease will be service providers.

� Both BankWithUs and RetireNowPlease will use SAML 2.0 as the protocol
definition, allowing for full functional exploitation of available standards.

� All users will be given the option of choosing to federate to the service
provider partner when they login to either site. After a choice is made, the
user will not be asked again, but will be given the opportunity to defederate at
any time.

� Identities will be referenced by aliases between the two sites, mapping rules
will be developed.

� Both BankWithUs and RetireNowPlease will provide WS-Provisioning support
from their partner.

Given that each site is similar in its standards support, no infrastructure of
software deployment changes need to be forced by either party.

25.5 BankWithUs engages StocksMustGain
BankWithUs’ technical deployment and security specialists engaged with
StocksMustGain to analyze their environment characteristics, including the
identity population. Given that they are both Access Manager deployments, there
is functionality available within the Web security servers that they can both take
advantage of in order to perform the enterprise single sign-on.

25.5.1 Design decisions
That being said, a number of design choices were made:

� Access Manager core features would be used to perform the single sign-on.
This will satisfy the budget constraints of StocksMustGain.

� Best effort would be performed in order to provide seamless identity lifecycle
management. A mix of automated processes on top of the Help Desk will
provide the service desk requirements.

� This solution is tactical, rather than strategic for StocksMustGain. They are
committed to providing a migration path to open standards beyond this
project.

794 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Following are the specific product features required in order to satisfy these
business requirements:

� Cross Domain Single Sign-On, as described in 9.6.1, “Cross Domain Single
Sign-On” on page 314, is used as the cross enterprise single sign-on
mechanism.

� A custom Cross Domain Mapping Function module, as discussed in 9.6.3,
“Cross Domain Mapping Framework” on page 321, is written in order to map
the login identifier between the two different formats. This code should be
relatively straight forward as the mapping is static for all users.

The high level view of the infrastructure is shown in Figure 25-6 on page 796,
with the steps outlining the user interaction with the Web site and initiating a
single sign-on operation. As can be seen, no FIM infrastructure is in use through
this integration.

 Chapter 25. Cross enterprise federated single sign-on scenario 795

Figure 25-6 BankWithUs new technical environment

Let us look at the changes required by both BankWithUs and StocksMustGain in
order to support this solutions.

25.5.2 Changes required
This section outlines in more detail the changes required in the infrastructure of
both BankWithUs and StocksMustGain in order to satisfy the requirements.

796 Enterprise Security Architecture Using IBM Tivoli Security Solutions

BankWithUs
The following configuration changes are required in order to satisfy the business
requirements:

� The WebSEAL servers at BankWithUs need to be configured to token
generation for secure HTTP only. The consumption configuration, as well as
the mapping, would be done at StocksMustGain.

� Each customer’s stored identity information would be extended to capture
linked identity status.

� A one-off, customer merge would be performed to mark certain users as
potential targets of the single sign-on features.

The following application changes are required in order to satisfy the business
requirements:

� On first login to BankWithUs, users will be asked to accept terms and
conditions of the single sign-on operation. Those not accepting the terms and
conditions will retain login identifiers at both sites. BankWithUs’ customized
inetorgperson object will be used to retain the migrated status of a user.

� Identified StocksMustGain stock users would be provided a “Login to
StocksMustGain stock services” link next to the logout button on the Web site.
Clicking this link will enable the single sign-on operation to occur.

� Only authorized users would be able to access the link (it would not be shown
to all users, as well as providing runtime authorization if activated by a user).

� Help Desk staff will need additional functions to handle the different workflow
processes around the user lifecycle.

The following process changes are required to support the business
requirements:

� Cryptographic keys shared between BankWithUs and StocksMustGain will be
rotated every 30 days.

� Help desk operations will need to be extended to include the new processes
around managing the linked identities.

StocksMustGain
The following configuration changes are required to support the business
requirements:

� The Cross Domain Mapping Function will be configured in the WebSEAL
servers configuration file.

� LDAP inetorgperson object will be extended to capture linked status.

 Chapter 25. Cross enterprise federated single sign-on scenario 797

The following application changes are required to support the business
requirements:

� Logout function will cause a local logout, and then redirect the user back to
BankWithUs’ Web site.

� The ability for a customer to opt-out of the federation will be given.

� Password management operations will be removed for those customers who
have linked their accounts.

� Customer’s with linked accounts who attempt to login locally will be redirected
to BankWithUs’ Web site on failure. BankWithUs will present an appropriate
login page.

The following process changes are required to support the business
requirements:

� All linked accounts will have their local password un-set so they cannot login
locally.

� Help desk operations will need to be extended to include the new processes
around managing the linked identities.

� For handling the update of the cryptographic token every 30 days, new
processes need to be managed.

Ultimately, this solution is a tactical solution that will help to satisfy the short term
requirements of single sign-on, but strategically, it is within StocksMustGain’s
plans to engage with Tivoli for acquisition of the enterprise Federated Identity
Management product. This will help with the automation of the identity lifecycle
management processes as well as extend their ability to act as identity providers
and service providers for other scenarios.

25.6 Benefits and challenges
Clearly, overall, the objects identified earlier, of providing single sign-on between
BankWithUs and it’s partners while keeping simplicity at a minimum has been

Note: As part of Access Manager for e-business, e-community single sign-on
is a natural succession of the CDSSO functionality. A use case is not
presented in this chapter since, in our experience, most customers solve the
same problem today with Federated Identity Management solutions. The open
standards implementations provide a much richer feature/function set when
compared to e-community single sign-on; hence, many customers choose this
approach as opposed to this proprietary solution offered by Access Manager
for e-business.

798 Enterprise Security Architecture Using IBM Tivoli Security Solutions

achieved. These objectives created some challenges along with some benefits
within each organization, which this section attempts to identify.

25.6.1 BankWithUs
BankWithUs has a lot to gain from these integrations. Although the previous
sections establish a one-to-one relationship with each of its partners, when put
together, the result is a single authentication provider for many customers.
Customers with relationships with each of the service providers can choose to
federate all of the service providers under the BankWithUs brand.

Hence, BankWithUs can promote itself as an identity provider to all its user
population, providing online services to them ranging from stock servers, to
retirement investment services, to online points management servers—all with
the possibility of users federating their identity under a single umbrella. This has
the potential to strengthen its brand recognition to its customers and beyond, as
well as to create growing satisfaction to its customers.

Along with the potential benefits, there is the potential for cost savings in the
identity lifecycle management of its users. Eliminating the need for manual
identity management processes with its partners has the potential to reduce
costs.

The challenges for BankWithUs is to make sure that this maturity is enabled
within its partners. As a leader in federated identity management, it has a
responsibility to assist these smaller business partners in building a
standards-based solution. As new standards are ratified and deployed within
BankWithUs, there will be ongoing cost reduction for moving into automated
processes around identity management, and ensuring that their partners are in a
position to move with them will help realize these savings.

25.6.2 StocksMustGain
StocksMustGain have fulfilled their requirements to provide a single sign-on
solution for its customers, while not requiring additional hardware or software
cost.

The challenge for StocksMustGain is to break free from the cost reductions, and
try to bring their infrastructure up to a maturity level that will integrate more freely
with other partners. At the same time, they have the potential to become an
identity provider to other partners and up the potential to become an identity
provider, assisting its service providers with seamless single sign-on integration
and reduced identity management. Giving their established customers the
opportunity to solidify their relationship by nominating StocksMustGain as their
identity provider will strengthen their brand.

 Chapter 25. Cross enterprise federated single sign-on scenario 799

25.6.3 PointsTech
The up front cost for PointsTech is minimal and does not require deployment of
an enterprise security solution. PointsTech is now in a position to provide an
open standards server provider interface to other customers.

Given the increased complexity of the infrastructure, additional management
costs were introduced. This might consume some of the cost savings from the
reduced management.

25.6.4 RetireNowPlease
After being presented with these proposed changes, RetireNowPlease asked for
an extended period of time to implement the capabilities. As is expected of a
toolkit approach, the time to market is longer than that of an off-the-shelf product
implementation of the standards. This is an on-going challenge for BankWithUs,
since the Tivoli Federated Identity Manager product requires simply a definition
of the federation attributes in order to create a relationship.

As with BankWithUs, the benefits of this integration are vast. The user
experience improvements, allowing a customer to single sign-on from their
chosen identity provider, are significant. Allowing the user the opportunity to
maintain their relationship with their chosen identity provider and to use the
RetireNowPlease site as a launchpad for other services is positive. From the
corporations point-of-view, not having to manage shared password and identity
information for all users is a step forward, translating into reduced Help Desk
calls and therefore reduced maintenance cost.

Along with this, the ability to automate their identity management processes
through WS-Provisioning removes many of the manual processes that are
followed by the help desk. Again, a reduction in costs is expected.

25.6.5 Customer
The customer has a lot to gain from these integrations. They have the
opportunity to reduce their password management by taking up services offered
by partners of BankWithUs. Having a single, trusted, identity provider gives the
user peace of mind when performing online transactions, relying somewhat on
the established business relationships between the providers to provide that
comfort.

800 Enterprise Security Architecture Using IBM Tivoli Security Solutions

25.7 Conclusion
As can be seen, Tivoli Access Manager and Tivoli Federated Identity Manager
product families offer a spectrum of single sign-on solutions. Couple this with the
Tivoli Access Manager for Enterprise Single Sign-On product, as described
further in Chapter 15, “Access Manager for Enterprise Single Sign-On” on
page 449, and it simply becomes a design issue as to which products to utilize
where. Hopefully, this chapter provides some guidelines as to which approach
should be taken in a purely Web based federated single sign-on model.

 Chapter 25. Cross enterprise federated single sign-on scenario 801

802 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 26. Tivoli Federated Identity
Manager patterns

Our earlier discussion of Tivoli Federated Identity Manager was helpful in
describing the basic technologies, standards, and components of a federated
identity management architecture. At this point, we apply those guidelines to a
simple scenario involving a corporation that wants to establish a federation with a
service provider.

This chapter describes the following:

� Architecture options for deploying Tivoli Federated Identity Manager and
Tivoli Federated Identity Manager Business Gateway

� Approaches for integrating Tivoli Federated Identity Manager with other
middleware and customer applications

� Several important issues relating to deploying Tivoli Federated Identity
Manager in a production environment

26

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 803

26.1 Federated SSO architecture patterns
Tivoli Federated Identity Manager is a flexible product set that provides a
federated identity management solution for both browser-based single sign-on
and Web services environments. As there are many different examples of
environments that require a federation solution, there are many different ways
that Tivoli Federated Identity Manager can be deployed. We can represent the
deployment of Tivoli Federated Identity Manager with several typical
deployment/architecture patterns. In this section, we describe the most patterns
from which customer specific deployments can be generated. The pattern for
Tivoli Federated Identity Manager Business Gateway is shown in section 26.1.7,
“SMB Pattern” on page 819.

26.1.1 Architecture approach
Tivoli Federated Identity Manager’s federated single sign-on (F-SSO) solution
enables the single sign-on of a user in a cross-enterprise, or cross-domain,
scenario. Tivoli Federated Identity Manager’s F-SSO functionality does not
replace an enterprise’s existing authentication and session management
services or any of the sign-on functionality they provide to the enterprise’s
applications. Tivoli Federated Identity Manager’s F-SSO solution handles SSO to
an edge-based point of contact component. This is based on the underlying
principal that because Tivoli Federated Identity Manager does not replace
existing session management functionality, it should not directly provide single
sign-on to individual applications within an enterprise (enterprise single sign-on).

An architectural model based on a (scalable, available, performance) point of
contact provides many security benefits, including the ability to control all access
to an environment and closing off back doors that all unauthorized users use to
access an enterprise’s environment. Typically an edge component, such as
Access Manager for e-business, acts as a point of contact and is used to provide
single sign-on from Tivoli Access Manager for e-business (where the user’s
authentication credentials are collected and evaluated) to individual back end
applications. This functionality remains unchanged by the addition of a Tivoli
Federated Identity Manager solution. With the recent release of Tivoli Federated
Identity Manager Business Gateway, the support for a broader range of point of
contact servers was introduced, giving the customer greater freedom when
making architecture decisions.

804 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 26-1 Linking SSO domains with Federated SSO protocols

This architectural approach to Federated SSO provides the following
advantages:

� Little or no changes are required to enterprise applications
� Lightweight SSO within a domain
� Support for identity provider applications
� Choice of being able to leverage existing Tivoli Access Manager for

e-business infrastructure

Little or no change to applications
Many toolkit-based offerings for Federated SSO require fairly intrusive
modifications to the applications to call the (proprietary) product APIs required to
implement Federated SSO. These toolkit approaches are typically marketed as
lightweight approaches; however, in terms of total project costs and maintenance
costs, they are often more expensive than middleware solutions (such as Tivoli
Federated Identity Manager), even for small-to-medium size deployments. These
so-called lightweight solutions can be even more expensive if an environment
does not have existing session management functionality. Many federation
solutions assume that this type of functionality exists and can be leveraged as
part of an F-SSO solution for single sign-on and single (federated) logoff.

The Tivoli Federated Identity Manager approach leverages Access Manager for
e-business's ability to provide SSO to an application with little or no changes to
the application. For those applications that use underlying middleware
functionality to manage authentication, the middleware container can usually be
configured to accept the user identity from Access Manager for e-business

TAMeB
SSO Domain

Federated Single Sign-On Standards

TAMeB
SSO Domain

Third-party
SSO Domain

TAMeB
SSO Domain

TAMeB
SSO Domain

Third-party
SSO Domain

Identity
Providers

Service
Providers

TAMeB – Tivoli Access Manager for e-business

 Chapter 26. Tivoli Federated Identity Manager patterns 805

without any changes to the applications using the authentication data. For
example, IBM WebSphere Application Server provides the Trust Association
Interceptor Plus (TAI++) to accept a user ID from an HTTP header variable, and
create a login context for that user. Most other middleware products have similar
functionality. For those applications that implement their own custom
authentication logic, a small change to the login module to accept the user
identity from a HTTP header variable rather than prompting the user for a user ID
and password, is typically fairly straight forward to code and test.

The Tivoli Federated Identity Manager approach provides a loose coupling
between the application and the Federated SSO functionality and avoids the use
of proprietary APIs.

The Tivoli Federated Identity Manager Business Gateway solution allows for a
broader choice of deployment strategy by removing the dependency on Access
Manager for e-business and providing support for IIS and WebSphere
Application Server as point of contact solutions. Adding such capabilities has
introduced the SMB pattern discussed in section 26.1.7, “SMB Pattern” on
page 819.

Lightweight SSO within a domain
The digital signing and validation of XML-based assertions, such as those used
in the Federated SSO protocols, involve encryption and decrypting using
relatively long asymmetric keys. Such operations incur a fair degree of
computational overhead. This computational overhead is required (and thus
accepted) as part of the proof of a trust relationship governing federated single
sign-on. The trust relationship between a point of contact (for example, Access
Manager for e-business) and back-end protected applications does not normally
require techniques that are as costly. For example, these internal trust
relationships can be based on techniques such as mutually authenticated SSL or
known, internal IP addresses.

By using a light weight SSO technique between Access Manager for e-business
and the (possibly hundreds of) protected applications within an enterprise, this
overhead is only incurred where it is needed—in those cases where we need to
provide SSO from one domain/organization to another. The Tivoli Federated
Identity Manager approach therefore provides a more efficient and scalable
architecture and a more responsive user experience when working with multiple
applications within a domain.

Support for identity provider applications
Even for pure identity provider deployments (no local services/protected
resources are made available to the user), there are often self-care and portal
applications associated with the identity provider’s identity management

806 Enterprise Security Architecture Using IBM Tivoli Security Solutions

functionality. The use of Access Manager for e-business to provide the point of
contact for the identity provider leverages the (lightweight) SSO facilities of
Access Manager for e-business to access the identity provider applications
without incurring the overhead of running and accessing a separate service
provider site for those applications.

Leverage existing Access Manager infrastructure
For those customers who already deployed an Access Manager for e-business
SSO infrastructure, upgrading it to provide Federated SSO functionality is a
relatively straightforward exercise. Moreover, in most cases the applications will
not require any modification, thereby significantly reducing the time and costs
needed to deploy the Federated SSO functionality. Tivoli Federated Identity
Manager (as opposed to Tivoli Federated Identity Manager Business Gateway)
precedes Tivoli Access Manager as the point of contact enforcement point.

26.1.2 Base pattern
The Base architecture pattern for deploying Tivoli Federated Identity Manager for
Federated SSO uses the reverse proxy component of Access Manager for
e-business (WebSEAL) to provide the point of contact for Tivoli Federated
Identity Manager, namely authentication (at the identity provider side) and
session management (for both an identity provider and service provider
deployment). In this Base pattern, all users who use the Federated SSO
functionality are individually defined in the Access Manager for e-business user
registry2.

On the identity provider side of a federation, Access Manager for e-business
(WebSEAL) manages the local user authentication process, using any of its
supported authentication mechanisms. WebSEAL manages the user’s session,
including (optionally) brokering access to the identity provider’s protected
applications based on Access Manager for e-business managed access control
policies. Note that these policies can be as simple as access is allowed based on
successful authentication, to more complex, such as access is allowed (or
disallowed) based on a user’s group membership, roles, or other attributes
(entitlements).

If a user requests single-sign-on (or has it requested on their behalf by a service
provider partner), Access Manager for e-business will pass control to the Tivoli
Federated Identity Manager server. Note that Tivoli Federated Identity Manager
itself, and the single sign-on functionality, can be access controlled by Access
Manager for e-business. This has the effect of allowing a customer (in a more

2 While this discussion focusses on the use of the Access Manager for e-business reverse proxy
(WebSEAL), it is equally possible to provide point of contact functionality using the Access Manager
for e-business Web server plug-in. The plug-in approach is described in the next section.

 Chapter 26. Tivoli Federated Identity Manager patterns 807

advanced deployment) to provide single sign-on functionality to a subset of its
users. Included with this request to Tivoli Federated Identity Manager will be the
user’s local (Access Manager for e-business based) identity. The Tivoli
Federated Identity Manager server will use this identity for the building of the
assertion provided as part of a single sign-on response.

Figure 26-2 shows the base pattern for an identity provider.

Figure 26-2 Base pattern for identity provider

For a service provider configuration, Access Manager for e-business (WebSEAL)
is configured to allow unauthenticated access to the Tivoli Federated Identity
Manager application, namely the login endpoint associated with the federation.
After Tivoli Federated Identity Manager successfully validates and processes the
incoming SSO message, it creates an Access Manager for e-business credential
and passes it back to the WebSEAL server via the Access Manager for
e-business External Authentication Interface (EAI). This allows WebSEAL to
establish and manage an authenticated session for the user. See 9.4.6, “External
Authentication Interface” on page 297, for a description of the External
Authentication Interface of Access Manager for e-business.

Figure 26-3 on page 809 illustrates the base pattern for a service provider.

Access
Manager

Policy Server

Service
Provider
Point of
Contact

Access
Manager

WebSEAL
Federated Identity

Manager
Runtime Service

Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

Browser

User
Registry

Intranet

Access Manager
Authorization

Server

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Identity
Provider

Applications

User ID

Controlled

Administrator

808 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 26-3 Base pattern for service provider

Several Federated SSO protocols include SOAP-based profiles. These profiles
retrieve information from a back-channel (directly between the identity provider
and the service provider, without redirection via the user’s browser). This
back-channel communication is (confidentiality) protected through the use of
SSL—the SOAP traffic is sent over SSL and Tivoli Federated Identity Manager
validates the (SSL) X.509 server certificate presented by the server hosting the
SOAP endpoint.

The use of SSL does not provide authentication of the requestor (initiating the
SOAP request). Additional techniques are required for authentication purposes:

� Rely on message level authentication
� Rely on channel level authentication

As message level authentication provides no additional burden on the Tivoli
Federated Identity Manager servers, the Tivoli Federated Identity Manager
SOAP endpoint is configured to use the same set of replicated WebSEAL
servers as the login endpoint.

When additional channel-level authentication is needed, mutually authenticated
SSL techniques are required. The service provider presents an X.509 client
certificate to the identity provider during the establishment of the SOAP
connection. This allows a mutually authentication SSL session to provide both
authentication of the service provider and protection of communications in
transit.

Access
Manager

Policy Server

Identity
Provider
Point of
Contact

Access
Manager

WebSEAL
Federated Identity

Manager
Runtime Service

Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Service Provider Network
Identity
Provider
Network

Browser

User
Registry

Intranet

Access Manager
Authorization

Server

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Service
Provider

Applications

EAI Headers

Controlled

Administrator

 Chapter 26. Tivoli Federated Identity Manager patterns 809

When a mutually authentication SSL type solution is required, a dedicated set of
replicated WebSEAL servers is required at the identity provider. These
WebSEAL servers listen on a different IP address or different port than the main
set of WebSEAL servers, yet are junctioned to the same Tivoli Federated Identity
Manager server(s) as the main set of WebSEAL servers. These additional
servers are configured to request and validate an X.509 client certificate as part
of the HTTPS session establishment. These extra WebSEALs are then governed
by a different trust relationship from the typical HTML/HTTP serving WebSEALs.
In particular, these SOAP accessible WebSEALs can provide a stronger trust
relationship between the identity provider and the service provider.

Figure 26-4 shows the base pattern for an identity provider using Access
Manager WebSEAL server to handle SOAP requests.

Figure 26-4 Base pattern for identity provider with SOAP back channel

26.1.3 Plug-in pattern
The Base pattern for Federated SSO can be modified to use the Access
Manager for e-business Plug-ins rather than Access Manager for e-business
WebSEAL as the point of contact server for an Tivoli Federated Identity Manager
deployment. From a Tivoli Federated Identity Manager implementation
perspective, there is little difference in using WebSEAL versus the plug-ins, as
the required Access Manager for e-business functionality exists in both options.

In this design pattern, the Access Manager for e-business Web server plug-in is
configured into the Web server acting as a proxy for the WebSphere Application
Server hosting the Tivoli Federated Identity Manager services. Access Manager
for e-business-based SSO will be provided to any application running in the

Access
Manager

Policy Server

Service
Provider
Point of
Contact

Access
Manager

WebSEAL
Federated Identity

Manager
Runtime Service

Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

Browser

User
Registry

Intranet

Access Manager
Authorization

Server

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Identity
Provider

Applications

User ID

Controlled

Administrator

Access
Manager

WebSEAL
(for SOAP)

810 Enterprise Security Architecture Using IBM Tivoli Security Solutions

same application server as Tivoli Federated Identity Manager. With Access
Manager for e-business SSO, applications running on application servers in the
same DNS domain can be implemented, but it requires the use of a domain
cookie. Also an Access Manager for e-business plug-in must be installed in the
Web server associated with the other application server(s).

Figure 26-5 illustrates the base pattern for an identity provider using the Access
Manager Web server plug-in.

Figure 26-5 Base pattern for identity provider with Access Manager Web Plug-in

Domain cookies are not generally considered ideal from a security perspective.
Moreover, plug-in management can soon become problematic with even a small
number of applications. So the Base pattern is recommended in all cases where
Tivoli Federated Identity Manager will be used with more than one application.

26.1.4 Lightweight Access Manager for e-business pattern
In certain cases, Tivoli Federated Identity Manager can be deployed using a light
weight pattern for Federated SSO. In this pattern, Access Manager for
e-business is leveraged for its session management capabilities only. Individual
users are not stored in the Access Manager for e-business user registry and
Access Manager for e-business related user management is largely done away
with. Instead the Access Manager for e-business user registry contains either a
single guest user ID or several role-based identities, with the identity mapping
features of Tivoli Federated Identity Manager used to map to and from real user
identities, as required.

Access
Manager

Policy Server

Service
Provider
Point of
Contact

Web Server

Federated Identity
Manager

Runtime Service

Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

Browser

User
Registry

Intranet

Access Manager
Authorization

Server

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Identity
Provider

Applications

User ID

Controlled

Administrator

Access Manager
Web Plug-in

WebSphere
Plug-in

 Chapter 26. Tivoli Federated Identity Manager patterns 811

Since the standard Tivoli Federated Identity Manager Alias Service uses Access
Manager for e-business UUIDs to identify which user is associated with a
particular alias, the Lightweight Access Manager for e-business pattern cannot
be used in cases where the standard Tivoli Federated Identity Manager Alias
Service is being used. For example, standard Liberty account linking based
Federated SSO cannot be used with this pattern; however, Liberty one-time use
name identifier based Federated SSO can be deployed using this pattern.

For purposes of our discussion, we will base the description of the Lightweight
Access Manager for e-business pattern on the base pattern for Federated SSO,
where Access Manager for e-business WebSEAL provides the point of contact
services; however, the Plug-in pattern can also be adapted to use a light weight
Access Manager for e-business deployment in a similar manner. We will discuss
the Lightweight Access Manager for e-business pattern from both identity
provider and service provider perspectives, but there is no requirement to use
Tivoli Federated Identity Manager on both sides of the federation as part of this
pattern. This pattern can be deployed independently on the identity provider or
service provider side of a federation, or both sides if desired.

On the identity provider side, the key to the Lightweight Access Manager for
e-business pattern is the use of the External Authentication Interface (EAI)
feature of Access Manager for e-business.

Example
Figure 26-6 on page 813 illustrates a sample light weight deployment of Tivoli
Federated Identity Manager and Access Manager for e-business. In this light
weight deployment, a user is authenticated against a Enterprise directory but
does not exist as an Access Manager for e-business user within the Access
Manager for e-business registry. This is significant because a user is (normally)
required to exist within the Access Manager for e-business registry to allow
Access Manager for e-business to build a local credential for the user. Recall that
this credential is in turn used as part of the overall session management
functionality provided by Access Manager for e-business, and so this credential
is an integral part of Access Manager for e-business functionality.

In this light weight deployment, authentication is implemented through a custom
login application. The Access Manager for e-business WebSEAL login page is
redirected to this custom login application (Access Manager for e-business
access control policy is defined such that this custom login application, and any
images used are accessible by unauthenticated users). The custom login
application displays a login page to the user and validates the user credentials
entered by the user, using whatever method is appropriate for the particular
deployment. In our example, the custom login application validates the user ID
and password entered by the user against a custom user registry. The custom

812 Enterprise Security Architecture Using IBM Tivoli Security Solutions

login application is also responsible for handling any errors in login credentials
entered by the user.

After the login application successfully authenticates the user, it sets several
EAI-specific HTTP header variables on the reply to the user (via WebSEAL).
WebSEAL intercepts the reply containing the EAI headers and uses the values of
the HTTP header fields to create an Access Manager for e-business credential
for the user. This Access Manager for e-business credential is created for a guest
user, and will include the user specific information (username, e-mail, or other
attribute) as tag-value information. In our example, we pass the real user ID and
associated e-mail address via HTTP headers from the custom login application.

When Tivoli Federated Identity Manager is invoked as part of the fulfillment of a
single sign-on request, the user is identified to Tivoli Federated Identity Manager
as a guest user with these additional attributes. Tivoli Federated Identity
Manager will then use an XSL rule to map these attributes from the (guest user
based) Access Manager for e-business credential to the SAML assertion
required for single sign-on.

Figure 26-6 Example attribute flow for Lightweight pattern for identity provider

On the service provider side, the subject and attribute data contained in the
incoming SAML assertion are used as input to setting HTTP header variables
passed to the service provider applications, with Access Manager for e-business
WebSEAL used as the link for passing this data from Tivoli Federated Identity
Manager to the applications. The XSL rule used to map attributes from the
incoming SAML assertion to Access Manager for e-business credential attributes
is written such that it maps all users to a single guest user ID in Access Manager
for e-business. The Access Manager for e-business user registry only contains

`

User’s Browser

Access
Manager

WebSEAL

Custom
Login

Application

emp1
emp1@bigcorp.com

Custom User Registry

guest

Access Manager
User Registry

guest
emp1

emp1@bigcorp.com

Access Manager Credential

XSL Rule

emp1

emp1@bigcorp.com

ITFIM

Service
Provider

EAI

Redirect
Login
page

Federated Identity Manager

 Chapter 26. Tivoli Federated Identity Manager patterns 813

this guest user ID. It does not contain entries for each user identity that may be
contained in an incoming SAML assertion.

In our example, we map the SAML subject and attribute to extended attributes in
the Access Manager for e-business credential (via the XSL rule executed by
Tivoli Federated Identity Manager). Access Manager for e-business WebSEAL is
configured to pass these extended attributes to the back-end applications via
HTTP header variables. Note that Access Manager for e-business allows
different variables to be set for each junction.

Figure 26-7 Example attribute flow for Lightweight pattern for service provider

This example could be extended to use a set of role-based identities in Access
Manager for e-business, rather than a single guest user ID for all users. Logic
needs to be added to the XSL rule, or Java code invoked from the XSL rule, in
Tivoli Federated Identity Manager to implement the required mapping model. For
example, instead of mapping all users to a single guest user id, users can be
mapped to one of many role-based identities, such as buyer, seller, agent,
manager, based on the attributes included in the single sign-on provided
assertion.

XSL Rule

emp1

emp1@bigcorp.com

Identity
Provider

guest

emp1

emp1@bigcorp.com

Access Manager
Credential

Access
Manager

WebSEALguest

Access Manager
User Registry

EAI

Service
Provider

Application

Service
Provider

Application

Custom
User Registry

emp1@bigcorp
.comemp1

Custom
User Registry

emp1 emp1@bigcorp.com

Federated Identity Manager

Federated Identity Manager

814 Enterprise Security Architecture Using IBM Tivoli Security Solutions

We described this architecture option as a separate pattern; however, it can
coexist with either the Base or Plug-in patterns.

26.1.5 Highly available architecture patterns
Any of the Federated SSO architecture patterns for Tivoli Federated Identity
Manager described thus far can be extended for higher performance and
availability via clustering techniques. Tivoli Federated Identity Manager fully
supports a replicated Access Manager for e-business and Directory Server
infrastructure. When replicated WebSEAL servers are part of a deployment
architecture, Access Manager for e-business 5.1 requires an SSL-aware load
balancer in front of these servers to load balance and provide failover for
incoming requests. This load balancer needs to be configured to provide sticky
sessions, such that all requests from a particular browser session are routed to
the same WebSEAL server instance. Multiple copies of the Tivoli Federated
Identity Manager Management Console can be installed into an environment,
and each console instance can manage multiple domains.

As a WebSphere Application Server based J2EE application, Tivoli Federated
Identity Manager high availability is provided by clustering the underlying
WebSphere Application Servers. When Tivoli Federated Identity Manager is
deployed into a WebSphere Application Server (version 6) cluster, the Tivoli
Federated Identity Manager Management Service is installed into the
Deployment Manager node. The Tivoli Federated Identity Manager Management
Console is then used to deploy and remotely configure the Tivoli Federated
Identity Manager Runtime applications into the managed nodes in the cluster. A
set of Web servers are typically deployed between WebSEAL and the clustered
WebSphere Application Servers to manage load balancing and failover.

This scenario is depicted in Figure 26-8 on page 816.

 Chapter 26. Tivoli Federated Identity Manager patterns 815

Figure 26-8 Clustered Base pattern

Tivoli Federated Identity Manager uses the shared configuration repository
functionality of WebSphere Application Server 6 to manage its configuration data
within a cluster. All changes made to the Tivoli Federated Identity Manager
configuration using the Tivoli Federated Identity Manager Management Console
are performed on the master configuration managed by the Tivoli Federated
Identity Manager Management Service (running on the Deployment Manager
node). After all the changes are complete, the Tivoli Federated Identity Manager
Management Console initiates a resynchronization of the configuration
repository data across all of the Tivoli Federated Identity Manager Runtime
nodes in the cluster. Both clustered and non-clustered deployments of Tivoli
Federated Identity Manager require the Tivoli Federated Identity Manager
Runtime application to be stopped and restarted in order for the configuration
changes to take effect. In a clustered deployment, a ripple restart can be used to
stop and restart each of the Tivoli Federated Identity Manager Runtime servers
in turn, which keeps the overall service available during the restart operation.

All Tivoli Federated Identity Manager Runtime nodes in a cluster use a shared
session state, which is implemented using the DynaCache feature of WebSphere
Application Server v6. This shared session state includes the assertion table for
Browser Artifact profiles and contains sufficient information such that any of the
nodes in the cluster can perform any operation. There is no need to ensure that
subsequent operations for a particular Federated SSO session are directed to
the same instance of Tivoli Federated Identity Manager Runtime. For example,
one Tivoli Federated Identity Manager Runtime node may perform a Federated
SSO operation, but any of the nodes in the cluster have access to the session

Service
Provider
Point of
Contact

Web Server
Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Identity Provider Network
Service
Provider
Network

Browser

Intranet

Federated Identity
Manager

Management
Service

Identity
Provider

Applications

U
se

r I
D

Controlled

Administrator

WebSphere
Plug-in

WebSEAL
Replica

WebSEAL
Lo

ad

Ba
la

nc
er

Federated Identity
Manager

Runtime Service

User
Registry

IBM Integrated
Solutions Console

Access
Manager

Policy Server

Access Manager
Authorization

Server

816 Enterprise Security Architecture Using IBM Tivoli Security Solutions

state information required to successfully perform a subsequent Single Logout
operation for that session.

For a Federated Identity Manager Business Gateway solution, care must be
taken when designing for high availability. Since the Runtime Services are
supported on single server editions of WebSphere Application Server, cluster
solutions are not permitted. This, however, does not restrict a customer from
using multiple instances of such, but support for protocols that require cluster
functionality, such as browser artifact profile of SAML, will not function as
desired.

26.1.6 Multiple data center patterns
The clustered patterns for Federated SSO with Tivoli Federated Identity Manager
can be further extended to include multiple, geographically distributed, data
centers. Advice from senior WebSphere technical specialists indicates that it is
not advisable to cluster WebSphere Application Server across a Wide Area
Network (WAN), unless the throughput and latency of the link between the data
centers is comparable to that provided by a Local Area Network (LAN). We
therefore need to cater for the multiple data centers at the Tivoli Federated
Identity Manager configuration layer.

The basic principle is that we configure each of the data centers as an
independent identity/service provider in each federation they participate in. A
WAN-based load balancing solution is required to handle load balancing and
failover across the data centers. This WAN-based solution must be sticky in that
it will send subsequent requests from the same browser session to the same
data center.

The exact Tivoli Federated Identity Manager configuration details will differ
depending on which Federated SSO protocol and associated profiles that you
are using and whether you are hosting an identity provider or service provider.
The different protocol solutions will run on the same Tivoli Federated Identity
Manager infrastructure and may coexist with other federations, it is only the
federation configuration details that differ for each type of federation and role
within the federation. All configuration and customizing of Tivoli Federated
Identity Manager need to be done independently at each data center—there is
no shared configuration or session state across the data centers.

SAML 1.0/1.1/2.0
The configuration for SAML 1.0/1.1 depends on whether or not you are using the
Browser Artifact profile for Federated SSO.

 Chapter 26. Tivoli Federated Identity Manager patterns 817

Browser Artifact Profile
If you are deploying the identity provider side of the Browser Artifact profile of
SAML 1.0, we cannot solely rely on the stickiness of the WAN-based load
balancing solution, as the Browser Artifact profile includes SOAP-based
communication directly from the service provider to the identity provider. We
therefore need to define a separate identity provider for each data center. The
configuration at each data center will use different provider IDs and endpoint
URLs even though they are logically performing the same role in the same
federation. These provider ID and URL endpoint values use a logical host name
that is unique to the data center. Service providers in the federation, regardless
of whether they are implemented using Tivoli Federated Identity Manager, define
a distinct identity provider for each data center.

Requests initiated from the browser to the identity provider (for example, via an
SSO link from a browser page) can use the logical host name that the
WAN-based load balancing solution was configured to balance across the data
centers. The stickiness of the solution will ensure that subsequent requests after
a Federated SSO operation will return to the same data center, and therefore be
executed within the session state shared between the nodes at that data center.

With SAML 1.0, the service provider does not receive any inbound SOAP-based
communication, so we can configure all of the data centers with the same
configuration. The provider ID and URL endpoints use the logical host name that
the WAN-based load balancing solution was configured to balance across the
data centers.

Browser POST Profile
If you are not using the Browser Artifact profile, you can either use the
configuration described previously for the Browser Artifact profile, or you can
choose to use a simpler configuration.

Since the Browser POST profile of SAML 1.0 does not include any SOAP based
communication between the identity provider and service provider, we can use
the stickiness of the WAN-based load balancing solution to ensure that all
(HTTP) requests initiated from, or redirected through, a particular browser
session are sent to the same data centers.

Under this scenario, the same configuration can be used at each data center for
an identity provider or service provider. The provider ID and URL endpoints will
use the logical host name that the WAN-based load balancing solution was
configured to balance across the data centers. It is important here that the Tivoli
Federated Identity Manager configuration at each data center contain the same
provider IDs, endpoint URLs, and signing keys, as the federation partners are
configured to treat the multiple data centers as a single instance of the Identity
provider or service provider.

818 Enterprise Security Architecture Using IBM Tivoli Security Solutions

WS-Federation
The WS-Federation (draft) standard does not currently contain any SOAP-based
communication between the identity provider and service provider. So we can
therefore use the same approach described earlier for the SAML Browser POST
profile, where the same configuration is defined at each data center.

Liberty ID-FF 1.1/1.2
The Liberty ID-FF standards contain a set of profiles with HTTP and
SOAP-based communication options for each of the operations defined in the
standards.

If we restrict the profiles used to the HTTP based options, we can follow the
same approach described earlier for SAML Browser POST profile, with the same
configuration defined at each data center. SOAP based Liberty ID-FF profiles are
not currently supported in the Multiple Data Center patterns with Tivoli Federated
Identity Manager version 6.

26.1.7 SMB Pattern
Before the federation standards were accepted and later ratified, Tivoli Access
Manager for e-business provided features that allowed Tivoli Access Manager
customers to SSO between each other. This functionality, however, did not allow
those other partners who were not Access Manager customers to federate into
an Access Manager environment easily (notwithstanding the fact that other
requirements such as SLO were not defined). Defining open standards helped
overcome this. Now, any customer with a mature, standards compliant, vendor
enterprise security solution (such as Tivoli) deployed can leverage that vendor’s
F-SSO implementation to federate to other enterprise partners.

That being said, there still exists those set of small-to-medium businesses that
have had no need or requirement for a vendor enterprise solution, nor the
resources to build one. Increasingly, these smaller partners are being asked to
provide their services online and to have these applications support F-SSO
standards. These requirements are often driven by the enterprise aiming to
reduce the overhead of managing identities, reducing manual business
processing and in some cases, reducing their dependency on, and exposure to
risk due to nonstandard custom SSO protocols. Normally this is in line with their
approach to embracing a Service Oriented Architecture strategy.

By not conforming to these requirements, the business partner risks losing a
current revenue stream. In addition, they have the opportunity to gain a
competitive advantage over competitors as well as the opportunity for cost
savings from reduced identity management overhead. The Federated Identity
Management Business Gateway addresses the SMB requirement, providing a

 Chapter 26. Tivoli Federated Identity Manager patterns 819

lightweight implementation of the F-SSO standards, without the dependency on
an enterprise security product such as Tivoli Access Manager. Having the
Federated Identity Manager Business Gateway deployed can also provide the
SMB customer an opportunity to act as an identity provider to other partners.

The SMB pattern models the relationship between an enterprise deployment of
Tivoli Federated Identity Manager with a deployment of a Tivoli Federated
Identity Manager Business Gateway. The following sections outline Federated
Identity Manager Business Gateway acting as the identity provider as well as the
service provider.

At the time of writing, Federated Identity Manager Business Gateway supported
the SAML 1.0/1.1 protocol.

Federated Identity Manager Business Gateway SP
In this architecture, the Federated Identity Manager Business Gateway acts as
the service provider.

The identity provider deployment might be represented by a high availability
deployment such as Figure 26-8 on page 816. The protocol flows and
requirements for configuration are typical of any identity provider deployment
outlined in 26.1.2, “Base pattern” on page 807.

The following sections outline the configuration of Federated Identity Manager
Business Gateway as the service provider.

IIS point of contact at service provider
As with any service provider deployment, access to the assertion consumer
service endpoint for unauthenticated users is required. Figure 26-9 on page 821
shows an IIS deployment as the service provider.

Note: It is not a requirement that the partner to a Tivoli Federated Identity
Manager Business Gateway deployment be Tivoli Federated Identity Manager,
or vice versa. Any vendor who implemented to the supported F-SSO
standards can participate in a Tivoli Federated Identity Manager federation.

820 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 26-9 Tivoli Federated Identity Manager Business Gateway with IIS as service provider

On an incoming request containing an artifact (browser artifact profile) or
assertion (browser post profile) the following applies:

� The IIS plugin sends an HTTP request to the Federated Identity Manager
Runtime service located on the WebSphere instance. This represents the
assertion consumer endpoint.

– If configured for the browser artifact, the Runtime Service sends a request
for the assertion to the IdP via SOAP and extracts the assertion from the
response.

– If the browser posts, it extracts the assertion from the POST body as
passed by IIS.

� The Runtime Service performs token validation, mapping, and exchange.

� On receiving the response from the Runtime Service, the IIS plugin inspects
the response for the presence of a user header that symbolizes the
authenticated user. This header information is then used to create an IIS login
context for the user.

� The IIS plugin then redirects the user to the requested application, adding any
configured headers to the request.

� Ultimately the users’ browser is returned both the WebSphere LTPA token
from the Runtime Service as well as any application session cookies used by
the IIS application.

� The user can continue to access the content provided by the IIS server or
.NET application.

Identity
Provider

IIS point of contact

Federated Identity
Manager Business

Gateway
Runtime Service

Internet

Application Zone

SecureUncontrolled

Application Zone

Management Zone

Business
Partner

Service Provider Network
Service
Provider
Network

Browser

User
Registry

Intranet

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

HTTP

Controlled

Administrator

 Chapter 26. Tivoli Federated Identity Manager patterns 821

Again, no dependency on Access Manager exists here. Obviously some sharing
(either mapping or same use of) of directory infrastructure is required in order to
ensure that credential information is consistent between the Runtime Service
and the IIS infrastructure.

WebSphere Application Server at service provider
As with any service provider deployment, access to the assertion consumer
endpoint for unauthenticated users is required. Figure 26-10 shows a
WebSphere Application Server deployed as the point of contact at the service
provider.

Figure 26-10 Tivoli Federated Identity Manager Business Gateway with WebSphere as service provider

On an incoming request containing an artifact (browser artifact profile) or
assertion (browser post profile) the following applies:

� It is passed to the Runtime Service, which takes the incoming request:

– If configured for browser artifact, it sends a request for the assertion to the
IdP via SOAP, and extracts the assertion from the response.

– If the browser post, it extracts the assertion from the POST body.

� Validates the assertion, maps it to a local identity if required, and returns an
identity to the point of contact.

� The point of contact then creates an authenticated context for the resulting
user using a JAAS login module.

� WebSphere Application Server then returns an LTPA token to the user for
session maintenance.

Identity
Provider

WebSphere Point of
Contact with application

Federated Identity
Manager Business

Gateway
Runtime Service

Internet

Application Zone

SecureUncontrolled

Application Zone

Management Zone

Business
Partner

Service Provider Network
Service
Provider
Network

Browser

User
Registry

Intranet

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Controlled

Administrator

822 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� The user continues to access the content.

Again, no dependency on Access Manager exists.

Federated Identity Manager Business Gateway IdP
The alternative to the above configuration is the hosting of the identity provider at
the SMB customer. This scenario is less likely to occur, but is relevant none the
less. In this configuration, WebSphere Application Server acts as the point of
contact at the identity provider shown in Figure 26-11.

Figure 26-11 Tivoli Federated Identity Manager Business Gateway with WebSphere as an identity provider

Within an identity provider configuration, WebSphere security protects access to
the single sign-on service. As such, a user must be authenticated by the
WebSphere Application Server in order to access the Federated Identity
Manager Runtime Service. The authentication module can be configured
according to the customer’s requirements, and the resultant WebSphere identity
is passed to the Federated Identity Manager Runtime Service for partner token
creation.

Note: IIS is not supported as the point of contact at the identity provider in a
Federated Identity Manager Business Context deployment.

Identity
Provider

WebSphere Point of
Contact with application

Federated Identity
Manager Business

Gateway
Runtime Service

Internet

Application Zone

SecureUncontrolled

Application Zone

Management Zone

Business
Partner

Service Provider Network
Service
Provider
Network

Browser

User
Registry

Intranet

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Controlled

Administrator

 Chapter 26. Tivoli Federated Identity Manager patterns 823

26.2 Federated Web services architecture patterns
Just as there are many different use cases for a single sign-on solution, there is
more than one way to architect a Web services environment, especially one
where security is taken into consideration. In this section, we discuss some of the
typical deployment issues and architectures encountered with a Web services
based approach to federation.

Technically, Federated Identity Manager provides token validation, issuance (and
exchange), identity mapping, and request authorization within a secure Web
services environment. Federated Identity Manager therefore supports scenarios
such as those requiring the normalization of the security policy applied to a Web
service. In this type of scenario, an application is deployed as a Web service with
one security policy (user must have role of manager, or the incoming request
must include a SAML assertion), even though not all requestors can satisfy this
policy. Federated Identity Manager can be used to provide the identity and
attribute mapping required to determine the user’s local roles based on those
asserted by the requestor, so that the request includes the appropriate role of
manager instead of Partner_Manager, for example. Similarly, Federated Identity
Manager can be used to provide token exchange functionality, so that a trust
partner coming in over a VPN with a UsernameToken in the <Security> header
can have their request normalized to include the required SAML assertion
without requiring the partner to expand their capabilities to generate the required
assertion.

26.2.1 Architecture approach
In this section we provide a quick review of the Tivoli Federated Identity Manager
functionality leveraged within a Web services environment. We then go on to
describe how to leverage this functionality in different scenarios.

The primary role played by Tivoli Federated Identity Manager in the architecture
patterns for Federated Web services is to provide token validation, identity, and
attribute mapping and/or authorization services to the XML gateways
implementing WS-Security in the architecture. These services are invoked by the
XML gateway using the WS-Trust interface of Tivoli Federated Identity Manager.
The WS-Trust interface exposed by Tivoli Federated Identity Manager provides
local access to the Tivoli Federated Identity Manager trust service, functionality
referred to as the security token service (STS).

In addition to providing the trust service/security token service, Federated
Identity Manager includes WebSphere Application Server specific components to
provide the integration of WebSphere Application Server and Tivoli Federated
Identity Manager. A WS-Trust client is provided to allow WebSphere Application
Server (through the WS-Security functionality) to invoke the Federated Identity

824 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Manager trust service/security token service. Federated Identity Manager also
includes a JAAS login module that allows a SAML assertion to be used to create
a JAAS login context in a WebSphere Application Server. These WebSphere
specific components of Federated Identity Manager that are related to Web
services are collectively referred to as the Web Services Security Management
components of Federated Identity Manager. In Federated Identity Manager v6
Web services security management components are provided for WebSphere
Application server v5.1 and v6.0. Within Tivoli Federated Identity Manager 6.1,
support is provided for WebSphere Application Server to call to the WS-Trust
interface for outgoing messages. This provides the ability for outgoing
messages, from WebSphere Application Server, to support additional token
types provided by Tivoli Federated Identity Manager, for example, SAML tokens.

Token validation and exchange
At its most simple, the Federated Identity Manager security token service
provides token validation and issuance functionality. Token validation is the
process by which a token, received at the STS is validated in terms of signatures
on the token, expected structure and contents of the token, and decrypting of the
encrypted contents (if any) of the token. Token issuance is the process by which
a (new) token is created and returned to the (requesting) Trust Client by the
Security Token Service. Together, token validation and issuance can be used to
implement token exchange. Token exchange allows for the validation of an
incoming token type (such as a received SAML assertion) and the issuance of a
locally valid token (such as an Access Manager for e-business compatible
credential, as is accomplished by the STS in a single sign-on scenario).

The incoming token (the token to be validated) is configured at the granularity of
the partner making a request. This allows two different partners to request the
same resource using different security tokens. The STS will handle the exchange
of these received tokens for the token type required for application invocation.

Unlike the federated single sign-on environment, there is no one common,
accepted (or required) token type associated with a Web service. SAML
assertions are used in those situations where attributes about a requestor must
be included in the request. Requests from a Java application client typically
include a UsernameToken, which is an XML structure that includes a username
and a password. In those cases where the requestor already determined the
user’s identity (there is no need to authenticate the user as the resource side)
and no additional attributes (such as roles) are required, a simple IDAssertion (a
UsernameToken that does not include a password) is often used to identify a
requestor. A Kerberos ticket may be included as a BinarySecurityToken may be
leveraged in a Microsoft Windows based rich client environment.

Web services resources may be deployed with one particular requirement on the
expected incoming token type. Requestors may be able to include only a subset

 Chapter 26. Tivoli Federated Identity Manager patterns 825

of possible token types in a Web services request. The Tivoli Federated Identity
Manager TS/STS may be used to bridge this token type gap between requestors
and resources.

Identity mapping
Just as identity mapping is used as part of federated single sign-on, there are
requirements for identity mapping within a Web services environment. The
attributes (identifiers, groups, roles, privileges, entitlements) that identify a
requestor in one environment may not match the attributes used within another
environment. Rather than requiring a consolidation and normalization of internal
attribute names across business partners, identity mapping functionality will
allow locally valid attributes from one partner to be mapped to locally valid
attributes at another partner, with no modifications to either partner’s internal
representation of these attributes.

Typically a B2B or Web services environment is based on a transactional model,
meaning that the Web services provider will honor an incoming transaction
(provided it is correctly validated and trusted). This has the effect of removing the
need for a one-to-one identity mapping within this environment. A user need not
be identified as Joe at the Web services requestor. Because of the trust
relationship between the requestor and provider, a many-to-one mapping may be
used, so that Joe is mapped to PartnerXUser. Note that this does not mean that
Joe’s identifier is lost at the Web services provider side. It may still be included
as an attribute of the PartnerXUser, so that transactional verification allows
actions by PartnerXUser and audit records can trace this user to Joe.

Tivoli Federated Identity Manager provides a flexible infrastructure for
implementing the various identity mapping schemes found in Federated Web
services.

Authorization
In a Web application server deployment, coarse-grained authorization of inbound
HTTP(S) requests is increasingly being performed at the boundary to
significantly reduce the number of unauthenticated requests entering an
organizations network. Access Manager for e-business WebSEAL provides both
the authorization decision and authorization enforcement functions for this
boundary protection of Web-based operations.

A similar model can be applied to Federated Web services, with coarse-grained
authorization performed at the boundary for incoming Web service requests. In
this case, an XML gateway provides the authorization enforcement point, but
Access Manager for e-business (via Tivoli Federated Identity Manager) can still
be used as the authorization decision point. Tivoli Federated Identity Manager
can optionally perform an Access Manager for e-business authorization API call

826 Enterprise Security Architecture Using IBM Tivoli Security Solutions

to determine of the requesting user is authorized to access the service being
requested. Since this implemented in the Tivoli Federated Identity Manager Trust
Service, the Access Manager for e-business call is transparent to the XML
gateway and the requestor/provider applications. Any authorization failures result
in the Web service request being rejected at the gateway and a SOAP fault
returned to the requestor.

26.2.2 Point-to-point pattern
This pattern is included here for completeness, but it is not envisaged that this
pattern will be used in many situations with Federated Identity Manager v6.

Tivoli Federated Identity Manager v6 does not include Web services security
management support for outbound Web service requests from the WebSphere
Application Server or WebSphere Application Client containers. So any token
creation required at the client side of a Web services request would either need
to be directly supported by the WebSphere Application container (which does not
currently support SAML assertion tokens) or the Web service requestor would
need to directly invoke the Tivoli Federated Identity Manager trust service to
create the required token. The Federated Identity Manager trust service provides
a SOAP-based interface that implements the WS-Trust (draft) standard.

On the Web services provider side, Web services security management provides
a WS-Trust client to allow incoming tokens to be validated and possibly
exchanged for different tokens. This token exchange may also involve an identity
mapping, where the identity in the incoming token is mapped, possibly on a
many-to-one basis, to an identity relevant to the application being invoked. An
Access Manager for e-business authorization call can also be configured to
ensure the caller is authorized to invoke the request service.

If the token returned from the Tivoli Federated Identity Manager trust service is a
SAML assertion, the Web services security management JAAS login module can
be used to create a login context for the subject of the assertion and to make the
assertion available to the application via the JAAS subject. The application can
then access the JAAS subject value, parse the SAML assertion contained in the
JAAS subject, and extract any additional attributes contained in the assertion.
For example, the Web services provider application may use role-based
identities from a WebSphere login perspective, but it may also require the real
user's identity so it can be included in the audit logs. The Web services security
management components of Tivoli Federated Identity Manager allow the
incoming identity to be mapped to a role-based identity and for this role-based
identity to be used to create the login context in WebSphere Application Server.
The original user's identity can be readily accessed by the application code, via
the SAML assertion in the JAAS subject, so that it can be used in audit logging.

 Chapter 26. Tivoli Federated Identity Manager patterns 827

26.2.3 XML gateway pattern
The most common use of Tivoli Federated Identity Manager in federated Web
services deployments involves the use of an XML gateway (also sometimes
referred to as an XML firewall or Web services gateway). The XML gateway is
configured to invoke the Tivoli Federated Identity Manager trust service to
validate and exchange security tokens. At a high level, one way to summarize
the respective roles of the XML gateway and Tivoli Federated Identity Manager
in this pattern is that the gateway implements WS-Security (and related
standards) and Tivoli Federated Identity Manager implements WS-Trust.

Web services requestor
On the Web services requestor side, an XML gateway can be used as an
outgoing proxy for Web services. The use of a gateway in this role allows the
requestor applications to use security tokens and identities relevant to the local
domain and ignore the complexities and differences involved in exchanging
messages with partner organizations over an un-trusted network.

The Web services requestor side of the XML Gateway pattern for Federated
Web services can be illustrated as shown in Figure 26-12 on page 829.

The requestor application sends a SOAP message containing a security token in
a WS-Security header to the XML gateway. The gateway extracts the security
token and sends a WS-Trust message to the Tivoli Federated Identity Manager
Trust Service for token validation and exchange. The WS-Trust message
includes the security token extracted from the header of the message, the
identity of the calling application, and the identity of the target application. The
Tivoli Federated Identity Manager server validates the token based on the
configuration associated with the calling application, performs any specified
identity mapping and Access Manager for e-business authorization calls, and
generates a token applicable to the target application. The new security token is
then returned to the gateway. The gateway replaces the security token in the
message header, performs any other required message transformation and
message level signing or encryption operations, and forwards the new message
to the target service.

828 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 26-12 XML Gateway pattern for Web service requestor

Web services provider
On the Web services provider side, the XML gateway fills the role of a reverse
proxy for Web services. Again, this pattern allows the provider applications to
use security tokens and identities relevant to the local domain and ignore the
complexities and differences involved in exchanging messages with partner
organizations over an untrusted network.

As mentioned earlier, a signed SAML assertion is a commonly used security
token type for messages passing between organizations. The simplest form of
security token that can be used to pass the user's identity to the Web services
provider is an IDAssertion variant of a UsernameToken. It is envisaged that
Kerberos based tokens will become increasingly popular in Microsoft Windows
based environments in the future.

For those cases where attributes other than just the Subject from the incoming
SAML assertion need to be passed to the provider application, the gateway can
use a SAML assertion to pass both the subject and the additional attributes to the
Web service provider application. You may choose to rely on the channel level
security provided by SSL for this internal SAML assertion, and leave it unsigned.
As discussed in the Point-to-Point pattern earlier, the Web services security
management JAAS login module can be used to create a login context for the
subject of a SAML assertion received by a WebSphere Application Server and to
make the assertion available to the provider application via the JAAS subject.

Figure 26-13 on page 830 illustrates the XML gateway pattern for the Web
service provider.

Access
Manager

Policy Server

Web Service
Provider
Point of
Contact

XML Gateway Federated Identity
Manager

Runtime Service

Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Web Service Requestor Network
Web Service

Provider
Network

User
Registry

Intranet

Access Manager
Authorization

Server

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console

Portlet
Application

Controlled

Application
Client

.Net
Client

J2EE
Application

 Chapter 26. Tivoli Federated Identity Manager patterns 829

Figure 26-13 XML Gateway pattern for Web service provider

This pattern can be extended to include Access Manager for e-business
WebSEAL in front of the XML gateway, with WebSEAL in the DMZ and the
gateway moved inside the domain firewall. Motivation for doing this may include
a desire to move the XML gateway from an outer DMZ to an inner DMZ or even
into the protected segment of the network. This allows point-to-point security to
Access Manager for e-business, so that Access Manager for e-business can
exclude any incoming requests that do not pass simple transport layer security
requirements. This provides an extra layer of protection for the keys used to
encrypt or decrypt and sign or validate messages while also providing an
edge-level security layer.

Supported Gateways
The supported XML gateways for this pattern include any gateway that supports
invoking a WS-Trust server, such as the Tivoli Federated Identity Manager Trust
Service, for token validation and exchange.

Tivoli Federated Identity Manager ships with several Web services security
management (WSSM) components that enable the IBM WebSphere Web
services Gateway v6 to use the Tivoli Federated Identity Manager Trust Service
in a manner consistent with this design pattern.

As mentioned earlier in this book (see 24.4.3, “Web services gateway” on
page 771), the IBM WebSphere DataPower XML Security Gateway XS40 is the
most commonly used Web services gateway solution.

Access
Manager

Policy Server

Web Service
Requestor

Point of
Contact

XML Gateway Federated Identity
Manager

Runtime Service

Internet DMZ

Controlled

Internet

Restricted

SecureUncontrolled

Production Zone

Management Zone

Business
Partner

Web Service Provider Network
Web Service
Requestor
Network

User
Registry

Intranet

Access Manager
Authorization

Server

Federated Identity
Manager

Management
Service

IBM Integrated
Solutions Console Controlled

Administrator

.Net
Client

J2EE
Application

WebSphere
Application

TFIM WSSM

JAAS
Subject

830 Enterprise Security Architecture Using IBM Tivoli Security Solutions

26.3 F-SSO application integration
Deployment of the Tivoli Federated Identity Manager functionality is not the
same as integration of Tivoli Federated Identity Manager into an environment.
Integration of Tivoli Federated Identity Manager requires an understanding of
what applications are going to be exposed to federation users, what existing
infrastructure can be reused to support this integration, and what customization
is required to support the federation relationship.

26.3.1 Attribute flow between providers
Federated Identity Manager provides federated SSO to Access Manager for
e-business, which in turn is responsible for providing SSO to applications.
Access Manager for e-business may provide direct SSO to an application (or
possibly the middleware on which it runs). As part of this enterprise SSO
solution, Access Manager for e-business may pass data via HTTP headers back
to an application. When Tivoli Federated Identity Manager is integrated with an
Access Manager for e-business solution, it becomes possible for the two
products to increase the scope of attribute flow, from point of contact to back
end, to between partners to point of contact to back end.

As part of the integration of Tivoli Federated Identity Manager (and Access
Manager for e-business) into an identity provider’s environment, we must
determine which (if any) attributes are to be provided to a service provider as part
of an F-SSO solution. Figure 26-14 on page 832 illustrates the flow of attribute
data from an identity provider implemented using Federated Identity Manager.

 Chapter 26. Tivoli Federated Identity Manager patterns 831

Figure 26-14 Attribute flow for identity provider

The first source of attributes to be included in a single sign-on assertion is from
the Access Manager for e-business credential provided to Tivoli Federated
Identity Manager to identify the user for single sign-on purposes. Attributes
stored in an Access Manager for e-business credential are local attributes
retrieved from the Access Manager for e-business registry during credential
creation (part of the authentication process). Additional attributes are stored as
extended attributes in the Access Manager for e-business credential for the user.
Access Manager for e-business also provides an interface that allows custom C
code to be written to provide additional extended attributes to be stored in the
Access Manager for e-business credential. This custom code is executed when
the Access Manager for e-business credential is created by WebSEAL.

After the Access Manager for e-business credential is created, Tivoli Federated
Identity Manager uses an XML version of the Access Manager for e-business
credential as input to the identity and attribute mapping step performed as part of
the assertion generation. This mapping is defined by an XSL rule. This mapping
may include a simple copy of the existing (credential defined) attributes, a
mapping of attributes from one value to another, or the retrieval of additional

Access Manager
for e-business
User Registry

Access Manager
for e-business

Credential

Extended
Attributes

XSL Rule

Subject

Attributes

Assertion

Service
Provider

Custom
Code

Custom
Code

832 Enterprise Security Architecture Using IBM Tivoli Security Solutions

attributes. Custom Java modules can be invoked from these XSL rules to obtain
additional attribute data that is not available in the Access Manager for
e-business credential. These XSL rules and any associated Java modules are
invoked for every assertion generated by the identity provider and are specific to
the identity provider-service provider relationship.

On the service provider side, the flow of attribute data from an incoming
assertion to a service provider application is illustrated in Figure 26-15.

Figure 26-15 Attribute flow for service provider

In this scenario, the single sign-on assertion received at the service provider may
contain attributes about a user. These attributes (and the information contained
in the assertion) are translated into a Tivoli Federated Identity Manager internal
format and an XSL rule is used to map this information and then format it as an
Access Manager for e-business credential. This mapping may include a simple
copy of the existing (assertion defined) attributes, a mapping of attributes from
one value to another, or the retrieval of additional attributes. Custom Java
modules can be invoked from these XSL rules to obtain additional attribute data
that is not available in single sign-on assertion. These XSL rules and any
associated Java modules are invoked for every assertion received at the service
provider and are specific to the identity provider-service provider relationship.

Access Manager for e-business WebSEAL can then be configured to extract
particular attributes from the Access Manager for e-business credential and send

Access Manager
for e-business

Credential

Extended
Attributes

XSL Rule

Subject

Attributes
Identity
Provider

Custom
Code

HTTP
Headers

Service
Provider

Application

Assertion

 Chapter 26. Tivoli Federated Identity Manager patterns 833

the attribute values to the service provider applications via HTTP header
variables. Access Manager for e-business WebSEAL allows different attributes
to be sent to different applications.

26.3.2 User controlled federated lifecycle management
Application developers may choose to add Federated SSO links to their pages to
customize a user’s federation experience. These links may provide account
linking and delinking, single logout, and SSO to other applications or other
operations supported by the associated protocol.

This can point to the specific page template customization of the next section, or
they can be collapsed into a single section.

26.3.3 Customized user-managed federation management
Tivoli Federated Identity Manager includes an Info Service API for querying the
Tivoli Federated Identity Manager Management Service for federation related
data. The Info Service API allows an application to determine if a user's account
is currently linked to an account at a specific partner. This feature can be used to
dynamically build a page showing a list of links to partner sites for which the
current user already has an account linked to their local account, and possibly
provide a separate list of links that would allow the user to link their account to
specific partner sites with which their local account is not currently linked.

Thus a user can be provided with a listing of Partners you have federated with
(single sign-on partners) and a separate listing of Partners you have not
federated with. A related example is shown in Figure 26-16 on page 835.

834 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 26-16 Linked services for user Alison

The Federated Identity Manager Info Service API can also allow an application
program or portal to obtain the URLs for specific Federated SSO operations for
specific partners. This allows an application developer to avoid placing
hard-coded links to Federated Identity Manager functionality on their pages.

26.4 Customizing F-SSO
This section describes how Tivoli Federated Identity Manager can be customized
to provide the look and feel required for a particular deployment through the
(HTML) page templates provided with Tivoli Federated Identity Manager.

View, change information about yourself,
such as your email address, mailing

address, contact preferences, and so on

Welcome Alison, to your MyPhone Page

Telco Mobile

First Phone Stock Price: $10.31 at 9:42am (20 min delayed)

Personal Profile Information

Linked Services

Satellite TV

Business Solutions

Available Services

Messaging Center

First Phone Mobility

First Internet

Moving? Need repair services? Create a
service request online!

Create Service Requests

Yellow Pages

Do Not Call Registry

Other Links

. . .

. . .

. . .

 Chapter 26. Tivoli Federated Identity Manager patterns 835

26.4.1 Customizing page templates
Tivoli Federated Identity Manager ships with a set of page templates for the
following:

� Consent to Federate page
� Where Are You From page
� Automatic POST pages
� Operation success pages
� Error pages

These default page templates can be customized to fit the requirements of a
particular deployment. The page templates contain various macro variables that
Tivoli Federated Identity Manager will replace with the corresponding value as it
builds a page.

The Tivoli Federated Identity Manager configuration file sps.xml contains the
mapping from logical page name to physical page. In some cases you may need
to modify an entry in sps.xml to customize a page for a specific event, as many
of the error events are mapped to generic error pages.

In some cases, customizing specific Tivoli Federated Identity Manager error
pages may provide an opportunity to provide error recovery from a user
experience perspective. For example, the default error page that is displayed
when a user attempts to perform a Liberty ID-FF SSO operation and their
account is not linked to an identity provider account contains an error message
and a stack trace. This page can be easily customized to inform the user that
their account is not yet linked to an identity provider account and to provide an
option to allow the user to initiate an account linking operation.

At the time of writing this publication, the error event entries in sps.xml and the
associated page templates and macro variables were not yet documented in the
product manuals. This implies that any customization is likely to involve some
careful trial and error and is not likely to be officially supported.

26.4.2 Customizing Access Manager page templates
Access Manager for e-business also ships with a set of page templates. The
Access Manager product documentation describes how these templates can be
customized.

836 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Additional customization for Access Manager for e-business pages in an Tivoli
Federated Identity Manager environment might include the following:

� Adding Federated SSO links to the Access Manager for e-business login
page on a service provider.

� Modifying the Access Manager for e-business login page on an Identity
provider to include the purpose of the authentication being requested (for
example, to access to a local protected resource, to SSO to another site, or to
identify an account to be linked to the service provider account).

26.4.3 Storing aliases
By default, the standard Tivoli Federated Identity Manager Alias Service module
stores aliases (also know as Name Identifiers) used in the Liberty ID-FF
protocols under the root LDAP suffix cn=itfim. This location in the LDAP tree
can be modified prior to creating any aliases by modifying the alias root in the
Alias Service configuration file lids.xml.

If you intend to run more than one instance of Tivoli Federated Identity Manager
on a single machine, the alias root suffix values should be made to be unique for
each instance. For example, if you are setting up a simple test system for
Federated SSO, you may choose to store the aliases from one instance under
cn=idp,cn=itfim and the aliases for the other instance under cn=sp,cn=itfim.

The Tivoli Federated Identity Manager Alias Service is designed to be a
pluggable interface. A DB2 based Alias Service is available for those customers
who want to use Liberty ID-FF with very large numbers of users.

26.5 Solution design considerations
This section contains a series of short discussions on topics relating to designing
a solution for deploying Tivoli Federated Identity Manager in a real-world
environment. This information was mostly collated during early deployments of
Tivoli Federated Identity Manager in the Early Support Program.

26.5.1 Exchanging metadata with your partners
After the business and legal agreements are in place, you will define the
attributes of your role in the federation using the Tivoli Federated Identity
Manager Management Console, and then share that metadata with your
partner(s).

 Chapter 26. Tivoli Federated Identity Manager patterns 837

The technical information to be shared and agreed upon with your partner(s) for
Federated SSO includes the following:

� Federated SSO protocol and version to be used

� Provider ID (or Realm, depending on the protocol you are using)

� Profiles within the protocol to be supported

� Endpoint URLs for each of the profiles to be supported

� Public certificates for validating your digital signatures

� CA certificate for the server certificate in your point of contact server

� Method for client authentication of the SOAP connections (none, X.509
certificate), plus the CA certificate and Distinguished Name (DN) of the client
certificate if needed

� Type, value range, and semantics of the Subject field in the assertion

� Name, type, value range, and semantics of any attributes to be included in
the assertion

� Session time outs and request/assertion life times.

Some Federated SSO protocols, for example the Liberty ID-FF protocols, include
a definition of a metadata format for exchanging some of this data. Where the
protocol defines a metadata format, you can use the Tivoli Federated Identity
Manager Management Console to export your metadata and import that of your
partners.

26.5.2 Availability of IBM Access Manager Policy Server
In a standard Access Manager for e-business deployment, all of the servers, with
the exception of the Policy Server, can be replicated for load balancing and
failover. The best practice for deploying the Access Manager for e-business
Policy Server is to create a warm standby Policy Server that can be activated in
the event that the Policy Server is unavailable for an extended period.

In an Access Manager for e-business deployment without Tivoli Federated
Identity Manager, all run-time operations will continue to operate if the Policy
Server is unavailable. However, the Tivoli Federated Identity Manager servers
use the Access Manager for e-business Administration API to terminate user
sessions in Access Manager for e-business WebSEAL servers during Single
Logout operations. The Access Manager for e-business Administration API relies
on the Access Manager for e-business Policy Server to act as an intermediary for
communication with the WebSEAL servers. So the requirement for keeping the
Access Manager for e-business Policy Server available is stronger when Tivoli
Federated Identity Manager is deployed.

838 Enterprise Security Architecture Using IBM Tivoli Security Solutions

26.5.3 Key management
Federated SSO protocols make use of a number of digital keys to sign requests
and validate signatures on responses. Similarly, the SAML assertions used in
Federated Web services are typically signed. It is important to note that digital
signing and validation operations will fail if the key being used has expired. As
many of the keys obtained from public Certificate Authorities have a lifetime of 12
to 24 months, it is important to establish a manual procedure to proactively
replace keys before they expire. It is also important to monitor your partner's
keys and advise them if their keys are nearing expiry.

The Tivoli Federated Identity Manager Management Console provides support
for reviewing expiry dates on signing and validation keys.

26.5.4 Session time out
A key issue to consider in designing a Federated SSO solution is session
time-out (either due to session duration or session inactivity). The Federated
SSO standards bodies have not yet addressed this issue. From a user
perspective, the ideal solution is to present the appropriate identity provider login
page as required after session duration and inactivity time-out.

Depending on the nature of the federations defined, it may be possible to add
some JavaScript to the service provider login page to automatically initiate a
Federated SSO operation on session time-out; otherwise, the user will have to
choose to initiate the Federated SSO operation from the links shown on the
service provider login page.

A related requirement that may be raised in Federated SSO environments is to
link the inactivity timers for the identity provider and service providers, such that
while a user is using a particular service provider resource, the associated
identity provider session will remain active. One situation where this requirement
is important is where a service provider site is being accessed in an iFrame
portlet on an identity provider hosted portal. In this case, a user may find it
disconcerting to be required to re-authenticate due to activity when they press a
link in the surrounding portal page after having just been working inside the
service provider portlet on the same page.

One solution to this requirement that will work, regardless of which vendor's
products are used at the identity provider and service provider, is to have an
(possibly hidden) image from the identity provider site on every service provider
application page. This image may possibly be incorporated into the page design
to highlight the source of the authentication. Alternatively, a servlet filter may be
added to the service provider application(s) to add a hidden image to each page
returned to the browser.

 Chapter 26. Tivoli Federated Identity Manager patterns 839

26.5.5 Application logout
Another key issue to consider in designing a Federated SSO solution is
application logout. Protocols such as Liberty ID-FF and WS-Federation include
profiles for single logout (SLO). An SLO operation terminates the user session at
the identity provider as well as terminating any service provider sessions that
used that identity provider session for authentication. The motivation for SLO lies
in the belief that if a user is transparently logged into multiple sites from a single
authentication, then a similar model should be used for logout.

This is an amiable goal, but there are several problems with the implementation.
Many of the SLO profiles in the standard Federated SSO protocols rely on the
user to inspect the logout success/failure messages coming from different
products (with different customization) to determine the overall success or failure
of the SLO operation. Moreover, if a user is unaware of the Federated SSO being
performed between various sites, they may have trouble understanding why they
are being presented with a list of logout success and failure messages. At a
minimum, we recommend that the SLO failure messages be modified to advise
the user to close all browser sessions to ensure that the user is fully logged out.
You may also consider adding similar advice to the SLO success pages to inform
the user that it is a safe practice to close all browser sessions to ensure
successful logout across all sessions.

In a Tivoli Federated Identity Manager deployment (at either the identity provider
or service provider), termination of the current user session at the local node is
affected using the Access Manager for e-business Administration API to
terminate the session in the session cache of WebSEAL (or the Access Manager
for e-business Web plug-in). Success or failure is determined by the return code
from this API. In a standard Access Manager for e-business deployment (without
Tivoli Federated Identity Manager), it is an accepted best practice to add some
JavaScript to the Access Manager for e-business logout success (and failure)
pages to delete all session cookies associated with the applications protected by
Access Manager for e-business. By default, Access Manager for e-business
renames all cookies coming from junctioned applications to avoid accidental
overwriting of cookies with the same name from different back-end servers. A
JavaScript function can be developed to ensure the cookies from the back-end
applications are identified and deleted. If you call this function as your page is
loading, it deletes all cookies from applications junctioned behind WebSEAL.

A similar technique can be used in a Tivoli Federated Identity Manager
environment for HTTP based SLO profiles. Javascript to delete cookies for
back-end servers can be added to SLO success (and failure) page templates
used by Tivoli Federated Identity Manager. However, the Liberty ID-FF
standards include SOAP based profiles for SLO. With these SOAP-based
profiles, the partner nodes do not have an opportunity to run any JavaScript on

840 Enterprise Security Architecture Using IBM Tivoli Security Solutions

the browser to delete the application cookies. It is therefore recommended that in
a Tivoli Federated Identity Manager environment using SOAP-based SLO
profiles, the Access Manager for e-business login page also be updated to
include some JavaScript code to delete the back-end application cookies.

This technique for deleting cookies with SOAP-based SLO profiles does not
address all threat scenarios, so we also recommend that applications in this
environment verify incoming requests to ensure that the value of the HTTP
Header variable in the request, which contains the user identity from Access
Manager for e-business, matches the local user login context. For standard
Access Manager for e-business SSO configurations, this HTTP Header variable
would be iv-user; however, in a Tivoli Federated Identity Manager environment
the real user identity may be passed to the application via a different HTTP
Header variable.

Of course, closing all browser sessions on logout removes all risks associated
with unexpired application session cookies.

26.6 Conclusion
This chapter described architecture options for deploying Tivoli Federated
Identity Manager and approaches for integrating this software product with other
middleware and customer applications. Architecture patterns for Federated SSO
and for Tivoli Federated Identity Manager Federated Web services were
introduced. Then we showed you how to integrate applications into a Tivoli
Federated Identity Manager F-SSO environment, and how to customize Tivoli
Federated Identity Manager for F-SSO. We completed the chapter with a series
of short discussions on topics relating to designing a solution for deploying Tivoli
Federated Identity Manager in a real-world environment.

 Chapter 26. Tivoli Federated Identity Manager patterns 841

842 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Part 5 Managing security
audit and
compliance

In Part 5 we discuss the solution that IBM offers in the security audit
management space of the overall security architecture. Audit information, which
generally revolves around managing intrusion and fraud, is mainly handled by
IBM Tivoli Security Operations Manager. Security Operations Manager handles a
multitude of integration aspects with all types of IT infrastructures and intrusion
detection devices and services, which are detailed throughout this part. Audit
information, which is concerned with legal and regulatory compliance, is handled
by IBM Tivoli Security Compliance Manager. In addition to these specifically
focused products, IBM Tivoli used the Common Auditing and Reporting Services
infrastructure to target an enterprise wide centralized audit infrastructure.

Part 5

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 843

844 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 27. Introducing IBM Tivoli
Common Auditing and
Reporting Service

Compliance is measuring how well you meet a set of security requirements.
Combining disparate information to measure compliance is a difficult task.
Organizations face a series of hurdles to normalize their compliance data from
multiple vendors and even from multiple products from one vendor. The IBM
Tivoli Common Auditing and Reporting Service presents a significant leap to
measuring compliance.

27

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 845

27.1 Business context for compliance
Compliance measures how well a set of security requirements is met.
Compliance is a large issue in light of increasing regulations designed to set an
expected level of responsible behavior by companies. These regulations put a
burden of proof on companies in several areas:

� Provide an effective plan to achieve compliance.

� Verify the implementation is in place and being used as designed.

� Identify areas of compliance and non-compliance.

� Show what corrective actions are taken for non-compliance.

� Identify gaps in the solution and adjust to close them.

These relate to the five steps used to design a security policy discussed in 1.5,
“Security policies” on page 11. Measuring compliance becomes a more
formalized approach to the ongoing cycle of security policy development and
maintenance.

How do we show compliance at a practical level? We must be able to provide
tangible evidence the policy has been met. The current regulatory push for
compliance to a variety of new corporate responsibility laws and regulations is
prompting an increased amount of formal audits from internal and external audit
groups at most organizations. This audit activity is difficult due to the very nature
of information technology.

Let us review some key points from our discussion about the MASS developed
security and audit subsystem in 2.1.2, “MASS security subsystems” on page 21.

The purpose of this subsystem is to provide proof of compliance to the security
policy. A security audit subsystem is responsible for capturing, analyzing,
reporting, archiving, and retrieving records of events and conditions within an IT
solution. Security audit analysis and reporting can include real-time review, as
implemented in intrusion detection components, or after-the-fact review, as
associated with forensic analysis in defense of repudiation claims. The security
audit subsystem provides:

� Collection of security audit data, including capture of the appropriate data,
trusted transfer of audit data, and synchronization of chronologies.

� Protection of security audit data, including use of time stamps, signing events,
and storage integrity to prevent loss of data.

� Analysis of security audit data, including review, anomaly detection, violation
analysis, and attack analysis using simple heuristics or complex heuristics.

� Alarms for loss thresholds, warning conditions, and critical events.

846 Enterprise Security Architecture Using IBM Tivoli Security Solutions

This becomes an incredibly difficult task. For example, regulatory agency
auditors arrive at your company and announce an audit for compliance to
regulation XYZ. Their audit announcement letter provides a lengthy list of
information required from IT systems (including security) to measure the level of
compliance. It also provides a short timeline to provide the information. The
result to the business is a major resource drain to support the audit, with potential
impact to projects and normal operations. While viewed as a cost of doing
business, it is still a cost that needs to be reduced. Even if the requested
information can be provided quickly, how do we thread through a variety of
differently formatted logs and reports to show we have achieved compliance with
regulation XYZ?

The key is our security audit subsystem must provide for an on demand view of
compliance and audit readiness. It must be able to quickly and efficiently provide
information needed to measure compliance. A side benefit of this continual
posture is not only reduced resource requirements and minimized business
disruption for compliance audit activity, but also a faster response to
noncompliance that could result in a security or privacy breech.This awareness
shows better control of IT resources and their underlying data assets.

27.2 Common Auditing and Reporting Services
Now that we have set a business context for compliance, we move to discuss the
Common Auditing and Reporting Service and how it helps in proving compliance.
Common Auditing and Reporting Service is the result of efforts to unify IBM Tivoli
product logging and reporting. It is shipped with Tivoli Access Manager for
e-business v6.0. The goal is to provide aggregation of events of interest,
normalization, and correlation of those events and reporting.

In the Common Auditing and Reporting Service context auditing is defined as the
process of maintaining detailed, secure logs of critical activities in a business
environment. This includes such items as:

� Security-related critical activities (login failures, unauthorized access to
protected resources, modification of security policy, non-compliance with a
specified security policy, health of security servers, and so on).

� Business-related critical activities (bank transactions, insurance claims
processing, order processing, and so on).

� Critical activities related to content management (updates and deletions of
critical documents).

� Change Management (changes made by administrators).

 Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting Service 847

Common Auditing and Reporting Service reporting is used for:

� External controls: to demonstrate compliance for various standards and legal
requirements (see 1.6.2, “Legal and regulatory concerns” on page 16).

� Internal Controls: to show compliance to an organization’s security policies,
as shown in Figure 27-3 on page 856.

� Checking enforcement and effectiveness of IT controls, for accountability, and
vulnerability/risk analysis.

� Forensic investigations of security incidents.

Common Auditing and Reporting Service auditing is discussed in 27.2.1,
“Auditing” on page 849. Common Auditing and Reporting Service reporting is
discussed in 27.2.4, “Reporting” on page 852.

The Common Auditing and Reporting Service (CARS) is based on open
standards and protocols.

Common Auditing and Reporting Service is shipped as a component in IBM
Tivoli Access Manager for e-business Version 6.0.

The Tivoli Common Auditing and Reporting Service architecture consists of:

� Common Auditing and Reporting Service server, which includes the event
server feature and the operational reports feature.

� Common Auditing and Reporting Service client, which includes the Java and
C client.

Figure 27-1 on page 849 shows the Common Auditing and Reporting Service
architecture.

848 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 27-1 Common Auditing and Reporting Service architecture

27.2.1 Auditing
Auditing is the process of maintaining detailed, secure logs of critical activities in
a business environment. Such critical activities could be related to security,
content management, business transactions, and so on. Examples of
security-related critical activities that could be audited are:

� Login failures

� Unauthorized access to protected resources

� Modification of security policy

� Non-compliance with a specified security policy

� Health of security servers

Tivoli Access Manager

Common Base Events

Common Audit Web Service

Common Event Infrastructure
Emitter

Common Event Infrastructure
server

Default event
store

XML data
store

Restored
audit dataAudit archive

Staging utility

Tivoli Access
Manager report
tables and audit
reports

Custom report
tables and audit
reports

Is there default
processing?

Is the event
auditable?

 Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting Service 849

Examples of business-related critical activities that could be audited are:

� Bank transactions

� Insurance claims processing

� Order processing

Examples of critical activities related to content management are updates and
deletions of critical documents.

27.2.2 Audit logs
IT organizations can use information contained in audit logs to help them show
compliance with government regulations. For this reasons, such audit logs must
be maintained sometimes for years.

Audit logs are useful to check enforcement and effectiveness of IT controls, for
accountability, and vulnerability and risk analysis. IT organizations can also use
auditing of security-related critical activities to aid in forensic investigations of
security incidents.

When a security incident occurs, the audit logs enable analysis of the history of
activities (who did what, when, where, and how) that occurred prior to the
security incident, so appropriate corrective actions can be taken.

For the above purposes, audit logs need to be archived (stored) and accessible
for report or query for years.

Also, audit logs are typically made available in relational databases so they can
be easily queried to generate reports. Facilities, such as IBM DB2 Alphablox and
Crystal Reports from Business Objects, can then be used. Audit reports allow
detailed review of audit data to help determine the cause of the security incident.

Based on how the audit data is used, as previously discussed, management of
the audit data has the following requirements:

� Collect and store large volumes of data for a long period of time.

� Stage the data periodically (daily or weekly) into report tables for audit
reports.

� Archive the audit data for a long period of time (months or years) with archival
scheduled on a regular basis.

� Produce audit reports on recent and archived audit data. Such reports can be
produced by customers using their reporting tool of choice or shipped as part
of IBM products.

850 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Provide a process that is tamper resistant. That is, the audit data must be kept
safe when it is generated, during the transit, and when it is stored.

� Provide auditing functionality for changes to the configuration and policy for
collecting audit data.

27.2.3 Audit infrastructure
An audit infrastructure provides the mechanisms to submit, centrally collect, and
persistently store and report on audit data, and it satisfies the previously
mentioned requirements to manage audit data. The IBM Tivoli Common Auditing
and Reporting Service component leverages the Common Base Event and the
technologies to provide an Audit Infrastructure.

The Common Base Event is a common format for events proposed by IBM and
submitted to the OASIS1(Organization for the Advancement of Structured
Information Standards) organization for standardization. The purpose of the
Common Base Event is to facilitate effective intercommunication among
disparate components within an enterprise. In order to effectively process audit
data, it needs to be in a standard format, and the Common Auditing and
Reporting Service component requires the audit data to be in the Common Base
Event format.

The Common Event Infrastructure (CEI) is an IBM strategic event infrastructure
for submission, persistent storage, query, and subscription of Common Base
Event events. The Common Auditing and Reporting Service component uses the
CEI interfaces for submission of events. Such events can be denoted as
auditable using configuration options at the CEI Server in which case CEI stores
them in a CEI XML Event store that meets the auditing requirements described
above.

The Common Auditing and Reporting Service component allows staging of data
from the CEI XML Event store into report tables. IBM products and customers
can provide audit reports based on auditable events staged into such report
tables. The Common Auditing and Reporting Service component also supports
the lifecycle of auditable events, including archive, restore, and audit reports on
restored archives. It enables common reporting against auditable events from
different products and sources.

The first release of the audit infrastructure delivered by the Common Auditing
and Reporting Service component is used by the IBM Tivoli Access Manager for
e-business product for submitting, storing, and reporting auditable security
events.

1 For more information about OASIS, see:
http://www.oasis-open.org

 Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting Service 851

http://www.oasis-open.org
http://www.oasis-open.org

Archiving and restoring audit data
The relational database schema of the CEI XML Event Store is externalized so
the audit data stored in it can be archived by customers using third-party archival
tools of their choice. The Common Auditing and Reporting Service component
provides an XML Store utility that aids customers in archiving and restoring audit
data. Also, the Common Auditing and Reporting Service supports staging of
restored audit data into report tables so that audit reports can be run against this
restored audit data.

Securing audit data
CEI Emitter event interfaces are protected using J2EE declarative security to
ensure that only authenticated and authorized entities are allowed to use them.
Transmission of the Common Base security events to the CEI Server and can be
secured using SSL. Customers can protect access to the audit reports by using
the access control mechanism supported by the reporting tools. Customers also
need to protect the CARS XML Event Store and the report tables using the
access mechanisms provided by the database.

27.2.4 Reporting
The operational reports feature of the Common Auditing and Reporting Service
provides a number of compiled reports that provide information about
security-related activities that occur on your system.

The compiled Crystal Reports provided with Common Auditing and Reporting
Service include audit event history, password change activity, authentication
event history, authorization event history, event details, resource access, and
server availability reports. The Compiled Reports format allows you to run
reports without having the Crystal Reports Designer installed on the system.

The following is the list of out-of-the-box reports that are available:

� General Audit Event Details Report

Displays all information about a single auditable event denoted by the event
reference ID parameter. Typically a user will run this report after running other
reports and deciding an event drill down is desired.

� General Audit Event History

Displays the total number of auditable events for each event type during a
specified time period. It also shows all events of the specified event type and
product name sorted by specified sort criterion and time stamp. This report
can be used for incident investigation and assuring compliance.

852 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Audit Event History by User

Displays total number of events for a specified user during a specified time
period. It also presents a list of all events of the specified event type and
product name sorted by time stamp and grouped by session ID during the
time period. The purpose of this report is to investigate activity of a particular
user during a specified time period.

� Failed Authentication History

Presents a list of all failed authentication events over the time period sorted by
specified sort criteria such as by time stamp. This report can be used by an
administrator to investigate security incidents.

� Failed Authorization History

Lists all of the failed authorizations events during a specified time frame.

� Locked Account History

Displays all of the accounts that have been locked during a specified time
period.

� User Password Change History

Displays events related to password changes done by the user themselves
during a specified time period.

� Administrator and Self-Care Password Change History

Displays events related to password changes done by the user and the
administrator during a specified time period.

� Server Availability Report

Shows the availability status of Security servers on a specific machine. The
user can display all protected machines in the report or limit the report by
entering a single host name as the subject of the report.

� Certificate Expiration Report

Allows detection of soon-to-expire certificates and highlights the need to
replace the certificate to insure 24/7 operability. It shows the number of clients
that have server/SSL certificates that expire in ‘x’ days. It will also show a
table of client hostnames, the days until their certificates expire, and the
server they are configured to.

� Most Active Accessors Report

Shows a list of users who are the most active in the system, and can lead the
administrators to investigate improper use of their resources.

� General Authorization Event History

Displays the total number of authorization events, failed authorization events,
successful authorization events and unauthenticated events during the

 Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting Service 853

specified time period. Additionally it shows list of all authorization events
sorted by specified sort criteria (time stamp, resource or user name) during
the time period. The purpose of this report is to analyze authorization event
history for incident investigation and assuring compliance.

� Authorization Event History by Action

Displays list of all authorization events that contain the specified action sorted
by resource and then time stamp during the time period specified.

� General Administration Event History

Shows the history of general management actions done over a specified time
interval. The administrator can use the report to track the actions of a user for
administrative events.

� User Administration Event History

Can be used to investigate security incidents, and to track changes to users
by administrators.

� Group Administration Event History

Can be used to investigate security incidents and to track changes to groups
by administrators.

� Security Server Audit Event History

Presents a list of auditable events related to security servers that occurred
during the specified time period.

� Resource Access By Accessor Report

Shows the top resources in terms of access/authorization events during a
time period for each machine name identified. The report identifies who is
repeatedly accessing resources and what resource is being accessed.

� Resource Access By Resource Report

Shows the top accessors in terms of access/authorization events during a
time period for each machine name identified. The report identifies which
resources are most heavily accessed and which user is accessing the
resource.

27.3 Scenarios
At this point, we apply the guidelines described in the last two sections to a
security incident investigation scenario and a IT control scenario.

854 Enterprise Security Architecture Using IBM Tivoli Security Solutions

27.3.1 Security incident investigation
The following security incident investigation scenario shows how the audit data
can be used to investigate break-in security incidents.

During a security incident investigation, the IBM Tivoli Common Auditing and
Reporting Service is used to quickly retrieve the necessary data from events,
increasing the speed of the investigation process.

In our example, the system administrator is investigating a security incident that
occurred at 02.00 hours. Instead of looking for the authentication events in Tivoli
Access Manager for e-business, the administrator extracts the Failed
Authentication History Report from the Common Auditing and Reporting Service
Event Store. With this information the system administrator is able to easily
locate the author of the incident and take corrective actions.

Figure 27-2 Security incident investigation

27.3.2 IT control
The following IT control scenario demonstrates how the audit data can be used
to ensure that only authorized entities are accessing resources as specified by
security policies to control IT.

The system administrator wants to ensure that only authorized people have
access to an application or file. The administrator extracts the General
Authorization Event History report from Common Auditing and Reporting

System AdministratorTivoli Access Manager
for e-business 6.0

CEI XML Event Store

Authentication Events

Initiate corrective
action if needed

Report Tables

Failed Authentication History
Report

What authentication
failures occurred at 02.00

hours?

 Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting Service 855

Service Event Store. Using this information, the system administrator can
determine if there is any corrective action necessary, make the correction, and
save time in the overall process.

Figure 27-3 Controlling IT

27.4 Conclusion
The Common Auditing and Reporting Service provides security and audit
subsytem functions that can be used to measure compliance, investigate security
incidents, and verify IT controls.

System AdministratorTivoli Access Manager for
e-business 6.0

CEI XML Event Store

Initiate corrective
action if needed

Report Tables

General Authorization
Event History

Are only authorized people
accessing that application or file?

Application Access

Authorization Events

856 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 28. Security Operations
Manager topology and
infrastructure

In this chapter we introduce the Security Information Event Management (SIEM)
architecture. A typical enterprise security architecture that contains a myriad of
different types of security related devices (for example, intrusion detection,
firewalls, and network access control), as well as security logging information
from enterprise applications, operating systems, databases, access and identity
management infrastructure, and so on. As companies deploy more and more
security related devices and applications, the need to properly manage and
address information retrieved from or traversing these sources becomes more
critical. To handle the ever-growing demands of analysis and correlation of
security logging information, the area of Security Information Event Management
was developed.

In this chapter we discuss the inherent topological architecture of IBM Tivoli
Security Operations Manager, a SIEM platform designed to handle the analysis
and correlation of security information from network security devices, access or
identity management, and enterprise security applications.

28

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 857

Prior to the existence of Security Information Event Management, security
administrators were forced to monitor security-related information from several
sources simultaneously, such as the following:

� Network intrusion detection and prevention devices

� Firewalls

� Access and identity management systems and applications

� Enterprise application security logs

Monitoring, analysis, and correlation of information from these sources proved to
be a nightmare for security administrators in enterprise security environments.
Typically each vertical had its own particular management application that had to
be utilized to maintain and analyze the appropriate security-related information.
Administrators were forced to watch several security applications simultaneously,
which made extended and detailed analysis extremely difficult in an enterprise
environment. The complexity and time required to watch one particular event
source, let alone cross-reference and correlate information from one event
source with another event source, proved exhausting if not impossible. The
industry realized the need for a new area of enterprise security architecture that
was capable of resolving these key issues, and in turn the SIEM paradigm was
created.

Tivoli Security Operations Manager is considered to be the central server
application for analyzing security information in the Tivoli product family. Security
Operations Manager manages security-related information and logs from a
multitude of physical security devices and security software applications. It is
considered to be the successor to Tivoli Risk Manager, and contains updated
cutting-edge analysis and correlation features that were unattainable in the
previous product.

Before we discuss the Security Operations Manager’s logical and physical
components and architecture, we take a look at the different security devices and
applications that are typically found in today’s enterprise IT environments.

28.1 Enterprise security devices and applications
The inherent need for an enterprise SIEM platform becomes more readily
apparent as an enterprise security architecture grows and adopts a wide variety
of network security devices and security applications. As noted in the previous
section, managing and sifting through the vast amounts of security information
generated by these event sources becomes a daunting task.

Here is the question that is usually asked first.

858 Enterprise Security Architecture Using IBM Tivoli Security Solutions

What products typically comprise an enterprise security architecture?

The products that are most commonly found within an enterprise security
architecture deployment include the following:

� Intrusion detection and prevention systems (physical and host-based)

� Firewalls (hardware and software-based)

� Antivirus software

� Public Key Cryptography and authentication

� Access and identity management systems

� Vulnerability assessment and management

In the following sections we take a closer look at these different types of security
devices and software applications.

28.1.1 Intrusion detection and prevention systems
An intrusion detection and prevention system (IDPS) is a type of security
management system for monitoring network (network-based intrusion detection
system or NIDS) and system (host-based intrusion detection system or HIDS)
related security information. An IDS in general gathers and analyzes information
from various areas within a network or a computer to identify possible security
breaches, which include both intrusions (attacks from outside the organization)
and misuse (attacks from within the organization). The IDS may be combined
along with vulnerability assessment tools to assess the significance of an attack
against the security of a host or network. An IDPS is capable of not only
detecting an attack, but is further capable of stopping the attack. Such IDPS
devices function by having the traffic pass through the device in a way similar to a
bridge, thereby allowing the IDPS to grant only certain traffic to pass through
from one physical network segment to another.

Typical intrusion detection and prevention functions for either hardware-based or
software-based solutions include the following:

� Monitoring and analyzing network and system activities

� Assessing system and file integrity

� Recognizing typical patterns of attacks

� Analyzing abnormal activity patterns

� Tracking user policy violations

Intrusion detection and prevention systems have evolved greatly over the past
few years, with network IDPS devices capable of analyzing network traffic at

 Chapter 28. Security Operations Manager topology and infrastructure 859

multi-gigabit traffic speeds in real-time. An example of such a product is the IBM
ISS Proventia® G IDPS, a network IDPS that can analyze multiple Gigabit
network segments simultaneously.

28.1.2 Firewalls
A firewall is either a program or device, located at a network gateway that
protects the resources of a private network from outside users and attacks.
Security policies implemented at the network level, host level, and application
level allow access only to authorized users, applications, and systems,
depending on the policies defined.

An enterprise with an intranet that allows its workers access to the Internet
installs a firewall to prevent outsiders from accessing its own private data
resources and to control which outside resources its own users can access.

A firewall examines each network packet to determine whether to forward it
towards its destination. It is often installed such that no incoming requests have
direct access to private network resources.

Any abnormal attempt or traffic trying to access network resources through the
firewall must be monitored actively and carefully. If there is any activity, the
firewall is configured to generate an event that gets logged to an event log. This
event log helps management tools, such as a SIEM platform, analyze the full
extent of the event.

28.1.3 Antivirus software
Antivirus features are integrated with operating system management. This
software is a class of program that searches hard drives and peripheral disks for
known and potential viruses. Such software is typically capable of inoculating a
virus from a host. It works to minimize the spread of infections through detection
of viruses through a variety of methods. Anti-virus software utilizes signature
databases as well as heuristic methods to properly identify the type and nature of
a particular vulnerability like a virus or worm. Antivirus is critical to ensuring that
an enterprise is free from potential threats within its environment and to minimize
the damage that may be caused by a potential viral outbreak. A properly
implemented antivirus detection and remediation system is a key part of an
enterprise security architecture.

28.1.4 Access and identity management systems
Access and identity management systems are critical to the enterprise security
architecture. Access and identity management systems utilize a combination of

860 Enterprise Security Architecture Using IBM Tivoli Security Solutions

directory services, authentication, and identity management to provide
mechanisms for identification and authentication as well as for authorizing
component access.

Access control subsystems enforce security policies by gating access to, and
execution of, processes and services within a computing solution via
identification, authentication, and authorization processes, along with security
mechanisms that use credentials and attributes. Identity or credential
subsystems generate, distribute, and manage the data objects that convey
identity and permissions across networks and among the platforms, the
processes, and the security subsystems within a computing solution.

Access control and identity management systems provide greater control of
information access within an enterprise security architecture, and they provide
additional auditing capabilities that are essential to the overall security posture of
the enterprise.

28.1.5 Vulnerability assessment and management applications
Vulnerability assessment and management applications are a key part of an
enterprise security architecture. Vulnerability assessment is the process of
analyzing, quantifying, and assessing the risk that is tied to a vulnerability or
group of vulnerabilities that affect a system. While there are several methods of
performing a vulnerability assessment upon a system, the result of the
assessment when tied to a management application is critical to the enterprise
security architecture. A comprehensive vulnerability assessment and
management application utilizes vulnerability analysis to determine which areas
(for example, services) are at risk to attack and to provide a recommended set of
solutions to mitigate any possible risk.

Vulnerability assessment plays a crucial role when tied to other enterprise
security solutions. When used in conjunction with an intrusion detection and
prevention system, vulnerability assessment can provide extended information
as to whether an attack, detected by the IDPS, is capable of successfully
exploiting a vulnerability on a system. Vulnerability assessment and
management is also critical to patch management applications, to ensure that
systems are updated with the latest software versions from vendors. Newer
software revisions are more likely to contain fixes to previous security
vulnerabilities that were left open by earlier software versions.

An actively maintained vulnerability assessment and management program is
crucial to ensuring the success of an enterprise security architecture. With an
active vulnerability assessment and management program, organizations can
ensure knowledge of security vulnerabilities within an organization, and what
actions are necessary to remediate those vulnerabilities.

 Chapter 28. Security Operations Manager topology and infrastructure 861

28.2 Logical components and architecture
Tivoli Security Operations Manager was architected to handle the growing
demands of an enterprise security architecture. With the number of security
devices and applications growing at a rapid rate, the amount of information that
is generated by these devices is increasingly alarming. Without a properly
designed security event gathering and analysis architecture, retrieval and
storage of the information from these devices is virtually useless given the shear
mass of information that is generated. Tivoli Security Operations Manager
enables security administrators and analysts to analyze and manage security
event information in real-time.

The Tivoli Security Operations Manager internal application architecture consists
of three main components that are detailed in this section. Each of these
components is critical to the operation, and each plays a major role in itself within
the application. A detailed understanding of these components is critical in order
to understand the internal architecture of Security Operations Manager.

Figure 28-1 on page 863 depicts an overview of the overall solution architecture.
The enterprise security devices and applications, shown in the left column were
addressed in section 28.1, “Enterprise security devices and applications” on
page 858.

862 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 28-1 Internal Tivoli Security Operations Manager architecture

Following are the three main internal software components of Tivoli Security
Operations Manager, depicted in the middle and right column in Figure 28-1:

� Event Aggregation Module (EAM)

The Event Aggregation Module performs the task of gathering data from the
various network security devices and applications, normalizing that data and
then filtering, batching, and transmitting that data to the Central Management
System (CMS).

� Central Management System (CMS)

The Central Management System acts as the hub for Security Operations
Manager, bringing together event data streams from all of the deployed
EAMs. The CMS correlates this event data, performs deterministic threat
analysis, calculates the threat posed to the destination by the event, and
applies the rules configured in the stateful rules engine to the event stream,
allowing the system to respond to specific attack signatures and events of

 Chapter 28. Security Operations Manager topology and infrastructure 863

interest. Both the real-time and persistent data is used in presenting relevant
information through the user interface and advanced analytical module.

� Event Archiver

The Event Archiver handles security event information in queues and
prepares them for writing into a persistent storage database in either DB2 or
Oracle. The event stream is passed on in real-time from the CMS to the Event
Archiver, ensuring no events are lost before they are written to the database.

Before we start to examine each of these components in more detail let us take a
look at the processes behind Security Operations Manager and the role each of
those play.

28.2.1 Processes
One of the biggest challenges security administrators and analysts face with any
enterprise security architecture is finding critical threats and attacks to that
infrastructure. Without a properly implemented SIEM platform, this challenge
becomes extremely difficult due to the following reasons:

� Disparate point products that are widely distributed.

� Multi-vendor products without common formats or communications.

� Inadequate time to manually examine critical logs.

� No business-relevant context to the data.

� No inherent link between attack data and host susceptibility.

� Lack of automation.

Tivoli Security Operations Manager addresses all of these issues, acquiring
disparate security event data and then applying processes required to discern
the business relevant incidents in an automatic and efficient manner.

Tivoli Security Operations Manager utilizes a set of four processes for the
collection and analysis of security event information internally in the application.
These processes are actual concepts, and the end result produces the refined
information the security analyst/administrator is interested in.

A visual depiction of the concepts is detailed in Figure 28-2 on page 865.

864 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 28-2 Overall view of analysis and correlation processes

Following are the four concepts internal to the application:

� Aggregation

� Normalization

� Contextualization

� Correlation

Let us take a closer look at each one of them.

Aggregation
The aggregation of security event information is the method of entering security
information for analysis by the application. Given the administrative, logistical,
and political challenges that come with deploying and maintaining agents on end
devices, Tivoli Security Operations Manager provides fully featured aggregation
using common protocols such as XML, Syslog, syslog-NG, SNMPv1-3, Check
Point OPSEC, Cisco IDS, AVDL, and SMTP utilizing an agent-less method.
Through these collection methods, Tivoli Security Operations Manager is able to
provide the most comprehensive support for network oriented standards than
any other security management solution.

Tivoli Security Operations Manager also utilizes a low impact, customizable
agent for situations where a unique application or device contains security event
information critical to the enterprise. These agents provide the flexibility needed

 Chapter 28. Security Operations Manager topology and infrastructure 865

to acquire any data found in your enterprise, whether in a database, in a file, or in
a proprietary event log format, with minimal impact to the critical system that it is
monitoring.

After the data is collected we still face the challenge of effective analysis since
there are no universally accepted standards for security event logging in the
information security industry, and vendors are free to capture event data in any
proprietary format. This creates a level of complexity in the analysis that prevents
the ready distillation of information from the native data sources. This problem
can be effectively mitigated by standardization of the data and its format.

Normalization
The process of normalization places security event information and data into a
common format containing standard fields. In short, normalization enables
efficient storage, processing, and retrieval of information relative to the security
posture of the enterprise.

The first stage of Tivoli Security Operations Manager’s two-step normalization
process is to break an event into its component parts and place each of these
parts into an individual database field. This step provides an accurate map
between the native source data and the subsequently normalized data. The
second stage transforms the device-specific event information into generic event
classes. Together, these event classes provide a common taxonomy that can be
used to analyze, search, and report on activity without prior knowledge of the
specific device reporting the data. This allows for a holistic view of the
enterprise's security environment.

As new device types are integrated, the devices’ specific, proprietary event type
conventions are automatically transcribed into the common event type
conventions, allowing the correlation to work with event types across different
security device brands. For example, an accept event from one firewall vendor
and an accept event from a different firewall are automatically mapped to the
generic fw.accept class. This advanced feature enables the security staff to
accurately analyze data from the myriad of disparate devices throughout the
enterprise.

Contextualization
After events are normalized, they are then placed into business context. By
adding business relevance to events, resulting incidents can be listed in context
of business priorities. Some of Tivoli Security Operations Manager’s features that
help to apply business relevance include the following:

� Security domains are logical groupings of sensors associated with
permission-based profiles. For example, each business unit can have its own
security domain. Therefore an incident pertaining to a particular security

866 Enterprise Security Architecture Using IBM Tivoli Security Solutions

domain can be weighed higher or lower depending upon the business'
priorities (for example, accounting versus marketing).

� Watchlists are logical groupings of Hosts or Netblocks that are not restricted
to one security domain. Typical watchlists include Sarbanes-Oxley related
Assets, VPN users, or Perimeter Devices.

� Event taxonomies are classification systems that allow for categorization of
events. This supports the ability to view all data in terms such as User Login
and Failed Login in order to provide metrics for many things, especially
regulatory compliance. Tivoli Security Operations Manager includes built-in
detailed event mappings for approximately 15,000 log and event types from a
broad variety of security products and systems.

Correlation
After business context is applied to the security-event data, correlation is the
next necessary step. The correlation engine correlates the events against a host
of factors to determine attacks and misuse.

In order to accurately and comprehensively detect threats to the enterprise, Tivoli
Security Operations Manager employs a unique methodology, based on four
complementary correlation techniques: Statistical Correlation, Rulesbased
Correlation, Vulnerability Correlation, and Susceptibility Correlation. While most
security management platforms rely primarily on Rules-based Correlation,
applying multiple methods of event analysis is important because different
techniques are better suited to detect different types of attacks, misuse, and
policy violations.

By combining these methods, Tivoli Security Operations Manager can uncover
attacks and misuse what would normally be hidden from view, using only the
existing data in your security infrastructure. For example, the Statistical
Correlation technology has been shown to provide superior analysis of
anomalous behavior out-of-the-box. In contrast, the Rules Engine is critical for
detecting policy violations. Tivoli Security Operations Manager is the only
security management platform that integrates four distinct correlation techniques,
offering defense-in-depth within a single security management platform.

The correlation process is based on both the source and destination IP
addresses, ensuring the capture of all information related to the event. This
extensive correlation enables Tivoli Security Operations Manager to provide a
comprehensive representation of the up-to-the-minute security posture and
enables the effective prioritization of threats. This in turn maximizes the
effectiveness of the enterprise security staff and operations teams, allowing them
to investigate the most important and relevant incidents first.

 Chapter 28. Security Operations Manager topology and infrastructure 867

Tivoli Security Operations Manager’s four stage correlation process enables
scalable incident recognition and precise policy enforcement:

� Statistical correlation

Tivoli Security Operations Manager's Statistical correlation engine reaches
beyond basic rule sets, using patent-pending algorithms to present users with
unique insight into anomalous activity on their network. It provides users with
significant out-of-the-box value, as it can detect threats that bypass
signatures such as new attacks that were not seen before. It can also identify
unknown items, such as the source of attacks that are outside the system and
present them as Source Addresses.

Computational correlation uses embedded algorithmic logic that operates on
every significant event that is monitored by the system. The technique
employs a number of inputs such as event validity, event priority, and the
criticality of the assets involved. It then considers statistical variables, such as
event frequency, to score and prioritize the most suspicious sources of
activity as well as the most threatened hosts in the network. This information
is presented to users in the main dashboard. Statistical correlation is
exceptionally easy to implement and use. The algorithmic logic is embedded
into the product and requires minimal administration. By using embedded
mathematical algorithms and tunable parameters that are default upon initial
configuration, an organization can very quickly deploy the platform. Tuning
over time makes the algorithms more and more effective. It is a
high-performance method of analysis that enables real-time results, and it is
not subject to the performance decay that Rules-based Correlation suffers
over time.

Real-life examples: Large enterprise customers estimated that statistical
correlation capabilities alone identified approximately 70% of the incidents of
interest. Another customer was alerted to an unknown attack by Tivoli
Security Operations Manager’s statistical correlation capabilities and was
able to mitigate it before it had a significant effect on the infrastructure. It was
later identified as the SQL Slammer worm.

� Rules-based correlation

Rules-based correlation is used to customize Tivoli Security Operations
Manager to the user's specific security environment for both incident
detection and for policy monitoring. The product comes with a number of rule
templates based on typical attack sequences and security best practices.
Users can start with these and then build up a library of rules that reflect its
security environment.

Rules can be broad or granular, but they work best in explicit security
situations where a specific A+B+C sequence is clear and consistently
recognized. Rules are also used to execute automated actions within the

868 Enterprise Security Architecture Using IBM Tivoli Security Solutions

product such as executing a firewall configuration, shell command, or opening
a trouble ticket.

Rules are particularly useful in monitoring misuse and enforcing policy. For
example, Tivoli Security Operations Manager's Rules-based correlation
engine can analyze user-based events from a variety of security, host, and
application logs. This is particularly important with the current onslaught of
federal mandates, such as Sarbanes-Oxley or Gramm-Leach-Bliley, which
require that controls are in place to ensure data integrity and confidentiality.

Meta events allow users to create reusable building blocks upon which they
can build more intelligence into the Rules-based Correlation Engine. For
example, in order to recognize a Brute force login attempt, the user could
write a rule that identified repeated failed login attempts. This rule would
trigger a Meta event called Password_BruteForce. The user could then write
another, more complex rule that fired whenever the Password_BruteForce
Meta event was followed by a successful login or a system configuration
change event.

� Vulnerability correlation

In addition to correlating disparate event data, Tivoli Security Operations
Manager also correlates attack data with vulnerability data. The end result is
a direct one-to-one mapping of exploit to vulnerability whenever such
information is available. Users import vulnerability data from their vulnerability
scanner (for example, ISS' Internet Scanner®, Nessus, eEye Retina, nCircle
IP360, Foundstone, QualysGuard, and SPI Dynamics WebInspect), and then
the data can be associated with attacks seen from the organization's Intrusion
Detection Systems (IDS). Tivoli Security Operations Manager can correlate
vulnerabilities with multiple scanners across product families. Thus, Tivoli
Security Operations Manager provides a vendor-agnostic vulnerability
correlation solution.

Identifying a mapped exploit-vulnerability pair enables an organization to
locate compromised systems and react in a timely manner so as to reduce
the impact it has on the organization. For example, teams can mitigate worm
damage or can catch attackers before they do irrevocable damage or reach
precious information within the organization. When a match is seen, Tivoli
Security Operations Manager can respond and launch an action such as an
alert, an e-mail, a Meta event, an SNMP trap, a ticket, and so on.

� Susceptibility correlation

Despite the value that an exact exploit to vulnerability match provides, as
variations of a given exploit begin to spread, the mappings quickly lose
relevance. Additionally, there can be multiple variations on an attack against a
single vulnerability and these variations are impossible to foresee and
categorize.

 Chapter 28. Security Operations Manager topology and infrastructure 869

To address this, Tivoli Security Operations Manager uses a more valuable
and scalable technology that sheds light on the probability of an attack's
success, called susceptibility correlation.

Susceptibility Correlation determines the probability of an asset's exposure
using all available information about that asset, such as services running,
ports open, and the operating system on the machine. This technology raises
visibility of threats against susceptible hosts and reduces noise of threats
against non-susceptible hosts. The first phase of susceptibility correlation is in
place, determining exposure based on vulnerable services and ports on
specific systems.

This real-time method of analysis bubbles up to the surface the systems that
are experiencing activity that is most likely to result in a compromise and
reduces the criticalness of threats against non-susceptible hosts. You can
benefit by having fewer threats to investigate, so your time is focused
investigating those threats most likely to impact the organization. An
additional benefit is that not only can susceptibility correlation provide
prioritized threat data to an incident management team, it can also provide
important real time prioritization to the risk mitigation team who is trying to
configure and patch systems.

Susceptibility correlation is exceptionally easy to implement and use. The
logic is embedded into the product, requires minimal administration, and is an
out-of-the box benefit.

28.2.2 Event Aggregation Module
The Event Aggregation Module (EAM) serves as the event aggregator of security
event information from all of the devices within the enterprise security
architecture. One or more EAMs can be deployed in any number of
configurations necessary to handle the load of event information based on a
particular security architecture’s need. Logically constructed, EAMs provide a
central concentration point of security event information utilizing a variety of
collection methods that are detailed below.

The internal structure of the Event Aggregation Module, depicted in Figure 28-3
on page 871, is very logical and concise. EAMs utilize a series of conduits to
collect information from disparate security devices and sources within an
enterprise security architecture, and then normalize the information so it can be
passed along to the Central Management System.

870 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 28-3 EAM internal structure

Conduits
A conduit is a data collection device designed to communicate to a group of
security devices in their native protocol, normalize data from those devices, and
insert that data into the memory resident database (ec). Conduits are key to how
information is gathered and aggregated from the security devices within an
enterprise security architecture.

Conduits are responsible for the following three major functions in the EAM: data
collection, normalization, and data storage.

Data collection
Data collection is the key integral component of conduits in the EAM architecture.
Conduits are specialized for a particular protocol (SNMP, Syslog, SMTP, and so
on) in aggregating security information for normalization by the EAM. Certain
conduits are utilized for a specific product or vendor, such as the Check Point
and Cisco IDS conduits. The use of conduits for data collection ensures that the
integration and gathering of information from the existing security architecture
requires minimum configuration, while supporting the broadest range of devices.

EAM Connection Manager
(ns_eamcm)

SNMP Conduit
(ns_trap)

XML Conduit
ec.events

Checkpoint
Conduit

(ns_checkpoint)

SMTP Conduit
(ns_smtp)

Syslog
Conduit

(ns_syslog)

Cisco IDS
Conduit

(ns_ciscoids)

 Chapter 28. Security Operations Manager topology and infrastructure 871

Normalization
Normalization is the process of ensuring that disparate security event information
is put into a standard, common format that is readily usable by the other
components, such as the Central Management System. With different vendors
supporting different event logging formats, and with different collection
mechanisms utilizing different protocols, creating a normalized data format for
security event information is fairly tricky. Following are the key steps to the Tivoli
Security Operations Manager’s normalization process within the EAM:

1. Parse the event.
2. Apply the rules file for a particular device or log type.

3. Classify security event information according to configurable event classes
(event_class).

4. Assign a priority based on the event format (priority).

Let us take a closer look at these concepts.

Events that are of an unknown format or unidentifiable by the conduit are labeled
internally as an unknown event and are passed along to the CMS for further
analysis.

Enterprise security devices that utilize the XML, SMTP, SNMP, and Syslog
conduits have an associated rules file that provides the necessary rules to
identify, classify, and assign priorities to each event generated by that device.
These rules files must be maintained during operation to ensure proper
classification of events. As vendors update and refine their devices, resulting in
new event classifications, the rules file must also be updated to reflect these
changes. The Check Point FW-1 and Cisco IDS conduits use internal rules to
perform event identification, classification, and prioritization.

After an event is classified as a particular type based on the rules file, the event is
assigned to a class_id that corresponds to a particular event_class that describes
the event. Event classes have the following format:

<device_type> . <event_type>

The device_type field describes the device that is generating the security event
information, while the particular event_type is defined based on the events
classification within Security Operations Manager. The class_id is simply a
unique identifier in the back end database that is associated with a particular
event_class.

872 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Table 28-1 is an example of configured event classes and their associated
class_ids:

Table 28-1 Event Classes and associated Class Identifiers

After an event is properly classified, it is assigned a priority. This priority provides
a means of weighing specific events when calculating the threat posed by those
events. The default value for the priority of a given event is 50%. The current
range of values is 0-100% with common values being 33%, 50%, 66%, and
100%. This value provides a direct input into the calculation of the atomic threat
associated with an event. Changing the priority of an event changes the atomic
threat assigned to that particular event.

Data storage in the ec database
Normalized events are stored in the ec.events table, where they remain before
they are passed along to the CMS via the EAM Connection Manager, which
reads event data and sends it encrypted to the EAM Manager on the CMS.

Syslog conduit
One of the more popularly used conduits, the syslog conduit, depicted in
Figure 28-4 on page 874, provides a central collection and management point for
all devices that report events using the syslog mechanism provided internally by
the Unix and Linux operating systems. The syslog files on the local EAM are
used as a central collection point. This requires that the devices reporting
through the syslog conduit be configured to forward their logs to the syslog file on
the EAM.

class_id event_class

10004 os.log.audit.success

20001 app.virus.detect

20002 app.shutdown

40002 neu.auth.config.group

40001 neu.auth.config.account

50001 fw.accept

50003 fw.reject

60002 ids.host.reset

60003 ids.host.banner

60011 honeypot.detect

 Chapter 28. Security Operations Manager topology and infrastructure 873

Figure 28-4 Syslog conduit

Event Aggregation Module Connection Manager
The EAM Connection Manager (EAM CM), as shown in Figure 28-5 on
page 875, assists in managing the communications and transmission of event
data from the EAM to the CMS. The EAM CM provides a number of features that
are critical for the communications and operations of Tivoli Security Operations
Manager between the EAM and the CMS. The EAM CM is specifically
responsible for the following:

� Reading event data from the ec database.

� Performing filtering and batching of security event information.

� Responding to a heartbeat signal from the CMS.

� Transmitting event data using an encrypted TCP/IP connection to the EAM
Manager on the CMS.

Data HandlingNormalization
Process

EAM Syslog
files

Parsing and Rule
Application

EAM Syslog
tail process

Syslog Conduit

Device Syslog
Files UDP/IP Update

(ec.events) ec.events

874 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 28-5 EAM Connection Manager internal architecture

Event Data Selection, Filtering, and Batching
Security event data, which is contained in the ec.events table, is selected in a
first-in first-out (FIFO) manner to be sent to the EAM on the CMS. A generated
SQL statement that includes any configured filters or batch information extracts
the information. This information is then sent to the EAM Manager on the CMS in
an encrypted format.

Filters are generated by the user on the Event Filter Definition window on the
EAM User Interface (UI). Values entered in the Event Filter Definition are stored
in the ec.filters table. A record is filtered when it matches the specific values
entered in the filter definition.

Batching is accomplished by configuring the action field in a Filter Definition to
Batch Event. When the event matches the filter criteria and the action is defined
as Batch Event, the event is written to ec.events_batch table. The EAM CM reads
from the ec.events_batch table during the period defined in the EAM System
configuration and sends the events stored there to the EAM Manager on the
CMS.

EAM Manager

Data
Acknowledgement

Encryption and
Data

Transmission

Filtering and
Batching

Event
Handling

Acknowledge
(event data)

Batch Event (events_batch)

TCP/IP Data
Transmission

Heartbeat

Acknowledge (events_batch)ec.events_batch

ec.events

Batch Transmission (event_batch)

Select (event data)

 Chapter 28. Security Operations Manager topology and infrastructure 875

Data Transmission
Security event information is transmitted from the EAM to the CMS via an
encrypted TCP/IP connection. The data transmission is accomplished in the
following four distinct steps:

� The EAM CM first reads the data from the ec.events or ec.events_batch table,
assigns an event_id, and transmits the data to the EAM Manager on the CMS.

� The EAM Manager then writes the data to the engine_queue, an operating
system queue on the CMS.

� After the information is in the engine_queue, the EAM Manager transmits an
acknowledgement to the EAM Connection Manager on the EAM.

� The EAM CM then updates the ec.events or ec.events_batch table by deleting
the transmitted events from those tables.

This four-step process ensures the complete and secure transfer of security
event information between the EAM and the CMS.

EVENT_ID
The EAM CM assigns a unique event_id to each event, allowing the event to be
tracked throughout the EAM architecture just prior to transmitting the event to the
EAM Manager on the CMS.

The EAM Connection Manager responds to a heartbeat from the CMS to provide
assurance of the proper operation of the EAM during periods where data is not
being passed to the CMS. This heartbeat is provided as a specialized TCP/IP
packet sent by the EAM Manager on the CMS and acknowledged by the EAM
Connection Manager. The heartbeat occurs on a two minute interval when data
is not being sent.

Universal Collection Module
The Universal Collection Module (UCM), as depicted in Figure 28-6 on
page 877, is an agent-based collection module that provides event data
collection from file and database sources on hosts that are unable to directly
communicate with the EAM or in environments where the EAM cannot be readily
deployed. A typical example is when a security device management application
is used as the aggregation point for security information from a particular
vendor’s device within an enterprise security architecture. The UCM is then
deployed onto the management application server to directly aggregate the
information into the EAM.

The UCM provides two methods for collecting event data:

� File Method - The file method is utilized by the UCM to collect information
from those sensors that use a file structure to store event data. The UCM
collects data by tailing the file where the event data is being written.

876 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Database Method - When the host sensor uses a relational database for
event storage, the UCM utilizes a JDBC connection with the host database to
extract event data as it is written to the database.

Figure 28-6 Universal Collection Module architecture

The UCM then translates and batches the event data into an XML document by
wrapping the event data in XML tags defined by the UCM. The XML is then
encrypted and transferred over a Secure Socket Layer (SSL) connection to the
XML Conduit on the EAM.

28.2.3 Central Management System
The Central Management System (CMS) acts as the hub for Tivoli Security
Operations Manager, bringing together event data streams from all of the
deployed EAMs. The CMS, as shown in Figure 28-7 on page 878, correlates this
event data, performs deterministic threat analysis, calculates the threat posed to
the destination by the event, and applies the rules configured in the Stateful
Rules Engine to the event stream. This allows the system to respond to specific
attack signatures and events of interest.

The system directs the correlated event data stream to the archiver for persistent
storage, while a running subset of the event data is directed to the Event Console

XML ConduitXML
Conversion

Event
Collection

Host Event Database

SSH Data
Transmission

JDBC Select
(event data)

Universal Collection Module

Host Event File Tail Event File

 Chapter 28. Security Operations Manager topology and infrastructure 877

for real-time display. Both the real-time and persistent data is used in presenting
relevant information through the user interface and Reporting module.

The Central Management System (CMS) provides Tivoli Security Operations
Manager with a centralized data handling and storage device, capable of
correlating upwards of 1000 events per second (EPS) while performing atomic
and compound threat determinations, providing real-time and historic threat
analysis, and taking actions on user-defined stateful rules and alert criteria. The
CMS also provides a user interface with a security dashboard for monitoring
events, as well as a full reporting engine.

Figure 28-7 Central Management System architecture

Process overview
Events are gathered by the EAM Manager (ns_eammgr) and are stored in the
event_cache. These events are then read by the Correlation Engine (ns_engine),
which filters the event stream, correlates events, determines threat, performs rule

Action Processor
(ns_action_processor)

EAM Manager
(ns_eammgr)

Event Correlation, Threat Analysis and
Event Response

(ns_engine)

event_cache
(nsdbm)

Event Archiver
(ns_archiver)

event_ready_cache
(nsdbm)

edata and eaux
(nsdbp)

Ticket
(nsdbm)

Tickets
alerts

(nsdbm)

E-mail
Client
(smtp)

Shell
Scripts

Geolookup
(ns_geolookup)

878 Enterprise Security Architecture Using IBM Tivoli Security Solutions

matching, passes actions to the Action Processor (ns_action_processor),
creates alerts if necessary, and then writes the event to the event_ready_cache.
The Event Archiver then reads the event and stores it into the database.

EAM Manager
The EAM Manager actively manages the event data stream between each of the
deployed EAMs and the CMS. The data stream is managed so as to minimize
data loss and maximize throughput.

Event correlation and threat determination
Event correlation and threat determination involves a programmed logic aiding in
the analysis of the event data stream. This programmed logic performs many of
the routine tasks currently performed by security analysts: sorting and
determining the relationship between events, assigning a weighted threat value
to each event, and associating each event to its source and destination hosts.
Tivoli Security Operations Manager rules provide a concurrent approach to threat
determination. By applying stateless and stateful rules, the CMS screens the
event stream against configurable enterprise-level attack signatures, and triggers
responses based on these signatures.

An example of a simple stateless rule would be an E-mail alert to be triggered
when a portscan is detected by a specified sensor on any of the financial
database servers within a network. An example of a stateful rule is to issue a
firewall blocking command based on the scan of several ports monitored by
different network security devices in conjunction with a repeated login failure
indicated by syslog alerts.

Event caching and archiving
After correlation and threat determination are completed, the CMS is ready to
provide relevant information to the user. The eventstream is then directed to the
Event Archiver for persistent storage in the event database.

28.2.4 The Event Archiver
The Event Archiver, shown in Figure 28-8 on page 880, serves as the gateway
between the Central Management System, and the primary database. As events
are processed, the correlated events are written to the Archive Ready Queue, in
preparation for the archival process.

 Chapter 28. Security Operations Manager topology and infrastructure 879

Figure 28-8 The Event Archiver

The Event Archiver reads events from the Archiver Queue and archives them in
the assigned edata and eaux tables.

28.2.5 Additional logical components
To paint a complete picture of the Tivoli Security Operations Manager logical
components we want to add two more that were not individually depicted in
Figure 28-1 on page 863. These components are the Web interface and the
reporting.

Web interface
The Web interface provides the event information. Most production networks can
generate a huge number of events, which can easily overwhelm the security
analyst. To alleviate this problem, the main event investigation tool, the
PowerGrid, allows similar events to be displayed together.

The CMS and the EAM both have a Web-based interface. This interface lets
administrators manage these components and view their current status. The
CMS’ interface also lets security analysts investigate events, configure

Event Archiver
(ns_archiver)

Event Archiver
(ns_archiver)Archiver Queue

Event Archiver
(ns_archiver)

edata and eaux
(nsdbp)

Event Archiver
(ns_archiver)

Archive Ready Queue

880 Enterprise Security Architecture Using IBM Tivoli Security Solutions

correlation, and generate reports. We strongly advise you to use secure socket
layer (SSL) connections in order to secure the Web-based interface.

The CMS’ Web-based interface has the following three purposes:

� View and investigate events in near real time, while they are happening.

� Produce reports.

� Configure Tivoli Security Operations Manager:

– Network configuration

– EAMs

– Sensors

– Correlation

– Users

– Domains

The main purpose of the EAM Web-based interface is to configure the EAM. It
allows administrators to configure CMS information and the sensors that provide
the events the EAM needs to forward to it.

Additionally, the EAM Web-based interface shows the status of the EAM, its
conduits, and the sensors that provide them with events.

Reporting
The reporting in Tivoli Security Operations Manager is based on data that has
been stored in the central database. You can either use the dashboard feature in
the Web interface or the reporting engine to inspect your data.

The visuals in the dashboard are meant to provide a short-term, detailed view of
events that are happening now and of historic events that are being investigated.
Reports provide a longer term view that makes it easier to see trends.

Because reports are usually less detailed, they are easier for users to
understand. This feature is useful to communicate with nontechnical managers
and auditors who have responsibilities related to information security.

Tivoli Security Operations Manager uses JReport, a non-IBM packaged bundle,
with the product to produce reports. Tivoli Security Operations Manager also
ships with a number of predefined reports ready at your disposal.

Reports can be generated in real time or scheduled in advance. In either case, it
is necessary to provide values for the report parameters, which are variables that
are different for different reports, of the same type. For example, reports that

 Chapter 28. Security Operations Manager topology and infrastructure 881

contain event information have a start time and an end time to determine which
events are relevant.

You can schedule reports to run at the same time of the day, the same day of the
week, and so on. This allows report generation, which can be a heavy task, to
take place during times of low usage.

28.3 Physical components and architecture
In this section we focus on the general physical architecture of the components,
from event gathering to analysis. We discuss three different deployment
scenarios: single server, distributed, and high availability.

The deployment architecture for Tivoli Security Operations Manager consists of
two main logical component areas:

� Event Aggregation Module (EAM) - The Event Aggregation Module performs
the task of gathering data from the various network security devices,
normalizing that data, and then filtering, batching, and transmitting that data
to the Central Management System (CMS).

� Central Management System (CMS) - The Central Management System
(CMS) acts as the hub for Tivoli Security Operations Manager, bringing
together event data streams from all of the deployed EAMs. The CMS
correlates this event data, performs deterministic threat analysis, calculates
the threat posed to the destination by the event, and applies the rules
configured in the stateful rules engine to the event stream, allowing the
system to respond to specific attack signatures and events of interest. Both
the real-time and persistent data present relevant information through the
user interface and advanced analytic module.

28.3.1 Single server deployment
A single server deployment, as shown in Figure 28-9 on page 883, is by far the
simplest configuration for an enterprise security architecture. A centralized,
single-server Tivoli Security Operations Manager architecture provides several
functional benefits:

� Centralized CMS and EAM modules on the same system.

� Ease of management with all components on same system.

� Ideal for small to mid-size, single-site deployments.

882 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 28-9 Single server deployment

A single server Tivoli Security Operations Manager deployment, is ideal for small
to mid-size enterprise security architectures that may contain a few devices of
each flavor (several NIDS, a few HIDS, and so on). This deployment is also ideal
for architectures in which security information is maintained for one site, such as
a branch department or the security department of a small to mid-size business.

Capacity wise, a single server deployment can handle a mixture of several NIDS,
HIDS, and firewalls, with several server/system security event sources. With a
properly sized and configured system, a Tivoli Security Operations Manager
single server deployment should be able to handle ideally between 10 to 20
active security event sources (from a mixture of NIDS, HIDS, firewalls, and other
event devices/sources).

28.3.2 Distributed deployment
A distributed deployment of Tivoli Security Operations Manager, as shown in
Figure 28-10 on page 884, provides a standard configuration for mid-size to large
enterprises needing to manage enterprise security architectures across multiple
sites simultaneously. This deployment architecture allows for event aggregators
(EAMs) to aggregate event information from multiple locations back into the CMS

 Chapter 28. Security Operations Manager topology and infrastructure 883

for analysis. Some of the benefits of a distributed Tivoli Security Operations
Manager deployment include the following:

� Multiple EAMs to handle large amounts of security events.

� Distributed architecture covering multiple sites.

Figure 28-10 Distributed deployment

The distributed deployment consists of multiple EAMs located at multiple
locations throughout the enterprise. Each of these local EAMs allow for the local
consolidation and aggregation at each geographic site, enabling network traffic to
be kept to a minimum, as well as providing a more secure mechanism for
sending back events to a central location. With only the EAMs reporting back to
the CMS at the primary location, security events are transmitted securely in an
encrypted fashion from only several hosts, as opposed to potentially hundreds of
devices reporting back to one central location. This tiered architecture also keeps
failures in the system at a minimum.

884 Enterprise Security Architecture Using IBM Tivoli Security Solutions

28.3.3 High-availability deployment
A high-availability deployment, shown in Figure 28-11, provides high-availability
features into the enterprise security architecture for mid-to-large sized
businesses. By enabling high-availability (HA) features into a security
architecture, enterprises can further minimize the risk of any potential failures to
the enterprise security architecture. HA enables the Tivoli Security Operations
Manager application to remain online, aggregating and correlating security event
information even during a failure.

Figure 28-11 High-availability deployment

High-availability deployments provide assurance that the enterprise SIEM
architecture remains active, even in the event of a failure. If the primary CMS
were to fail, the EAMs automatically fail-over to the backup CMS. The
high-availability mode is performed in an active-standby mode with one CMS as
the active primary and the secondary CMS in standby mode.

 Chapter 28. Security Operations Manager topology and infrastructure 885

28.3.4 Network placement
Let us also discuss in which network zone you should place the different Tivoli
Security Operations Manager components. Figure 28-12 depicts an overview of
a typical deployment.

Figure 28-12 Network placement

The CMS (together with the Tivoli Security Operations Manager database) and
one EAM should be placed into the management zone because they represent
very crucial and detailed forensic data about your network and application traffic.

Other EAMs can be located in other network segments, typically as close as
possible to the sensors to improve performance. You can also deploy multiple
EAMs if the amount of collected events call for more than one EAM. Secure
communication between these EAMs and the central EAM/CMS ensures data
confidentiality.

The administrative Web interface can be located anyplace on the network. In
Figure 28-12 we can administrator placement in the regular intranet zone. From
there all tasks can be managed via secure communication to the CMS and all
EAMs.

DMZ

Tivoli Security
Operations Manager

CMS engine

HTTP Reverse
Proxy

encrypted

encrypted

Internet Production Zone Intranet Zone

Management Zone

DB

Host IDS

EAM

Network IDPS

Application
Server

Host IDS

EAM

Database or
Backend Server

Syslog

EAM

Event Archiver

EAM Managerencrypted

Enduser
Workstations

Syslog

Norton adapter

Norton
AntiVirus

EAM

encrypted

EAMEAM

`

Tivoli Security
Operations

Manager Web
Interface

… to
EAMs

GeoLookup

Loc
server

886 Enterprise Security Architecture Using IBM Tivoli Security Solutions

28.4 Conclusion
We introduced the general idea behind an enterprise Security Information Event
Management (SIEM) system and why it is necessary today. We also introduced
the logical components and architecture of Tivoli Security Operations Manager.
We explained the processes (aggregation, normalization, contextualization, and
correlation) that are used to centrally manage security events from disparate
sources in a common way.

Next we described the major components that Tivoli Security Operations
Manager uses (Event Aggregation Module, Central Management System, and
Event Archiver) to process these events.

Finally we looked into the different physical deployment models on how you can
integrate Tivoli Security Operations Manager into your environment.

 Chapter 28. Security Operations Manager topology and infrastructure 887

888 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 29. Building a security
information event
management system

The purpose of the security information event management system is to address
the data collection, analysis, and archival requirements of a computing solution
to manage and measure the effectiveness of the security implementation.
Security event analysis and reporting includes real-time review and management
of events as well as after-the-fact analysis to anticipate and take actions to
maintain and improve the integrity and reliability of resources. Security
Operations Manager addresses both of these requirements. The Central
Management System and reporting engine alert security managers to problems
by correlating thousands of events into more specific incidents to identify attacks.
The reporting engine provides near-term reporting and analysis of events in
detail.

We look at the IT setup in order to describe the SIEM solution approach. The
scenario depicts our already introduced small medium business (SMB)
enterprise, Stocks-4u.com. In the next section we describe the scenario profile
and an excerpt of their current IT deployment, which includes a basic Web
infrastructure and a few security products that are implemented.

29

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 889

29.1 Scenario profile
Stocks-4U.com is an upcoming online trading company in the early stages of
implementing an e-business infrastructure facing the Internet. The importance of
having a properly deployed enterprise security architecture is critical. The CISO
has come under serious pressure to ensure that no potential embarrassing data
leakage events occur. As a result, Stocks-4U.com invested heavily in their
information security architecture throughout their e-business infrastructure. The
current architecture consists of a public facing Web site with three zones:

� Internet - Clients access the public facing Stocks-4U.com Web site from the
Internet as they would any other site. Stocks-4U.com contains a direct
customer portal, as well as a separate portal for partners. Clients and
Partners from a wide variety of geographic locations access the site on a
regular basis.

� DMZ - The DMZ, or Demilitarized Zone, contains the network perimeter that
serves as the functions for border security through intrusion detection (IDPS),
load balancing through a Layer 3 load balancer, and application security and
caching through the use of an HTTP reverse proxy.

� Internal Production Zone - The internal production zone contains the
production Web, application, and database servers that sit behind the DMZ.
These servers power the Stocks-4U.com client and partner portals.

Stocks-4U.com’s overall environment is heterogeneous with multiple hardware
and software platforms. There are two firewalls deployed: Cisco PIX and Check
Point FireWall-1. One Internet demilitarized zone (DMZ), one production zone,
and one public facing internet zone in one physical location are set up.

890 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 29-1 Initial IT architecture for Stocks-4U.com

29.1.1 Security-related problem
This company’s infrastructure is very typical, on a smaller scale, of a popular
Web site portal architecture. They have a small staff and limited technical
resources. In their current configuration, the company is limited as far as the time
and abilities of their technical staff to be able to respond and thoroughly
investigate all security-related incidents as they occur. The company must rely in
turn on vendor-based security solutions that are highly centralized and focused,
but enable the company to free resources for other technical issues. Due to the
nature of the information contained within each portal environment, the company
placed security near the top of their priorities to minimize the risk potential as
much as possible.

29.1.2 Business requirements
At the current stage, the CISO is looking for a way to validate and ensure the
security of the network, and thus enhance customer and partner confidence.
Having invested in a variety of enterprise security products (firewalls, intrusion
detection systems, and routers), there is still a lack of comfort that the network
environment is secure. After a competitor’s recent information breach, upper
management demanded that such an embarrassing situation never occur
regarding the Stocks-4U.com Web site. The CISO in turn relies upon his IT staff
for recommendations as to how they can change or improve the security
architecture to ensure that such risks are minimized. The IT staff is requesting
more tools and the manpower and skills required to manage these products. The

Intranet Zone

Production Zone

HTTP
Reverse

Proxy

User
User

DB / Appl.
Servers

Consumer /
Interested party

Internet Internet DMZ

Partner

Customers

Web Server

Partners

Web Server

 Chapter 29. Building a security information event management system 891

events recognized by the current security tools, such as invalid logons, attacks,
and viruses, must be investigated and handled. With a small staff, it is difficult to
handle all events, much less let the staff attend training or take vacation without
constant pages and calls. While the CISO is concerned about the amount of
investment, the need to prevent an embarrassing situation is further outweighed
by cost. However, given all of the security products currently deployed he has no
readily apparent way to measure the effectiveness of the solution.

29.1.3 Business design
To meet the needs of the business, the audit flow structure of the security event
management system, depicted in Figure 29-2, must look at the audit events from
the security tools be able to identify real threats and attacks and provide
information as to actions that should be taken to the security staff. Identifying real
threats from the volumes of alerts generated by multiple security sensors will
make the environment more secure and more manageable. Predefined actions
for specific event types will allow for quick and consistent handling of situations
and increase the quality of service to users. The system must also be flexible
enough to support additional tools and systems as they are implemented in the
near future.

Figure 29-2 Audit flow structure

29.1.4 Security design objectives
The primary objective of the Security Information Event Management system
(SIEM) is to enhance the security management function through the collection,
analysis, and archiving of security data generated by the security environment on
both real-time and historical modes. The SIEM has to be able to isolate real
security alarms from the vast flow of security events and correlate events from
several sources. The SIEM must also support the actual network structure,
including firewalls, routers, and servers. A single control point to monitor, defend,
and respond to attacks and intrusions is needed.

It is important to understand that the implementation of security tools does not
eliminate the need for skilled security specialists and administrators. All tools
must be configured to the specific system environment. The thresholds must be

SECURITY
INFORMATION

EVENT
MANAGEMENT

SYSTEM

Audit
Events

Real threats

Actions

892 Enterprise Security Architecture Using IBM Tivoli Security Solutions

tweaked. Automated actions may vary by alert source or target. The desire is to
make the security specialist or technician more effective by delegating common
tasks to operator-level personnel or even automating responses to common
situations.

29.2 Security Information Event Management System
A security information event management system, or SIEM, is responsible for
capturing, analyzing, reporting, archiving, and retrieving records of events and
conditions.

Figure 29-3 shows a use case model of a SIEM architecture. The physical view
shows the systems involved in the transaction. The component view depicts the
information flow control function that will examine messages being sent and,
based on a set of rules, will enable valid messages to flow. Invalid messages are
stopped, and a record of the event is sent to the SIEM system. The logical view
breaks down the aggregation and correlation processes into distinct functions.

Figure 29-3 Physical, component, and logical views of a SIEM system

 Chapter 29. Building a security information event management system 893

The syslog conduit, or log aggregator, is a standard aggregation point that
collects logs from sources such as the system log file in a UNIX environment or
the event log file on a Windows system. Most security products have a log
handler function that generates events, such as a firewall violation attempt.
Mostly, it routes them to a management console or stores them to a log file.
Conduits are then used to retrieve this stored event information into the SIEM
system.

The event aggregator converts or reformats the events from the conduits or log
handler into a normalized format usable by the SIEM system. The event
aggregator utilizes a rules-based knowledge base of the different message
formats used in security device logs and messages. By mapping a particular
message to an appropriate event class, the event aggregator can put disparate
security events into a standardized event class and message format, normalizing
the security events.

The central management system (analysis or correlation engine) receives events
from the event aggregator. It utilizes a rules-based correlation engine and filters
to correlate and analyze the events. This is the core function of the central
management system, and its effectiveness depends on the rules defined and
configured.

The output from the correlation engine is sent to the event archiver to store all
records in a centralized database that will be used for reports generation and
event storage.

The main graphical user interface and reporting engine executes extensive
analysis on long-term data stored in the event database. These reports help
understand general vulnerabilities within the environment that do not generate
incidents.

29.2.1 SIEM system at Stocks-4U.com
To apply the concepts of a SIEM system within their IT infrastructure,
Stocks-4U.com would first need to identify which components in their
configuration are generating security-relevant events. Next, a log handler,
conduit, has to be configured centrally to collect events and forward them to an
event aggregator. For those devices or systems unable to centrally forward their
logs, a collection module is added to each of those components. In Figure 29-4
on page 895, we see the network diagram for Stocks-4U.com.

Note: The correlation engine is an important part of the model because it
receives events from several sources and correlates them. Security rules must
be defined very carefully for rules-based correlation engines to work properly.

894 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 29-4 General network diagram

As shown, the components to have security event information collected are as
follows:

� Cisco router: Collects configuration change data, connection information, and
exception or error events.

� Firewalls: Collects information about flows as well as accepted or denied
connections among parts of the network.

� Web servers: Collect information summarizing the activity of the Web server
and events such as unsuccessful logons, configuration changes, or long URL
attacks.

� Servers: Collect access control exceptions from the operating systems and
from applications.

� Users: Collect data on viruses detected by antivirus software.

29.2.2 Integration of Security Operations Manager
As discussed in the previous chapters, the identity and access control
components of our security architecture show how the consolidation and
automation of functions provide effectiveness and efficiency in an overall
solution. The same applies for the security information event management
system. Multiple security management consoles that are spread across multiple
zones in the environment do not support a truly secure setup. To implement
security information event management at Stocks-4u.com, the central

Cisco PIX Check Point FW-1

Intranet Zone

Production Zone

HTTP
Reverse

Proxy

User
User

Browser

Internet Internet DMZ

Cisco
 Router Partners

Web server

Database
Appl.

Servers

Customers

Web server

Network
IDPS

 Chapter 29. Building a security information event management system 895

management functions should be grouped into a single secure zone. In
Figure 29-5, the Security Operations Manager CMS and a central EAM are
placed within the management zone. Multiple Event Aggregation Modules are
placed in the Internet DMZ, the production zone, and the intranet zone, which
use encrypted communication through the firewalls to send collected information
to the Central Management System. We are using distributed EAMs to balance
the load on collecting event information before sending the information to a
central EAM Manager.

Figure 29-5 Detailed Stocks-4U.com security architecture

Environment
The Security Operations Manager server requires that the application be
properly installed and configured. In addition, for enterprise deployments, it is
highly recommended to use a separate server for housing the central database.

Communications with the Security Operations Manager server
In this section we discuss the different ways Security Operations Manager and
the other products exchange security event information.

DMZ

Tivoli Security
Operations Manager

CMS engine

HTTP Reverse
Proxy

Internet Production Zone Intranet Zone

Management Zone

DB

Host IDS

Network IDPS

Application
Server

Host IDS

EAM

Database or
Backend Server

Syslog

EAM

Event Archiver

Enduser
Workstations

Syslog

Norton adapter

Norton
AntiVirus

UCM

`

Tivoli Security
Operations

Manager Web
Interface

… to
EAMs

Cisco
Router

Cisco
PIX

Checkpoint
Firewall1

FW-1 Conduit

EAM Manager

encrypted

FW-1
Management

Console

encrypted
encrypted

encrypted

EAM
Syslog Conduit

SNMP Conduit

896 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Cisco router
The Cisco router generates either Simple Network Management Protocol
(SNMP) traps or SYSLOG messages. In this case, when the configuration
changes, system-level errors occur, or when there are unsuccessful logons. The
SNMP event or SYSLOG message is sent directly to an event aggregator known
as the EAM. Running on the EAM is a set of conduits, one for SYSLOG as well
as for SNMP. The SYSLOG conduit consists of an application that captures and
forwards the SYSLOG messages, from the Cisco router, in this case, to the
central EAM Manager, which then forwards the messages to the Central
Management System server for correlation.

Cisco PIX
The Cisco PIX Firewall sends SYSLOG messages, in this case, or SNMP traps
to the EAM, which has a configured conduit. A conduit is configured to be made
aware of the devices configuration (IP address, host name, and so on), in order
to tie specific messages to a specific event or device source.

Check Point FireWall-1
The Check Point FireWall-1 sends its logs to a dedicated management console
(data transfer is encrypted). The EAM uses a native Check Point OPSEC
interface (the FW-1 Conduit) to receive the log messages from the FireWall-1
management console.

Host Intrusion Detection System (Host IDS)
Security Operations Manager can map Host IDS-based events, which are
detected and logged by the Windows or UNIX system logs, into relevant
security-related incidents. The EAM receives SYSLOG messages from UNIX
systems via the SYSLOG conduit or Windows Event Log messages from
Windows systems via the Universal Collection Module (UCM) and the XML
Conduit.

Norton AntiVirus
Norton AntiVirus writes events in the Windows system event log. The UCM
recognizes the virus-related events sent by Norton AntiVirus on a Windows
system and forwards them to the EAM, which normalizes the events as
Windows-system related security events and those from Norton AntiVirus. These
events are then sent to the CMS for further correlation.

Web Management Console
The Security Operations Manager administrator(s) can work on their regular
workstation, located within the intranet. The Web Management Console
connects to the distributed EAMs and the CMS using secure communication.

 Chapter 29. Building a security information event management system 897

29.3 Expanding security monitoring
To enhance the security of Web environments, other security tools should be
installed. For access control functions, a Web security server solution such as
Tivoli Access Manager WebSEAL or a Tivoli Access Manager Web server plugin
is recommended. In order to monitor network traffic (users, customers, and
partners), a network intrusion detection and prevention system such as IBM ISS
Proventia is needed. Because most of the suspicious activity and threats still
come from within the enterprise, a probe within the internal part of the network is
essential as well. Both of these components are integrated easily into the
Security Operations Manager SIEM system.

HTTP reverse proxy server
An HTTP reverse proxy server provides single-point management of
authentication and access control. Security Operations Manager is capable of
receiving security event information from Tivoli Access Manager’s reverse proxy
server, WebSEAL, in order to provide higher-level correlation. Security
Operations Manager is also capable of receiving security event information from
Tivoli Access Manager’s Web server plugin component.

Intrusion Detection and Prevention System
An Intrusion Detection and Prevention System (IDPS) is a detailed packet
analysis system designed for computers (Host IDS), Web servers (Web IDS),
and networks (Network IDS). An IDPS gathers and analyzes information from
various areas, either within a computer or a network, to identify possible security
breaches, which include both intrusions (attacks from outside the organization)
and misuse (attacks from within the organization). An IDPS uses a vulnerability
assessment (sometimes referred to as scanning), which is a technology
developed to assess the security of a computer system or network. Intrusion
detection functions include:

� Monitoring and analyzing both user and system activities
� Blocking attacks as they come down the wire
� Analyzing system configurations and vulnerabilities
� Assessing system and file integrity
� Recognizing patterns typical for attacks
� Analysis of abnormal activity patterns

29.3.1 Security Operations Manager resources
For information about the IBM Tivoli Security Operations Manager product, visit
the following Web site:

http://www.ibm.com/software/tivoli/products/security-operations-mgr/

898 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.ibm.com/software/tivoli/products/security-operations-mgr/

For information about other Tivoli management products, visit the following Web
site:

http://www.ibm.com/software/tivoli/sw-bycategory/

Security Operations Manager supports the following types of applications:

� Firewalls
� Web servers
� Intrusion detection and prevention systems
� Antivirus products
� Routers
� Operating systems log file events

29.4 Mapping the solution to the organization
The ability to delegate the monitoring and audit functions within Security
Operations Manager enables Stocks-4u.com to distribute responsibilities to
different administrative people. Security administrators have the responsibility for
customizing the rules files and defining details such as thresholds and
categories, while IT operators only see basic security alerts and events. This
functional delegation model is applied according to the individual internal
organization of the company.

The purpose of this discussion is to describe the functional responsibilities.

Figure 29-6 on page 900 depicts the Stocks-4u.com organization and the role of
each factor:

� Security administrator

A security administrator defines the audit policies, such as which system
should be audited, which are the trusted hosts, and so on. This job also
configures Security Operations Manager and defines values such as
thresholds, categories, adapters, and so on, to fit into the company profile and
needs. Another administrator task is to document security instructions that
describe situations and what actions should be taken for specific events, and
to build automated scripts when possible. This is an ongoing task, as new
threats are always being discovered and new tasks are needed to protect the
network.

� Operator

An operator sits in front of the central console and receives the security audit
events. The job is to react accordingly and apply the procedures and
documents written by the security administrator. An operator interacts with

 Chapter 29. Building a security information event management system 899

http://www.ibm.com/software/tivoli/sw-bycategory/

the system administrator, the application administrator, or both to solve the
problem, and could also interact with the users.

� Support

This function can be an external product’s support or even the security
administrator. The major task of support is to assist the operator in the
problem resolution by performing tasks an operator is not authorized to do.

Figure 29-6 Organization flows

This ensures the continuity of security management without requiring the highest
skilled administrators to perform the day-to-day management tasks. This helps
the Security Administrator avoid common tasks in order to focus on upgrading
skills to increase the security level and awareness of the company overall.

29.5 Summary
It is the function of the security audit subsystem to collect alerts from a variety of
sensors, analyze them, identify real threats, and, if necessary, perform some
automated actions. These actions can include displaying an alarm, executing a
script, shutting down part of the network, and closing a port or blocking an IP
address on a firewall.

Security Operations Manager provides a simple, easy-to-use enterprise console
to monitor, view, and manage alerts across the enterprise. By correlating events
from multiple security tools, Security Operations Manager can recognize attack

Security
Administrator

Support

Configuration

Audit Policies
Systems &

Applications

Security
Operations
Manager

Operation
Center

Operator

S
ec

ur
ity

 e
ve

nt
s

P
ro

ce
du

re
s Users

Actions

R
eq

ue
st

s

900 Enterprise Security Architecture Using IBM Tivoli Security Solutions

patterns and escalate events and incidents to the console. Because the events
are routed to a single point of control (the management area), fewer resources
are required. In addition, because the rules and actions have been defined by the
administrator, lower-level personnel monitor the console and handle basic alerts.

In addition to the real-time handling of events, Security Operations Manager also
has a powerful reporting tool for near-term reporting and for trend analysis to
facilitate preventive measures and planning.

 Chapter 29. Building a security information event management system 901

902 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 30. Compliance management
with Tivoli Security
Compliance Manager

IBM Tivoli Security Compliance Manager is the IBM security policy compliance
management product that acts as an early warning system by identifying and
reporting security vulnerabilities and security policy violations for small, medium,
and large businesses. IBM Tivoli Security Compliance Manager makes sure, by
deploying predefined policies based on best practices, that all servers in an
enterprise meet the policies and regulations that the enterprise is subject to
comply with. It also ensures that the gathered information gets to the right people
so proper actions can be taken.

30

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 903

30.1 Business context
After providing a short definition of security compliance management, we
describe the factors that influence why and how compliance management should
be conducted in a given business context. Further, we explain the general
business requirements for a security compliance management solution and give
some recommendations on how to put into practice compliance regulations.

30.1.1 Introduction to compliance management
The process that ensures that the security, regulatory, and operational policies of
a company are adhered to is called compliance management. It requires the
ability to report on the current compliance status of security controls of any
installed system and to react to any observed deviations.

Security controls exist on the technical, process, and organizational level:

� An organizational level security control can be defined as a type of control
that affects or depends on the role of an employee as part of an organization.
An example can be a concept like separation of duties, that is ensuring that
someone changing something is not the same person controlling the
business need and proper execution of the change. This type of security
control may require an organizational setup where those two employees
report to different managers.

� A process level security control is defined as a series of steps that have to be
executed to make sure a certain condition can be met. An example could be a
concept like the four eyes principle, where a specific authorization requires
two signatures (or passwords) to be presented before a transaction can be
completed. As a result, this process step would always require two employees
to be available for execution.

� A simple technical security control is concerned with a specific
implementation of a service in the security context. For example, a minimum
required length for a password or specific permissions that are defined for
accessing an operating system resource or business data. Operating
systems and applications provide configuration settings that allow the
administrator to specify minimum password lengths so that the system itself
will enforce this control.

A more complex technical security control can be the requirement to make
sure a system meets all the necessary prerequisites to be a part of a secure
network, for example, run an anti-virus service (with up-to-date virus definition
files, of course) and have a firewall turned on.

While it can be hard to have process level or organizational level security controls
checked automatically (by a computer), technical security controls can be

904 Enterprise Security Architecture Using IBM Tivoli Security Solutions

automatically monitored, as this only requires collecting configuration parameters
(for example, minimum password length) and comparing these with predefined
desired values.

IT security compliance management is about ensuring that the defined settings
(in a security policy or standard) are implemented correctly and consistently on
all the installed IT systems.

Because in practice there can be reasons why a specific configuration setting
cannot be enforced in the desired way on a number of systems of each type
(usually due to an application either explicitly requiring the parameter to be set
differently or because it is simply not working otherwise) a significant part of
compliance management is handling exceptions to the defined security policy or
standard.

30.1.2 Why compliance management
Information currently is the most valuable asset of a company and therefore must
be protected accordingly. The aftermath of previous security-related incidents
where private information was disclosed, was catastrophic to the companies,
losing not only their credibility but also sustaining financial losses.

Compliance management is key not only to the security officer in an
organization, but to the rest of the management team:

� The Chief Information Officer has to make sure all systems are protected and
comply with regulations for technical, security, and legal purposes.

� The Chief Operations Officer has to make sure that all systems are up and
running so the operation of the company does not get disturbed.

� The Chief Financial Officer must guarantee the safeguarding and use of a
company’s finance; therefore, a loss or fine due to compliance issues is
important.

� The Chief Executive Officer can be legally liable if compliance regulations are
not implemented successfully and a breach occurs.

In short, compliance is a main issue throughout the company, from the technical
level all the way up to the most executive positions.

Most businesses today heavily rely on their IT systems, and damage incurred to
their critical systems through downtime can take a company out of business for a
period of time. Therefore, minimizing the risk becomes a best practice, both for
the technology and for the business aspect.

Through regulation (for example, Basel II1 in the banking sector), the excellence
of risk management for IT systems, which is part of the operational risk complex,

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 905

even has an impact on the competitive advantage of banks because it can affect
the interest rates a bank can offer its customers.

Because the configuration of security relevant settings in an operating system
has a direct impact on the resilience of the system against attacks, viruses,
worms, or computer criminals, ensuring these settings are always at the desired
level directly lowers the risk to the system.

Due to current legal regulations in some US states2, companies must disclose if
they had a security incident in which information that contained private data was
disclosed. As time passes, it will become more common for states and countries
to pass laws to enforce this. Due to these new regulations, companies can be
greatly exposed. To reduce this exposure, involved systems must adhere to
compliance in order to lower the risk.

Further, checking the security controls of managed systems ensures that a
system does not degrade in its security controls posture due to changes on the
system after it is installed. For example, changes made while resolving a
problem, while installing or upgrading a new application or middleware, or due to
an attacker changing the configuration to hide his tracks or to compromise the
system.

1 Basel II: International Convergence of Capital Measurement and Capital Standards: a Revised Framework, June 2004
(more information can be found at http://www.bis.org/publ/bcbs107.htm)
2 For more information about states that passed these kinds of law visit the following Web location:
http://www.consumersunion.org/campaigns/Breach_laws_May05.pdf

906 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.consumersunion.org/campaigns/Breach_laws_May05.pdf
http://www.bis.org/publ/bcbs107.htm

30.1.3 Determining the how: influencing factors
While having security compliance management in place is generally a good
security practice, there are several factors that influence if and how compliance
management is implemented in a specific environment. Let us take a look at the
main dimensions of compliance management.

� Frequency of checks

How often is a compliance check being done? This does not only define how
often the configuration data is collected from the systems, but also the
frequency in which system administrators are called upon to fix or investigate
identified deviations.

� Number and selection of controls

Which and how many controls are checked? Are only operating system level
controls checked or are application level controls checked as well? Which
operating systems, middleware, and business applications need to be
supported?

� Follow up time frame

How fast do you have to fix reported deviations in the security configuration?
This is a critical part of any compliance management solution that has to deal
more with the follow up process of fixing a compliance issue than with the
compliance check itself.

Being compliant versus being in control

If you have ever been audited (or audited someone), you probably know that
there is a difference between being:

� In compliance: All your systems and processes are operated and delivered
according to the security policies and standards (and you have evidence
for that).

� In control: You know what is in compliance and what is not, you know why,
and you have a plan of action.

Now, what is more important? Being in control is. Because you could be in
compliance by accident. Further, if you are compliant, but not in control,
chances are high that you will not stay compliant for very long.

If you are in control, you will end up being compliant eventually. Or at least you
will have it on record why you are not compliant.

And if you are not compliant and not in control, gaining control should be your
primary goal.

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 907

� Organizational and process checkpoints

There is a particular need for separation of duties, for example, when the
employee checking the configuration must not be the administrator of the
system, and for process requirements, especially in the area of exception
management and escalation if deviations are encountered or not corrected in
time.

The factors that define how much compliance management, as defined by the
dimensions above, has to be done are influenced by the threats in the external
environment of a company. Let us summarize the external environment factors.

� Economy

In which industry is the business operating? Is corporate espionage an issue?
Does the company use outsourcing services? How dependent is the business
on its IT systems?

� Regulatory/legal compliance

In which countries and in which industry is the business operating? Which
regulatory requirements exist that have an influence on required operational
risk and the level of IT security? What level of scrutiny is executed by the
regulators? It is useful to keep in mind that an IT security compliance
management system can provide a lot of evidence for executed control.

� Attacks on IT systems (targeted or random)

The main reason why IT security compliance management is a good security
practice today and should even be considered a mandatory task when using
IT systems at all is that businesses usually cannot afford successful attacks
against their IT infrastructure. The threats against IT systems have become
so advanced that one does not even have to have enemies to become subject
to an attack, because many attacks are done automatically by worms and
viruses. Even if critical systems are not directly compromised, a single
infected system in a company network will negatively affect other systems
and incur costs for the clean up.

Next, let us look at the internal environment factors of a company.

� Business and IT processes

The value and amount of (business) information processed defines the level
of security the processing system requires. And because security is always
about the weakest link, related infrastructure systems need to be protected
too.

� Organization

The size and setup of the organization, for example, defines the speed of the
reaction to deviations from the desired security level. Further, it will have a

908 Enterprise Security Architecture Using IBM Tivoli Security Solutions

significant impact on the requirements of an IT security compliance
management solution, such as the administration approach.

� Technology/existing IT environment

The existing IT environment defines the scope of the operating system,
middleware, and business applications that need to be supported by any IT
security compliance management solution.

In mature businesses, these influencing factors have shaped the existing
security policies and standards as well as work practices or procedures:

� Security Policy

Non platform specific or high level security requirements.

� Security Standards

Platform specific controls (for example, configuration settings).

� Practices/Procedures

Platform specific or non-specific descriptions on how to implement the
security controls, for example, process steps, required documentation
templates, and so on.

Further, these may have resulted in the IT department defining or creating the
following tools to consistently implement the given standards and practices:

� Standard image/build

Pre-configured installation image of an operating system with the correct
settings applied. Note that these setting only apply to a specific time and must
be revised periodically for new security updates that affect the standard
image. After using any image, the administrator must check for new updates
that may need to be applied since the image was created.

� Checklists

Configuration or system activation checklists for configuration settings or
tasks that cannot be predefined using an image. Checklists usually exist for all
sorts of IT assets, from physical servers and clients with their respective
operating system builds, to applications and complex environment
configurations. The use of a security compliance solution might help to
automate the checking of this settings for specific servers or applications.

30.1.4 General challenges
Now, even if the goal for security compliance is clear, defined by precise policies
and standards (which often do not exist or are worded in broad, technically
vague terms), the task of compliance management of a larger number of

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 909

systems bears the following major challenges in addition to the requirements
resulting from the factors discussed above.

� Maintenance of compliance over time

Even in a stable environment, systems are constantly changed because
patches must be applied, updates must be installed or additional packages
require a change in configuration of the underlying operating environment.
Therefore, one important issue is the constant update of the compliance
checks that are done on a system to make sure that all recent updates and
patches are also being checked for.

� Complex environments

Few businesses can claim that their environment is homogenous and
centralized. Heterogeneous, geographically distributed systems in large
numbers is the norm, with not only systems from multiple vendors, but also
running several different versions of operating systems at the same time.

30.1.5 Some business conclusions
As a result of the influencing factors discussed above, a security compliance
management solution must provide a flexible framework that can be configured
and customized to the specific business in question. However, requirements for
compliance management often result in functional or non-functional
requirements for the technical solution and for the processes and organization
behind the solution.

Let us look at a few examples.

� A high frequency of compliance checks reduces the window of opportunity for
a potential attack/incident because the time frame that a vulnerability exists
because of a control deviation is reduced. If the solution and the process to
notify the system administrator is not automated properly, a lot of effort may
be wasted in checking the reports that are generated in fast order.

� A centrally maintained system for gathering and processing the compliance
data lowers the cost of maintenance when compared to a distributed system.
However, it should be ensured that (the distributed) system administrators
have direct access to the data of their systems to easily control the status of
their system, for example, after a change. The need to request the
information from a central team would be a burden on the central team and
discourage the system administrator from proactive checks.

As a consequence, the compliance management solution must allow for fine
grained access control definitions so that system administrators are limited to
the data on their systems only.

910 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� While the ability to collect data on as many controls on as many platforms as
possible sounds like the number one priority for a compliance management
system, it should not be underestimated how important the reporting
capabilities can be, especially if reports on the compliance status are required
for legal/regulatory and audit purposes.

� Perhaps most important, it is necessary to realize that business as usual for
compliance management systems is the management of exceptions from the
defined standards (for example, because of conflicts with applications).
Therefore, effective and efficient exception management should be on the top
of the list of requirements for a compliance management solution.

At the end of the day, security is about the weakest link and, because of this, it is
more important to have a consistent (if small) set of security controls in place on
all the operated systems in a company, controlled through a reliable process in a
reasonable time frame, than monitoring a hundred controls on a few systems in
headquarters whenever someone feels like it.

Next we will look at the logical components of the Tivoli Security Compliance
Manager solution.

30.2 Logical component architecture
The logical components of IBM Tivoli Security Compliance Manager (ITSCM)
may be grouped in five different areas of responsibility, with the Security
Compliance Manager server being the central component, as depicted in
Figure 30-1 on page 913. The areas are as follows:

� Data collection components that build a framework for collecting security
relevant configuration data from connected systems, such as operating
systems, middleware components, applications, and so on.

� Administration components consisting of a graphical user interface and a
command line interface are used to manage the Security Compliance
Manager components.

� Compliance reporting components deliver different kinds of configurable
reports for audit purposes and correcting deviations. The reporting engine is
based on IBM DB2 Alphablox.

� Compliance evaluation components consisting of Security Compliance
Manager snapshots and policies verify security compliance centrally. Both
components are stored and maintained in the central database in order to
ease the process of policy maintenance.

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 911

� The Security Compliance Manager server is the central component of a
Security Compliance Manager infrastructure. Among the responsibilities of
the server are:

– Manages when the security compliance data is collected and which clients
collect what kind of data using the data collection components.

– Determines what security compliance data is collected, and how to
interpret the data using the compliance management components.

– Stores the security compliance data received from the clients and provides
the available data to users through the administration console and
administration commands.

– Provides security violation details as a basis for the compliance report
components.

The following sections describe the components of the five layers in more detail.

912 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 30-1 IBM Tivoli Security Compliance Manager logical component architecture

Configuration
File

Executable Firewall

Router

ITSCM
Operational

Report

ITSCM
Report

ITSCM
Server

ITSCM
Proxy

ITSCM
Snapshots

ITSCM
Policies

ITSCM
Server

ITSCM
Database

Data Collection
Components

Compliance Report
Components

Administration
Components

Compliance Evaluation
Components

ITSCM
Admin GUI

ITSCM
Admin CLI

ITSCM Client

ITSCM Client

ITSCM
Collector

ITSCM
Collector

ITSCM
Collector

ITSCM
Collector

ITSCM
Collector

Windows Registry

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 913

30.2.1 Data collection components
The data collection components are mainly responsible for collecting compliance
data according to a schedule provided by the Security Compliance Manager
server. One of the data collection components (the client) needs to be initially
deployed to the systems that are to be monitored, either manually or by any other
established means of software distribution in your environment. From that
moment on, all components are centrally maintained using the Security
Compliance Manager server management functions.

The data collection components are:

� Client
� Collector
� Proxy relay

Security Compliance Manager client
The client is Java language-based software that runs on systems to be
monitored for security compliance. There are two types of clients: a push client
and a pull client. A push client can establish a Secure Sockets Layer (SSL)
connection to the server and send data. A push client permits communication
with the server to be established by either the client or the server. A pull client
must wait until the server establishes a persistent SSL connection with the client
before data can be sent. Pull clients are considered more reliable and they are
generally needed when the server is located behind a firewall when inbound
connections to the server are not permitted.

Security Compliance Manager clients and client groups
A client group is a container used to group one or more clients together. Clients
can be members of one or more client groups. The client group concept supports
organizing large numbers of clients into categories representing operating
system types, security policies, physical location, business objectives, or any
other logical grouping.

Group inheritance
Adding policies and collectors to client groups is a powerful feature because of
group inheritance. Every client that is a member of the client group, or a member
of a subgroup of the client group, inherits the collectors and policies added to the
group.

Client-server communication
Each client is uniquely identified to the server using a client identification number.
Clients can be categorized into one of three types. Table 30-1 on page 915
describes the client types.

914 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Table 30-1 Security Compliance Manager client types

After a connection between the client and the server has been made, either can
send data to the other. Clients contact the server at periodic intervals called a
heartbeat, which is every 10 minutes by default, to check for updates. This
interval can be changed if necessary. During this heartbeat, the client receives
any new or updated collectors from the server, along with any new or updated
collector schedules and parameters. The client component software itself can be
sent by the server and the client updates itself and restarts. This client/server
heartbeat can be initiated from the administration console using the soft reset
request function, bringing a client into sync without explicitly waiting for the
heartbeat. Data gathered by the collectors that have run on the client is queued
for delivery to the server on a more frequent basis, which is every minute, by
default. Each client is uniquely identified to the server using a client identification
(CLI_ID) number.

Client type Description

Push client The push client permits communication with the server to be initiated by
either the client or the server. Usually, the push client establishes an SSL
connection to the server and sends data or asks for updates. The server
only establishes a connection if an administrator forces an action to be
performed on the client using the administration tools. Push is the default
method to connect clients, as it requires less resources on the server.

Pull client A pull client must wait until the server establishes a persistent SSL
connection with the client before data can be sent. There are two
situations requiring pull clients:

� The pull method allows clients to connect to a server, which is
located behind a firewall that denies incoming connections.

� Clients located behind a Security Compliance Manager proxy relay
need to be configured as pull clients.

The pull mode operation uses more resources on the server and it is
usually more reliable.

DHCP push
client

A DHCP push client has a dynamic IP address that permits
communication with the server to be initiated by either the client or the
server. This option is used for systems that frequently change their host
name or IP address.

The general communication for the DHCP push client works just like the
regular push client; the difference is the DHCP push client establishes
the SSL connection.

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 915

Securing the Security Compliance Manager client
The client is designed to provide a maximum level of security. It provides the
following security features:

� Tamper resistance

The Security Compliance Manager client is designed as a self-contained
component. Each client contains its own Java Virtual Machine (JVM). For all
operating system platforms other than HP-UX and NetWare, the JVM is
automatically installed under the Security Compliance Manager client's base
install directory. Access to the client files requires privileged access rights on
the system in order to prevent misuse. This is extremely important if the client
is installed on critical systems like firewalls.

� Secure communication

The client establishes communication links with the Security Compliance
Manager server based on the server’s SSL certificate and IP address. Any
other communication requests are denied. This assures that only the
authorized Security Compliance Manager server is able to perform
configuration requests like collector deployment or schedule changes. The
server presents its SSL certificate during the first communication with the
client (first contact trust). This certificate is used to verify the server’s unique
identity and to encrypt all traffic within the Tivoli Security Compliance
Manager environment.

When installing pull clients you can pre-deploy the server’s SSL certificate
information by copying the SCMHOME\client\ client.security file from a client
already registered in the trusted Security Compliance Manager server. This
avoids the opportunity for an unauthorized server to create the initial
connection to a pull client.

Collector
A collector is a Java language-based software module, packaged as a Java
Archive (JAR) file, that collects specific information from a client system. A
collector is designed to have a short execution time and to be non-invasive. The
collector may use different methods for collecting data depending on the
compliance data to be gathered:

� Reading the content of one or more files on the client system.

� Running an operating system command or utility and examining the output.

� Running an executable program packaged as part of the collector JAR file
and examining the output.

� Reading information from the registry on Microsoft Windows systems.

916 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Remotely logging in to another system and gather data. This method allows
you to collect security compliance data from systems that do not support Java
applications.

Figure 30-2 depicts the concept of Security Compliance Manager collectors. The
first time a collector is deployed to a client, the JAR file for the collector is sent
from the server to the client, along with the collector schedule and any
associated parameters (1). Multiple instances of a collector can be deployed to a
client. Subsequent instances of the collector share the same JAR file, but run on
their own schedule and with their own parameters. Each instance of a collector is
uniquely identified by a collector instance number (INSTANCE_ID). According to
its schedule, the collector starts to read security compliance data from its
corresponding data source, for example, the Windows Registry (2). Data
collected by each collector instance is queued by the client and delivered to the
server on a periodic basis, by default every minute (3). Delivery of collected data
is determined by two configurable settings in the client.pref file: flush.interval (the
default is 60 seconds) and flush.threshold (the default is 100 messages).

The collected data is not stored on disk, but kept in memory until the connection
to the server is established. The server stores the information received from the
client into one or more tables in the database. The data in the database table is
uniquely identified by the client identification number (CLI_ID) and the collector
instance number (INSTANCE_ID) (4). When a collector instance is removed from
a client, any data associated with that instance of the collector is removed from
the database tables by the server.

Figure 30-2 Security compliance data stored in collector-specific database tables

ITSCM Client ITSCM
Server

ITSCM
Database

Windows
Registry

win.any.local_group.jar

2

3

4

CLI_ID INSTANCE_ID LOCAL_GROUP USERID LOGDATE
1219 27 Administrators Axel 2004-09-27 18:44:17.0
1219 27 Guests Hendrik 2004-09-27 18:44:17.0
1219 27 Guests Dieter 2004-09-27 18:44:17.0

1

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 917

Securing the collector system
The Security Compliance Manager collector system provides security features to
prevent unauthorized manipulation of deployed collectors and the deployment of
collectors that are not appropriate for a particular environment. Figure 30-3
shows the signatures that are requested by a Security Compliance Manager
client before it accepts any collectors:

� IBM (origin) certificate (IBM)

The IBM collector certificate is included with Security Compliance Manager.
This certificate is used by both the client and the server to verify that
collectors were provided as part of an official IBM product. The IBM private
key is not supplied with the product. The IBM certificate prevents
unauthorized third-party or malicious collectors from being used. Alternatively,
you can use your own certificate for signing collectors.

� Collector authorization certificate

The authorization root certificate is generated at installation time and
protected by the server password. It is used to create authorization
certificates (AC). Authorization certificates are used to digitally sign collectors
that can be registered on the server. Clients use certificates created with the
authorization root certificate to verify that the collectors they receive were sent
from the server.

Figure 30-3 Required collector certificate

Proxy relay
The IBM Tivoli Security Compliance Manager proxy relay provides a solution for
the scenario of a server separated from destination clients by one or more
intermediary networks because of firewall policies or address space concerns.
The goal of the proxy relay is to permit the server to successfully connect to and
communicate with each destination client system.

Unsigned collectors
collector

Collectors signed with IBM certificate

Collectors signed with IBM and
authorization certificates

collector

collector

IBM

IBM

AC

ITSCM Client

accepted

denied

918 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 30-4 illustrates that any Security Compliance Manager client may be used
as a proxy relay if a special collector called com.ibm.jac.server.JACProxy.jar is
added to the Security Compliance Manager client using the Security Compliance
Manager administration tools.

Figure 30-4 Security Compliance Manager client configured as proxy relay

Securing the proxy relay system
The proxy collector is a special collector that permits a client to act as an
intermediary between the server and other clients. Because the proxy relay can
also be used to bypass a site’s security, the proxy relay must possess a method
to prevent abuse. The proxy relay enforces a security policy through the use of
configurable access control lists (ACLs). An access control list is a security
method that uses a set of rules to determine which resources can be accessed
by whom and from where. The proxy relay uses two ACLs, one to regulate
incoming traffic, and one to regulate outgoing traffic.

30.2.2 Compliance evaluation components
Security Compliance Manager compliance evaluation components extract the
data collected, analyze the data for non-compliance, and provide the input for
reports in order to reveal adherence to internal and industry-standard security
policies.

Security Compliance Manager policy
A Security Compliance Manager policy consists of one or more specially written
SQL queries that are used to reveal compliance or violation of system security

ITSCM Client

ITSCM Server

com.ibm.jac.server.JAC
Proxy.jar

ITSCM Client

win.any.local_group.jar

Windows
Registry

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 919

requirements. Each SQL query is called a compliance query. A compliance query
extracts, from one or more tables, data collected by the collectors, analyzes that
data, and then returns the list of clients that are in violation of that specific
security requirement.

The results of all compliance queries in a policy can be used to provide a picture,
or snapshot, of the level of compliance for all clients under that policy.

Security Compliance Manager snapshot
A snapshot provides the compliance status of all client systems that are
associated with a policy. Security Compliance Manager creates a snapshot by
running all the compliance queries in a policy against all clients associated with
the policy. Users may view the snapshot results using the Security Compliance
Manager administration tool, or send the results to one or more e-mail
addresses. Snapshot™ administrators can create snapshots on a scheduled
basis or can produce snapshots on demand using the administrative utilities.
Archiving the results of snapshots on a regular basis is a good practice and can
be used to show compliance with both internal security requirements, as well as
industry-standard or governmental security and privacy requirements over a
period of time.

30.2.3 Compliance report components
There are three types of reports provided by Security Compliance Manager.

� Using the Reports Panel in the admin GUI, you can schedule queries and
generate reports.

� You can create snapshot reports (from scheduled snapshots).

� You can use IBM DB2 Alphablox (which includes operational reports and
historical reports).

Security Compliance Manager report
Tivoli Security Compliance Manager provides a reporting capability in the
administration console. Each report contains the result of a single snapshot and
lists the violations and the corresponding client details. A Security Compliance
Manager administrator can schedule a report to run on a periodic basis and
configure Security Compliance Manager to automatically send the results to a
specified e-mail address.

Security Compliance Manager operational reports
Security Compliance Manager provides operational reports for security
compliance reporting. Operational reports require DB2 Alphablox, a J2EE-based
infrastructure for report delivery. The reporting interface is based on AJAX

920 Enterprise Security Architecture Using IBM Tivoli Security Solutions

technology for better user experience. Figure 30-5 shows the Alphablox Web
application set up for Security Compliance Manager reports.

Figure 30-5 Alphablox Web application for Security Compliance Manager

For more information on the installation and configuring of DB2 Alphablox see
the following Web address:

http://publib.boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp

The steps to configure Security Compliance Manager to use Alphablox can be
found on the release notes of Security Compliance Manager 5.1.1.1 at the
following Web address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itscm.doc_
5.1/TivoliSCM5.1.1%20RN_2.0.pdf

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 921

http://publib.boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itscm.doc_5.1/TivoliSCM5.1.1%20RN_2.0.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itscm.doc_5.1/TivoliSCM5.1.1%20RN_2.0.pdf

30.2.4 Security Compliance Manager server
The server is Java language-based software that centrally manages all data
associated with Tivoli Security Compliance Manager. The Security Compliance
Manager server is the central component of a Security Compliance Manager
infrastructure and manages compliance report components, compliance
evaluation components, and data collection components.

The Security Compliance Manager server stores the data associated with the
objects being managed in a centralized DB2 relational database. The server is
the only Tivoli Security Compliance Manager component that directly accesses
the database. Data can be extracted for system analysis.

Securing the Security Compliance Manager server
The Security Compliance Manager server manages data, which can be an
invaluable source of information for all kinds of intruders. The Security
Compliance Manager database contains a list of IT systems, IP addresses, user
accounts, configuration options, and much more information, which can provide
hints for potential starting points for attacks. Tivoli Security Compliance Manager
provides the following features to secure the Security Compliance Manager
server and its data:

� Secured communication between server and administration console

The communication between server and administration console is secured by
SSL. The administration console verifies the identity of the server based on
the server certificate.

� Secured communication between server and client

The Security Compliance Manager client establishes communication links
with the Security Compliance Manager server based on the server’s SSL
certificate and IP address. Any other communication requests are denied.
This ensures that only the authorized server is able to perform configuration
requests like collector deployment or schedule changes.

� Protecting the database

The DB2 database contains valuable information about the IT infrastructure
and known vulnerabilities. The node hosting Security Compliance Manager’s
DB2 database system should be placed in a trusted security zone.
Additionally, access to the Security Compliance Manager database should be
restricted to the absolute minimum.

Communications between Tivoli Security Compliance Manager components are
secured using 128-bit Secure Sockets Layer (SSL) encryption. The cipher suites
used are RSA_WITH_RC4_128_SHA, RSA_WITH_RC4_128_MD5, and
RSA_WITH_3DES_EDE_CBC_SHA.

922 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Failover support for Security Compliance Manager Server
A new enhancement in Security Compliance Manager version 5.1.1.1 is the
failover support for the Security Compliance Manager server. This new feature
provides functionality that helps to keep the continuity of clients’ data collection
despite a Tivoli Security Compliance Manager server outage. The failover
support provides a possibility to set up secondary Tivoli Security Compliance
Manager servers to handle messages from Tivoli Security Compliance Manager
clients in case of a master server failure or to allow for load balancing of the
network traffic and server processing.

For information on how to set up a slave server please review the Security
Compliance Manager version 5.1.1.1 Release Notes at the following address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itscm.doc_
5.1/TivoliSCM5.1.1%20RN_2.0.pdf

30.2.5 Administration components
Administrators and users use the administration components to centrally manage
all the other components of the Security Compliance Manager infrastructure. The
administration components consist of the Security Compliance Manager
administration console and the command line interface (CLI). The following
sections describe the administration components.

Administration console
The administration console is the graphical user interface (GUI) used to manage
Tivoli Security Compliance Manager servers, clients, collectors, and keystores.
The administration console also manages the data collected by the collectors,
analyzes that data, and generates reports.

The administration console offers functions to perform the following tasks:

� Manage individual client systems (register and unregister clients)

� Manage client groups (add and remove groups, and add and remove systems
to and from groups)

� Manage collectors (install collectors, view status, set values for collector
parameters, and customize schedules)

Attention: In case of master server failure, push clients can communicate
with a slave server; however, pull clients can only communicate with the
master server. Also snapshot creation, administration console, and command
line connections are not available on slave servers.

 Chapter 30. Compliance management with Tivoli Security Compliance Manager 923

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itscm.doc_5.1/TivoliSCM5.1.1%20RN_2.0.pdf

� Manage users (add and remove users, and create and manage user groups
and roles)

� Manage proxy relays (define proxy relays and assign routing paths)

� Manage database tables (create delta tables and set maximum data age)

� Manage policies (create, import, and export policies, assign policies to client
groups, schedule, run, and view snapshots

� Manage reports (define reports and run reports)

� Define and test SQL database queries

� Manage the server (define authorization keys, view server activity, back up
keystores, and manage the database connection)

Command line interface
The command line interface provides an alternative to the administration console
and offers a subset of the functions available with the administration console. The
command line interface enables the administrator to perform operations on a
large number of objects or to automate operations with scripts or batch files. The
command line tools are available on all supported platforms.

Detailed information about how to deploy IBM Tivoli Security Compliance
Manager is in the IBM Redbooks publication Deployment Guide Series: IBM
Tivoli Security Compliance Manager, SG24-6450.

924 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Chapter 31. Tivoli Security Compliance
Manager scenarios

Our earlier discussion of Tivoli Security Compliance Manager has been helpful in
describing the basic elements of architecture for deployment. At this point, we
apply those guidelines to a simple compliance scenario for a fictional
organization with a typical set of requirements and we expand the solution to add
the remediation and Network Admission Control components as the security
requirements of the organization grows.

While host machine configuration and capacity is touched on in this chapter, we
deliberately avoid providing much in the way of specifics. This is because without
appropriate capacity planning activities, which consider simulated or real loads of
the actual application, accurate determinations can be difficult to make. For more
detailed technical information, refer to the IBM Redbooks publication
Deployment Guide Series: IBM Tivoli Security Compliance Manager,
SG24-6450.

31

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 925

31.1 Automated security compliance management
This section provides a discussion of the steps to deploy an automated security
compliance solution with Tivoli Security Compliance Manager.

31.1.1 Company profile
Medvin, Lasser & Jenkins (ML&J) is a major brokerage firm with headquarters
located in the United States.

Recent reports about virus incidents as well as changes in the regulatory
requirements (Sarbanes-Oxley Act), have forced the company to rethink the way
the existing corporate security policies are executed.

Some of the major concerns are:

� The level of compliance to the security controls are currently checked
manually and are susceptible to human error.

� The company is under rising pressure to save costs and the manual work
involved in security compliance processes is costly.

� ML&J need to be able to demonstrate that the IT environment is under control
once the regulatory focus on the operation of IT systems has increased.

� Recent reports show financial losses due to increase of malicious attacks and
the company wants to proactively protect themselves against viruses by
increasing the frequency of compliance checks.

926 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Technology background
ML&J’s current architecture has multiple systems of different vendors using
different technologies. ML&J’s current IT architecture is depicted in Figure 31-1:

Figure 31-1 ML&J’s current IT environment

Initially, ML&J’s wants to deploy Tivoli Security Compliance Manager into the
following three zones before extending the compliance solution to desktops:

� Internet DMZ
The Internet DMZ hosts the systems that are responsible to allow only
authorized traffic into the ML&J domain.

� Production Network
The production network is the inner system network containing the business
applications.

� Management Network
The management network hosts management applications required to
manage the other networks.

The company wants to deploy the compliance solution without significant impact
on their current systems (for example, as few configuration changes as possible,
no downtime, and so on).

Internet DMZInternet Production Zone Intranet

Uncontrolled Controlled Zone Controlled ZoneSecured

Management Zone

mljprod5

LINUX

mljdmz2
Win2000

mljprod4

Win2000

mljman3

WinXP

mljman1

AIX

mljprod5

 Chapter 31. Tivoli Security Compliance Manager scenarios 927

IT infrastructure
The following components are considered highly critical and therefore included in
the scope for compliance checks:

� DB2 databases
� Mail router

Operational plans
Early plans are in the development stage for deployment of antivirus software for
all servers. The compliance solution must support and provide the necessary
checks to this item.

Solution Administrator
After the deployment of the solution, the IT staff receives training for performing
the administrative tasks such as installing Tivoli Security Compliance Manager
client components, creating and configuring policies, installing collectors,
creating and managing reports.

Business requirements
The CIO has provided input about the business drivers for the targeted solution:

� Reduce the window of opportunity (amount of time and number of
opportunities) for an attacker to gain unauthorized access to computer
systems.

� Automatically check the configuration data obtained from target systems
against the security policy.

� Assure and be able to demonstrate the level of compliance of the target
systems in a relatively short time.

� Minimize the number of new hardware systems.

Security design objectives
Based on initial discussions and a security workshop, it has been determined
that the following key technical requirements exist:

� Collecting the security configuration from the target systems on scheduled
intervals.

� Checking the configuration data against a customizable set of values
obtained from customers security policy.

Tip: Only a small team should have access to the Tivoli Security Compliance
Manager Administration GUI because the collected data is considered
confidential.

928 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Ensure the integrity of the transmitted data against attacks and prevent any
falsification of the components.

� Creating a report on the number of target systems with compliance
deviations, reports on the specific deviations per system, and trend reports on
the control compliance.

By deploying this solution we are actually delivering vulnerability management to
the IT staff. They can enforce the security controls and receive reports about the
violations, ensure that consistent policies are implemented on servers and
manage security risks.

Figure 31-2 Vulnerability management

Requirements analysis
Tivoli Security Compliance Manager is an obvious fit for ML&J’s current needs.

To summarize the requirements discussion above, we know the following:

� We need to have the Tivoli Security Compliance Manager covering the
servers in three network zones.

� Reuse existing hardware as much as possible.

� Configure Tivoli Security Compliance Manager to collect the security
configuration from the target systems on scheduled intervals.

� Ensure that the policy in Tivoli Security Compliance Manager is reflecting
ML&J’s security policy.

� Tivoli Security Compliance Manager is able to ensure the integrity of the
transmitted data by using SSL as a transport level security mechanism and
prevent any falsification of the components by cryptographically signing Java
components.

Vulnerability
ManagementMgmt

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
•
• Manage security risks
•

Security Compliance Manager
Vulnerability Management

Vulnerability
Management

- Enforce/report IT security control
- Implement consistent policies
- Manage security risks

 Chapter 31. Tivoli Security Compliance Manager scenarios 929

� Create reports on the number of target systems with compliance deviations,
on the specific deviations per system, and trend reports on the control
compliance.

From this, we can address an initial Tivoli Security Compliance Manager
architecture for ML&J.

Compliance solution architecture
As we know it today, the diagram in Figure 31-1 on page 927 summarizes the
existing IT environment deployed by ML&J. The compliance solution architected
for ML&J has to be integrated with this environment.

We will place the Tivoli Security Compliance Manager in the management
network because it is the most secure zone and the data collected by the tool is
confidential. Security Compliance Manager server will share the same physical
machine with the DB2 database.

The Security Compliance Manager client will be installed on all servers with a
supported operating system. See the supported operating systems in IBM Tivoli
Security Compliance Manager Version 5.1 Installation Guide: Client Component,
GC32-1593.

Due to a security policy that prohibits IT resources to directly communicate from
the Internet DMZ to the management network, the servers in the DMZ cannot be
accessed directly from the management network. Because of this we have to
place a Security Compliance Manager proxy relay in the production network to
establish communication between the Security Compliance Manager server in
the management network and the Security Compliance Manager clients in the
DMZ. We have decided to use the mljprod5 server to be the proxy relay system
based on the available computing resources.

We can see the final design in the Figure 31-3 on page 931.

Tip: It is important to point out that, as the company expands its operations, it
may make sense to split the server and the database onto separate machines.
This task is easy to implement when the time comes.

930 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 31-3 Tivoli Security Compliance Manager deployment for ML&J

The next step requires the system administrator for each server to install the
Security Compliance Manager client. We must test communication between
client and server to ensure that we will be able to collect data from servers.

From the Administration GUI we can now deploy the proxy relay collector to
mljprod5 and configure the access control list (ACL) of the proxy relay collector to
establish the communication between Security Compliance Manager server and
clients in DMZ.

Policies and collectors
After all components have been deployed, we can focus on policies and reports.
It is a key task to configure the policies on the Security Compliance Manager
server to reflect ML&J’s security policy. The DB2 databases and the Mail Router
(running on Linux) are considered critical and must receive the policies first.

A previous analysis indicates that the best time to run collectors on ML&J’s
servers is between 1:00 am and 7:00 am because this is the period with more
resources available on server. This information has to be reflected in the policy
schedules.

Internet DMZInternet Production Zone Intranet

Uncontrolled Controlled Zone Controlled ZoneSecured

Management Zone

ITSCM
Pull Client

LINUX

mljdmz2
ITSCM

Pull Client
Win2000

mljprod4

mljman3

ITC

ITSCM
Admin GUI

WinXP

mljman1

ITSCM
Proxy Relay

AIX

mljprod5

ITSCM
Server

AIX

ITSCM
Database DB2

ITSCM
Push Client

Win2000

 Chapter 31. Tivoli Security Compliance Manager scenarios 931

When a policy is added to a group of clients, the collectors that are part of that
specific policy are automatically distributed to the Security Compliance Manager
client installed on each server member of that group.

At this point, we are ready to schedule snapshots and create reports in the
Security Compliance Manager Administration GUI.

Creating reports with DB2 Alphablox
Alphablox provides a Web application that is used for reporting capabilities. End
users, such as managers and an audit team, can easily access the reports via a
Web site.

The Alphablox server is placed in the same network zone as the Security
Compliance Manager server. ML&J plans to consolidate the reporting
infrastructure and use the Alphablox server for all kinds of security reports,
including security compliance reports, risk management reports, user
revalidation reports, and many more.

31.1.2 Summary
In the previous sections we have illustrated the thought process involved in
developing a typical Tivoli Security Compliance Manager solution architecture.
With this as a base, we can easily extend the architecture to add additional
capabilities and capacity, as we will see in later sections.

In the next section we will expand the compliance solution to workstations and
add a remediation component.

31.2 Compliance and remediation
In the first phase of the project the major concern was to ensure that the servers
are compliant. In the second phase the focus shifts to the desktop compliance
with a solution not only to report on policy deviations but to remediate
non-compliant machines.

31.2.1 Further evolution
After financial losses due to incidents with malicious software in the intranet,
Medvin, Lasser & Jenkins (ML&J) has decided to expand the compliance
solution to their desktops and add a remediation solution.

We now face the added design objectives of a larger environment and integration
with IBM Tivoli Configuration Manager.

932 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Business requirements
The CIO emphasizes the following business requirements for this expansion:

� ML&J has experienced loss of productivity caused by the introduction of
viruses and worms, the spread of which must be stemmed by limiting
production network access to systems that comply with the ML&J security
policy, such as weekly full-system scans.

� A method to ensure that basic safeguards are employed at the workstation
level, such as password quality standards and detection of unauthorized
Windows services.

� The utilized method must not heavily consume help desk and system
administrator resources.

� Ensure the required hot fixes are installed on all workstations.

� The solution must include a way to remediate non-compliant systems and be
built largely upon existing infrastructure to help keep costs at a minimum.

� A minimally intrusive method to institute and enforce emergency change
procedures for the company security posture-policy.

� The solution must be able to reverse changes users often perform in local
workstations security settings, such as running unauthorized services, that
make their workstation inherently less secure.

Security design objectives
The major design objectives of these business requirements target two areas as
illustrated in Figure 31-4 on page 934.

� Compliance

Provide a method to ensure that desktops are configured according to the
security policy of the company and have all required hot fixes installed.

� Remediation

Provide a method to correct the violations found in the compliance phase and
install required hotfixes.

By deploying this solution we are delivering vulnerability management and
remediation to the IT staff, adding a new layer of control in the environment.

 Chapter 31. Tivoli Security Compliance Manager scenarios 933

Figure 31-4 Vulnerability management and remediation

31.2.2 Compliance solution architecture
We will place the Tivoli Security Compliance Manager in the management zone
and set the firewall rules to permit the communication between server and clients
in the specific port used by clients to connect to Security Compliance Manager
server. Since this solution is encompassing a lot more clients compared to the
previous section, we will install the Security Compliance Manager server on one
machine and the database on another to keep the applications from competing
for system resources.

Since we have more clients in this scenario and we want to save as many
resources as possible on the server, the clients will be installed as push clients.
The push type requires less resources on the Security Compliance Manager
server and once the firewall rules are changed to permit traffic between Security
Compliance Manager clients and server, there is no restriction forcing the use of
pull clients.

The next steps are to install Security Compliance Manager clients, configure
policies to reflect the ML&J’s security policies, and create and schedule reports.

Figure 31-5 on page 935 illustrates the final compliance architecture.

Remediation

Tivoli Provisioning Mgr ADDS:
Workflows and Remediation

• Fix noncompliant systems
• Distribute patches and software
• Rich workflows

Tivoli Provisioning Mgr ADDS:
Workflows and Remediation

• Fix noncompliant systems
• Distribute patches and software
• Rich workflows

Remediation

Tivoli Provisioning Mgr ADDS:
Workflows and Remediation
Fix noncompliant systems

• Distribute patches and software
• Rich workflows

Tivoli Configuration Manager
Remediation

Vulnerability
Mgmt

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
• Implement consistent policies
• Manage security risks
•

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
• Implement consistent policies
• Manage security risks
•

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
• Implement consistent policies
• Manage security risks
•

Security Compliance Manager
Vulnerability Management

Vulnerability
Management

- Enforce/report IT security control
- Implement consistent policies
- Manage security risks

- Fix non-compliant systems
- Distribute patches and softwares

934 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure 31-5 Tivoli Security Compliance Manager deployment for ML&J

31.2.3 Tivoli Configuration Manager
IBM Tivoli Configuration Manager has a software distribution capability that
enables you to rapidly and efficiently deploy complex mission-critical applications
to multiple locations from a central point. After systems have been deployed, the
inventory module lets you automatically scan for and collect hardware and
software configuration information from computer systems across your
enterprise. Tivoli Configuration Manager also has the ability to enforce
adherence to your company’s policies by changing system configurations as
needed to ensure compliance. Tivoli Configuration Manager includes Microsoft
software patch automation capabilities designed to save time, lower costs, and
improve quality.

Internet DMZInternet Production Zone Intranet

Uncontrolled Controlled Zone Controlled ZoneSecured

Management
Zone
TSCM
Server

AIX

TSCM
Database DB2

TSCM Push
Client

TSCM Push
Client

TSCM Push
Client

TSCM Push
Client

TSCM: Tivoli Security Compliance Manager

 Chapter 31. Tivoli Security Compliance Manager scenarios 935

Tivoli Configuration Manager can automatically:

� Obtain, package, distribute, and install Microsoft software patches needed by
client systems in distributed environments.

� Obtain software patch signature files and distribute them to client machines;
scan clients, determine missing patches, package patches, build patch
deployment plans, and distribute required patches to clients. Then rescan the
client machines to verify successful installation and update the inventory.

� Distribute client/server applications, applications for desktops, mobile
devices, and pervasive devices across multi-platform networks.

� Update existing software with newer versions.

� Synchronize software on distributed systems.

The patch automation and distribution software capabilities can help IT
managers address the security concern of how to effectively apply patches for
Microsoft operating systems, Internet Explorer, Media Player, and keep the
desired configuration in each software installed in the machine. In addition to
lowering costs through the use of automation to save time and labor, it can also
reduce the time needed to close security vulnerabilities.

For detailed information about how to deploy Tivoli Configuration Manager, see
Deployment Guide Series: IBM Tivoli Configuration Manager, SG24-6454.

936 Enterprise Security Architecture Using IBM Tivoli Security Solutions

31.2.4 Remediation solution architecture
We will now introduce the remediation facility. For the remediation solution we will
use the Tivoli Configuration Manager. Figure 31-6 shows the physical location of
the components.

Figure 31-6 Remediation

Internet DMZInternet Production Zone Intranet

Uncontrolled Controlled Zone Controlled ZoneSecured

Management
Zone
TSCM
Server

AIX

ITSCM
Database DB2

Tivoli
Configuration

Manager

TSCM Push
Client /

Compliance
GUI

TSCM Push
Client /

Compliance
GUI

TSCM Push
Client /

Compliance
GUI

TSCM Push
Client /

Compliance
GUI

TSCM: Tivoli Security Compliance Manager

 Chapter 31. Tivoli Security Compliance Manager scenarios 937

Figure 31-7 shows the detailed architecture, the components installed on the
workstation, and the workflow followed by Tivoli Security Compliance Manager
and Tivoli Configuration Manager to ensure compliance and remediation.

Figure 31-7 Detailed compliance and remediation architecture

The Security Compliance Manager Compliance GUI enables the users to take
the necessary actions, such as installing the required hot fix, to bring the
workstation back into compliance.

In the Security Compliance Manager Compliance GUI the user can see
non-compliant items in their system and then press a button in the remediation
handler to fix the problem. This action informs the Tivoli Configuration Manager
Based Remediation Handler about the configurations the users want to fix or,
when the problem is a missing hot fix, which packages must be automatically
copied and installed from the Tivoli Configuration Manager.

Tivoli Security Compliance Manager can be configured to warn the
non-compliant workstations after a period of time, reminding users on their actual
status and proposing remediation. Security Compliance Manager can also
centrally be used to create reports on workstation compliance.

The remediation solution empowers users to correct compliance violations
without contacting the help desk or system administrators. It also allows the
users to install required hot fixes, the major requirement for this solution.

Managed Computer
(Windows 2000, XP)

TSCM Client TSCM Server
Policy

Definition
Policy

InstancePosture Collector

Dispatcher

TCM based
Remediation Handler Download

Servlet

TCM Server

SPB package
management tools

SPB
Repository

Servers for TCM

SPB
Cache

Source
Repository

TCM
disc. CLI

Local
Remediation

- Patches
- Hot fixes
- Virus Signatures
- etc.

Download manually

Policy
parameters may

be added for
TCM support

TCM Web Interface Svr

HTTP
script,

template file

config
file

User

TSCM Compliance
GUI

TSCM: Tivoli Security Compliance Manager
TCM: Tivoli Configuration Manager

938 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Compliance enforcement
The Security Compliance Manager Compliance GUI cannot enforce the users to
correct the violations found in their systems; however, the IT administrator can
use the Tivoli Configuration Manager to enforce the compliance.

The administrator defines a workstation reference model, Tivoli Configuration
Manager determines the state of the workstations and automatically generates
an activity plan to install or change what is required on each workstation. The
activity plan containing those activities that are needed to maintain the preferred
configuration of the target. Once the activity plan is created, the administrator
submits it for running.

This activity can be scheduled to run at a desired frequency, in order to
periodically enforce the compliance of all workstations.

31.2.5 Summary
In this section we described how to expand the solution we have introduced in
the previous section and add a remediation component.

This solution can also be deployed using Tivoli Provisioning Manager. For further
details on the deployment of the remediation solution with Tivoli Provisioning
Manager, see the IBM Redbooks publication Building a Network Access Control
Solution with IBM Tivoli and Cisco Systems, SG24-6678.

Now that we have the compliance and remediation solution for workstations, in
the next section we will enhance security by adding the Network Admission
Control component.

31.3 Compliance, remediation, and Network Admission
Control scenario

In this chapter we continue the discussion from the previous section with our
customer ML&J. In the current project, ML&J wants to integrate their existing
compliance and remediation infrastructure with a Network Admission Control
solution based on workstation posture-compliance status information.

 Chapter 31. Tivoli Security Compliance Manager scenarios 939

31.3.1 Further evolution
In order to avoid malicious software and security exposure, ML&J has decided to
deny access to the network to non-compliant workstations.

They decided to integrate the current compliance and remediation solution with
the Network Admission Control to ensure only compliant workstations can
access the intranet zone.

Business requirements
The CIO stated the following business requirements:

� Mobile worker remote access must be maintained; at the same time,
increased controls must be put in place to reduce risks to the corporate
infrastructure.

� Visitors must have access only to Internet, they cannot access the ML&J’s
intranet zone.

We find that the following pain points are the requirement drivers:

� Mobile workers present a challenge for the IT staff because of a general lack
of ability to ensure that company computer image and update policies are
followed.

Mobile users often move back and forth from client-networks to the ML&J
network, thereby increasing the exposure risk.

� Visitors are not being automatically identified and moved out of the intranet
zone.

� Locating and isolating non-compliant systems consumes time and resources.

As we examine the business requirements and the pain points, we find that they
can be condensed into two simple functional requirements. The first functional
requirement is the restriction of network access for non-compliant workstations.
The second functional requirement provides a means of remediation for eligible
workstations.

Utilizing the existing Tivoli Security Compliance Manager server and Tivoli
Configuration Manager infrastructures minimizes incremental equipment and
training costs. Note that the Network Admission Control methodology is being
deployed only to workstations.

Note: You might not want to extend this solution to servers, once that moving
servers out of their network can cause productivity losses.

940 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Security design objectives
It has been determined that the following technical requirements exist:

� Provide a report to users to be aware of which items in their systems are
non-compliant.

� Deny access to the intranet zone to non-compliant users and move them to a
quarantine network.

� Provide in the quarantine network the tools and instructions to fix the
non-compliant items and bring the workstation back to compliance.

� Automatically allow the compliant systems access to the intranet zone.

As this is a major operational shift, the introduction of Network Admission Control
technology will not be transparent to the user. Therefore, the security goal is to
provide high-quality security without unnecessarily inconveniencing users.

After achieving these objectives we will have a complete solution in place that
addresses vulnerability management, remediation, and network access control
as we can see in Figure 31-8.

Figure 31-8 Integrated vulnerability management

31.3.2 Solution architecture
A Network Access Control (NAC) is an industry-wide collaboration sponsored by
Cisco Systems1. An NAC implementation requires a multivendor collection of
physical and logical components.

Blocking

Cisco NAC
Network Security and Management

Blocking

Remediation

Tivoli Provisioning Mgr ADDS:
Workflows and Remediation

• Fix noncompliant systems
• Distribute patches and software
• Rich workflows

Tivoli Provisioning Mgr ADDS:
Workflows and Remediation

• Fix noncompliant systems
• Distribute patches and software
• Rich workflows

Remediation

Tivoli Provisioning Mgr ADDS:
Workflows and Remediation
Fix noncompliant systems

• Distribute patches and software
• Rich workflows

Tivoli Configuration Manager
Remediation

Vulnerability
Mgmt

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
• Implement consistent policies
• Manage security risks
•

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
• Implement consistent policies
• Manage security risks
•

Security Compliance Mgr
Vulnerability Management

• Enforce/report IT security control
• Implement consistent policies
• Manage security risks
•

Security Compliance Manager
Vulnerability Management

Vulnerability
Management

- Enforce/report IT security control
- Implement consistent policies
- Manage security risks

- Fix noncompliant systems
- Distribute patches and softwares

- Block noncompliance machines
- Redirect to restricted LAN

1 Refer to Cisco Web site for the latest list of supported hardware and corresponding software for the NAC solution at
http://www.cisco.com/go/nac

 Chapter 31. Tivoli Security Compliance Manager scenarios 941

http://www.cisco.com/go/nac
http://www.cisco.com/go/nac
http://www.cisco.com/go/nac

As referenced by Figure 31-9, the major Cisco components include a client-side
Cisco Trust Agent, a Cisco Network Access Device (NAD) running an
NAC-enabled version of Cisco’s IOS, and a Cisco Secure Access Control Server
(ACS) running Version 3.3 or later. The major IBM components of the integrated
solution include the Tivoli Security Compliance Manager client/server component
and the Tivoli Configuration Manager or Tivoli Provisioning Manager remediation
client/server code.

Figure 31-9 Component subsystems - Total solution

In Figure 31-9 we can see that the total solution is comprised of three major
subsystems: Network Admission Control, Compliance, and Remediation.

ML&J already have the Compliance and Remediation subsystem in place and
configured. In this section we focus on extending the infrastructure to allow for
posture policy checks at the workstation level adding the Network Admission
Control subsystem.

In logical terms, the Network Admission Control and Compliance subsystem can
be spanned into a network admission policy. This is comprised of the
establishment and enforcement of the compliance criteria.

We need to use a policy in Tivoli Security Compliance Manager server that
contains the posture collectors that are used to make client-side compliance

Compliance
subsystem

Remediation
subsystem

Network Admission
Control subsystem

Tivoli Security
Compliance

Manager Client

Tivoli Security
Compliance

Manager
Server

Tivoli
Configuration

Manager
Remediation

Handler

Tivoli
Configuration

Manager
Server

Cisco Trust
Agent

Cisco Network
Access Device

Cisco Secure
Access Control

Server

942 Enterprise Security Architecture Using IBM Tivoli Security Solutions

decisions. This policy is imported into the Tivoli Security Compliance Manager
environment and modified to meet ML&J’s requirements.

After configuration of the policy in Tivoli Security Compliance Manager we must
configure the Cisco Secure Access Control Server policy to use the Tivoli
Security Compliance Manager agent as a mandatory credential type in the NAC
database.

NAC database An NAC database instance consists of a set of mandatory
credential types and a set of policies.

Mandatory credential types
Cisco Secure ACS uses mandatory credential types to
determine whether an NAC database instance should be
used to evaluate a posture validation request. If the
request includes each of the specified credential types,
then Cisco Secure ACS uses the NAC database to
evaluate the request.

In our scenario, we list the Cisco Trust Agent and the Tivoli Security Compliance
Manager client as our mandatory credential types. From the Cisco Trust Agent
credential we extract the operating system type. Thus in all, three pieces of
information are used to make the access decision:

� The operation system type
� The Tivoli Security Compliance Manager policy version
� The Tivoli Security Compliance Manager posture policy violation count

When the Tivoli Security Compliance Manager posture policy indicates the
presence of violations, the workstation will be logically moved to a quarantine
network where quarantined client workstations can only connect to a remediation
server.

After the necessary corrections have been made, the workstation is
automatically allowed access the intranet zone again.

The flow is summarized in Figure 31-10 on page 944 and explained in the list
that follows.

 Chapter 31. Tivoli Security Compliance Manager scenarios 943

Figure 31-10 Network Access Control and remediation solution

1. The workstation attempts to access the intranet zone.

2. Cisco ACS communicates with Cisco Trust Agent installed on the workstation
and challenges the workstation for compliance posture.
The Security Compliance Manager client determines that there are policy
violations on the local device.

3. Access is denied and the workstation is sent to a quarantine network to fix
non-compliance.

4. User requests remediation actions from the Security Compliance Manager
Compliance GUI.

5. Security Compliance Manager Compliance GUI initiates remediation and
updates from Tivoli Configuration Manager server.

6. Security Compliance Manager Compliance GUI requests a new scan from
Cisco ACS.

7. The workstation is compliant, the access to intranet is allowed.

In the situation of a visitor workstation, where there is no Cisco Trust Agent to
answer to Cisco ACS or a Cisco Trust Agent with a different certificate not
recognized by the Cisco ACS in ML&J’s environment, the system can be
automatically moved to a network that grant access only to an Internet zone.

TSCM Client &
Cisco Trust Agent

Intranet

TCM
Server

Remediation
Request &
Updates

Remediation
Actions

Attempt Allow

Deny

Quarantine
Notification

Cisco Router &
ACS Server

TSCM
Compliance

GUI

Rescan
request

1

3

4

5

6

7

2

944 Enterprise Security Architecture Using IBM Tivoli Security Solutions

This guarantees that no visitor can access the intranet zone, with potential
confidential content.

31.3.3 Summary
In this section we described how the business objectives are combined with the
pain points to drive a set of functional requirements.

Compliance-based Network Admission Control is an emerging technology that
brings with it a huge paradigm shift in network security management.

For further details in the deployment of the Network Admission Control and
remediation solution, see the IBM Redbooks Publication Building a Network
Access Control Solution with IBM Tivoli and Cisco Systems, SG24-6678.

 Chapter 31. Tivoli Security Compliance Manager scenarios 945

946 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Appendix A. Method for Architecting
Secure Solutions

This appendix introduces a new Method for Architecting Secure Solutions
(MASS) that will be used by IBM Global Service employees in future security
architecture engagements. It helps understand and categorize security-related
problems and discussions in today’s e-business-driven enterprise IT
infrastructures. This discussion was originally posted in a special edition of the
IBM Systems Journal on End-to-End Security, Vol. 40, No. 31. We also present
an example of using MASS in “Global MASS: An example” on page 979.

The task of developing IT solutions that consistently and effectively apply security
principles has many challenges, including the complexity of integrating the
specified security functions within the several underlying component
architectures found in computing systems, the difficulty in developing a
comprehensive set of baseline requirements for security, and a lack of widely
accepted security design methods. With the formalization of security evaluation
criteria into an international standard known as Common Criteria, one of the
barriers to a common approach for developing extensible IT security
architectures has been lowered; however, more work remains. This appendix
describes a systematic approach for defining, modeling, and documenting

A

1 Copyright 2001 International Business Machines Corporation. Reprinted with permission from IBM Systems Journal,
Vol. 40, No. 3.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 947

security functions within a structured design process in order to facilitate greater
trust in the operation of resulting IT solutions.

Trust is the measure of confidence that can be placed on the predictable
occurrence of an anticipated event or an expected outcome of a process or
activity.

For business activities that rely on IT, trust is dependent on both the nature of the
agreement between the participants and the correct and reliable operation of the
IT solution. The reliance on computerized processes for personal, business,
governmental, and legal functions is evolving into a dependency and a
presumption (not to be confused with trust) that the processes, and the IT
systems within which they execute, will function without flaw. It is reasonable to
expect that legal findings relative to the correct and reliable operation of IT
solutions will be the basis for whether one party is liable for the damages suffered
by another party as a result of a computerized operation.

Trustworthiness of IT solutions can be affected by many factors found throughout
the lifecycle of solution definition, design, deployment, and operation. The
trustworthiness of design of IT solutions can be affected by the clarity and
completeness with which the requirements are expressed by stakeholders and
interpreted by solution designers. The trustworthiness of operation of IT solutions
can be affected by the trustworthiness of the components and processes upon
which they are built, the accuracy with which the design is implemented, and the
way in which the resulting computing systems are operated and maintained. The
trustworthiness of operational IT solutions can also be affected by the
environments in which the solutions are positioned, by individuals who access
them, and by events that occur during their operational lifetime.

Given that IT components will most likely continue to have flaws, that unexpected
events will most likely occur, and that individuals will most likely continue to seek
to interfere with the operation of computing solutions and the environmental
infrastructure upon which the solutions rely, what can be done to instill a
sufficient measure of confidence (that is, trust) in the correct and reliable
operation of a given information technology solution?

One realistic expectation is that designers and integrators of IT solutions will
enlist all reasonable measures to effect the correct and reliable operation of IT
solutions throughout the design, development, and deployment phases of the
solution lifecycle.

While the responsibility for considering all reasonable measures is shared
among all individuals involved in the design, development, and deployment of
every IT solution, the role of anticipating the perils that the IT solution may face,
and ensuring that the business risks of IT solution operation are mitigated, is
generally the focus of IT security professionals.

948 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Information technology security is a discipline that until recently was centered
within the military, national security organizations, and the banking industry. With
the growth of the Internet as a core networking and cooperative computing
infrastructure, the need for, and the value of, IT security expertise has increased
dramatically. The position of today's security architect closely parallels the role of
the network manager or operator of the early 1980s. The similarities include the
need to meet high expectations and service levels, a limited set of tools and
techniques, low visibility of the electronic activities within the operational
environment, plus the challenge of timely recognition and response to events and
peril. In the mid-1980s, the development of a systems management discipline
provided a focus, a method, and a tool set for standardized approaches to
system-wide design, operation, and management.

To date, the application of IT security countermeasures is generally limited to
addressing specific vulnerabilities, such as applying network and systems
management processes, hardening operating systems for publicly available
servers, applying and monitoring intrusion detection systems, configuring and
operating digital certificate servers, and installing and configuring firewalls.

Based on the evolution of destructive computer codes and viruses, the repeated
breaches of sensitive computer systems, and recurring incidents of compromise
of private information stored on networked computing systems, it is reasonable to
conclude that the effectiveness of security measures in computing solutions
needs to be improved. Recently, security experts from government and industry
expressed the need for a more comprehensive approach to describing security
requirements and designing secure solutions.

This appendix documents the findings and recommendations of a project for
which the initial objective was to develop training materials for a recently defined
technical discipline, within IBM Global Services, for security architects. During
the project, early attempts to organize and present the prior art dealing with
information technology security produced incomplete and unsatisfactory results,
leading to the conclusion that a more fundamental analysis was needed. The
refocused analysis produced a thought-provoking proposal for articulating,
documenting, and synthesizing security within information technology solutions.

Although the project objectives were met, the by-products are different from
those first envisioned. The observations and conclusions from the project are
summarized within this appendix, including an examination of the basic
motivations for implementing security, a review and recategorization of commonly
invoked security standards, an analysis of the fundamental elements of security
architecture and its design, and some first attempts to render architectural
representations.

 Appendix A. Method for Architecting Secure Solutions 949

Problem statement
A systematic approach for applying security throughout information technology
solutions is necessary in order to ensure that all reasonable measures are
considered by designers, and that the resulting computing systems will function
and can be operated in a correct and reliable manner.

In IBM Global Services, the requirement for a method for designing secure
solutions is driven from several perspectives:

� There is a need to grow the community of IT architects with a shared security
focus.

� There is a need to create synergy among the several technical disciplines
within the IT architect profession relative to security issues.

� There is a need to develop consistent designs, because many businesses
and organizations have similar security and privacy compliance requirements
based on statute, regulation, and industry affiliation, and many enterprises
are multinational, with geographically diverse installations operating under
similar security policies and practices.

To be effective, the resulting method should use existing security paradigms,
integrate with other information technology architectures, and work with today's
technologies.

A logical and systematic technique for designing secure solutions has potential
value beyond IBM Global Services:

� To individuals, by fostering trust within computing environments that otherwise
would be suspect.

� To information technology professionals, by promoting rigor within an
emerging discipline of computing science.

� To enterprises, by providing a technical standard with which the effectiveness
of information technology designs, and designers, can be evaluated.

Analysis
Information technology architects rely on a wide range of techniques, tools, and
reference materials in the solution design process. The results of a design
activity may include an operational computing system or a set of documents that
describe the system to be constructed from one or more viewpoints and at
different levels of granularity. The documents provide a visualization of the
system architecture.

950 Enterprise Security Architecture Using IBM Tivoli Security Solutions

To arrive at a system architecture, architects may use personal experience, or
they may rely upon documented systematic procedures or methods. In addition
to methods, architects prefer to prioritize work and employ data collection
techniques to define the problem space and the solution space. Reference
materials can include a taxonomy of the problem space, a catalog of solution
requirements, and documented models, patterns, or integrated solution
frameworks. In general, as the definition of a given problem space matures, the
taxonomy of the solution requirements stabilizes. This leads to well-defined
reference models, proven solution frameworks, and mature solution design
methods.

IT security architecture fits this model for limited problem spaces such as
securing a network perimeter, where a set of solution requirements can be
defined. A solution framework can be constructed for an enterprise firewall, and a
solution architecture can be documented using known reference models for
demilitarized zones. (Refer to Chapter 2, “Common security architecture and
network models” on page 19.) In general, IT security does not fit this model for
the following reasons:

� The security problem space has not stabilized in that the number and type of
threats continue to grow and change.

� Existing security solution frameworks take a limited view of the problem
space, as with firewalls and network-level security.

� Methods for creating security solution architectures are generally confined to
the defined solution frameworks. For ill-defined problem spaces such as IT
security, the path to maturity of models and methods requires a different
approach.

Security-specific taxonomies, models, and methods
ISO (International Organization for Standardization) 7498-2[6] is a widely
referenced document associated with IT security solution design. Its purpose is
to extend the applicability of the seven-layer OSI (Open Systems
Interconnection) system model to cover secure communication between
systems. Section 5 of this document describes a set of security services and
mechanisms that could be invoked at the appropriate layer within the OSI system
model, in appropriate combinations, to satisfy security policy requirements.
Section 8 documents the need for ongoing management of OSI security services
and mechanisms to include management of cryptographic functions, network
traffic padding, and event handling.

Many security practitioners use the OSI security services (authentication, access
control, data confidentiality, data integrity, and nonrepudiation) as the complete
taxonomy for the security requirements for IT solutions. However, the preamble
of ISO 7498-2 specifically states that “... OSI security is not concerned with

 Appendix A. Method for Architecting Secure Solutions 951

security measures needed in end systems, installations, and organizations,
except where these have implications on the choice and position of security
services visible in OSI. These latter aspects of security may be standardized but
not within the scope of OSI Recommendations.”

Common Criteria
Common Criteria provide a taxonomy for evaluating security functionality through
a set of functional and assurance requirements. The Common Criteria include 11
functional classes of requirements:

� Security audit
� Communication
� Cryptographic support
� User data protection
� Identification and authentication
� Management of security functions
� Privacy
� Protection of security functions
� Resource utilization
� Component access
� Trusted path or channel

These 11 functional classes are further divided into 66 families, each containing
a number of component criteria. There are approximately 130 component criteria
currently documented, with the recognition that designers may add additional
component criteria to a specific design. There is a formal process for adopting
component criteria through the Common Criteria administrative body, which can
be found at:

http://csrc.nist.gov/cc/

Security evaluation criteria: Agencies and standards bodies within
governments of several nations have developed evaluation criteria for security
within computing technology. In the United States, the document has the
designation “Trusted Computer System Evaluation Criteria,” or TCSEC. The
European Commission has published the Information Technology Security
Evaluation Criteria, also known as ITSEC, and the Canadian government has
published the Canadian Trusted Computer Product Evaluation Criteria, or
CTCPEC. In 1996, these initiatives were officially combined into a document
known as the Common Criteria, or CC. In 1999, this document was approved
as a standard by the International Organization for Standardization. This
initiative opens the way to worldwide mutual recognition of product evaluation
results.

952 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://csrc.nist.gov/cc/

Governments and industry groups are developing functional descriptions for
security hardware and software using the Common Criteria. These documents,
known as protection profiles, describe groupings of security functions that are
appropriate for a given security component or technology. The underlying
motivations for developing protection profiles include incentives to vendors to
deliver standard functionality within security products and reduction of risk in
information technology procurement. In concert with the work to define protection
profiles, manufacturers of security-related computer software and hardware
components are creating documentation that explains the security functionality of
their products in relation to accepted protection profiles. These documents are
called “security targets.” Manufacturers can submit their products and security
targets to independently licensed testing facilities for evaluation in order to
receive compliance certificates.

Common Criteria: a taxonomy for requirements and solutions
The security requirements defined within the Common Criteria have international
support as “best practices.” Common Criteria are intended as a standard for
evaluation of security functionality in products. They have limitations in describing
end-to-end security; because the functional requirements apply to individual
products, their use in a complex IT solution is not intuitive. Protection profiles aid
in the description of solution frameworks, although each protection profile is
limited in scope to the specification of functions to be found in a single hardware
or software product.

Common Criteria: a reference model
The Common Criteria introduce a few architectural constructs: the target of
evaluation, or TOE, represents the component under design, and the TOE
security functions document, or TSF, represents that portion of the TOE
responsible for security. Under Common Criteria, the system or component
under consideration is a “black box”; it exhibits some security functionality and
some protection mechanisms for the embedded security functions.

Summary of analysis
For well-understood problem spaces, methods document the prior work and
provide best practices for future analysis. For changing problem spaces such as
IT security, methods can only postulate a consistent frame of reference for
practitioners in order to encourage the development of future best practices. With
time and experience, the methods and models associated with IT security will
mature.

The Common Criteria document has important value to the security community,
given its history and acceptance as a standard for security requirements
definition, and its linkage to available security technologies through documented

 Appendix A. Method for Architecting Secure Solutions 953

protection profiles and security targets. Common Criteria do not provide all of the
guidance and reference materials needed for security design.

To develop an extensible method for designing secure solutions, additional work
is required:

1. A system model that is representative of the functional aspects of security
within complex solutions.

2. A systematic approach for creating security architectures based on the
Common Criteria requirements taxonomy and the corresponding security
system model.

System model for security
Eberhardt Rechtin2 suggests an approach for developing an architecture,
differentiating between the system (what is built), the model (a description of the
system to be built), the system architecture (the structure of the system), and the
overall architecture (an inclusive set consisting of the system architecture, its
function, the environment within which it will live, and the process used to build
and operate it).

For the purposes of this project, the type of IT solutions addressed is consistent
with a networked information system (NIS). Furthermore, the overall architecture
is represented by the security architecture found within an NIS, and the security
architecture is represented by the structure of a security system model. With a
generalized system model for security in an NIS environment, architects could
create instances of the system model, based upon detailed functional and risk
management requirements.

Rechtin outlines the steps for creating a model as follows:

1. Aggregating closely related functions

2. Partitioning or reducing the model into its parts

3. Fitting or integrating components and subsystems together into a functioning
system

The security system model will be represented by the aggregation of security
functions, expressed in terms of subsystems and how the subsystems interact.
The security-related functions within an NIS can be described as a coordinated
set of processes that are distributed throughout the computing environment. The
notion of distributed security systems, coordinated by design and deployment,
meets the intuitive expectation that security within an NIS should be considered

2 E. Rechtin, Systems Architecting: Creating and Building Complex Systems, Prentice Hall, 1991.

954 Enterprise Security Architecture Using IBM Tivoli Security Solutions

pervasive. In an NIS environment, security subsystems must be considered as
abstract constructs in order to follow Rechtin's definition.

For this project, Common Criteria were considered to be the description of the
complete function of the security system model. The classes and families within
the Common Criteria represent an aggregation of requirements; however, after
careful review, it was determined that the class and family structures defined
within Common Criteria do not lend themselves to be used as part of a taxonomy
for pervasive security. The aggregation is more reflective of abstract security
themes, such as cryptographic operations and data protection, rather than
security in the context of IT operational function. To suit the objective of this
project, the Common Criteria functional criteria were re-examined and
reaggregated, removing the class and family structures. An analysis of the 130
component-level requirements in relation to their function within an NIS solution
suggests a partitioning into five operational categories:

� Audit
� Access control
� Flow control
� Identity and credentials
� Solution integrity

A summary mapping of CC classes to functional categories is provided in
Table A-1.

Table A-1 Placing Common Criteria classes in functional categories

While redundancy is apparent at the class level, there is only a small overlap at
the family level of the hierarchy defined within Common Criteria and below. Much

Functional category Common Criteria functional class

Audit Audit, component protection, and resource utilization

Access control Data protection, component protection, security
management, component access, cryptographic support,
identification and authentication, communication, and
trusted path/channel

Flow control Communication, cryptographic support, data protection,
component protection, trusted path/channel, and privacy

Identity/credentials Cryptographic support, data protection, component
protection, identification and authentication, component
access, security management, and trusted path/channel

Solution integrity Cryptographic support, data protection, component
protection, resource utilization, and security management

 Appendix A. Method for Architecting Secure Solutions 955

of the overlap represents the intersection of function and interdependency
among the categories.

Security subsystems
The component-level guidance of Common Criteria documents contains rules,
decision criteria, functions, actions, and mechanisms. This structure supports the
assertion that the five categories described in Table A-1 on page 955 represent a
set of interrelated processes, or subsystems, for security. The notion of a security
subsystem has been proposed previously; the authors of Trust in Cyberspace3
described functions within operating system access control components as
belonging to a decision subsystem or an enforcement subsystem. The five
interrelated security subsystems proposed here and depicted in Figure A-1
expand the operating system-based concept and suggest that function and
interdependency of security-related functions, beyond centralized access control,
can be modeled as well.

Figure A-1 IT security processes and subsystems

A brief description of each of the five security subsystems, along with further
detail of the aggregation of CC component-level criteria within each subsystem,

3 Committee on Information Systems Trustworthiness, National Research Council, Trust in Cyberspace, National
Academy Press, 1999.

956 Enterprise Security Architecture Using IBM Tivoli Security Solutions

is now provided. The subsystem diagrams are represented as parts of a
closed-loop control system showing the internal processes that each performs,
along with its external interfaces. In this representation, each subsystem consists
of a managing process with a default idle state and several execution paths that
can be invoked either by an asynchronous request signaled by another security
subsystem or by a synchronized request from a nonsecurity process.
Complementary representations composed of component views and interaction
diagrams for the subsystems are being developed.

Security audit subsystem
The purpose of the security audit system in an IT solution is to address the data
collection, analysis, and archival requirements of a computing solution in support
of meeting the standards of proof required by the IT environment. A security audit
subsystem is responsible for capturing, analyzing, reporting, archiving, and
retrieving records of events and conditions within a computing solution. This
subsystem can be a discrete set of components acting alone or a coordinated set
of mechanisms among the several components in the solution. Security audit
analysis and reporting can include real-time review, as implemented in intrusion
detection components, or after-the-fact review, as associated with forensic
analysis in defense of repudiation claims. A security audit subsystem may rely on
other security subsystems in order to manage access to audit-related systems,
processes, and data; control the integrity and flow of audit information; and
manage the privacy of audit data. From Common Criteria, security requirements
for an audit subsystem would include:

� Collection of security audit data, including capture of the appropriate data,
trusted transfer of audit data, and synchronization of chronologies

� Protection of security audit data, including use of time stamps, signing events,
and storage integrity to prevent loss of data

� Analysis of security audit data, including review, anomaly detection, violation
analysis, and attack analysis using simple heuristics or complex heuristics

� Alarms for loss thresholds, warning conditions, and critical events

The closed loop process for a security audit subsystem is represented in
Figure A-2 on page 958.

 Appendix A. Method for Architecting Secure Solutions 957

Figure A-2 Security audit subsystem processes

Solution integrity subsystem
The purpose of the solution integrity subsystem in an IT solution is to address the
requirement for reliable and correct operation of a computing solution in support
of meeting the legal and technical standard for its processes. A solution integrity
subsystem can be a discrete set of components or a coordinated set of
mechanisms among the several components in the solution. The solution
integrity subsystem may rely on the audit subsystem to provide real-time review
and alert of attacks, outages, or degraded operations, or after-the-fact reporting
in support of capacity and performance analysis. The solution integrity
subsystem may also rely on the other subsystems to control access and flow.
From Common Criteria, the focus of a solution integrity subsystem could include:

� Integrity and reliability of resources

� Physical protections for data objects, such as cryptographic keys, and
physical components, such as cabling, hardware, and so on.

� Continued operations including fault tolerance, failure recovery, and
self-testing

� Storage mechanisms: cryptography and hardware security modules

958 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� Accurate time source for time measurement and time stamps

� Prioritization of service via resource allocation or quotas

� Functional isolation using domain separation or a reference monitor

� Alarms and actions when physical or passive attack is detected

Figure A-3 illustrates the closed loop process for a solution integrity subsystem.

Figure A-3 Integrity subsystem processes

Access control subsystem
The purpose of an access control subsystem in an IT solution is to enforce
security policies by gating access to, and execution of, processes and services
within a computing solution via identification, authentication, and authorization
processes, along with security mechanisms that use credentials and attributes.
The credentials and attributes used by the access control subsystem along with
the identification and authentication mechanisms are defined by a corresponding
credential subsystem. The access control subsystem may feed event information
to the audit subsystem, which may provide real-time or forensic analysis of

 Appendix A. Method for Architecting Secure Solutions 959

events. The access control subsystem may take corrective action based on alert
notification from the security audit subsystem. From Common Criteria, the
functional requirements for an access control subsystem should include:

� Access control enablement

� Access control monitoring and enforcement

� Identification and authentication mechanisms, including verification of
secrets, cryptography (encryption and signing), and single-use versus
multiple-use authentication mechanisms

� Authorization mechanisms, to include attributes, privileges, and permissions

� Access control mechanisms, to include attribute-based access control on
subjects and objects and user-subject binding

� Enforcement mechanisms, including failure handling, bypass prevention,
banners, timing and timeout, event capture, and decision and logging
components

Figure A-4 illustrates the closed loop process for an access control subsystem.

Figure A-4 Access control subsystem processes

960 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Information flow control subsystem
The purpose of an information flow control subsystem in an IT solution is to
enforce security policies by gating the flow of information within a computing
solution, affecting the visibility of information within a computing solution, and
ensuring the integrity of information flowing within a computing solution. The
information flow control subsystem may depend on trusted credentials and
access control mechanisms.

This subsystem may feed event information to the security audit subsystem,
which may provide real-time or forensic analysis of events. The information flow
control subsystem may take corrective action based on alert notification from the
security audit subsystem. From Common Criteria, an information flow control
subsystem may include the following functional requirements:

� Flow permission or prevention

� Flow monitoring and enforcement

� Transfer services and environments: open or trusted channel, open or trusted
path, media conversions, manual transfer, and import to or export between
domains

� Mechanisms observability: to block cryptography (encryption)

� Storage mechanisms: cryptography and hardware security modules

� Enforcement mechanisms: asset and attribute binding, event capture,
decision and logging components, stored data monitoring, rollback, and
residual information protection and destruction

Figure A-5 on page 962 illustrates the closed loop process for an information flow
control subsystem.

 Appendix A. Method for Architecting Secure Solutions 961

Figure A-5 Information flow control subsystem processes

Identity or credential subsystem
The purpose of a credential subsystem in an IT solution is to generate, distribute,
and manage the data objects that convey identity and permissions across
networks and among the platforms, the processes, and the security subsystems
within a computing solution. In some applications, credential systems may be
required to adhere to legal criteria for creation and maintenance of trusted
identity used within legally binding transactions.

A credential subsystem may rely on other subsystems in order to manage the
distribution, integrity, and accuracy of credentials. A credential subsystem has,
potentially, a more direct link to operational business activities than the other
security subsystems, owing to the fact that enrollment and user support are

962 Enterprise Security Architecture Using IBM Tivoli Security Solutions

integral parts of the control processes it contains. From Common Criteria, a
credential subsystem may include the following functional requirements:

� Single-use versus multiple-use mechanisms, either cryptographic or
non-cryptographic

� Generation and verification of secrets

� Identities and credentials to be used to protect security flows or business
process flows

� Identities and credentials to be used in protection of assets: integrity or
non-observability

� Identities and credentials to be used in access control: identification,
authentication, and access control for the purpose of user-subject binding

� Credentials to be used for purposes of identity in legally binding transactions

� Timing and duration of identification and authentication

� Lifecycle of credentials

� Anonymity and pseudonymity mechanisms

Figure A-6 on page 964 illustrates the closed loop process for a credential
subsystem.

 Appendix A. Method for Architecting Secure Solutions 963

Figure A-6 Credential subsystem processes

Summary of the security system model
This study postulates that the five security subsystems described here exist
within every IT solution at the conceptual level, and that the design, integration,
and interworking of the services and mechanisms associated with these
subsystems represent the security functionality of the solution. This security
system model needs to be combined with a method for developing the detailed
security architecture for a given IT solution.

964 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Developing security architectures
A system architecture has been defined as the structure of the system to be built.
In this study, the system to be built consists of the security control system found
within a networked information system. Figure A-7 represents the solution
environment. Here, an e-business computing solution serves information or
supports electronic commerce transactions via the Internet. The e-business
computing solution is operated by an enterprise and provides services to one or
more user communities.

Figure A-7 Networked information system environment

The e-business computing solution can be described as a set of automated
business processes supporting the business context that requires security
assurances and protections. The design goal is to infuse security into the
computing solution and the related IT environment.

From a business perspective, there are two objectives:

� To ensure that the desired IT business process flow yields correct and reliable
results

� To ensure that the potential vulnerabilities and exception conditions (that is,
perils) within IT business process flows are addressed in ways that are
consistent with the risk management objectives

 Appendix A. Method for Architecting Secure Solutions 965

These objectives show the duality of security design: to support and assure
normal flows and to identify and account for all illicit flows and anomalous events.

Business process model
Figure A-8 represents IT process flows for a generalized business system. The
process flows reflect the events and conditions in which information assets are
acted on by processes that are invoked by users, or by processes acting on
behalf of users. The left arrow represents the model business flow within a
trusted environment, and the right arrow represents a more realistic view of the
business flow, where perils exist in the operating environment.

Figure A-8 The normal and imperiled IT business process flow

Security design objectives
Traditionally, security requirements have been expressed by referencing the
security services within the OSI model: authentication, access control, data
confidentiality, data integrity, and non-repudiation. This practice introduces
ambiguity when applied in the context of business processes. This ambiguity can
contribute to a miscommunication of security requirements and a mismatch of
functionality within the computing solution. As with other architecture disciplines,
the technical objectives of the security design activity need to be articulated in

966 Enterprise Security Architecture Using IBM Tivoli Security Solutions

quantifiable terms. Specific design objectives need to be developed and
validated for each solution. For reference in this project, the following set of
security design objectives were derived as a result of an analysis of the
security-incident handling and reporting system for one corporation:

1. There is a need to control access to computer systems and their processes,
consistent with defined roles and responsibilities.

2. There is a need to control access to information, consistent with information
classification and privacy policies.

3. There is a need to control the flow of information, consistent with information
classification and privacy policies.

4. There is a need to manage the reliability and integrity of components.

5. There is a need for protection from malicious attack.

6. There is a need for trusted identity to address the requirement of
accountability of access to systems, processes, and information.

7. There is a need to prevent fraud within business processes and transactions,
or to detect and respond to attempted fraud.

Selection and enumeration of subsystems
The security design objectives and the solution environment have a central role
in the selection and enumeration of subsystems. Table A-2 shows a possible
mapping of the example design objectives to security subsystems. It indicates
where a subsystem may be required (R) or supplementary (S) in satisfying an
individual security requirement. Actual subsystem selection requires
documented rationale.

Table A-2 Mapping design objectives to security subsystems

Security design objectives Audit Integrity Access
control

Flow
control

Credentials /
Identity

Control access to systems/processes S S R S S

Control access to information S S S R R

Control the flow of information S S S R S

Correct and reliable component
operation

S R S S S

Prevent/mitigate attacks R R R R S

Accountability through trusted identity R R S S R

Prevent/mitigate fraud R R R R R

 Appendix A. Method for Architecting Secure Solutions 967

There are many interrelated factors that determine how many instances of a
given subsystem appear in the solution. Table A-3 suggests motivations for
instantiating security subsystems within a design. Actual subsystem enumeration
requires documented rationale.

Table A-3 Determining the security subsystems in a design

Subsystem Number in
a design

Characteristics of the computing environment

Security audit
subsystem

Few One subsystem for archive of related critical data
One subsystem for analysis of related anomalies
One subsystem for fraud detection in the solution

Solution integrity Few One subsystem per group of related critical components

Access control 1 to n One subsystem per unique user-subject binding mechanism or
policy rule set

Flow control 1 to m One subsystem per unique flow control policy rule set
One or more flow control functions per OSI layer service:
physical, datalink, network, end-to-end transport, and
application
One or more flow control functions per domain boundary

Identity and credentials 1 to k Some number of credential systems per domain
Some number of disparate credentials or uses for credentials
per domain
Some number of aliases/pseudonyms at domain boundaries

968 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Documenting conceptual security architecture
Given the agreed-upon design objectives, a conceptual model for security within
the IT solution can be created. Figure A-9 and Figure A-10 on page 970
represent a conceptual security architecture. For clarity, security functions have
been grouped by design objective.

Figure A-9 Defending against attacks

 Appendix A. Method for Architecting Secure Solutions 969

The diagrams represent the solution environment segmented by risk profile or
operational affinity, along with icons for security functions. The legend for the
diagrams maps the security subsystems to icons. The information flow control
subsystem has a wide range of functions. For this reason, a rectangle is used to
indicate a policy evaluation and enforcement function, while an oval indicates a
data flow function, such as a communication protocol with security capabilities.

Figure A-10 Ensuring correct and reliable operation

From the perspective of the enterprise deploying the solution, the security design
objectives will dictate where security functionality is desired; however, the
compliance to some or all of the security requirements may be limited by the
enforceability of policies beyond the boundaries of the enterprise. Whether and
how these credential subsystems and access control subsystems can be
integrated into the security architecture can have a major impact on the
trustworthiness of the solution as a whole. These issues and dependencies
should be considered and documented within architectural decisions.

970 Enterprise Security Architecture Using IBM Tivoli Security Solutions

This type of conceptual model forms the baseline for developing and evaluating a
proof-of-concept and further refinement of the functional aspects of security
within the target environment.

Integration into the overall solution architecture
There are several steps involved in translating the conceptual security subsystem
functions into component-level specifications and integration guidance. These
include creating models of the solution environment, documenting architectural
decisions, developing use cases, refining the functional design, and integrating
security requirements into component architectures.

Solution models
Creating an initial solution model is a critical step in the design process. With skill
and experience, one-of-a-kind solution models can be developed to fit a given set
of requirements. For complex solutions, the practice of using templates derived
from prior solutions is becoming commonplace.

The Enterprise Solutions Structure (ESS) provides a range of reference
architectures4 for e-business solutions.

Documenting architectural decisions
Previously, the notion of the duality of security design was described (that is,
ensuring correct and reliable operation and protecting against error and
maliciousness). Both motivations are based upon managing the business risks of
the solution and of the environment. Risks represent the likelihood that an
undesirable outcome will be realized from a malicious attack, unexpected event,
operational error, and so on. Risks are either accepted as a cost of operation,
transferred to some other party, covered by liability insurance, or mitigated by the
security architecture.

Architectural decisions will dictate how robust the security system architecture
should be, which security subsystems to incorporate into the system
architecture, which functions and mechanisms within each subsystem should be
deployed, where the mechanisms will be deployed, and how the deployment will
be managed.

4 P. T. L. Lloyd and G. M. Galambos, “Technical Reference Architectures,” IBM Systems Journal 38, No. 1, 51–75 (1999).

 Appendix A. Method for Architecting Secure Solutions 971

Examples of architectural decisions include the following:

� Viability of the countermeasures, including the threats addressed, the
limitations and caveats of the solution, and the resulting window of risk

� Extensibility of the design, including whether the design will serve the total
population and whether there will be separate designs for defined population
segments

� Usability of the design, including whether the mechanisms integrate with the
technology base and the extent of the burden of compliance for users

� Manageability of the design, including the extent of the burden of lifecycle
management

Use cases
Architectural decisions will also drive the evaluation of prototypes and models of
functions within the solution. One form of prototype is called a use case. Both
security threats and normal interactions and flows can be validated with use
cases.

Example 1: Interception of errant packet or message flow
Figure A-11 on page 973 represents several levels of detail for the operation of
an information flow control subsystem that is designed to monitor, send, and
receive operations that cross a boundary between two networks.

The computer systems are represented in the physical view. In the component
view, an information flow control interface, positioned between source and
destination, will examine one or more aspects of packets or messages sent
across the boundary. Some components of this information flow control
subsystem are shown in the logic view, where the monitored conditions and the
programmed actions are carried out, based on a set of rules.

Valid packets are allowed to flow across the boundary; however, packets or
messages of a specified format, or from an invalid source, or to an invalid
destination, are disabled by the security subsystem. A record of the event is
generated by invoking an interface to a security audit subsystem.

This example is representative of the type of filtering, analysis, and response that
is performed within packet filter firewalls or electronic mail gateways.

There are many architectural decisions to be evaluated within each iteration of
the design. The effect on performance due to processing delays, plus the effect
of data collection and analysis on the overall operation of the solution, are
significant factors.

972 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Figure A-11 Boundary flow control with security subsystems

Example 2: Three-tier client/server input flow
Figure A-12 on page 974 illustrates an input flow for a three-tier client/server
process that is typical of the integration of enterprise computing with the Internet
environment.

Several instances of security subsystems are depicted, spread among three
network security domains. An information flow control subsystem is positioned at
the boundary points between networks. An access control subsystem is
positioned between a receiving component and its corresponding application
component. Interfaces to related credential subsystems and security audit
subsystems are shown in the security subsystem logic view. No integrity
subsystem functions are referenced in this example. The scenario follows:

1. The business process interface is invoked by a user or a process and the
request is transferred via a sending component.

2. The request flows across a security domain in a manner that is acceptable to
the sending and receiving components, based on the defined information flow
control rules.

3. Identification, authentication, and access control decisions are made based
on the external identity associated with the request by an access control
subsystem associated with the middle-tier application.

 Appendix A. Method for Architecting Secure Solutions 973

4. The middle-tier application is invoked via a user-subject binding. The actual
processing is not covered here; it may include business presentation and data
mapping logic, or it may be performed by an application-level information flow
control subsystem, such as a proxy server.

5. The middle-tier application initiates, or relays, a request to the end-tier
application. The request is scrutinized at another network boundary control
point.

Figure A-12 Three-tier client/server input flow with security subsystems

6. At the end-tier application, an access control decision may be performed on
the request relative to the identity of the user represented by the middle-tier
application, depending on the design of the application and the exchange
protocols used.

974 Enterprise Security Architecture Using IBM Tivoli Security Solutions

7. The business process is invoked by a user-subject binding if the access
control decision is positive.

This demonstrates how security functions from several subsystems are
distributed throughout the solution. As with the first example, architectural
decisions will guide the design of the security subsystem functions, which in turn
may put constraints on the overall business flow in order to achieve the risk
management objectives.

Refining the functional design
Walk-throughs of complete business processes, including exception conditions
and handling processes, assist in creating a viable solution outline and refining
requirements and interdependencies among the solution building blocks.

Example 3: PKI digital certificate enrollment
This example uses the credential subsystem model to describe the generalized
flow for enrolling a user into an identity or credential system based on PKI digital
certificates as the first step in developing a security system architecture. The
process involves combining the subsystem model with assumptions about the
business environment, the business processes, the risk management
requirements, the technical specifications, and possibly the legal and business
compliance requirements associated with issuing PKI digital certificates.

In Figure A-13 on page 976, the yellow blocks represent manual processes, the
blue blocks map to automated processes, and the peach blocks map to
automated audit data capture points. The blue data storage icons represent
sensitive repositories, the pink icons map to cryptographic secrets, the white
icons represent unique contents of the certificate, and the lavender icon is
associated with the certificate.

The enrollment process flow depicted demonstrates the exchange of sensitive
user information and secrets, plus the export of the credential outside the control
of the issuer. The full enrollment scenario should include processes from a
corresponding information flow control subsystem. For public key credentials, the
format of certificates, along with details of how the credentials are formatted,
transported, and stored, are important design considerations. All scenarios must
be validated against existing and proposed business processes. Validation of the
scenarios substantiates the architectural decisions discussed earlier.
Subsequent design steps are needed to develop and map the functions of the
security subsystems to Common Criteria specifications and ultimately onto the
nodes and physical components.

 Appendix A. Method for Architecting Secure Solutions 975

Figure A-13 Sample PKI digital certificate enrollment process flow

Integrating requirements into component architectures
The security functions within the design need to be apportioned throughout the
solution. However, many of the mechanisms and services within the IT solution
that implement security functionality operate within other than security

976 Enterprise Security Architecture Using IBM Tivoli Security Solutions

components, for example, database systems, application systems, clients,
servers, and operating systems. The task of adopting security functions into the
network, application, middleware, security, systems management, and
infrastructure architectures is shared by the several architects and integration
specialists involved in the design project. The process involves a structured
approach, considering the purposeful allocation of functions and requirements
throughout the component architectures by:

� Mandate, based on a legal or contractual compliance requirement

� Best practice for security, or for balance of security and business process

� Component capability, knowing the existence of a mechanism that supports
the required process or action

� Location in the configuration, based upon interaction with components or
flows

� Impact, considering the risk, security objective, or the component capacity to
perform

� Necessity, because there may be no better alternative

Summary of the design process
This section has described the process for translating the conceptualized
security solution into a set of detailed specifications, for an integrated IT security
control system, using the security subsystem construct. The design is
documented, refined, and validated against the business processes through use
cases and scenarios. The detailed security requirements, expressed in terms of
Common Criteria component-level detail, are distributed throughout the
operational model for the IT solution. At this point, integration-level detail can be
finalized, and the implementation plan can proceed.

 Appendix A. Method for Architecting Secure Solutions 977

Conclusions
This appendix has examined the issues and circumstances that affect the design
of comprehensive security functions for computing solutions. It has outlined a
system model and a systematic process for security design with the Common
Criteria international standard at its foundation.

Several summary observations can be made relative to this proposed model and
process:

� Security is a shared responsibility among all IT design disciplines.

� Security design is linked to business objectives beyond the need for
protecting against attack, and conversely, protecting against attack does not
in itself meet all the business requirements for security.

� Many, if not most, security control points within IT solutions are found in
portions of solutions that are not typically considered security components.

Reliable and correct operation of solutions using secure data exchange
protocols, such as IPSec and SSL, is predicated on functions within all five of the
security subsystems defined in the proposed model and design process. These
protocols are based on trusted identities that utilize cryptographic keys requiring
storage integrity, reliable key exchange protocols, strong access control
mechanisms, reliable data exchange protocols, and trusted audit trails for
enrollment and key lifecycle management. Furthermore, the proposed model
provides a new perspective for viewing Common Criteria protection profiles in the
context of security subsystems. For example, the protection profile for an
application gateway firewall suggests the functionality of all five security
subsystems. The fact that a front-line security device, such as a firewall, might fit
the definition of a credential subsystem highlights the critical nature of its design,
integration, and operation.

Actions and further study
The concepts and the supporting detailed information presented in this appendix
were incorporated into training for IBM Global Services architects. Additional
work is underway to develop notations, models, and visualization techniques that
enhance its adoption in related methods and architect disciplines. A patent
application has been filed for the system and process, designated Method for
Architecting Secure Solutions, or MASS.

Several of the notations, models, and visualization techniques will be applied
throughout this book.

978 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Global MASS: An example
In our final section of this appendix, we present a practical example of applying
the Method for Architecting Secure Solutions (MASS) within an e-business IT
infrastructure.

As described in this appendix, MASS works with standard components to
represent the security solution in a formal way. MASS starts from a high-level
view, based on the business requirements, and ends with a detailed (but still
non-product or technical-related) view. This chapter discuses the four steps of
this process.

Business view
In this view, we focus on the elements that are defined by the company’s
business needs: the customers, as well as the internal staff, have to work on the
ordering system. The customer is located in an area that is totally uncontrolled
by the company, and the internal employees are working on the company
intranet. This section of the network is controlled and its access is restricted. The
ordering system is located in the most secured part of the network.

Despite several levels of access control, a flow must be established and
controlled among the three components that belong to the same community
performing e-business transactions.

The view depicted in Figure A-14 on page 980 integrates all the aspects of the
solution we have described. In the next step, we list the components that are
needed to achieve the security solution in a more detailed way.

 Appendix A. Method for Architecting Secure Solutions 979

Figure A-14 Business view

Logical view
The logical view is now applying some security concepts to the previous one,
such as:

� Different level of network security
� Portals
� SSO

Two new areas will also be introduced:

� Auditing
� Integrity

Although the customers, the employees, and the ordering system are part of the
same community, they are obviously not connected directly. They belong to areas
that offer different levels of trust. The e-business community is composed of
subcommunities with different levels of trust and the equivalent security
measures.

The external community is the least trusted and controlled one, and the systems
that are located in this community are uncontrolled. In order for these systems to

E
nt

er
pr

is
e

S
ec

ur
ity

 A
rc

hi
te

ct
ur

e

Solu tion
Integrity

Access
C ontrol

F low
C ontrol

Security
Audit

T rusted
C redentia l

U ncontro lled C ontrolled Trusted R estric ted
E -B usiness Com m unity

B row ser
Applica tion

C lient

Secured
Application

Server

Secured
Applica tion

C lient

D M Z Intranet Production

980 Enterprise Security Architecture Using IBM Tivoli Security Solutions

become part of the overall e-business community, they have to verify their
identities by using specific authentication mechanisms, that is, user
authentication within the Web application.

The managed communities are considered controlled because there are at least
basic control mechanisms in place to monitor access in this area. Any system
located in this community can be considered an “authorized system” located on
the intranet.

The closed community contains critical systems where a high level of control is
applied. Dynamic Host Configuration Protocol (DHCP) is, for example, not
allowed in this community.

The customers are part of the external community. Because this system is not
considered trusted, the communication channel must be secured and the user
must be authenticated. This is done within the controlled area, which is a
demilitarized zone (DMZ) between the uncontrolled area and the restricted area.
A new component has to be added in order to deliver the necessary functionality:
a Web portal working as an interface between the remote system and the
internal secured ordering system.

It is obvious that, due to the nature of the information exchanged, the data
integrity must be preserved. Also, auditing functions are needed to supervise the
external and internal communication in order to log all transactions within the
ordering system. A single sign-on system is needed to propagate user
authentication and credential information from one system to the other.

 Appendix A. Method for Architecting Secure Solutions 981

The different components are shown in Figure A-15.

Figure A-15 Logical view

Detailed view
We have introduced the basics of the functions that we are using, such as SSO,
Web portal, data integrity, and so on. This section describes them in more detail,
and Figure A-16 on page 983 illustrates the picture.

The access and flow control sections now deal with the need to interface the
various areas with their different levels of trust. Therefore, boundary components
are added. These components can be implemented as a firewall or network
segregation function. Another function of a boundary component is the SSL
terminator that is located between the uncontrolled and the controlled
community.

The security audit subsystem collects two specific types of elements: event
logging receives life events from active devices and applications, and component
logging gets information from sources such as other log files or active network

E
nt

er
pr

is
e

S
ec

ur
ity

 A
rc

hi
te

ct
ur

e

Solution
Integrity

Access
Control

Flow
Control

Security
Audit

Trusted
Credential

Uncontrolled Controlled Trusted Restricted

Alerting

E-Business Community

Browser
Application

Client

Web
Portal

SSO
Portal

Secured
Application

Server

Secured
Application

Client

SSO
Services

Data
Integrity

Closed CommunityManaged CommunityManaged CommunityExternal Community

DMZ Intranet Production

982 Enterprise Security Architecture Using IBM Tivoli Security Solutions

scanners, and so on. This results in the delivery of reports and alerting or
reactions.

Another level of detail is added in terms of attachment type. This describes the
actual type of connectivity, mainly whether it is static or managed (for example,
dynamic IP addressing, when using DHCP services for intranet systems).

Figure A-16 Detailed view

In terms of solution integrity, these are all of the components. The basic
requirements are system and software integrity for the systems, data integrity for
the transactions, and the management of the availability of the system, as well as
other services required by the e-business application. Finally, the policy audit
must be in place to comply with the overall enterprise security policy.

Full architectural view
We have added all of the components except in the Trusted Credential
subsystem. This section represents the workflow and the components applied to
the credential management. It describes the process flow when a user tries to
obtain new access authorization: the request, the validation of the request

E
nt

er
pr

is
e

S
ec

ur
ity

 A
rc

hi
te

ct
ur

e

Solution
Integrity

Access
Control

Flow
Control

Security
Audit

Trusted
Credential

Uncontrolled Controlled Trusted Restricted

Event Logging Component logging

Event Analyze

Event
AlertingReporting

Controlled
Zone

Boundary

Restricted
Zone

Boundary

Secured
Zone

Boundary
Closed CommunityManaged CommunityManaged CommunityExternal Community

E-Business Community

External
attachment

SSL
Gateway

SSL
Gateway

Browser
Application

Client

Web
Portal

SSO
Portal

Static
attachment

Secured
Application

Server

Managed
attachment

Secured
Application

Client

Static
attachment

Static
attachment

SSO
Services

Static
attachment

Service
Management

Policy
Audit

Availability
Management

Data
Integrity

Software
Integrity

System
Integrity

DMZ Intranet Production

 Appendix A. Method for Architecting Secure Solutions 983

against the rules, and the creation of the credential and its distribution to the
authentication systems and end-points and their storage. The credential
subsystem also relies on the corporate user management system represented
as a related component.

This architectural approach is representing a very simple example in which only
a few of the components were actually used. However, it already shows that it
globally addresses the security design objectives of an enterprise e-business
architecture. It shows the flow and access controls systems and brings into
perspective the auditing function that is mandatory in today’s security
infrastructures. Adding the credential and the integrity subsystem into one global
picture enables the architect to depict all of the necessary components relevant
to an overall enterprise security architecture, as shown in Figure A-17.

Figure A-17 The full architectural view

En
te

rp
ris

e
S

ec
ur

ity
 A

rc
hi

te
ct

ur
e

Solution
Integrity

Access
Control

Flow
Control

Security
Audit

Trusted
Credential

Uncontrolled Controlled Trusted Restricted

Event Logging Component logging

Event Analyze

Event AlertingReporting

Controlled
Zone

Boundary

Restricted
Zone

Boundary

Secured
Zone

Boundary
Closed CommunityManaged CommunityManaged CommunityExternal Community

E-Business community

External
attachment

SSL
Gateway

SSL
Gateway

Browser
Application

Client

Web
Portal

SSO
Portal

Static
attachment

Secured
Application

Server

Managed
attachment

Secured
Application

Client

Static
attachment

Static
attachment

SSO
Services

Static
attachment

Service
Management

Policy
Audit

Availability
Management

Data
Integrity

Software
Integrity

System
Integrity

User / system
Admin

Credential
Storage

Authorizations

Credential
Distribution

Other
userid / pswd

SSO

Digital SigCredential
Storage

Authorizations

Credential
Creation

Credential
Storage

Authorizations

Credential
Storage

User/Group
Data

validation

User/Group
enrollment
User/Group
enrollment

DMZ Intranet Production

984 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Appendix B. Productivity and functional
enhancements

In this appendix we discuss several productivity and functional enhancements for
some of the Tivoli security products that are publicly available but are not
supported by IBM.

What does this mean?

These tools were developed by IBM Tivoli or other companies and business
partners and are being made publicly available1 for general use but have not
been included into the extensive product test phases that are necessary in order
to officially support a new version or release of a software.

We cover the following tools and enhancements in this appendix:

� Tivoli Identity Manager Adapter Development Tool

� Tivoli Identity Manager Graphical Configuration Editor

� Tivoli Identity Manager Monitoring Solution

� Documentation Tool for Tivoli Identity Manager

B

1 These tools can be obtained from the IBM Tivoli Open Process Automation Library. Each downloadable package has an
applicable user license agreement. The terms and conditions under which a specific item may be used and the
responsibilities of the user and the item provider are described in the end user license agreement for that item. You can
find the IBM Tivoli Open Process Automation Library at http://catalog.lotus.com/wps/portal/topal

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 985

http://catalog.lotus.com/wps/portal/topal

� Tivoli Identity Manager Data Feed Reports

� Tivoli Access Manager Monitoring Solution

Tivoli Identity Manager Adapter Development Tool
The Adapter Development Tool, ADT, is a tool used by Tivoli Identity Manager
clients and consultants to create custom Identity Manager adapters. It reduces
adapter delivery time and helps in the development of custom adapters by doing
the following:

� Providing graphical development that integrates Directory Integrator
functionality and Identity Manager profile development

� Reducing errors caused by manual editing of files

� Providing automated validation to identify common errors

� Providing templates of adapter customizations

� Allowing export and import of adapters in either DSML or RMI formats

� ADT produces Directory Integrator RMI adapters—the defacto standard

The Identity Manager Adapter Development Tool (ADT) is built using the Eclipse
3.1 platform and is a Rich Client Program (RCP). All required Eclipse
components are packaged with the application. Eclipse does not need to be
installed on the target platform.

A Java runtime version 1.4 or greater is required for installation and operation.

This application makes use of the Tivoli Directory Integrator version 6.0 product.
Directory Integrator must be installed on the platform prior to installing this tool
and the location of the Directory Integrator home must be provided during the
installation process.

Tivoli Identity Manager Graphical Configuration Editor
With Graphical Configuration Editor (GCE), a Tivoli Identity Manager
configuration can be captured from an active Identity Manager installation and
transferred to an off line environment. The Identity Manager configuration can
then be edited in this environment. If desired, the edits can then be pushed back
to the Identity Manager installation.

GCE provides additional views of how the Identity Manager configuration's data
elements interact. These views are unavailable in the standard Identity Manager
user interface. GCE also provides validation for JavaScript and LDAP filters data

986 Enterprise Security Architecture Using IBM Tivoli Security Solutions

elements. Identity Manager lacks a validation facility for these data elements.
GCE also allows the creation of templates, which represent common
configurations to be captured and reused. Templates allows the client to make
rapid and consistent changes to their environment.

GCE allows the client to save an Identity Manager configuration as a file. This file
can be sent to IBM support for further analysis of a client's problems. This file
could also be used as a baseline to configure upstream systems, such as a QA
Identity Manager environment using the Identity Manager development
environment as a starting point. GCE allows for a complete export of an Identity
Manager configuration, unlike the limited import and export facility provided with
Identity Manager. GCE is built on top of the Eclipse framework, which provides a
familiar environment to a user.

Tivoli Identity Manager Monitoring Solution
The solution provides the capability of monitoring a Tivoli Identity Manager server
using the Tivoli Monitoring 6.1 Universal Agent. The Tivoli Identity Manager
Monitoring Solution uses the File, Script, and Socket Data Providers to extract
useful metrics about the health of your Tivoli Identity Manager server.

A separate guide is included that provides detailed information about the metrics
that the Agent collects and describes how to customize workspaces and
scenarios that make use of the metrics.

This solution provides you with useful data about the performance characteristics
of your Tivoli Identity Manager server including the following:

� Server availability and server process activity

� Memory usage characteristics: heap size before and after garbage collection,
max heap size, garbage collection time

� Workflow queue backlog

� User page response times

� Tablespace usage

� Logged error messages

The collected information can be used to perform trending analysis on your Tivoli
Identity Manager server. The Universal Agent runs on all platforms supported by
the Universal Agent (Windows, AIX, Solaris, Linux and HP/UX systems) that can
run shell, awk, and perl scripts.

 Appendix B. Productivity and functional enhancements 987

Documentation Tool for Tivoli Identity Manager
DocTool runs on any Windows or Unix system that have access to the Tivoli
Identity Manager LDAP directory, such as Tivoli Directory Server. The features
and functions of DocTool are as follows:

� Documents Identity Manager configuration

– Roles

– Policies

– Forms

– And all other configuration elements

� Uses Identity Manager directory as input

� Single file output (HTML)

� Produces current state of Identity Manager configuration

� Level 1 and 2 support use to help clients

� Consultants quickly get full configuration documentation

– First step in understanding an Identity Manager configuration and
diagnosing anomalies

– First step when entering an existing implementation

– Last step when closing an engagement

� Clients understand their Identity Manager as implemented

� Easy to install and use

Tivoli Identity Manager Data Feed Reports
Tivoli Identity Manager identity feeds can result in the creation of hundreds or
thousands of Identity Manager requests. When the identity feed is initiated from
Tivoli Directory Integrator the Identity Manager requests run asynchronously. The
results of the requests are not communicated back to Directory Integrator, so
there is no easy way for the feed's AssemblyLine in Directory Integrator to report
on the success of the feed.

Identity Manager provides reporting capabilities that can be used to show the
states of any person add, modify, and delete requests that were created by an
identity feed. But running such a report requires manual steps on the part of a
user. And although the report can tell you that a person request failed or returned
a warning, it cannot drill down into the request's sub-processes to find the root
cause of the problem.

988 Enterprise Security Architecture Using IBM Tivoli Security Solutions

The result is that identity feeds are often run with no monitoring of their results. It
is assumed that the feed is working correctly until someone complains that an
identity is missing or incorrect. When it is found that investigation of the feed is
necessary, it is often accomplished by tedious scanning of Identity Manager's
completed requests logs.

These Directory Integrator assembly line scripts can automatically generate
reports showing the results of Identity Manager identity feeds. These scripts can
be combined with existing identity feed configurations with minimal changes to
the existing feed configuration. Reports can be created in either XML or HTML
formats.

Tivoli Access Manager Monitoring Solution
The solution provides the capability of monitoring a Tivoli Access Manager server
using the Tivoli Monitoring 6.1 Universal Agent. The Tivoli Access Manager
Monitoring Solution uses the HTTP, File, and Script Data Providers to extract
useful metrics about the health of your Tivoli Access Manager server.

A separate guide is included that provides detailed information about the metrics
that the Agent collects and describes how to customize workspaces and
scenarios that make use of the metrics.

This provides you with useful data about the performance characteristics of your
Tivoli Access Manager server including the following:

� Server availability and server process activity

� WebSEAL statistics

� Junction statistics

� Response times

� Workload

The collected information can be used to perform trending analysis on your Tivoli
Access Manager server. The Universal Agent runs on all platforms supported by
the Universal Agent (Windows, AIX, Solaris, Linux and HP/UX systems) that can
run shell, awk, and perl scripts.

Conclusion
In this appendix, we introduced some tools that enhance functionality of Tivoli
Identity Manager and Tivoli Access Manager deployments. They can save you

 Appendix B. Productivity and functional enhancements 989

valuable time during deployment and help you to better manage an Identity
Manager or Access Manager environment, independently of its size.

As Identity Manager and Access Manager grow in popularity, more IBM Business
Partners are offering solutions that will complement them, and this is especially
true when you see Identity Manager and Access Manager as the framework for
your Identity and Access Management security environment.

990 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Glossary

802.11a, 802.11b, 802.11g Three IEEE
substandards for wireless local area network (LAN)
technologies. These provide for varying
transmission speeds of 11 to 54 Mbps (which in
reality translate to raw throughputs of roughly 6 to 30
Mbps).

access control list (ACL) A cornerstone of
security is the ability to determine who can access
computer networks and systems. Control can be
exercised through the use of access control
protocols, computer applications that authenticate
the user logging into a network. ACLs define which
users can access specific data and programs.
Access codes are passwords, series of characters
or numbers that enable a user to access the
network.

ACL See access control list.

Active Requestors An application (possibly a
Web browser) that is capable of issuing Web
services messages such as those described in
WS-Security and WS-Trust.

ActiveX® The name Microsoft has given to a set
of “strategic” object-oriented programming
technologies and tools. The main technology is the
Component Object Model (COM). Used in a network
with a directory and additional support, COM
becomes the Distributed Component Object Model
(DCOM). The main thing that you create when
writing a program to run in the ActiveX environment
is a component, which is a self-sufficient program
that can be run anywhere in your ActiveX network
(currently a network consisting of Windows and
Macintosh systems). This component is known as
an ActiveX control. ActiveX is Microsoft’s answer to
the Java technology from Sun Microsystems. An
ActiveX control is roughly equivalent to a Java
applet.

AEF Access Enforcement Point.

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rig
agent A function that represents a requester to a
server. An agent can be present in both a source and
a target system.

API See application programming interface.

application programming interface
(API) Software applications, such as spreadsheets
or word processing, use a special language and
message format, the API, to communicate with the
computer operating system, database management
system, or other system programs.

assertion In computer programming, a
programming language construct which immediately
aborts program execution if a certain condition or
expression is false (an “assertion failure”). It is used
by programmers during development to check for
potential errors or bugs. To assist with this, the
implementation of assertions in many languages will
provide information such as the filename and line
number in the source code that triggered the
assertion failure.

association The process by which principals
become associated or affiliated with a trust realm or
federations.

assurance The determination that host platforms,
end-user platforms, applications, network
component configurations, and operations are in
accordance with security policy. Entities are
monitored to ensure policies have been
implemented and used. Detected noncompliance
with policies is recorded and reported. Remediation
of policy noncompliance is based on remediation
policy.

asymmetric keys In computer security, the two
keys in a key pair. The keys are called asymmetric
because one key holds more of the encryption
pattern than the other does.

hts reserved. 991

attribute service A Web service that maintains
information (attributes) about principals within a trust
realm or federation. The term principal, in this
context, can be applied to any system entity, not just
a person.

audit The recording of security events in a log. To
ensure future claims that security events recorded
are accurate and have non-been altered (that is,
non-reputable), audit records are collected and
secured. Audit records may be used for:

� Internal problem analysis.

� Use as evidence in relation to a potential breach
of contract, breach of regulatory requirement or
in the event of civil or criminal proceedings, for
example, under computer misuse or data
protection legislation.

� Negotiating for compensation from software and
service suppliers.

Audit logs are created by system components,
including operating systems, applications, and
network devices.

authentication Authentication denotes a security
procedure where an individual is identified. The
process ensures that the individual is whom he or
she claims to be, but does not affect the individual's
access rights. User names, passwords, and
biometric scanning are all authentication
techniques.

authorization This phase of security admits only
legitimate user access to systems, data,
applications or networks. After the user is
authenticated, he is authorized, that is, granted
access to a network resource. An identification
number or password that is used to gain access to a
local or remote computer system.

anti-virus management Anti-virus (AV) clients run
on host platforms. Anti-virus management includes:

� AV client distribution and updates to authorized
platforms. Platforms may be initially loaded with
AV clients or fetch AV clients from the AV
manager.

� Notification that updates are available.

� Making AV clients and updates available for
automatic download when the host platform
connects to the manager.

� Receiving host AV log files and host AV
configuration data.

� Providing summary AV event information and
alerts.

� Providing reports.

B2B Business to business.

B2C Business to consumer.

B2E Business to employee.

Basel II Central bank governors and the heads of
bank supervisory authorities in the Group of Ten
(G10) countries issued a press release and
endorsed the publication of International
Convergence of Capital Measurement and Capital
Standards: a Revised Framework, the new capital
adequacy framework commonly known as Basel II.
More information can be found at
http://www.bis.org/publ/bcbsca.htm

992 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.bis.org/publ/bcbsca.htm

Binding Security and Secure
Conversation Security binding is the protocol that
ties security attributes together, such as an identity
and the authorizations for the identity. Examples of
security bindings are:

� Secure Sockets Layer and Transport Layer
Security protocols provide for the secure
authentication of servers and clients.

� X.509 certificates bind an identity to a public
key.

� A Web cookie binds an identity to a service.

Security conversion securely maps information from
one form to another form. For example, a password
and ID may be converted to a common format for an
authenticated identity. Confidentiality may convert
plaintext information into cipher text using an
encryption key or keys.

BS7799 British Standard 7799, a document
describing enterprise security.

CA See Certificate Authority.

CDC Common Domain Cookies.

certificate The most common kind of credential in
the network computing environment. Certificates
include standard information such as the owner's
public key, globally accessible name, and expiration
dates; certificates may also contain some
application-unique data such as title, degree(s)
earned, and professional licenses. Certificates are
also called digital certificates.

Certificate Authority (CA) In the pre-Internet
world, every secure transaction involved a trusted
third party—such as a notary, attorney or
broker—who could guarantee that both parties were
who they purported to be. A Certificate Authority fills
that same role in the digital world.

An authority in a network issues and manages
security credentials and public keys for message
encryption. As part of a public key infrastructure
(PKI), a CA checks with a Registration Authority
(RA) to verify information provided by the requestor
of a digital certificate. If the RA verifies the
requestor’s information, the CA can then issue a
certificate.

A CA vendor, such as VeriSign or Entrust, issues
certificates that contain the identities and affiliations
of individuals, along with their public keys. These
certificates are bound together with the digital
signature and stored in a special directory. The
sender's browser looks up the recipient's certificate
in the directory, and the message can be encrypted
using the key embedded in the certificate. The
sender can then sign the message using his own
private key, and the recipient can verify the signature
by using the sender's public key that is vouched for
by the CA.

CGI See Common Gateway Interface.

Circle of Trust The group of service providers that
share linked identities and have business and
operating agreements in place is known as a circle
of trust.

claim A declaration made by an entity (for
example, name, identity, key, group, privilege,
capability, attribute, etc.).

claim confirmation The process of verifying that a
claim applies to an entity.

 Glossary 993

Common Gateway Interface (CGI) A
specification for transferring information between a
World Wide Web server and a CGI program. A CGI
program is any program designed to accept and
return data that conforms to the CGI specification.
The program could be written in any programming
language, including C, Perl, Java, or Visual Basic.
CGI programs are the most common way for Web
servers to interact dynamically with users. Many
HTML pages that contain forms, for example, use a
CGI program to process the form's data once it is
submitted.

Common Object Request Broker Architecture
(CORBA) An architecture and specification for
creating, distributing, and managing distributed
program objects in a network. It allows programs at
different locations and developed by different
vendors to communicate in a network through an
“interface broker.” CORBA was developed by a
consortium of vendors through the Object
Management Group, which currently includes over
500 member companies. Both the International
Organization for Standardization (ISO) and X/Open
have sanctioned CORBA as the standard
architecture for distributed objects (which are also
known as components). CORBA 3 is the latest level.

container A Java run-time environment for
enterprise beans. A container, which runs on an
Enterprise JavaBeans server, manages the life
cycles of enterprise bean objects, coordinates
distributed transactions, and implements object
security.

CORBA See Common Object Request Broker
Architecture.

credential exchange The purpose of a credential
subsystem in an IT solution is to generate, distribute,
and manage the data objects that convey identity
and permissions across networks and among the
platforms, the processes, and the security
subsystems within a computing solution. Credentials
are created as a result of a successful
authentication. Some common types of credentials
are:

� X.509 public key identity certificates that bind an
identity to a public key.

� X.509 attribute certificates that bind an identity
or a public key with some attribute.

Kerberos tickets that are encrypted messages
binding the holder with some attribute or privilege,
and encrypted cookies.

credentials Data associated with a user or
resource that indicates identity and authority level.
Credentials need to be issued by a trustworthy
authority, as that authority is vouching for the identity
and authorization level. A passport is a credential; it
represents the bearer's identity and rights and is
issued by a formally recognized government agency.
In network computing environments, the most
common type of credential is a certificate that has
been created and “signed” by a trusted Certificate
Authority.

CTCPEC Canadian Trusted Computer Product
Evaluation Criteria published by the Canadian
government.

CUID Common Unique Identifier.

Data Protection Act 1998 (U.K.) An Act to make
new provision for the regulation of the processing of
information relating to individuals, including the
obtaining, holding, use or disclosure of such
information. More information can be found at
http://www.opsi.gov.uk/acts/acts1998/19980029
.htm

demilitarized zone (DMZ) An area of your network
that separates it from other areas of the network,
including the Internet.

994 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.opsi.gov.uk/acts/acts1998/19980029.htm
http://www.opsi.gov.uk/acts/acts1998/19980029.htm

DHCP See Dynamic Host Configuration Protocol.

Digital Certificate Digital certificates allow a user
to send an encrypted message. A digital certificate
is an attachment to an electronic message that
verifies the user is who one claims to be, and is used
to ensure secure e-business transactions. The
Certificate Authority (CA), which issues a user's
digital certificate, makes known the user's public key,
which another user employs to decode the digital
certificate attached to a message. This process also
verifies that the certificate was issued by the CA and
allows users to obtain identification information of
the certificate-holding sender. The recipient of the
message can then send an encrypted reply.

directory A directory service is the “yellow pages”
of computer network resources, stored on a server
and often containing security-related data, such as
phone numbers, e-mail addresses, public keys,
computer names, and addresses. The data is
presented hierarchically, much like a family tree, with
one section providing key information about the files
beneath it. To access a file, a user may need to
produce the names of all the directories above it by
specifying a path. To read information from or write
information into a directory, the user must use
operating system commands.

Directory Services Provide means of locating
resources and users in a network or networks. They
are analogous to telephone directories—even
though you look up a resource or user name, you still
need to know something about its location to narrow
the search. A directory can also include the public
key of the user or resource in addition to location and
other information.

Directory Services Markup Language
(DSML) An application of the Extensible Markup
Language (XML) that enables different computer
network directory formats to be expressed in a
common format and shared by different directory
systems.

In the latest DSML specification, the related XML
schema defines types of information found in today's
network and enterprise directories. It then defines a
common XML document format that should be used
to display the contents of each directory.

DSML has been heralded in industry press as a key
component to the future of e-commerce and
Web-based applications that link businesses and
business processes together. Some examples of
such business-to-business and
business-to-customer applications include those in
the area of supply chain management (SCM) or
customer service, where someone in one company
might use a Web interface to order items or to obtain
inventory levels on a vendor's products. Information
in a variety of directories may need to be furnished
in order to display the correct information to a user.

DMZ See demilitarized zone.

domain or realm A domain or realm represents a
single unit of security administration or trust.

DSML See Directory Services Markup Language.

Dynamic Host Configuration Protocol (DHCP) A
specification for the service provided by a router,
gateway, or other network device that automatically
assigns TCP/IP network settings (including an IP
address) to any device that requests one.

EJB See Enterprise JavaBean.

 Glossary 995

Enterprise JavaBeans (EJB) An architecture for
setting up program components, written in the Java
programming language, that run in the server parts
of a computer network that uses the client/server
model. Enterprise Java Beans is built on the
JavaBeans technology for distributing program
components to clients in a network. Enterprise Java
Beans offer enterprises the advantage of being able
to control change at the server rather than having to
update each individual computer with a client
whenever a new program component is changed or
added. EJB components have the advantage of
being reusable in multiple applications. To deploy an
EJB Bean or component, it must be part of a specific
application, which is called a container.

Enterprise Service Bus (ESB) is an emerging
standard for integrating enterprise applications in an
implementation-independent fashion, at a
coarse-grained service level (leveraging the
principles of service-oriented architecture) via an
event-driven and XML-based messaging engine (the
bus).

ESB See Enterprise Service Bus.

European Data Directive 95/46/EC Directive of
the European Parliament and of the Council of 24
October 1995 on the protection of individuals with
regard to the processing of personal data and on the
free movement of such data. More information can
be found at
http://www.cdt.org/privacy/eudirective/EU_Dir
ective_.html

Extensible Access Control Markup Language
(XACML) A standard in encoded data exchange,
makes possible a simple, flexible way to express and
enforce access control policies in a variety of
environments, using a single language.

Extensible Markup Language (XML) A flexible
way to create common information formats and
share both the format and the data on the World
Wide Web, intranets, and elsewhere. For example,
computer makers might agree on a standard or
common way to describe the information about a
computer product (processor speed, memory size,
and so forth) and then describe the product
information format with XML. Such a standard way
of describing data would enable a user to send an
intelligent agent (a program) to each computer
maker’s Web site, gather data, and then make a
valid comparison. XML can be used by any
individual or group of individuals or companies that
wants to share information in a consistent way.

Extensible rights Markup Language (XrML) A
machine-interpretable language, developed at
Xerox PARC. It uses XML for its syntax and was
previously known as DPRL. XrML is intended to be
a general purpose rights language to create usage
licenses or specify the rights for a digital item. XrML
is a core component in enabling distribution of digital
content and access to digital services such as in an
e-commerce context.

Extensible Stylesheet Language (XSL) A
language for creating a style sheet that describes
how data sent over the Web using the XML is to be
presented to the user.

Extensible Stylesheet Language
Transformations (XSLT) A language used to
transform XML documents into other documents. In
Second Site, XSLT is used to transform XML
documents into HTML tags. The XSLT standard is
administered by the World Wide Web Consortium
(W3C).

federation A group of two or more organizations
that have agreed to allow a user from one federation
partner to seamlessly access resources from
another partner in a secure and trustworthy manner.

996 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.cdt.org/privacy/eudirective/EU_Directive_.html
http://www.cdt.org/privacy/eudirective/EU_Directive_.html

firewall A firewall is a hardware/software system
that manages the flow of information between the
Internet and an organization's private network.
Firewalls can prevent unauthorized Internet users
from accessing private networks connected to the
Internet, especially intranets, and can block some
virus attacks—as long as those viruses are coming
from the Internet.

FTN Liberty Federation Termination Identification.

FULM Federated User Lifecycle Management.

Generic Security Services Application Program
Interface (GSS-API) is defined in RFC 2853.
GSS-API offers application programmers uniform
access to security services atop a variety of
underlying security mechanisms, including
Kerberos.

GLBA See Gramm-Leach-Bliley Act.

Gramm-Leach-Bliley Act (GLBA) The Financial
Modernization Act of 1999, also known as the
“Gramm-Leach-Bliley Act” or GLB Act, includes
provisions to protect consumers’ personal financial
information held by financial institutions. There are
three principal parts to the privacy requirements: the
Financial Privacy Rule, Safeguards Rule and
pretexting provisions. More information can be found
at:
http://www.ftc.gov/privacy/privacyinitiatives
/glbact.html

Health Insurance Portability and Accountability
Act (HIPAA) HIPAA is the acronym for the Health
Insurance Portability and Accountability Act of 1996.
The Centers for Medicare & Medicaid Services
(CMS) is responsible for implementing various
unrelated provisions of HIPAA, therefore HIPAA may
mean different things to different people.
� HIPAA Health Insurance Reform

Title I of the Health Insurance Portability and
Accountability Act of 1996 (HIPAA) protects
health insurance coverage for workers and their
families when they change or lose their jobs.
Visit this site to find out about pre-existing
conditions and portability of health insurance
coverage.

� HIPAA Administrative Simplification
The Administrative Simplification provisions of
the Health Insurance Portability and
Accountability Act of 1996 (HIPAA, Title II)
require the Department of Health and Human
Services to establish national standards for
electronic health care transactions and national
identifiers for providers, health plans, and
employers. It also addresses the security and
privacy of health data.

More information can be found at:
http://www.cms.hhs.gov/hipaa

HIPAA See Health Insurance Portability and
Accountability Act.

HTTP Point of Contact (PoC) A generic
component normally located in a DMZ. It is typically
an HTTP reverse proxy, or similar component,
capable of authenticating a user and managing a
session for that user.

 Glossary 997

http://www.ftc.gov/privacy/privacyinitiatives/glbact.html
http://www.cms.hhs.gov/hipaa
http://www.ftc.gov/privacy/privacyinitiatives/glbact.html

identity management In accordance with
document security policy, identity management
includes the

� Identity proofing, identity approval, and identity
rights authorization.

� Identity token creation and token distribution to
the user.

� (Dynamically) Provisioning user identity, rights,
and profile to relying parties (operating systems,
and applications).

� User profile management.

� Enabling user self-care.

� Delegate administrative responsibility for
approval and authorization as needed.

� Processes for token changes IAW policy,
revoking, and approving reissue of
new/changed token.

� Performing identity management in accordance
with security policy.

identity mapping A method of creating
relationships between identity properties. Some
identity providers may make use of identity mapping.

identity provider (IdP) An entity that acts as a
peer entity authentication service to end requestors
and data origin authentication service to service
providers (this is typically an extension of a security
token service).

IIOP See Internet Inter-ORB Protocol.

Internet Inter-ORB Protocol (IIOP) A protocol
developed by the Object Management Group (OMG)
to implement CORBA solutions over the World Wide
Web. IIOP enables browsers and servers to
exchange integers, arrays, and more complex
objects, unlike HTTP, which only supports
transmission of text

intrusion defense Provides defense against
attackers attempting to gain access to a network,
device or host. Intrusion detection and response
capabilities monitor network segments and hosts
within a centralized operational and management
framework. Responses to detected intrusion
attempts include inputs to event management
systems, paging, and trouble ticket systems.
Intrusion defense is installed on hosts, desktops,
mobile computers, and on-network devices.
Intrusion Defense management includes the
lifecycle management of intrusion detection
mechanisms on hosts, desktops, and mobile
computers and on network devices:

� ID application distribution and updates to
authorized platforms. Host platforms may be
initially loaded with ID clients or fetch ID clients
from the ID manager.

� Notification that ID updates are available.

� Making ID clients and updates available for
automatic download when the host platform
connects to the manager.

� Receiving host ID security event logs and
performance log files and host ID configuration
data.

� Providing summary ID event information and
alerts.

� Providing reports.

IP (Internet Protocol) address A numerical
identifier for a device on a TCP/IP network. The IP
address format is a string of four numbers, each
from 0 to 255, separated by periods.

ITSEC Information Technology Security
Evaluation Criteria, published by the European
Commission.

J2EE See Java 2 Platform Enterprise Edition.

Java 2 Platform Enterprise Edition (J2EE) A
Java platform designed for the mainframe-scale
computing typical of large enterprises. Sun
Microsystems, together with industry partners such
as IBM, designed J2EE to simplify application
development in a thin client-tiered environment.

998 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Java Database Connectivity (JDBC) An
application program interface (API) specification for
connecting programs written in Java to the data in
popular database. The application program interface
lets you encode access request statements in
structured query language (SQL) that are then
passed to the program that manages the database.
It returns the results through a similar interface.
JDBC is very similar to the SQL Access Group's
Open Database Connectivity (ODBC); and, with a
small “bridge” program, you can use the JDBC
interface to access databases through the ODBC
interface.

Java Naming and Directory Interface (JNDI)
Enables Java platform-based applications to access
multiple naming and directory services. Part of the
Java Enterprise application programming interface
(API) set, JNDI makes it possible for developers to
create portable applications that are enabled for a
number of different naming and directory services,
including file systems, directory services, such as
Lightweight Directory Access Protocol (LDAP),
Novell Directory Services, and Network Information
System (NIS); and distributed object systems, such
as the Common Object Request Broker Architecture
(CORBA), Java Remote Method Invocation (RMI),
and Enterprise JavaBeans (EJB).

Java Security Specific security protocols are
launched to protect programs using Java, a
computer programming language mostly used for
the World Wide Web. Java programs, which can be
downloaded from a Web server and run on
Java-compatible browsers, are run in a small,
constrained area called a Sandbox. The Sandbox
contains a security system that checks and verifies
all codes coming into it. Java Security employs data
encryption, where keys are needed to encrypt and
read data.

JavaServer™ Page (JSP) A technology for
controlling the content or appearance of Web pages
through the use of servlets, small programs that are
specified in the Web page and run on the Web
server to modify the Web page before it is sent to the
user who requested it.

JAX-RPC A specification that describes
application programming interfaces (APIs) and
conventions for building Web services and Web
service clients that used remote procedure calls
(RPC) and XML. JAX-RPC is also known as JSR
101.

JDBC See Java Database Connectivity.

JKS Java Key Store

JNDI See Java Naming and Directory Interface.

JSP See JavaServer Page.

Kerberos A network authentication protocol
developed at the Massachusetts Institute of
Technology (MIT). It is designed to provide strong
authentication for client/server applications across
insecure network connections by using secret-key
cryptography.

Key Escrow The storing of a key (or parts of a key)
with a trusted party or trusted parties in case of loss
or destruction of the key.

key management In accordance with document
policy, key management provides lifecycle
management for public-private key pairs using a
trusted Public key Infrastructure (enterprise or out
sourced) operating in accordance with a
documented Certificate Policy. Private keys and
X.509 certificates can be used to provide
authentication, confidentiality, data integrity, and
non-repudiation for transactions and other data.

 Glossary 999

key recovery A process used to recover encrypted
information that does not involve the storing of the
key or any part of the key with a third party.
Sometimes, important data needs to be recovered
without normal access. The encryption key may
have been lost accidentally, or an organization may
need to audit its resources, or the data may be
needed by law enforcement and other outside
authorities. Key-recovery systems, like those
proposed by National Institute for Standards and
Technology (NIST), rely on close cooperation
between certification authorities and user
communities that share a public-key infrastructure
(PKI). These groups would need to share
components of encryption keys that are stored at
separate locations. Many organizations find key
recovery a preferable process to key escrow. The US
government recently relaxed controls on the export
of strong encryption based upon the development of
key recovery technology by the computer industry.

LDAP See Lightweight Directory Access Protocol.

LECP Liberty-enabled Client/Proxy.

Liberty Alliance A consortium formed to deliver
and support a federated network identity solution for
the Internet that enables single sign-on for
consumers and business users in an open,
federated way.

Lightweight Directory Access Protocol
(LDAP) A software protocol for enabling anyone to
locate organizations, individuals, and other
resources (such as files and devices) in a network,
whether on the public Internet or on a corporate
intranet. LDAP is a “lightweight” (smaller amount of
code) version of Directory Access Protocol (DAP),
which is part of X.500, a standard for directory
services in a network.

Lightweight Third Party Authentication
(LTPA) Implements an authentication protocol that
uses a trusted third-party Lightweight Directory
Access Protocol (LDAP) server. LTPA causes a
search to be performed against the LDAP directory.
LTPA supports both the basic and certificate
challenge type.

LTPA See Lightweight Third Party Authentication.

MAC address Media Access Control Address a
preassigned 48-bit network address that is unique to
a given network interface card and can be used to
identify networked devices for security purposes.

mapping rules Rules used to convert a security
item from form understood by an origin process to a
form understood by a destination process. For
example, an application can authenticate a user via
any mechanism it chooses (ID/password, certificate,
and so on), and then based on the mapping rules
convert the authenticated identity to an identity
format defined for a directory.

MIME See Multi-Purpose Internet Mail
Extensions.

Mobile Station International ISDN Number
(MSISDN) The standard international telephone
number used to identify a given subscriber. The
number is based on the ITU-T (International
Telecommunications Union-Telecommunication
Standardization Sector) E.164 standard.

Multi-Purpose Internet Mail Extensions
(MIME) An extension of the original Internet e-mail
protocol that lets people use the protocol to
exchange different kinds of data files on the Internet:
audio, video, images, application programs, and
other kinds, as well as the ASCII text handled in the
original protocol, the Simple Mail Transport Protocol
(SMTP). In 1991, Nathan Borenstein of Bellcore
proposed to the IETF that SMTP be extended so that
Internet (but mainly Web) clients and servers could
recognize and handle other kinds of data than ASCII
text. As a result, new file types were added to “mail”
as a supported Internet Protocol file type.

Servers insert the MIME header at the beginning of
any Web transmission. Clients use this header to
select an appropriate “player” application for the type
of data the header indicates. Some of these players
are built into the Web client or browser (for example,
all browsers come with GIF and JPEG image players
as well as the ability to handle HTML files); other
players may need to be downloaded.

1000 Enterprise Security Architecture Using IBM Tivoli Security Solutions

NAT See Network Address Translation.

Network Address Translation (NAT) A security
technique—generally applied by a router—that
makes many different IP addresses on an internal
network appear to the Internet as a single address;
thus the specifics of the internal network remain
hidden.

Network Information System (NIS) is a network
naming and administration system for smaller
networks that was developed by Sun Microsystems.
NIS+ is a later version that provides additional
security and other facilities. Using NIS, each host
client or server computer in the system has
knowledge about the entire system. A user at any
host can get access to files or applications on any
host in the network with a single user identification
and password. NIS is similar to the Internet’s domain
name system (DNS) but somewhat simpler and
designed for a smaller network. It is intended for use
on local area networks.

network security solutions Network security
solutions for on demand provide secure connectivity
and access control to and for the enterprise network.
Remote connections to the enterprise network can
use a variety of technologies such as dialup and
Virtual Private Network (SSL and IPSEC). Network
firewalls permit only connections that are specified,
in directions that are specified, and using protocols
that are specified. Network security solutions feature
centralized managed, log, and security event audit
trail generation and collection, and report
generation.

NIS See Network Information System.

non-repudiation Non-repudiation occurs when a
document or participant in an activity is valid. In
digital cryptography, this applies to a person who
uses a private key to protect access. This
guarantees that any messages signed using that
person's digital signature could only have come from
them. In e-commerce, when the key holder uses a
digital signature in a financial transaction, it
guarantees that the person making the transaction is
who they claim to be.

OASIS See Organization for the Advancement of
Structured Information Standards.

ODOE See On Demand Operating Environment.

On Demand Operating Environment (ODOE)
The new computing architecture designed to help
companies realize the benefits of on demand
business. The on demand operating environment
has four essential characteristics: It is integrated,
open, virtualized, and autonomic.

Open Platform for Security Check Point
(OPSEC) The initiative to provide a common
architecture for integrating security solutions.

Open Systems Interconnection (OSI) A standard
description or “reference model” for how messages
should be transmitted between any two points in a
telecommunication network. Its purpose is to guide
product implementors so that their products will
consistently work with other products. The reference
model defines seven layers of functions that take
place at each end of a communication. Although OSI
is not always strictly adhered to in terms of keeping
related functions together in a well-defined layer,
many if not most products involved in
telecommunication make an attempt to describe
themselves in relation to the OSI model. It is also
valuable as a single reference view of
communication that furnishes everyone a common
ground for education and discussion.

OPSEC See Open Platform for Security Check
Point.

Organization for the Advancement of Structured
Information Standards (OASIS) A global
consortium that drives the development of
e-business and Web service standards.

OSI See Open Systems Interconnection.

Passive Requestor An HTTP browser capable of
broadly supported HTTP (for example, HTTP/1.1).

PEP Policy Enforcement Point.

 Glossary 1001

PKI See Public Key Infrastructure.

Point of Contact (PoC) A generic component,
normally located in the DMZ. It is typically an HTTP
reverse proxy, or similar component, capable of
authenticating a user and managing a session for
that user. Typically the PoC will have a connection to
a local user registry, used to validate user
authentication credentials presented by the user and
also to retrieve user attributes/privilege information
used with session management for an authenticated
user.

policy management Policy management in the
On Demand Security Infrastructure is the consistent
application of enterprise security policy to on
demand infrastructure components, services, and
applications; network security solutions; and on
demand security infrastructure components and
services. Policy management is applied
independent of application logic and operating
system platform and includes trusted identity and
token lifecycle management identity, access
control/authorization lifecycle management,
federated identity lifecycle, privacy, single sign-on,
compliance determination and remediation, security
event auditing and processing, and failure situations.

portal A term, generally synonymous with
gateway, for a World Wide Web site that is a major
starting site for users when they get connected to the
Web or that users tend to visit as an anchor site,
linking to many other sites. Typical services offered
by portal sites include a directory of Web sites, the
ability to search for information, news, weather
information, e-mail, stock quotes, phone and map
information, and sometimes a community forum.
Excite is among the first portals to offer users the
ability to personalize that Web site according to
individual interests.

privacy policies Security policies for managing
access to and use of sensitive personal information,
referred to as privacy-sensitive information.
Individuals who provide personal information, such
as social security numbers, have the right to
determine when, how, and to what extent their
personal information is used by organizations that
collect the information.

profile A document that describes how this model
is applied to a specific class of requestor (for
example, passive or active)

proxy An intermediary program which acts as both
a server and a client for the purpose of making
requests on behalf of other clients. Requests are
serviced internally or by passing them, with possible
translation, on to other servers. A proxy must
interpret and, if necessary, rewrite a request
message before forwarding it. Proxies are often
used as client-side portals through network firewalls
and as helper applications for handling requests via
protocols not implemented by the user agent.

Pseudonym Service A Web service that
maintains alternate identity information about
principals within a trust realm or federation. The term
principal, in this context, can be applied to any
system entity, not just a person.

public key In asymmetric cryptography, the key
that is made available for others to use to encrypt
information. The owner of the associated private key
is the only person who can decrypt the information.

1002 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Public Key Infrastructure (PKI) A system for
verifying the authenticity of each party involved in an
Internet transaction, protecting against fraud or
sabotage, and for non-repudiation purposes so that
consumers and retailers may protect themselves
against denial of transactions. Trusted third-party
organizations called certificate authorities issue
digital certificates—attachments to electronic
messages—that specify key components of the
user's identity. During an Internet transaction signed,
encrypted messages from one party to another are
automatically routed to the Certificate Authority,
where the certificates are verified before the
transaction can proceed. PKI can be embedded in
software applications, or offered as a service or a
product. e-business leaders agree that PKIs are
critical for transaction security and integrity, and the
software industry is moving to adopt open standards
for their use. Simplifying the directory systems that
contain PKI data remains a challenge.

RA See Registration Authority.

RBAC See Role Based Access Control.

realm or domain Represents a single unit of
security administration or trust.

Registration Authority (RA) An authority in a
network that verifies user requests for a digital
certificate and tells the Certificate Authority (CA) to
issue it. RAs are part of a public key infrastructure
(PKI), a networked system that enables companies
and users to exchange information and money
safely and securely. The digital certificate contains a
public key that is used to encrypt and decrypt
messages and digital signatures.

Remote Method Invocation (RMI) The standard
specifications of the Java RPC.

RMI See Remote Method Invocation.

Role-Based Access Control (RBAC) A method
of granting access rights to users based on their
assignment to a defined role in the organization.

router An interconnection device that links two
discrete networks and forwards packets between
them. A router uses a networking protocol such as
IP to address and direct data packets flowing into
and out of the network on which it sits.

Sarbanes-Oxley Act The intention of the
Sarbanes-Oxley Act of 2002 is to improve quality
and transparency in financial reporting and
independent audits and accounting services for
public companies, to create a Public Company
Accounting Oversight Board, to enhance the
standard setting process for accounting practices, to
strengthen the independence of firms that audit
public companies, to increase corporate
responsibility and the usefulness of corporate
financial disclosure, to protect the objectivity and
independence of securities analysts, to improve
Securities and Exchange Commission resources
and oversight, and for other purposes. More
information can be found at
http://sarbanes-oxley.com

SASL See Simple Authentication and Security
Layer.

secure logging The means of recording security
events and the protection provided to such logs to
ensure their non-repudiation. Secure logging also
includes a means for processing logs and
generating reporting.

Secure Networks and Operating
Systems Secure networks are networks that have
implemented logical and physical access controls
and may have implemented confidentiality, data
integrity, and non-repudiation security services to
restrict data access and network management to
authorized personnel or entities. Secure operating
systems are operating systems that have
implemented logical and physical access controls
and may have implemented confidentiality, data
integrity, and non-repudiation security services to
restrict data access and network management to
authorized personnel or entities. Secure networks
and operating systems generate security event audit
records and are securely managed.

 Glossary 1003

http://sarbanes-oxley.com

Secure Sockets Layer (SSL) A commonly used
protocol for managing the security of a message
transmission on the Internet. SSL has recently been
succeeded by Transport Layer Security (TLS), which
is based on SSL.

Security Assertion Markup Language (SAML)
A specification designed to provide cross-vendor
single sign-on interoperability.

Security Policy Expression® Security policy
expression is the means by which security policy is
applied to or implemented for specific IT system
components and applications. For example, firewall
filtering rules in a file, hardware settings, and
network configurations.

Security Token Represents a collection of claims.

Security Token Service (STS) A Web service that
issues security tokens. That is, it makes assertions
based on evidence that it trusts, whoever trusts it. To
communicate trust, a service requires proof, such as
a security token or set of security tokens, and issues
as security token with its own trust statement (note
that for some security token formats this can just be
a reassurance or co-signature). This forms the basis
of trust brokering.

service/endpoint policy Corporate security policy
applied to or developed for services and information
technology endpoints including response to legal,
regulatory, and legislative requirements. Service
policy states the specific security requirements for a
service that generally is provided by a configuration
of hosts, networks components, and applications.
Endpoint policy states the specific security
configuration to be implemented an individual host,
network component, or application, and the
protocols used to implement the service policy.

service-oriented architecture (SOA) expresses
a software architectural concept that defines the use
of services to support the requirements of software
users. In a SOA environment, nodes on a network
make resources available to other participants in the
network as independent services that the
participants access in a standardized way.

signature A value computed with a cryptographic
algorithm and bound to data in such a way that
intended recipients of the data can use the signature
to verify that the data has not been altered since it
was signed by the signer.

Signed Security Token A security token that is
asserted and cryptographically signed by a specific
authority (for example, an X.509 certificate or a
Kerberos ticket).

sign-in The process by which security tokens are
obtained for realm/domain or federation.

sign-out The process by which security tokens are
destroyed for realm/domain or federation.

Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) A mechanism that allows
the secure negotiation of the mechanism to be used
by two different GSS-API implementations. In
essence, SPNEGO defines a universal but separate
mechanism, solely for the purpose of negotiating the
use of other security mechanisms. SPNEGO itself
does not define or provide authentication or data
protection, although it can allow negotiators to
determine if the negotiation has been subverted,
once a mechanism is established.

Simple Authentication and Security Layer
(SASL) Defined by RFC 2222, a generic protocol
framework that provides the means to use
authentication mechanisms other than simple
authentication and SSL over connection-based
protocols. Protocols such as LDAP, POP, IMAP, and
SMPT specify a SASL profile, which describes how
to encapsulate SASL negotiation and SASL
messages for the protocol. Within the SASL
framework, different authentication schemes are
referred to as mechanisms. To use SASL, a protocol
includes a command for identifying and
authenticating a user to a server and for optionally
negotiating protection of subsequent protocol
interactions. If its use is negotiated, a security layer
is inserted between the protocol and the connection.

1004 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Simple Mail Transfer Protocol (SMTP) A TCP/IP
protocol used in sending and receiving e-mail.
However, since it is limited in its ability to queue
messages at the receiving end, it is usually used
with one of two other protocols, POP3 or IMAP, that
let the user save messages in a server mailbox and
download them periodically from the server. In other
words, users typically use a program that uses
SMTP for sending e-mail and either POP3 or IMAP
for receiving e-mail. On Unix-based systems, send
mail is the most widely-used SMTP server for e-mail.
A commercial package, sendmail, includes a POP3
server. Microsoft Exchange includes an SMTP
server and can also be set up to include POP3
support.

SMTP usually is implemented to operate over
Internet port 25. An alternative to SMTP that is
widely used in Europe is X.400. Many mail servers
now support Extended Simple Mail Transfer Protocol
(ESMTP), which allows multimedia files to be
delivered as e-mail.

single sign-on (SSO) An optimization of the
authentication sequence to remove the burden of
repeating actions placed on the requestor. To
facilitate SSO, an element called an Identity provider
can act as a proxy on a requestor’s behalf to provide
evidence of authentication events to third parties
requesting information about the requestor. These
identity providers (IPs) are trusted third parties and
need to be trusted by both the requestor (to maintain
the requestor’s identity information, as the loss of
this information can result in the compromise of the
requestor’s identity) and the Web services that may
grant access to valuable resources and information
based upon the integrity of the identity information
provided by the IP.

SLO Liberty Single Sign-Out.

Smart card A smart card is a small device the size
of a credit card with built-in electronic memory of
personal data, such as identification and financial
information.

SMTP See Simple Mail Transfer Protocol.

SOA See service-oriented architecture.

SOAP A way for a program running in one kind of
operating system to communicate with a program in
the same or another kind of an operating system by
using the HTTP Protocol and XML as the
mechanisms for information exchange.

SOX See Sarbanes-Oxley Act

SP Service provider.

SPI See Stateful Packet Inspection.

SPS SSO Protocol Services.

SPNEGO See Simple and Protected GSS-API
Negotiation Mechanism.

SSL See Secure Sockets Layer.

SSO See single sign-on.

Stateful Packet Inspection (SPI) A firewall
technology that examines the content of packets to
determine whether they will be given access to a
network.

switch A hardware device that serves as a central
connection point for all network cables. In a relatively
small networking environment, a switch of 4 to 12
ports may be part of a router or gateway.

TLS See Transport Layer Security.

Transport Layer Security (TLS) A protocol that
ensures privacy between communicating
applications and their users on the Internet. When a
server and client communicate, TLS ensures that no
third party may eavesdrop or tamper with any
messages. TLS is the successor to the Secure
Sockets Layer Protocol (SSL).

trust According to the ITU-T X.509, Section
3.3.54, trust is defined as follows: “Generally an
entity can be said to trust a second entity when the
first entity makes the assumption that the second
entity will behave exactly as the first entity expects”.

 Glossary 1005

trust domain An administered security space in
which the source and target of a request can
determine and agree whether particular sets of
credentials from a source satisfy the relevant
security policies of the target. The target may defer
the trust decision to a third party, thus including the
trusted third party in the Trust Domain.

trust modeling A trust model is a
description/definition of how trust is established or
conveyed between two entities or among multiple
entities that operate under a common set of security
policies.

trusted third party A mechanism in which a
trusted party creates a key and then keeps a copy of
it in case of loss or destruction of the key, or
legitimate request from law enforcement.

UDDI See Universal Description, Discovery, and
Integration.

Uniform Resource Identifier (URI) The way you
identify any point of content, whether it be a page of
text, a video or sound clip, a still or animated image,
or a program. The most common form of URI is the
Web page address, which is a particular form or
subset of URI called a Uniform Resource Locator
(URL)

Uniform Resource Locator (URL) The unique
address for a file that is accessible on the Internet. A
common way to get to a Web site is to enter the URL
of its home page file in your Web browser's address
line.

Universal Description, Discovery and Integration
(UDDI) An XML-based registry for businesses
worldwide to list themselves on the Internet. Its
ultimate goal is to streamline online transactions by
enabling companies to find one another on the Web
and make their systems interoperable for
e-commerce.

URI See Uniform Resource Identifier.

URL See Uniform Resource Locator.

Validation Service A Web service that uses the
WS-Trust mechanisms to validate provided tokens
and assess their level of trust (for example, claims
trusted).

Virtual Organization Policies A statement of
security policies for an IT system supporting the
business needs of a specific subset of an enterprise
or an IT system supporting cross-enterprise
business needs operating under a common
objective.

WAP See Wireless Application Protocol.

WAYF Where are you from.

Web services A way of providing computational
capabilities using standard Internet protocols and
architectural elements. For example, a database
Web service would use Web browser interactions to
retrieve and update data located remotely.

Web Services Description Language (WSDL)
An XML-based language used to describe the
services a business offers and to provide a way for
individuals and other businesses to access those
services electronically. WSDL is the cornerstone of
the Universal Description, Discovery, and Integration
(UDDI) initiative spearheaded by Microsoft, IBM,
and Ariba.

Web Services Policy (WS-Policy) Provides a
general purpose model and syntax to describe and
communicate the policies of a Web service.

Web Services Security (WS-Security) Is a
mechanism for incorporating security information
into SOAP messages. While SOAP provides a
flexible technique for structuring messages, it does
not directly address how to secure these messages.
WS-Security builds from the SOAP specification,
structuring the use of essential security capabilities.
Specifically, WS-Security uses binary tokens for
authentication, digital signatures for integrity, and
content-level encryption for confidentiality. By
structuring SOAP security, WS-Security makes it
easy to include security elements into SOAP
through tools and enterprise applications.

1006 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Web Services Trust (WS-Trust) Describes a
framework for trust models that enables Web
services to securely interoperate.

Wireless Application Protocol (WAP) A
specification for a set of communication protocols to
standardize the way that wireless devices, such as
cellular telephones and radio transceivers, can be
used for Internet access, including e-mail, the World
Wide Web, news groups, and Internet Relay Chat
(IRC). While Internet access has been possible in
the past, different manufacturers have used different
technologies. In the future, devices and service
systems that use WAP will be able to interoperate.

Wireless Markup Language (WML) Formerly
called Handheld Devices Markup Languages
(HDML). A language that allows the text portions of
Web pages to be presented on cellular telephones
and personal digital assistants (PDAs) via wireless
access. WML is part of the WAP that is being
proposed by several vendors to standards bodies.

WML See Wireless Markup Language.

WSDL See Web Services Description Language.

WSP Web Services Provisioning.

X.509 A widely used specification for digital
certificates that has been a recommendation of the
ITU since 1988.

XACML See Extensible Access Control Markup
Language.

XKMS See XML Key Management Specification.

XML See Extensible Markup Language.

XML Digital Signature (XMLDSIG) A W3C
recommendation that defines an XML syntax for
digital signatures. Functionally, it has much in
common with PKCS#7 but is more extensible and
geared towards signing XML documents. It is used
by various Web technologies such as SOAP, SAML,
and others.

XML encryption A process for encrypting and
decrypting parts of XML documents. Most of today’s
encryption schemes use transport-level techniques
that encrypt an entire request and response stream
between a sender and receiver, offering zero
visibility into contents of the interchange to
intermediaries. Content-level encryption converts
document fragments into illegible ciphertext, while
other elements remain legible as plaintext.

XML Key Management Specification
(XKMS) Leverages the Web Services framework to
make it easier for developers to secure
inter-application communication using public key
infrastructure (PKI). XML Key Management
Specification is a protocol developed by W3C which
describes the distribution and registration of public
keys. Services can access an XKMS compliant
server in order to receive updated key information for
encryption and authentication.

XMLDSIG See XML Digital Signature.

XrML See Extensible rights Markup Language.

XSL See Extensible Stylesheet Language.

XSLT See Extensible Stylesheet Language
Transformations.

 Glossary 1007

1008 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 1014.

� Extending Network Management Through Firewalls, SG24-6229

� Tivoli Enterprise Management Across Firewalls, SG24-5510

� HACMP Enhanced Scalability Handbook, SG24-5328

� Configuring Highly Available Clusters Using HACMP 4.5, SG24-6845

� Understanding LDAP - Design and Implementation, SG24-4986

� Enterprise Business Portals with IBM Tivoli Access Manager, SG24-6556

� Enterprise Business Portals II with IBM Tivoli Access Manager, SG24-6885

� Federated Identity Management and Web Services Security with IBM Tivoli
Security Solutions, SG24-6394

� Understanding SOA Security Design and Implementation, SG24-7310

� Identity Management Design Guide with IBM Tivoli Identity Manager,
SG24-6996

� Certification Study Guide: IBM Tivoli Identity Manager Version 4.6,
SG24-7118

� Deployment Guide Series: IBM Tivoli Identity Manager, SG24-6477

� Deployment Guide Series: IBM Tivoli Security Compliance Manager,
SG24-6450

� Deployment Guide Series: IBM Tivoli Access Manager for Enterprise Single
Sign-On, SG24-7350

� Robust Data Synchronization with IBM Tivoli Directory Integrator, SG24-6164

� Building a Network Access Control Solution with IBM Tivoli and Cisco
Systems, SG24-6678

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rights reserved. 1009

� IBM WebSphere V5.1 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198

� WebSphere MQ Security in an Enterprise Environment, SG24-6814

� IBM WebSphere V5 Edge of Network Patterns, SG24-6896

� A Secure Portal Using WebSphere Portal V5 and Tivoli Access Manager
V4.1, SG24-6077

� AIX 5L Version 5.2 Security Supplement, SG24-6066

� Using Web Services for Business Integration, SG24-6583

Other resources
These publications are also relevant as further information sources:

� “Technical Reference Architectures”, by Lloyd and Galambos. IBM Systems
Journal 38, No. 1, 51–75 (1999).

� Schneider, Fred B., Trust in Cyberspace, National Academies Press, January
1999. ISBN 0309065585.

These publications are packaged with their corresponding software and cannot
be purchased separately:

� IBM Tivoli Access Manager for e-business Version 6.0 Release Notes,
SC32-1702

� Tivoli Access Manager for e-business Version 6.0 Installation Guide,
SC32-1361

� IBM Tivoli Access Manager Version 6.0 Administration Guide, SC32-1686

� IBM Tivoli Access Manager for e-business Version 6.0 WebSEAL
Administration Guide, SC32-1687

� IBM Tivoli Access Manager for e-business Version 6.0 Plug-in for Web
Servers Administration Guide, SC32-1690

� IBM Tivoli Access Manager for e-business Version 6.0 Administration C API
Developer Reference, SC32-1692.

� IBM Tivoli Access Manager Version 6.0 Administration Java Classes
Developer Reference, SC32-1692.

� IBM Tivoli Access Manager for e-business Version 6.0 BEA WebLogic Server
Administration Guide, SC32-1688

� IBM Tivoli Access Manager for e-business Version 6.0 Performance Tuning
Guide, SC32-1704

1010 Enterprise Security Architecture Using IBM Tivoli Security Solutions

� IBM Tivoli Access Manager for e-business Version 6.0 Problem Determination
Guide, SC32-1701

� WebSphere Application Server Network Deployment, Version 6, Securing
applications and their environment, which can be found at:

� WebSphere Application Server, Version 6, Securing applications and their
environment, which can be found at:

� IBM Tivoli Access Manager for Business Integration Administration Guide
Version 5.1, SC23-4831

� IBM Tivoli Access Manager for Operating Systems Release Notes Version
6.0, GI11-4615-00

� IBM Tivoli Access Manager for Operating Systems Installation Guide Version
6.0, SC23-1710

� IBM Tivoli Access Manager for Operating Systems Administration Guide
Version 6.0, SC23-1709

� IBM Tivoli Federated Identity Manager Release Notes Version 6.1,
GC32-1669-02

� IBM Tivoli Federated Identity Manager Installation Guide Version 6.1.1,
GC32-1667-03

� IBM Tivoli Federated Identity Manager Administration Guide Version 6.0,
GC32-1668-01

� IBM Tivoli Federated Identity Manager Auditing Guide 6.1.1, GC32-2287-01

� IBM Tivoli Federated Identity Manager Configuration Guide Version 6.1.1,
GC32-1668-03

� IBM Tivoli Federated Identity Manager Single Sign-on Guide Version 6.1.1,
GC32-0168-01

� IBM Tivoli Federated Identity Manager Web Services Security Management
Guide Version 6.1.1, GC32-0169-01

� IBM Tivoli Federated Identity Manager Problem Determination Guide Version
6.1.1, GC32-2288-01

� IBM Tivoli Federated Identity Manager Business Gateway Administration
Guide Version 6.1.1, SC32-1578-00

� IBM Tivoli Federated Identity Manager Business Gateway Auditing Guide
6.1.1, SC32-1580-00

� IBM Tivoli Federated Identity Manager Business Gateway Problem
Determination Guide Version 6.1.1, SC32-1581-00

� IBM Tivoli Security Compliance Manager Release Notes Version 5.1,
GI11-4695

 Related publications 1011

� IBM Tivoli Security Compliance Manager Administration Guide Version 5.1,
SC32-1594

� IBM Tivoli Security Compliance Manager Installation Guide: All Components
Version 5.1, GC32-1592

� IBM Tivoli Security Compliance Manager Installation Guide: Client
Component Version 5.1, GC32-1593

� IBM Tivoli Security Operations Manager Release Notes1

� IBM Tivoli Security Operations Manager Installation Guide

� IBM Tivoli Security Operations Manager User Guide

� IBM Tivoli Security Operations Manager Administration Guide

� IBM Tivoli Directory Server Release Notes Version 6.0, SC32-1682

� IBM Tivoli Directory Server Installation and Configuration Guide Version 6.0,
SC32-1673

� IBM Tivoli Directory Server Administration Guide Version 6.0, SC32-1674

� IBM Tivoli Directory Server Performance Tuning Guide Version 6.0,
SC32-1677

� IBM Tivoli Directory Integrator 6.1.1: Reference Guide, SC32-2566-01

� IBM Tivoli Directory Integrator 6.1.1: Administrator Guide, SC32-2567-01

� IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide, GI11-6480-01

� IBM Tivoli Directory Integrator 6.1.1: Users Guide, SC32-2568-01

� IBM Tivoli Directory Integrator 6.1.1: Problem Determination Guide,
SC32-2565-01

� IBM Tivoli Identity Manager Database and Schema Reference Version 4.6,
SC32-1769

� IBM Tivoli Identity Manager Information Center Version 4.6, SC23-5267

This information is available once you have installed your Identity Manager
server.

� IBM Tivoli Identity Manager Planning for Deployment Guide Version 4.6,
SC32-1708

1 The current documentation for IBM Tivoli Security Operations Manager 3.1 is available at the
following Web site:
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?toc=/com.ibm.netcool_so
m.doc/toc.xml

1012 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?toc=/com.ibm.netcool_som.doc/toc.xml

� IBM Tivoli Identity Manager Problem Determination Guide Version 4.6,
SC32-1494

� IBM Tivoli Identity Manager Version 4.6: Release Notes, GI11-4212

� Tivoli Event Integration Facility Reference Version 3.9, SC32-1241

Online resources
The following Web sites are also relevant as further information sources:

� This RiskServer site is intended to act as a launchpad for information security
and security review needs. It covers a variety of solutions and topics,
including security risk analysis, information security policies, ISO 17799
(BS7799), business continuity, and data protection legislation.

http://www.riskserver.co.uk/

� Home page for Common Criteria, which represents the outcome of a series of
efforts to develop criteria for evaluation of IT security that are broadly useful
within the international community.

http://csrc.nist.gov/cc/

� CERT Coordination Center home page

http://www.cert.org

� IBM alphaWorks Web page

http://www.alphaworks.ibm.com

� IBM Software Categories Web page (with Security category)

http://www.ibm.com/software/sw-bycategory/

� National Institute of Standards and Technology Computer Security Resource
Center (CSRC) home page

http://csrc.ncsl.nist.gov

� Open Group Security Forum Web page

http://www.opengroup.org/security/topics.htm

� RFC home page

http://www.ietf.org/rfc.html

� WebSphere product documentation Web site

http://www.ibm.com/software/webservers/appserv/was/library/index.html

� Tivoli product documentation Web site

http://publib.boulder.ibm.com/tividd/td/tdmktlist.html

 Related publications 1013

http://www.riskserver.co.uk/
http://csrc.nist.gov/cc/
http://www.cert.org
http://www.alphaworks.ibm.com
http://www.ibm.com/software/sw-bycategory/
http://csrc.ncsl.nist.gov
http://www.opengroup.org/security/topics.htm
http://www.ietf.org/rfc.html
http://www.ibm.com/software/webservers/appserv/was/library/index.html
http://publib.boulder.ibm.com/tividd/td/tdmktlist.html

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and
Tips, draft publications and Additional materials, as well as order hardcopy
Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

1014 Enterprise Security Architecture Using IBM Tivoli Security Solutions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
 723
.NET

Access Manager integration 211
application scenario 786
authorization 327, 367
single sign-on 368
Web services security 373

A
Abstract Syntax Notation One 56
accept risk 10
access

approval workflow 615
control 619
evaluation 82
management system 860
rights 81
targets 81

access control 6, 20, 23, 25, 31, 260, 952, 955, 968,
973

decision function 324
decision information 324, 341
enforcement function 324
mechanisms 24, 960
model 40, 527
monitoring 24, 960
ruleset 171
use case 169

access control information 79
filtered ACL 80
non-filtered ACL 80

access control item
see Identity Manager ACI

access control list
see ACL

access control subsystem 169
security design objectives 250

Access Manager 163, 187
... for Business Integration 166, 425
... for e-business 165

single sign-on 152
... for Operating Systems 165, 382

© Copyright IBM Corp. 2002, 2004, 2006, 2007. All rig
ACL
audit daemon 401
auditing 405
authorization daemon 400
authorization decisions 389
branch precedence 398
Common Auditing and Reporting Service
409
entitlement reports 404
intervention point 403
log router daemon 402
login policy 396
login policy and password management dae-
mon 401
network policy 394
password management policy 396
policy branch 397
protected object policy 405
sudo policy 397
surrogate policy 396
Tivoli Enterprise Console daemon 401
Trusted Computing Base 392
watchdog daemon 401

... for WebSphere Business Integration Brokers
425, 443
.NET

authorization 327
integration 211, 367
Web services security 373

account lockout information 265
ACL 177, 329

database caching 182
DB 325
evaluation 333
policy 333

administration API 173, 188, 327
administrator levels 184
any-other 334
architecture 223
Attribute Retrieval Service 208, 343
audit for MQ 440
audit-level policy 330
authentication 279

... for MQ 440

hts reserved. 1015

strength 335
authorization

... for MQ 440
components 328
database 177, 179
evaluator 326
flow 329
rule 178, 329, 335
rule policy 330
server 219
server availability 269
service 172, 182, 187, 200, 325
service interface 327

availability 259, 261
aznAPI 187, 327, 376
base components 171
basic authentication 310
BEA WebLogic integration 214
C application integration 376
CDMF 316
CDSSO 314
client-side scripting 310
communication 224
component deployment 221
credential attribute entitlement service 304
Cross Domain Single Sign-On 314
data protection for MQ 440
delegated administration 184
design principles 166
directory schema 176
entitlement service interface 303
entitlements 341
error handling for MQ 441
extended attributes 178
external authentication interface 297, 729, 808
external authorization 337
external authorization service 331
failover cookies 265, 268
family 164
Federated Identity Manager integration 751
file policy 392
forms single sign-on 310
Global Sign-on 307

Principal Mapper 364
GSO junction 359
hardening 242
Identity Manager integration 607
interceptor model for MQ 439
interfaces 187

introduction 163, 323, 381, 413
IP endpoint authentication method 330
iv-creds 360
J2EE 357
JAAS 327, 357, 358
JACC Provider 365
Java application integration 376
JMS Interceptor for MQ 442
Kerberos authentication 297
local cache mode 377
log router daemon 408
login history 264
Master Authentication Server 317
migration of data 183
monitoring 989
MQ Client Interceptor 442
multiple directories 643
multiple domain support 313
network-based authentication 335
NTLM authentication 297
pdadmin 172, 182
PDPermission 215, 358, 378
PDPrincipal 360
physical component layout 240
pkmscdsso 315
pkmsvouchfor 318
Plug-in for Edge Server 209
Plug-In for Web servers 205, 219
policy

credential attribute entitlement service 304
database 325

Policy Proxy Server 172, 181, 225
Policy Server 172, 179, 215, 225, 325

availability 272
failure 263

POP ... see protected object policy
Privilege Attribute Certificate 173
protected object policy 187, 329, 334
protected object space 177, 187, 196, 274, 327,
331

guidelines 344
quality of protection 335
remote cache mode 377
resource manager 164, 186, 381
scalability 259, 274
security policy 223, 328
Security Service Provider Interface 214
Session Management Server 202, 210, 264
single point of failure 261

1016 Enterprise Security Architecture Using IBM Tivoli Security Solutions

single sign-on 194, 250, 313, 359
SPNEGO protocol 294
step-up authentication 335
su command 403
time-of-day policy 330
transparent path junction 199
Trust Association Interceptor 202, 358, 359
unauthenticated 334
user registry 173, 215, 226

failure 262
virtual host junction 198
virtual hosting 209
Web Portal Manager 172, 183
Web Security Server 280, 282

authentication mechanisms 291
authentication model 289
single sign-on 290
single sign-on mechanisms 306

Web server failure 262
WebSEAL 191, 196

load balancing 594
WebSphere integration 213, 357
Windows single sign-on 294

Access Manager for Enterprise Single Sign-On
administration

... for credentials 461
Administrative Console 481
Agent 477

response 455
application

logon mapping 471
applist.ini 456, 457, 459
audit 464, 499

Identity Manager credentials 474
reports 475

authentication 451, 498
forced ... 469
graded ... 469
levels 470
multiple ... 470
service 452, 453

Authentication Adapter 452, 469, 484, 503
authenticator 452

mapping 471
backup 461
backup/restore 466
biometrics 469
Browser Helper Object 459
business requirements 498

Citrix tools 466
compliance 496
core solution deployment 500
credential

distribution 472
logging of ... 464
request 457
store 480
synchronization 460, 474
transfer security 458

deployment
... for credentials 461
scenario 482

Desktop Password Reset Adapter 485, 501
encryption 453, 499
entlist.ini 458, 459
event logging 475
Event Manager 459, 480
file system syncronization 461
forced authentication 469
functional requirements 498
graded authentication 470
HLLAPI 458
Identity Manager

password reset 468
workflow extensions 489

inactive session shutdown 475
Java application logon 460
keyboard-sniffing 458
Kiosk Adapter 475, 485
Local Credential Store 457, 460
logging 464
logical components 450
Logon Manager 471, 479
logon methods 477
Mainframe Helper Object 458
Mainframe/Host application logon 458
mobility for credentials 461
passphrase challenge 453
password

change 499
change dialog 457
management problems 495
reset with Identity Manager 468
updates by Identity Manager 474

physical components 477
Provisioning Adapter 472, 488

audit reports 475
event logging 475

 Index 1017

integration with Identity Manager 591
proximity card 469
re-authentication 469, 471
repository 480
request for credentials 455
restore 461
roaming profiles 460
scenario 491
screen saver 466
security 458

... for credentials 461
de-provisioning credentials 473

silent backup and restore 461
single logout 475
single sign-on 152

costs 496
smart card 469
SNMP logging 465
SSO File Sync Service 466
strong authentication 452, 469, 471, 499
symmetric key 453
synchronization API 461
Synchronizer Manager 480
token 469
TripleDES 454
Web application logon 459
Windows

application logon 457
event log 465
Terminal Services tools 466

XML logging storage 465
Access Policy Evaluator 171
account 548

creation 685
de-linking 711, 750
linking 706, 748
lockout information 265
management 560, 565

historical data 583
operations 579

orphan 549
provisioning 553, 688
removal 584
user ID generation 553

accountability 36, 850
accreditation process 664
ACE/Server 293
ACL 61, 177, 267, 274, 329
Active Directory Changelog Connector 644

adapter 552
connectivity 566

Adapter Development Tool 986
address confirmation 663
administration 36

API 173, 188, 327
of a directory 70

administrative costs 580
Alphablox 911, 920, 932
AMPS 305
analysis

... of risks 4

... of security audit data 23, 846, 957
anonymity 25, 963
antivirus 860
application

layer firewall 27
request for credentials 455

approval process 580
architectural decision 971
architecture design principles 166, 385, 434
ASN.1 56
AssemblyLine 102, 622
asset

classification 8
protection 36
value 8

assurance 34, 36
attack pattern 859
attribute 548
audit 556, 955

account lockout information 265
daemon 401
data integrity 585
data security 852
infrastructure 851
log 171
login history 264
requirements 850
system interface 171

auditing 381, 405, 414, 510
Access Manager for Enterprise Single Sign-On
499
Common Auditing and Reporting Service 849
root-level authority 414
UNIX administrative activity 407
UNIX authorization decisions 405
UNIX trace events 407

authentication 20, 24, 25, 44, 279, 289, 952, 960

1018 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Access Manager for Enterprise Single Sign-On
451, 498
basic 292, 310
credentials 692
Directory Server 74
event auditing 739
external authentication C API 302
external authentication interface 297
flexibility 281
forms 310
Kerberos 76, 297
LDAP 59
MPA 305
none 305
NTLM 297
service 453, 725
step-up 281, 727
strength 281
strong mechanisms 469
WebSEAL 201, 284, 302

authenticity 44
authoritative

data source 578
identity information 635
source 694

authorization 36
Access Control Decision Function 324, 341
Access Control Enforcement Function 324
API 324, 327
daemon 400
database 177, 179, 187, 200
decisions on UNIX/Linux 389
Directory Server 79
evaluator 326
external authorization 337
flow 329
initiator 324
LDAP 61
local cache mode 271
mechanisms 24, 960
remote cache mode 269
rule 178, 329
service 172, 182, 187, 200, 325

interface 327
target 324

authorization server 219
scalability 275

availability 4, 9, 36, 59, 259, 261, 268
Access Manager

authorization server 269
Policy Server 272

user registry 271
Web Portal Manager 274
Web server 268
WebSEAL 264, 266

aznAPI 187, 350, 358, 376
entitlement service interface 303
Java 2 security model 187

B
B2B 659
B2C 666, 670
B2E 666
backend 40
base components 171

authorization database 177
management components 172

Basel II 16, 905
basic authentication 292, 310
BEA WebLogic 165

Access Manager integration 214
Security Service Provider Interface 214

Binding Enabler 171
biometrics 452
BS7799 5, 20
bulk load 640
business agreements 666
business benefits

single sign-on 150
business context

compliance 904
UNIX/Linux security and compliance 382

business continuity 6
business impact analysis 10
business process 538

flow 25, 963
re-engineering 543

business requirements 249
access control application integration 348
access control subsystem 249
Access Manager for Enterprise Single Sign-On
498
centralized directory 50
compliance and remediation 933
compliance and security for UNIX environments
414
compliance solution 928

 Index 1019

identity management solution 576
Network Admission Control 940
Web security 193
WebSEAL 281

C
C language 57
cascading replication topology 85
category

users 617
CDMA 305
CDMF 321
CDSSO 314
certificate 45, 293, 452, 975

Directory Server 76
challenge/response 516, 551
channel exit 426
circuit level firewall 27
Cisco

Local Director 266
Network Access Device 942
Secure Access Control Server 942
Trust Agent 942

client/server model 56
client-side scripting 310
collection of security audit data 23, 846, 957
Common Auditing and Reporting Service 208, 845

Access Manager for Operating Systems 409
architecture 848
auditing 849
Common Base Event 851
Common Event Infrastructure 851
compliance 847
Federated Identity Manager 738
reporting 852

Common Base Event 851
Common Criteria 20, 947, 952, 955

functional classes 21
Common Event Infrastructure 851
communication 20, 952
complexity 9
compliance 3, 7, 22, 166, 381, 414, 577, 582, 867,
907

... and remediation 933
Access Manager for Enterprise Single Sign-On

 496
business context 846, 904
Common Auditing and Reporting Service 847

de-provisioning credentials 474
influencing factors 907
legal 908
management 903
reporting 852
solution 928
solution architecture 930

component
access 20, 952
architecture 976

computer management 7
confidentiality 4, 585

LDAP 61
Configuration Manager 932, 935
control 907
controlled network 34
controlled zone 33, 222
corporate

governance 660
identities 668
image 9
IT accounts 664
security policy 577, 581
view 668

correlation 857
cost savings 576, 580
credential 31

attribute entitlement service 304
lifecycle 25, 963
secure 311
store 457

Credential Validator 170
Cross Domain Mapping Framework 321
Cross Domain Single Sign-On 314
crypt 78
cryptographic 25, 963

support 20, 952
cryptography 23, 24, 958, 960, 961
custom authentication 297

D
DAC 41, 527
DAML 566
Data 988
data

confidentiality 585
integrity

Directory Server 77

1020 Enterprise Security Architecture Using IBM Tivoli Security Solutions

database 40, 54
general-purpose 54
high availability 595

DataPower
Security Gateway 727, 771, 830

DB2
Alphablox 911, 920, 932
Express 622
High Availability Disaster Recovery 596
mutual takeover multiple partition 596
Security Operations Manager datastore 864

declarative security 354
defense-in-depth 867
delegation 184
deployment descriptor 354
design objectives 31, 966, 969

mapping to security subsystems 967
Web security 194

desktop single sign-on 153
DHCP 241
digital certificate 45, 975
digital signature 44
directory

... and databases 54

... and transactions 54
administration 70
availability and scalability 68
distributed 58
distributed administration 72
firewall configuration 66
metadirectory 93
namespace 62
naming style 65
partitioned and replicated 58
partitioning 69
physical architecture 65
referral 69
replication 68
schema 62, 83
security 59, 74
servers and clients 56
technologies 49
telephone 53
virtual directory 94

Directory Enabled Network 83
Directory Information Tree 63
Directory Integrator 90, 544, 622

... and Access Manager EAI 300

... integration with Identity Manager 567

Action Manager 135
Active Directory Changelog Connector 644
AddOnly connector mode 109
administration 145
Administration and Monitoring Console 102,
136
AssemblyLine 102, 622

Pool 140
Attribute map 104, 119
automatic connection reconnect 134
base components 101
Batch retrieval 113
Branch 119
CallReply connector mode 111
Case 120
Change notification 113
conn object 105
connector 106

library 107
pooling 116
state 114

data flow 100
execution 102
topology 128

data sources 99
debugging 143
Delete connector mode 110
delta

application 113
connector mode 112
detection 112
store 123

dispatching 102
DSML EventHandler 641
error detection 102
event 100
extensibility 102
Flow Debugger 143
Function component 118
general benefits 98
high availability 134, 139
Hook 104, 117
Identity Manager

data feed 604
synchronization 643

Iterator
connector mode 108, 111
Delta Store 112
State Store 113

 Index 1021

LDAP
changelog connector 643
connector 644

Link criteria 104, 110
logging 102, 141
Lookup connector mode 109
Loop 122
metadirectory 97

scenario 637
monitoring 135, 145
multiple server environment 132
Operations 121
Output Map 110
parser 117
password

management 645
synchronization 124

physical architecture 126
Pool Manager 111
reconciliation 641
scalability 134
script 117
security 125
Server connector mode 111
Switch 120
synchronization solution 112
System Store 122
Tombstone Manager 143
topologies 128
tracing 144
Update connector mode 110
User Property Store 123
virtual directory 97
Web portal enablement 649
work entry 104, 109
worker object 111

Directory Server 72, 176, 622
access

evaluation 82
rights 81
targets 81

access control information 79
administration 90

group 92
authentication 74
authorization 79
availability 83
base components 73
cascading replication 85

directory security 74
gateway topology 87
high availability 594
integrity 77
logging 90
master 84
master - replica topology 84
multiple masters 86
password encryption 77
peer topology 86
proxy authorization 82
proxy server topology 88
pseudo DN 80
replica 84
scalability 83
schema 83
subject 80
Web Administration Tool 91

Directory Services Markup Language
see DSML

Discretionary Access Control
see DAC

distributed
administration 72
directory 58
security domains 313

DMZ 34, 35, 37, 192, 222, 280
DNS 241
Domain Name Service 241
domain, home 319
DSML 56, 566, 567

EventHandler 641
dynamic

business entitlements 291
packet filter firewall 28
role 553

E
EAS

see External Authorization Service
e-business 664

patterns 36
e-community single sign-on 203, 316
Edge Server 266
EJB 263

role-based security 352
EJBContext 356
electronic commerce 965

1022 Enterprise Security Architecture Using IBM Tivoli Security Solutions

encryption 44, 453
private key 45
public key 45

end-to-end user lifecycle management 665
enforcement mechanisms 24, 960
enrollment costs 671
Enterprise Java Beans 263
Enterprise Service Bus

see ESB
enterprise single sign-on 313
entities 548
entitlement reports 404
entitlement service interface 303
Entrust Entelligence 452
environmental security 6
Error Handler 171
ESB 674
European Data Directive 95/46/EC 16
Everyplace Wireless Gateway 306
exception 582

handling 905
extended attributes 178
external authentication C API 293, 298, 302
external authentication interface 291, 297, 729
external authorization 337

service 188
external zone 33

F
facial biometrics 452
failover cookies 265, 268
failure recovery 23, 958
false negative 29
false positive 29
fault tolerance 23, 958
federated identity 661, 665
Federated Identity Management

see FIM
Federated Identity Manager 721

Access Manager integration 751
application

integration 831
logout 840

audit 739
base architecture pattern 807
Business Gateway 723

federated single sign-on 746
F-SSO architecture 765

identity provider 823
message flow 744
point of contact 744, 751
scenario 789
service provider 820
SMB pattern 819

Common Auditing and Reporting Service 738
corporate governance 660
customization 835
deployment manager 737
External Authentication Interface 729
federated single sign-on 746
federation services 723
F-SSO architecture 764
government collaboration 660
high availability pattern 815
identity mapping 826
Integrated Solutions Console 736
integration 831
key management 839
key services 734
Liberty 819
lightweight pattern 811
merger or the acquisition 657
message flow 743
multiple data center pattern 817
outsourced provider services 658
partnership 658
plug-in pattern 810
point of contact 725, 727, 751
portal-based integration 660
runtime services 722
SAML configuration 817
security token service 824, 825
service provider automation 659
session timeout 839
single sign-on 153
single sign-on protocol services 728
SMB pattern 819
solution design 837
trust service 729
Web services

architecture patterns 824
point-to-point pattern 827
provisioning management 684, 722
XML gateway pattern 828

WS-Federation 819
federated single sign-on 158, 674, 686, 705, 740,
746, 753, 781, 804, 805

 Index 1023

architecture 764
federation 684
file signature 393
FIM 662, 665, 680

access rights 709
account

creation 685
de-linking 711, 750
linking 706, 748
provisioning 688

active client 687
alias service 735
architecture 683
authentication

credentials 691, 692
service 725

authorization services 735
base architecture pattern 807
business agreements 666
business to consumer identities 669
common domain cookie 758
common unique identifier 707, 717
corporate e-mail 669
credentials clean up 710
CRM accounts 669
desktop identities 669
enrollment costs 671
example 680
existing legacy accounts 669
External Authentication Interface 729
federated single sign-on 674, 686, 705, 740,
753, 804
federated user lifecycle management 722
federation 684

standards 703
global goodbye 710
high availability pattern 815
HR accounts 669
identity

assertion 688
provider 666, 688
provisioning 716
services 734

key services 734
Liberty 700, 755
lifecycle management 670, 676
lightweight

pattern 811
single sign-on 806

logout 709
management

costs 672
services 736

message 697
multiple data center pattern 817
multiple identity account 670
name de-federation 750
network identities 669
OASIS 698
Oracle accounts 669
password

management 685, 688
synchronization 749

plug-in pattern 810
point of contact 725, 727, 751
policies 666
portal accounts 669
profile attributes 692, 694
provider specific attributes 692
provisioning services 735
pull protocol 747
push protocol 747
SAML 699, 753
security token 741
service provider 666, 688
session management 709
Shibboleth 700
single logout 709, 747
single sign-on

protocol 741
protocol services 728

SMB pattern 819
SOAP 714, 809
standards 698
supply chain 669
technical agreements 666
transaction attributes 691, 693
transport 697
trust

infrastructure 686
relationships 666
service 687, 697, 729

user
account creation 688
care 685
enrollment 685
provisioning 670
registration 671

1024 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Web services 712
gateway 715
security management 684, 711, 722, 766,
769

WebSphere accounts 669
where are you from? 708, 750
WS-Federation 700

passive client 759
WS-Provisioning 703, 775
WS-Security 702, 714, 770
WS-Trust 702, 766

fingerprint biometrics 452
firewall 857, 860

appliance 26
application layer 27
circuit level 27
dynamic packet filter 28
filters 230, 235
packet filter 27

flow control 24, 32, 955, 961, 968, 973
forensic investigation 850
forms, single sign-on 310
forms-based authentication 292
four eyes principle 904
fraud 32
FTP 242
functional design 975
functional requirements

Access Manager for Enterprise Single Sign-On
498
centralized directory 51
compliance and security for UNIX environments
414
identity management 577

G
gateway topology 87
Gemplus 452
GINA 452
GLBA 16
Global Sign-on 290, 307
government environment 41
graded authentication 469
Gramm-Leach-Bliley Act 16
Graphical Configuration Editor 986
group

... versus role 531
management 551

reconciliation 551
GSKit7 203
GSM 305
GSO

junction 359
lockbox 307

H
hacker attack 194
handprint biometrics 452
hardware security modules 23, 958
Health Insurance Portability and Accountability Act

see HIPAA
HIDS

see host-based intrusion detection system
High Availability Disaster Recovery for DB2 596
HIPAA 16, 435
HLLAPI 458
home domain 319
host-based intrusion detection system 859
hosting service 231
HTTP headers

client identity 290
client IP addresses 290

HTTP variables 311
human resources system 623

I
IBM DB2 Universal Database

see DB2
IBM Integrated Solutions Console

see Integrated Solutions Console
IBM Network Authentication Service

see Network Authentication Service
IBM Tivoli Access Manager

see Access Manager
IBM Tivoli Common Auditing and Reporting Service

see Common Auditing and Reporting Service
IBM Tivoli Configuration Manager

see Configuration Manager
IBM Tivoli Directory Integrator

see Directory Integrator
IBM Tivoli Directory Server

see Directory Server
IBM Tivoli Federated Identity Manager

see Federated Identity Manager
IBM Tivoli Identity Manager

see Identity Manager

 Index 1025

IBM Tivoli Identity Manager Express
see Identity Manager Express

IBM Tivoli Security Compliance Manager
see Security Compliance Manager

IBM Tivoli Security Operations Manager
see Security Operations Manager

IBM WebSphere Application Server
see WebSphere Application Server

IBM WebSphere Edge Server
see WebSphere Edge Server

IBM WebSphere MQ
see WebSphere MQ

ibmdisrv 101
ibmditk 101
iDEN 305
identification 20, 24, 25, 952, 960
identity 172

... and credentials 25, 955, 962, 968, 973, 975
Corporate identities 668
data management 634
end-to-end identity 668
federation 655

architecting ... 679
feed 550, 988
lifecycle management 510
management system 860
mapping 173
policy 617
provider 666, 688
verification 663

identity management 560, 664
access control management 542
access request approval 518
accountability 516
adapter 514
administration 520
approval process 518
audit 519, 542
costs 662
distributed administration 520
implementation plan 538
metadirectory 97
orphan account 516
password management 515, 542
process automation 518
repositories 514
risk assessment 512
scenarios 637
security policy 542

target systems 542
user administration policy automation 521
user management 542
virtual directory 97
workflow 518

Identity Manager 544
accelerating deployments 640
access control models 527
Access Manager for Enterprise Single Sign-On
provisioning 488
Access Manager for Enterprise Single Sign-On
Provisioning Adapter integration 591
Access Manager integration 607
account 548

management module 561
ACI 554
adapter 552

high availability 597
Adapter Development Tool 986
admin domain 553
administration API 566
application layer 560
approval workflow 555
audit 556
authentication 585

module 563
authorization module 563
bulk load 640
business partner organization 553
certification 584
challenge/response 551
change password 591
compliance 582
connectivity 566
creation cycle 524
credential distribution 472
data feed 604
Data Feed Report 988
data services module 564
Documentation Tool 988
DSML EventHandler 641
DSMLv2 JNDI connector 642
dynamic role 562
entities 548
entity management module 562
exception handling 582
functional requirements 577
Graphical Configuration Editor 986
group management 551

1026 Enterprise Security Architecture Using IBM Tivoli Security Solutions

high-availability 592
identity feed 550, 988
identity management module 562
identity policy 555, 561
job role 553
LDAP directory 565
lifecycle 562

management 523, 586, 606
management example 569
rules 526

location 553
logging 556

module 565
logical component architecture 558
mail module 563
managed service 554
management entities 552
messaging module 563
modification cycle 525
monitoring 987
orchestration module 565
organization 553
organization tree 549, 553
organizational unit 553
orphan account 516, 549
password

management 550, 578, 645
policy 555, 561
strength 553
updates 474

performance characteristics 987
person 548
physical architecture 588
policy 553

management module 561
module 564

principal 554
profile 552
provisioning 553, 564

cycle 525
policy 554, 561

re-certification 584
reconciliation 551, 567, 641
remote services module 564
reporting 557

module 562
reverse password synchronization 569, 600
role 553, 562

module 565

scheduling module 564
service 552

profile 552
selection policy 555, 561

shadow account 591
simulation 555
status change 564
synchronization with Directory Integrator 643
system administrator 554
system configuration module 562
termination cycle 525
user 548
Web User Interface Layer 559
workflow 555

design 559
management module 561
module 564

workflow extension 591
for Access Manager for Enterprise Single
Sign-On 489

Identity Manager Express 544
access control item 617, 619
account

request workflow 620
ACI 617, 619

groups 619
activity list 620
approval workflow 615
audit 615
data store 622
DB2 security 630
Directory Server security 629
help desk assistant 618
HR system 623
identity

feed 550
policy 617

LDAP adapter 625
Linux adapter 625
Lotus Notes adapter 625
manager 618
notification 620
password

policy 617
strength 617

physical component architecture 621
policy based provisioning 614
provisioning strategies 614
RBAC 614

 Index 1027

recertification 615, 620
request based provisioning 615
resource security 624
reverse password synchronization 616
security 623
service owner 618
system administrator 619
to-do item 620
user 618

category 617
view 619
Web security 627
WebSEAL 627
workflow 620

account request 620
identity provider

auditing 739
IDPS

see intrusion detection and prevention system
IDS 27
idsslapd 73
idsxcfg 73
ignore risk 10
imask 78
initiator 324
integrated identity management 510
Integrated Solutions Console 736
integrity 4

LDAP 61
intelligent agent response 455
interfaces 187

aznAPI 187
Java API 187

Internet DMZ 280
intervention point 403
intrusion 859
intrusion detection 857, 898

system 27
Intrusion Detection and Prevention System 898
intrusion detection and prevention system 859
iris recognition 452
ISO 10181-3 324
ISO 17799 5
ISO 7498-2 324
IT security architecture 951

J
J2EE

Access Manager 357
Connector Architecture 363
declarative security 354
deployment descriptor 354
EJBContext 356
programmatic security 356

JAAS 187, 327, 357, 358, 378
Subject trust service 731

JACC 356
Java 2 security model 187
Java application 57

logon 460
Java Authentication and Authorization Services

see JAAS
Java Authorization Contract for Containers 356
Java Message Service 426, 563
Java Server Pages 185, 263
JavaScript

... in Directory Integrator 98, 105, 115, 118
JMS 563
JNDI 57
job role 553
JSP 263
junction 196, 218, 229, 267, 268

stateful junction 268

K
Kerberos

authentication 76, 297
Directory Server 76
ticket-granting ticket 76
Token trust service 731

L
LDAP 175

administration 70
API 56, 57
authentication 59, 74
authorization 61
availability and scalability 68
changelog connector 643
communication ports 57, 75
confidentiality 61
connector 644
high availability 594
integrity 61
master 84
partitioning 69

1028 Enterprise Security Architecture Using IBM Tivoli Security Solutions

protocol or directory? 55
referral 69
replica 84
replication 68
Software Development Kit 71
SSL 61
TLS 61

ldapmodify 71
ldapsearch 71
legal business driver 8
Liberty 677, 700, 755, 819

identity provider introduction 758
trust service 731

lifecycle
management 523, 586, 606, 662, 665, 670, 676
rules 526

Lightweight Third Party Authentication
see LTPA

Linux
auditing 405, 414
authorization decisions 389
compliance and auditing 381
file signature 393
group users 382

local cache mode 271
log router daemon 402, 408
log4j 141
logging 167, 386, 400, 435, 556, 583, 857

Directory Server 90
logical component design

service layer 562
login

history 264
policy 396

login policy and password management daemon
401
logindeny 406
loginpermit 406
logon

Java application 460
Mainframe/Host application 458
Web application 459
Windows application 457

logout 709
function 292

Lotus Domino 176, 313
LTPA 202, 312

M
MAC 41, 527
magnetic access card 452
Mainframe/Host application

logon 458
maintenance 6
management components 172
Mandatory Access Control

see MAC
MAS 317
MASS 17, 20, 32, 947

access control 23, 955, 968, 973
ruleset 171
subsystem 169

Access Policy Evaluator 171
architectural decision 971
audit 22, 955

log 171
audit system interface 171
Authentication Manager 170
Binding Enabler 171
component architecture 976
Credential Validator 170
Error Handler 171
flow control 24, 955, 961, 968, 973
functional design 975
identity and credentials 25, 955, 962, 968, 973,
975
identity data management 634
Resource Manager 170
solution integrity 23, 955, 958, 968
solution model 971
State Manager 171
subsystems 168, 956
use case 972

master - replica topology 84
Master Authentication Server (MAS) 317
merger or the acquisition 657
message

channel agent 426
protection 435

Message Queuing Interface 426
messaging service 40
metadirectory 93, 97, 637
Method for Architecting Secure Solutions

see MASS
Microsoft

.NET 165, 188, 211
Active Directory 176

 Index 1029

software patch automation 935
middleware 668
migration of Access Manager data 183
military environment 41
mission critical 9
misuse 859
mitigation of risk 10
monitoring

... the network 859
Access Manager 989

MPA 305
MQSeries 432
multiple authentication 470
multiple LDAP masters 86
multiple security domains 313
Multiplexing Proxy Agent 305

N
namespace 62
naming style 65
NAT 26
NEC Touch Pass 452
network

access control 857
boundaries 26
components 26
configuration 219
intrusion detection systems 29
intrusion protection system 29
management 7
models 30
monitoring 859
policy 394
security 221
security device 858
zones 34

Network Access Device 942
Network Address Translation 26
Network Admission Control 939
Network Admission Policy 942
Network Authentication Service 76
network zone

controlled 34
restricted 34
secured 35
uncontrolled 34

NIDS 29
non-compliant account 584

non-repudiation 4
Novell eDirectory 176
NTP 241

O
OASIS 698, 702, 703
object authority manager 426
OCSP 302
on demand

integration 667
interoperation 666

one-way password synchronization 550
Online Certificate Status Protocol 302
Open Group authorization API 324
operational reports 920
organizational level security control 904
organizational role 553
orphan account 516, 549
OSI security services 951
OSSEAL 381

P
packet filter firewall 27
partitioning 58, 69
partnership-based solutions 666
password

change mechanisms 499
management 515, 550, 578, 579, 645, 685, 688
management policy 396
management problems 495
policy 526, 555, 617
reset 579
strength 516, 553, 617
synchronization 98, 749

password encryption, Directory Server 77
patch management 861
pdadmin 172, 182

utility 387
PDC 305
PDOSD daemon 389
PDPermission 358, 378
peer topology 86
performance 59, 263
person 548
personnel security 7
PHS 305
physical architecture directory 65
physical security 6

1030 Enterprise Security Architecture Using IBM Tivoli Security Solutions

PKI 975
Plug-in for Edge Server 209
Plug-In for Web servers 205, 219
plug-ins 231
point of contact 751
policy 4, 666, 909

branch 397
corporate 37
credential attribute entitlement service 304
database 325
enforcement 584
exception 582
identity 555
management 560
password 555
provisioning 554
security 193
Security Compliance Manager 919
service selection 555

Policy Proxy Server 172, 181, 225
Policy Server 172, 179, 215, 225, 325, 387

availability 272
failure 263
proxy 181
standby 180

POP
see protected object policy

port restrictions for WebSEAL 255
port scanning 28
portal 40
practices 12, 909
privacy 20, 31, 952
private key encryption 45
Privilege Attribute Certificate 173
procedures 12, 909
process level security control 904
profile 552
programmatic security 356
protected object policy 177, 187, 274, 329, 334,
392, 405
protected object space 177, 187, 196, 267, 274,
327, 331

guidelines 344
protection of security audit data 23, 846, 957
provisioning 510, 670, 716

credential distribution 472
policy 553
policy based 614
policy entitlement 556

policy simulation 555
request-based 615
strategies 614
user ownership costs 671
user provisioning 670

proximity card 452
proxy

authorization 82
server topology 88

pseudo DN 80
pseudonymity 25, 963
public key

encryption 45

Q
quarantine network 941
query_contents 200
quotas 23, 959

R
RACF 301

PassTicket trust service 731
single sign-on 157

RADIUS 301
random password 551
RBAC 41, 527, 614

system design 533
re-authentication 727
reconciliation 551, 637, 641
recovery 23, 958
Redbooks Web site 1014

Contact us xxvii
reduce risk 10
reduced sign-on 149
referral 58, 69
regulatory

business driver 8
compliance 867
concerns 16

relational database high availability 596
relationship role-group 532
remote cache mode 269
replication 58, 68
reporting 557

Common Auditing and Reporting Service 852
Security Compliance Manager 920

Resource Access Control Facility 301
resource manager 164, 170, 186, 350, 351

 Index 1031

OSSEAL 381
resource utilization 20, 952
restricted network 34
restricted zone 33, 222
reverse password synchronization 616

high availability 600
reverse proxy 196, 231, 283
risk

analysis 4, 10, 850
assessment 512
management 3, 8, 33, 861, 905
mitigation 10
tolerance 9

role
... versus group 531
changes 582

Role Based Access Control 521
see RBAC

role-based security 352
root-level authority auditing 414
router 28
RSA ACE/Server 293
RSA Keon 452
RSA SecurID 452
RSA SecurID token 293
RSA SoftID 452

S
SAFLINK 452
SAML 158, 677, 699, 703, 753

assertions 699
bindings and profiles 699
configuration 817
trust service 731
Version 2.0 762

Sarbanes-Oxley Act 16
SASL 60

Directory Server 77
scalability 259, 274

authorization server 275
user registry 276
Web server 275

schema 62, 83
Schlumberger 452
secrets 25, 963
secure credential exchange 311
secure credentials 311
Secure Sockets Layer

see SSL
secured network 35
secured zone 33, 222
SecurID token 293
security

architecture 538, 951, 965
audit 20, 952
audit data 23, 846, 957
compliance 577
controls 904
cost 194
event aggregation 865
incident investigation scenario 855
management 194
organization 7
policy 4, 8, 11, 35, 59, 193, 194, 223, 328, 512,
542, 574, 577, 581, 905

... for UNIX/Linux 383
policy compliance management 903
policy exception 582
real-time event information 862
risk 585
subsystems mapping to design objectives 967
token service 824
triangle 667

Security Assertion Markup Language
see SAML

security audit subsystem 22, 957
Security Compliance Manager 903

administration components 923
client 914
collector 916
compliance evaluation component 919
data collection component 914
failover support 923
logical components 911
operational reports 920
policy 919
posture collector 942
proxy relay 918
server 922
snapshot 920

security design objectives 31, 250, 928, 933, 966,
969

Network Admission Control 941
WebSEAL 282

security domains
distributed 313
multiple 313

1032 Enterprise Security Architecture Using IBM Tivoli Security Solutions

security functions
management 20, 952
protection 20, 952

Security Information Event Management 857, 892
Security Operations Manager

activity pattern 859
agent 865
agent-less aggregation 865
aggregation 865
antivirus 860
architecture 863
business context 866
Central Management System 863, 877, 882,
889, 894, 896
compliance 867
conduit 870, 871

rules file 872
syslog 873, 894

contextualization 866
correlation 857, 867

engine 894
data

collection 871
transmission 876

deterministic threat analysis 863, 877
distributed deployment 883
ec database 873
ec.filters 875
event

aggregator 894
class 866
logging format 866
mapping 867
priority 873
taxonomies 867

Event Aggregation Module 863, 870, 882, 896
Connection Manager 874

Event Archiver 864, 879, 894
event_id 876
firewall 860
heartbeat 876
high-availability deployment 885
host-based intrusion detection system 859
integrity assessment 859
intrusion detection 857, 898
intrusion detection and prevention system 859
logging 857
logical components 862
network

monitoring 859
security devices 858

normalization 866, 872
operator 899
overview 857
patch management 861
pattern of attack 859
physical architecture 882
policy

violation 859
PowerGrid 880
processes 864
real-time event information 862
reporting 881
risk

management 861
rules-based correlation 868
scenario 889
security

administrator 899
design objectives 892
domain 866

Security Information Event Management 857
single server deployment 882
stateful rule example 879
Stateful Rules Engine 877
stateless rule example 879
statistical correlation 868
susceptibility correlation 869
syslog conduit 873, 894
threat analysis 877
Universal Collection Module 876
vulnerability

assessment 859
correlation 869

vulnerability assessment 861
watchlist 867
Web interface 880
WebSEAL adapter 898
XML Conduit 877

self-assertion 663
self-service 515
sendmail 242
sensitivity silo 528
separation of duties 904, 908
server authentication

Directory Server 74
service 552

layer 562

 Index 1033

profile 552
provider 666, 688

Service Oriented Architecture
see SOA

service provider
auditing 739

Services
Authorization Services 735
Key services 734
single sign-on services 735
Trust services 729

session cookie 290
Session Management Server 264
SHA-1 78
shadow account 591
Shibboleth 700
SIEM

see Security Information Event Management
signature authentication 452
Simple Authentication and Security Layer

see SASL
simplified sign-on 149
single logout 475, 701, 709, 747
single sign-on 194, 196, 203, 219, 250, 290, 306,
312, 313, 359, 510, 701

auditing 740
costs 496
federated single sign-on 753, 804
FIM protocol 741
lightweight 806
protocol functionality 746
pull protocol 747
push protocol 747
technologies 149
Web Security Server 306

snapshot, Security Compliance Manager 920
SOA 40, 672, 676, 686

strategy 783
SOAP 40, 809

message exchanges 702
message security 702

solution
architecture 971
integrity 23, 955, 958, 968
model 971

SOX 16
SPNEGO 156, 744

protocol 294
SQL 55

SSL 224, 697, 698
adapter communication 552
Directory Server 75
end-to-end 699
granularity 699
hardware acceleration 203
LDAP 61

SSO
see single sign-on

standards 12, 909
Standby Policy Server 180
State Manager 171
stateful

inspection 28
junction 268
packet filtering 195

static role 553
step-up authentication 281, 727
strong authentication 452, 499
Structured Query Language (SQL) 55
su command 403
subject 80
subsystems 168, 956
sudo policy 397
Sun Java System Directory Server 176
Sun ONE Directory Server 176
surrogate

operations 396
policy 396

symmetric key 453
synchronization 637

... of credentials 474

... of passwords 550

T
TAR 293
target 324
TCB (Trusted Computing Base) 392

resources 393
TDMA 305
technical agreements 666
technical security control 904
telephone directory 53
threat analysis 863
ticket-granting ticket 76
time

... to market 8
based log-out 293

1034 Enterprise Security Architecture Using IBM Tivoli Security Solutions

services 23, 241, 959
synchronization process 595

Tivoli Access Manager for e-business
single sign-on 152

Tivoli Enterprise Console
daemon 401

Tivoli Global Sign-On 307
Tivoli Monitoring

Access Manager 989
Identity Manager 987

Tivoli Security Operations Manager
see Security Operations Manager

TLS 698
Directory Server 75
LDAP 61

token 452
authenticator 293

transactional attributes 693
transactions 25, 54, 963
transfer risk 10
Transport Layer Security

see TLS
TripleDES 454
trust 287

foundation of trust 662
partner accreditation 663
partner identity proofing 663
partner reputation evaluation 663
trust and assurance 662
trust relationships 666

Trust Association Interceptor 202, 358, 359
trust service

auditing 740
Trusted Computing Base (TCB) 392

resources 393
trusted credentials 31
trusted path 20, 952
two-way authentication

Directory Server 74

U
U.K. Data Protection Act 1998 16
uncontrolled network 34
uncontrolled zone 33
UNIX

auditing 405, 414
authorization decisions 389
compliance and auditing 381

file signature 393
group users 382

use case 972
access control 169

user
account creation 688
administration policy automation 521
data protection 20, 952
enrollment 685
ID generation 553
lifecycle management 509, 665
provisioning 670
registration 671

user agent 725
user management

historical data 583
user registry 173, 215, 226

availability 271
identity mapping 173
scalability 276
structure 174

V
virtual directory 94, 97
virtual hosting 198, 202, 209, 255
Virtual Private Network 26
voice print biometrics 452
VPN 26
vulnerability 850

assessment 859, 861
management 929

W
WAP 306
watchdog daemon 401
Web Administration Tool 91
Web application

logon 459
server 39

Web Portal Manager 172, 183, 229, 263, 387
architecture 185
availability 274
Java Server Pages 185

Web security
business requirements 193
design objectives 194
principles 195

Web Security Server 280, 282

 Index 1035

authentication mechanisms 291
authentication model 289
Cross Domain Single Sign-On (CDSSO) 314
e-community single sign-on 316
pkmscdsso 315
single sign-on 290
single sign-on mechanisms 306

Web server 39, 268
scalability 275

Web Server Plug-In architecture 205
Web services 712

access control 723
architecture patterns 824
gateway 715, 727
point-to-point pattern 827
provider 829
requestor 716, 771, 828
security 675, 714
security management 711, 722, 766, 769
WS-Federation 675
WS-Policy 675
WS-Security 675
WS-Trust 675
XML gateway pattern 828

Web single sign-on 149, 154
WebSEAL 191, 196

ACL 267
adapter for Security Operations Manager 898
authentication 201, 284, 289, 302

mechanisms 291
availability 264, 266
basic authentication 310
business requirements 281
CDMF 316
client-side scripting 310
credential attribute entitlement service 304
Cross Domain Single Sign-On (CDSSO) 314
dynamic group assignment 299
e-community single sign-on 316
external authentication C API 293, 298, 302
external authentication interface 291, 297
failure 262
forms single sign-on 310
generic password 311
Global Sign-on 307
GSO junction 359
hardening 242, 280
junction 196, 218, 229, 267, 268
load balancing 200, 594

LTPA 312
Master Authentication Server 317
network configuration 219
pkmscdsso 315
pkmsvouchfor 318
policy credential attribute entitlement service
304
port restrictions 255
protected object space 267
query_contents 200
replication 202
reverse proxy 196, 280
scalability 274
security functions 200
single sign-on 312, 359
SSL hardware acceleration 203
stateful junction 200, 268
transparent path junction 199
trust 287
Trust Association Interceptor 202, 359
virtual host junction 198, 255

WebSphere
... Application Server 73, 91, 185

Access Manager integration 213
... Application Server Express 622
... DataPower Security Gateway 830
... Edge Server 209, 266
... Everyplace Suite 209, 305
... MQ 426, 432
... MQ Client 441
DataPower Security Gateway 723, 727, 771
deployment descriptor 354
Trust Association Interceptor 359

white pages 54
Windows

application logon 457
GINA 452, 478
roaming profiles 460

workflow 510, 555, 615, 620
approval 555
extension 591

WSDL 40
WS-Federation 677, 700, 819

passive client 759
WS-Provisioning 703, 775
WS-Security 702, 770
WS-Trust 702, 766

1036 Enterprise Security Architecture Using IBM Tivoli Security Solutions

X
X.500 directory 55
X.509 46, 293
X.509 certificate authentication 563
X.509 Token

trust service 731
XML 566

encryption 723
gateway 716
point of contact 771

Z
z/OS Security Server 176

 Index 1037

1038 Enterprise Security Architecture Using IBM Tivoli Security Solutions

Architecture
Using IBM

 Tivoli Security Solutions

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

Enterprise Security
Architecture
Using IBM

 Tivoli Security Solutions

®

SG24-6014-04 ISBN 0738486418

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Enterprise Security
Architecture
Using IBM Tivoli Security Solutions

Audit and
compliance, access
control, identity
management, and
integrity

Extensive product
architecture and
component
introduction

Complete coverage
of Tivoli Security
solutions

This IBM Redbooks publication reviews the overall Tivoli
Enterprise Security Architecture. It focuses on the integration of
audit and compliance, access control, identity management, and
federation throughout extensive e-business enterprise
implementations. The available security product diversity in the
marketplace challenges everyone in charge of designing single
secure solutions or an overall enterprise security architecture.
With Access Manager, Identity Manager, Federated Identity
Manager, Security Compliance Manager, Security Operations
Manager, Directory Server, and Directory Integrator, Tivoli offers
a complete set of products designed to address these challenges.

This book describes the major logical and physical components of
each of the Tivoli products. It also depicts several e-business
scenarios with different security challenges and requirements. By
matching the desired Tivoli security product criteria, this
publication describes the appropriate security implementations
that meet the targeted requirements.

This book is a valuable resource for security officers,
administrators, and architects who want to understand and
implement enterprise security following architectural guidelines.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Notices
	Trademarks

	Contents
	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	August 2007, Fifth Edition
	September 2006, Fourth Edition
	April 2006, Third Edition

	Part 1 Terminology and infrastructure
	Chapter 1. Business context
	1.1 Security, risk, and compliance
	1.2 The BS7799 security standard
	1.3 Common business drivers
	1.4 Risk analysis and mitigation
	1.5 Security policies
	1.5.1 Security policy lifecycle

	1.6 Other considerations
	1.6.1 The human factor impact
	1.6.2 Legal and regulatory concerns

	1.7 Closing remarks

	Chapter 2. Common security architecture and network models
	2.1 Common security architecture subsystems
	2.1.1 Common Criteria
	2.1.2 MASS security subsystems

	2.2 Common network components
	2.2.1 Building network boundaries
	2.2.2 Intrusion detection and prevention

	2.3 Common network models
	2.3.1 Localizing a global vision
	2.3.2 Network zones
	2.3.3 E-business security requirement

	2.4 Practical designs
	2.5 Additional components
	2.6 Access control models
	2.6.1 Which model

	2.7 Certificates
	2.8 Security components
	2.9 Conclusions

	Chapter 3. Directory technologies
	3.1 Using a centralized user repository
	3.1.1 Business requirements
	3.1.2 Functional requirements
	3.1.3 One or multiple repositories
	3.1.4 Why a directory server

	3.2 Directories
	3.2.1 General definition
	3.2.2 Directory versus database
	3.2.3 LDAP: Protocol or directory
	3.2.4 DSML
	3.2.5 Directory clients and servers
	3.2.6 Distributed directories
	3.2.7 Directory security
	3.2.8 Schema and namespace
	3.2.9 Physical architecture
	3.2.10 Availability and scalability
	3.2.11 Administration

	3.3 IBM Tivoli Directory Server
	3.3.1 Overview
	3.3.2 Base components
	3.3.3 Directory security
	3.3.4 Schema
	3.3.5 Availability and scalability
	3.3.6 Logging
	3.3.7 Administration

	3.4 Virtual directory versus metadirectory
	3.4.1 Metadirectory
	3.4.2 Virtual directories

	3.5 IBM Tivoli Directory Integrator
	3.5.1 Overview
	3.5.2 Concept of integration
	3.5.3 Base components
	3.5.4 Security capability
	3.5.5 Physical architecture
	3.5.6 Availability and scalability
	3.5.7 Logging
	3.5.8 Administration and monitoring

	3.6 Conclusions

	Chapter 4. Single sign-on technologies
	4.1 SSO delivers multiple business benefits
	4.2 Three classes of single sign-on
	4.3 Desktop single sign-on
	4.4 Web single sign-on
	4.4.1 Desktop SSO
	4.4.2 Back-end and portal SSO
	4.4.3 Three-tier SSO
	4.4.4 SSO to host application emulators

	4.5 Federated single sign-on
	4.6 Enjoy security management benefits beyond SSO
	4.7 Conclusion

	Part 2 Managing access control
	Chapter 5. Access Manager core components
	5.1 Tivoli Access Manager family
	5.1.1 Access Manager for e-business
	5.1.2 Access Manager for Operating Systems
	5.1.3 Access Manager for Business Integration

	5.2 Architectural perspective
	5.2.1 Design principles
	5.2.2 Security subsystems
	5.2.3 Access control subsystem

	5.3 Base components
	5.3.1 Overview
	5.3.2 User registry
	5.3.3 Authorization database
	5.3.4 Policy Server
	5.3.5 Policy Proxy Server
	5.3.6 Authorization service
	5.3.7 The pdadmin utility and administration API
	5.3.8 Web Portal Manager

	5.4 Resource managers
	5.5 Interfaces
	5.5.1 aznAPI
	5.5.2 Java API for Access Manager-based authorization
	5.5.3 Access Manager-based authorization for Microsoft .NET
	5.5.4 Management API
	5.5.5 External Authorization Service

	Chapter 6. Access Manager for e-business
	6.1 Typical Internet Web server security characteristics
	6.2 Web security requirement issues
	6.2.1 Typical business requirements
	6.2.2 Typical design objectives (technical requirements)

	6.3 Web security architectural principles
	6.3.1 Principle 1
	6.3.2 Principle 2
	6.3.3 Principle 3

	6.4 Access Manager for e-business components
	6.4.1 WebSEAL
	6.4.2 Plug-in for Web servers
	6.4.3 Access Manager Attribute Retrieval Service
	6.4.4 Common Auditing and Reporting Service
	6.4.5 Plug-in for Edge Server
	6.4.6 Access Manager Session Management Server
	6.4.7 Access Manager for Microsoft .NET applications
	6.4.8 WebSphere Application Server integration
	6.4.9 Access Manager for BEA WebLogic Server

	6.5 Basic WebSEAL component interactions
	6.6 Basic Web Plug-in component interaction
	6.7 Component configuration and placement
	6.7.1 Network zones
	6.7.2 Secure communication issues
	6.7.3 Specific Access Manager component placement guidelines
	6.7.4 Summarizing Access Manager component placement issues

	6.8 Physical architecture considerations
	6.8.1 Access Manager components
	6.8.2 Other infrastructure components
	6.8.3 General host hardening considerations

	6.9 Access Manager: Part of overall security solution

	Chapter 7. A basic WebSEAL scenario
	7.1 Company profile
	7.2 Technology background
	7.3 IT infrastructure
	7.3.1 Data centers
	7.3.2 Network
	7.3.3 Operational plans

	7.4 Business requirements
	7.5 Security design objectives
	7.6 Requirements analysis
	7.7 Access control architecture
	7.7.1 Initial architecture approach
	7.7.2 Internal user access
	7.7.3 Connecting the pieces

	7.8 Building the physical architecture
	7.8.1 Internet DMZ
	7.8.2 Production network

	7.9 Architectural summary

	Chapter 8. Increasing availability and scalability
	8.1 Further evolution
	8.1.1 Business requirements
	8.1.2 Security design objectives

	8.2 Availability
	8.2.1 Failure situations
	8.2.2 Providing high availability

	8.3 Adding scalability
	8.3.1 WebSEAL scalability
	8.3.2 Authorization Server scalability
	8.3.3 Infrastructure component scalability

	Chapter 9. Authentication and single sign-on with Access Manager for e-business
	9.1 Typical business requirements
	9.2 Typical security design objectives
	9.3 Solution architecture with WebSEAL
	9.3.1 Authentication and single sign-on mechanisms
	9.3.2 Trust
	9.3.3 Generic authentication mechanism with Web security server
	9.3.4 Generic Web security server single sign-on mechanism

	9.4 Web security server authentication mechanisms
	9.4.1 Basic authentication with user ID and password
	9.4.2 Forms-based login with user ID and password
	9.4.3 Authentication with X.509 client certificates
	9.4.4 Authentication with RSA SecurID token
	9.4.5 Windows desktop single sign-on
	9.4.6 External Authentication Interface
	9.4.7 Custom authentication using the External Authentication C API
	9.4.8 Entitlement service interface
	9.4.9 Authentication using customized HTTP headers
	9.4.10 Authentication based on IP address
	9.4.11 No authentication
	9.4.12 MPA authentication

	9.5 Web security server single sign-on mechanisms
	9.5.1 Tivoli Global Single Sign-On lockbox
	9.5.2 Forms single sign-on
	9.5.3 Passing an unchanged basic authentication header
	9.5.4 Providing a generic password
	9.5.5 Supplying user and group information
	9.5.6 Using LTPA authentication with the Web security servers

	9.6 Enterprise single sign-on mechanisms
	9.6.1 Cross Domain Single Sign-On
	9.6.2 e-community single sign-on
	9.6.3 Cross Domain Mapping Framework
	9.6.4 Cookie Based single sign-on

	Chapter 10. Access Manager authorization
	10.1 Authorization overview
	10.1.1 The Tivoli Access Manager authorization service
	10.1.2 Access Manager authorization components

	10.2 Security policy
	10.2.1 Protected object space
	10.2.2 Users and groups
	10.2.3 ACL policy
	10.2.4 Protected object policies
	10.2.5 Authorization rules
	10.2.6 Authorization rules detail
	10.2.7 External authorization capability
	10.2.8 ADI

	10.3 Conclusion
	10.3.1 Guidelines for a secure protected object space

	Chapter 11. Application integration
	11.1 Business requirements
	11.2 Security design objectives
	11.3 WebSphere Application Server security
	11.3.1 Java Authorization Contract for Containers

	11.4 Access Manager and WebSphere integration
	11.4.1 Shared user registry
	11.4.2 Single sign-on
	11.4.3 User mapping for WebSphere J2EE Connector Architecture

	11.5 Access Manager and .NET Integration
	11.5.1 Single sign-on
	11.5.2 Role-based authorization in .NET

	11.6 C and Java application integration
	11.7 Conclusion

	Chapter 12. Access Manager for Operating Systems
	12.1 Overview of Tivoli Access Manager for Operating Systems
	12.1.1 Business context
	12.1.2 Access Manager for Operating System integration

	12.2 Security architecture subsystems perspective
	12.3 Architecture
	12.3.1 Authorization model

	12.4 Native UNIX security relationship
	12.5 Policy
	12.5.1 File policy
	12.5.2 Network policy
	12.5.3 Login policy
	12.5.4 Password management policy
	12.5.5 Surrogate policy
	12.5.6 Sudo policy

	12.6 Policy branches
	12.6.1 Single policy branch configuration
	12.6.2 Multiple policy branch configuration

	12.7 Runtime environment
	12.7.1 The pdosd authorization daemon
	12.7.2 The pdosauditd audit daemon
	12.7.3 The pdoswdd watchdog daemon
	12.7.4 The pdostecd Tivoli Enterprise Console daemon
	12.7.5 The pdoslpmd login and password management daemon
	12.7.6 The pdoslrd log router daemon

	12.8 Putting it all together
	12.9 Entitlement reports
	12.10 Auditing
	12.10.1 Auditing authorization decisions
	12.10.2 Auditing administrative activity
	12.10.3 Auditing trace events
	12.10.4 Audit log consolidation
	12.10.5 Common Auditing and Reporting Service integration

	12.11 Conclusion

	Chapter 13. Access Manager for Operating Systems business scenario
	13.1 Business requirements
	13.2 Functional requirements
	13.3 Designing the solution
	13.4 Policy design
	13.4.1 Administrative groups
	13.4.2 Policy layout
	13.4.3 Architecture overview

	13.5 Integrating into an Access Manager environment
	13.6 Conclusion

	Chapter 14. Access Manager for Business Integration
	14.1 Product overviews
	14.1.1 IBM WebSphere MQ
	14.1.2 WebSphere Business Integration Message Broker
	14.1.3 Access Manager for Business Integration
	14.1.4 Access Manager for WebSphere Business Integration Brokers

	14.2 Architectural perspective
	14.2.1 Design principles

	14.3 Access Manager for Business Integration
	14.3.1 Security characteristics
	14.3.2 Architecture
	14.3.3 Components and dependencies

	14.4 Access Manager for WebSphere Business Integration Brokers
	14.4.1 Authorization and permission bits

	14.5 A distributed application at Stocks-4u.com

	Chapter 15. Access Manager for Enterprise Single Sign-On
	15.1 Logical component architecture
	15.1.1 Authentication
	15.1.2 Encryption
	15.1.3 Intelligent agent response
	15.1.4 Core (including storage)
	15.1.5 Credential synchronization
	15.1.6 Event logging
	15.1.7 Additional components
	15.1.8 Desktop Password Reset Adapter
	15.1.9 Authentication Adapter
	15.1.10 Provisioning Adapter
	15.1.11 Kiosk Adapter

	15.2 Physical component architecture
	15.2.1 Agent
	15.2.2 Repository and authentication
	15.2.3 Administrative Console
	15.2.4 Authentication Adapter
	15.2.5 Kiosk Adapter
	15.2.6 Desktop Password Reset Adapter
	15.2.7 Provisioning Adapter

	15.3 Conclusion

	Chapter 16. Tivoli Access Manager for Enterprise Single Sign-On scenario
	16.1 Company profile
	16.2 Current IT Architecture
	16.3 Current password management problems
	16.3.1 Time and money related problems
	16.3.2 Security related problems
	16.3.3 Compliance with regulations
	16.3.4 Current single sign-on costs

	16.4 Business requirements
	16.5 Functional requirements
	16.6 Design approach
	16.6.1 Core solution deployment
	16.6.2 Desktop Password Reset Adapter deployment
	16.6.3 Authentication Adapter deployment

	16.7 Solution analysis
	16.8 Conclusion

	Part 3 Managing identities and credentials
	Chapter 17. Identity management
	17.1 Business drivers
	17.2 Issues affecting identity management solutions
	17.3 Security policies, risk, due care, and due diligence
	17.4 Centralized user management
	17.4.1 Adapters to access controlled systems
	17.4.2 Password management
	17.4.3 Access rights accountability
	17.4.4 Access request approval and process automation
	17.4.5 Access request audit trails
	17.4.6 Distributed administration
	17.4.7 User administration policy automation
	17.4.8 Self-regulating user administration across organizations

	17.5 Lifecycle management
	17.5.1 The creation cycle
	17.5.2 The provisioning cycle
	17.5.3 The modification cycle
	17.5.4 The termination cycle
	17.5.5 Lifecycle rules

	17.6 Access control models
	17.6.1 Selection process
	17.6.2 Roles versus groups
	17.6.3 Designs
	17.6.4 Observations

	17.7 Planning the approach to the solution
	17.8 Implementation plan
	17.8.1 Definition of an identity management solution

	17.9 Business processes and identity management
	17.10 Conclusions

	Chapter 18. Identity Manager structure and components
	18.1 IBM Tivoli Identity Manager entities
	18.1.1 Users, accounts, and attributes
	18.1.2 Identity feed
	18.1.3 Passwords
	18.1.4 Group membership
	18.1.5 Managed systems and applications

	18.2 IBM Tivoli Identity Manager management entities
	18.2.1 Organizational tree and roles
	18.2.2 Identity Manager groups and ACIs
	18.2.3 Policy
	18.2.4 Workflow
	18.2.5 Logs and audit
	18.2.6 Reports

	18.3 Logical component architecture
	18.3.1 Web User Interface layer
	18.3.2 Application layer
	18.3.3 Service Layer
	18.3.4 LDAP directory
	18.3.5 Database
	18.3.6 Resource connectivity
	18.3.7 Lifecycle example

	18.4 Conclusion

	Chapter 19. Identity Manager scenarios
	19.1 Basic security architecture considerations
	19.1.1 Network considerations

	19.2 An Identity Manager scenario
	19.2.1 Business requirements
	19.2.2 Functional requirements
	19.2.3 Designing the solution

	19.3 Tivoli Access Manager for Enterprise Single Sign-On Provisioning Adapter
	19.4 Tivoli Identity Manager high-availability
	19.4.1 Application server high availability
	19.4.2 Directory server high availability
	19.4.3 Relational database high availability
	19.4.4 Identity Manager adapters high availability
	19.4.5 Reverse password synchronization high availability
	19.4.6 Complete scenario

	19.5 Importing and synchronizing user data
	19.6 Integrating with Access Manager
	19.6.1 Specialized integration tasks
	19.6.2 Integrated architecture with Identity Manager adapters

	19.7 Conclusion

	Chapter 20. Identity Manager Express structure and components
	20.1 Provisioning strategies for identity management
	20.1.1 Policy-based provisioning
	20.1.2 Requests-based provisioning
	20.1.3 Combining policy-based and request-based provisioning
	20.1.4 Features of IBM Tivoli Identity Manager Express

	20.2 Management and user terminology
	20.2.1 Setting policies in Identity Manager Express
	20.2.2 User categories
	20.2.3 Access control
	20.2.4 Workflow

	20.3 Physical component architecture
	20.4 Identity Manager Express security
	20.5 Conclusion

	Chapter 21. Synchronizing the enterprise
	21.1 Identity data management service context
	21.2 Identity data repositories
	21.3 Managing identities and credentials
	21.4 Business value
	21.5 Identity data management scenarios
	21.5.1 Providing metadirectory services
	21.5.2 Accelerating Identity Manager deployments
	21.5.3 Multiple directories and Tivoli Access Manager
	21.5.4 Password synchronization services
	21.5.5 Migration services
	21.5.6 Enabling Web portals

	21.6 Conclusion

	Part 4 Managing federations
	Chapter 22. Business context for identity federation
	22.1 The business context
	22.2 Business models for federated identity
	22.3 Federated identity
	22.3.1 The relationship - trust and assurance

	22.4 The role of identity management
	22.4.1 Dealing with identities
	22.4.2 User lifecycle management
	22.4.3 Inter-enterprise application to application integration
	22.4.4 Open standards

	22.5 Conclusion

	Chapter 23. Federation concepts
	23.1 Federation example
	23.2 Federated identity management architecture
	23.2.1 Background to federation
	23.2.2 Architecture overview
	23.2.3 Roles
	23.2.4 Identity models
	23.2.5 Identity attributes
	23.2.6 Trust
	23.2.7 Federation protocol

	23.3 FIM standards and efforts
	23.3.1 SSL/TLS
	23.3.2 Security Assertion Markup Language
	23.3.3 Shibboleth
	23.3.4 Liberty
	23.3.5 WS-Federation
	23.3.6 WS-Trust
	23.3.7 WS-Security
	23.3.8 WS-Provisioning
	23.3.9 Selecting Federation standards

	23.4 Federated single sign-on
	23.4.1 Push and pull SSO
	23.4.2 Account linking
	23.4.3 Where are you from?
	23.4.4 Session management and access rights
	23.4.5 Logout
	23.4.6 Credentials clean up
	23.4.7 Global good-bye
	23.4.8 Account delinking

	23.5 Web services security management
	23.5.1 Web services
	23.5.2 Web services security
	23.5.3 Web services gateways

	23.6 Federated identity provisioning
	23.7 Conclusion

	Chapter 24. Federated Identity Manager
	24.1 Federated Identity Manager functionality
	24.2 Federation services
	24.2.1 HTTP point of contact
	24.2.2 SOAP/XML point of contact
	24.2.3 Single sign-on protocol services
	24.2.4 Trust services
	24.2.5 Key services (KESS)
	24.2.6 Identity services
	24.2.7 Authorization services
	24.2.8 Provisioning services
	24.2.9 Management services
	24.2.10 Audit Services

	24.3 Federated single sign-on
	24.3.1 Architecture overview
	24.3.2 Trust in F-SSO
	24.3.3 F-SSO protocol functionality
	24.3.4 Point of contacts for SSO
	24.3.5 Federated single sign-on approaches
	24.3.6 InfoService
	24.3.7 Specified level view of F-SSO architecture

	24.4 Web services security management
	24.4.1 Architecture overview
	24.4.2 WS-Security
	24.4.3 Web services gateway
	24.4.4 WS-Trust
	24.4.5 Authorization services
	24.4.6 Web services security management architecture approach

	24.5 Provisioning services
	24.5.1 Architecture overview
	24.5.2 Provisioning architecture approach

	24.6 Conclusion

	Chapter 25. Cross enterprise federated single sign-on scenario
	25.1 Business context
	25.2 Technical specifications
	25.2.1 BankWithUs Corporation
	25.2.2 StocksMustGain Corporation
	25.2.3 PointsTech Corporation
	25.2.4 RetireNowPlease Corporation

	25.3 BankWithUs engages PointsTech
	25.3.1 Design decisions
	25.3.2 Changes required

	25.4 BankWithUs engages RetireNowPlease
	25.4.1 Design decisions

	25.5 BankWithUs engages StocksMustGain
	25.5.1 Design decisions
	25.5.2 Changes required

	25.6 Benefits and challenges
	25.6.1 BankWithUs
	25.6.2 StocksMustGain
	25.6.3 PointsTech
	25.6.4 RetireNowPlease
	25.6.5 Customer

	25.7 Conclusion

	Chapter 26. Tivoli Federated Identity Manager patterns
	26.1 Federated SSO architecture patterns
	26.1.1 Architecture approach
	26.1.2 Base pattern
	26.1.3 Plug-in pattern
	26.1.4 Lightweight Access Manager for e-business pattern
	26.1.5 Highly available architecture patterns
	26.1.6 Multiple data center patterns
	26.1.7 SMB Pattern

	26.2 Federated Web services architecture patterns
	26.2.1 Architecture approach
	26.2.2 Point-to-point pattern
	26.2.3 XML gateway pattern

	26.3 F-SSO application integration
	26.3.1 Attribute flow between providers
	26.3.2 User controlled federated lifecycle management
	26.3.3 Customized user-managed federation management

	26.4 Customizing F-SSO
	26.4.1 Customizing page templates
	26.4.2 Customizing Access Manager page templates
	26.4.3 Storing aliases

	26.5 Solution design considerations
	26.5.1 Exchanging metadata with your partners
	26.5.2 Availability of IBM Access Manager Policy Server
	26.5.3 Key management
	26.5.4 Session time out
	26.5.5 Application logout

	26.6 Conclusion

	Part 5 Managing security audit and compliance
	Chapter 27. Introducing IBM Tivoli Common Auditing and Reporting Service
	27.1 Business context for compliance
	27.2 Common Auditing and Reporting Services
	27.2.1 Auditing
	27.2.2 Audit logs
	27.2.3 Audit infrastructure
	27.2.4 Reporting

	27.3 Scenarios
	27.3.1 Security incident investigation
	27.3.2 IT control

	27.4 Conclusion

	Chapter 28. Security Operations Manager topology and infrastructure
	28.1 Enterprise security devices and applications
	28.1.1 Intrusion detection and prevention systems
	28.1.2 Firewalls
	28.1.3 Antivirus software
	28.1.4 Access and identity management systems
	28.1.5 Vulnerability assessment and management applications

	28.2 Logical components and architecture
	28.2.1 Processes
	28.2.2 Event Aggregation Module
	28.2.3 Central Management System
	28.2.4 The Event Archiver
	28.2.5 Additional logical components

	28.3 Physical components and architecture
	28.3.1 Single server deployment
	28.3.2 Distributed deployment
	28.3.3 High-availability deployment
	28.3.4 Network placement

	28.4 Conclusion

	Chapter 29. Building a security information event management system
	29.1 Scenario profile
	29.1.1 Security-related problem
	29.1.2 Business requirements
	29.1.3 Business design
	29.1.4 Security design objectives

	29.2 Security Information Event Management System
	29.2.1 SIEM system at Stocks-4U.com
	29.2.2 Integration of Security Operations Manager

	29.3 Expanding security monitoring
	29.3.1 Security Operations Manager resources

	29.4 Mapping the solution to the organization
	29.5 Summary

	Chapter 30. Compliance management with Tivoli Security Compliance Manager
	30.1 Business context
	30.1.1 Introduction to compliance management
	30.1.2 Why compliance management
	30.1.3 Determining the how: influencing factors
	30.1.4 General challenges
	30.1.5 Some business conclusions

	30.2 Logical component architecture
	30.2.1 Data collection components
	30.2.2 Compliance evaluation components
	30.2.3 Compliance report components
	30.2.4 Security Compliance Manager server
	30.2.5 Administration components

	Chapter 31. Tivoli Security Compliance Manager scenarios
	31.1 Automated security compliance management
	31.1.1 Company profile
	31.1.2 Summary

	31.2 Compliance and remediation
	31.2.1 Further evolution
	31.2.2 Compliance solution architecture
	31.2.3 Tivoli Configuration Manager
	31.2.4 Remediation solution architecture
	31.2.5 Summary

	31.3 Compliance, remediation, and Network Admission Control scenario
	31.3.1 Further evolution
	31.3.2 Solution architecture
	31.3.3 Summary

	Appendix A. Method for Architecting Secure Solutions
	Problem statement
	Analysis
	Security-specific taxonomies, models, and methods
	Common Criteria
	Summary of analysis

	System model for security
	Security subsystems

	Developing security architectures
	Business process model
	Security design objectives
	Selection and enumeration of subsystems
	Documenting conceptual security architecture

	Integration into the overall solution architecture
	Solution models
	Documenting architectural decisions
	Use cases
	Refining the functional design
	Integrating requirements into component architectures
	Summary of the design process

	Conclusions
	Actions and further study

	Global MASS: An example
	Business view
	Logical view
	Detailed view
	Full architectural view

	Appendix B. Productivity and functional enhancements
	Tivoli Identity Manager Adapter Development Tool
	Tivoli Identity Manager Graphical Configuration Editor
	Tivoli Identity Manager Monitoring Solution
	Documentation Tool for Tivoli Identity Manager
	Tivoli Identity Manager Data Feed Reports
	Tivoli Access Manager Monitoring Solution
	Conclusion

	Glossary
	Related publications
	IBM Redbooks
	Other resources
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

