
ibm.com/redbooks

CICS and SOA
Architecture and
Integration Choices

Chris Rayns
Mark Cocker
Regis David

Subhajit Maitra
Dan Millwood

Ian Mitchell
Phil Wakelin

Nigel Williams

Covers web services, JCA, web
support, messaging, and CICS sockets

Is based on CICS Transaction
Server V4.2

Includes example
integration scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

CICS and SOA: Architecture and Integration
Choices

March 2012

International Technical Support Organization

SG24-5466-06

© Copyright International Business Machines Corporation 1999, 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Seventh Edition (March 2012)

This edition applies to the CICS Transaction Server Version 4, Release 2.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team who wrote this book . xiii
Now you can become a published author, too! . xvi
Comments welcome. xvi
Stay connected to IBM Redbooks . xvii

Summary of changes . xix
Seventh Edition, March 2012 . xix
Sixth Edition, October 2006 . xix
Fifth Edition, February 2005 . xx
Fourth Edition, October 2002 . xx
Third Edition, July 2001 . xxi
Second Edition, March 2001 . xxi

Part 1. Architecture and technologies . 1

Chapter 1. Introduction to Service Enablement for CICS 3
1.1 SOA: An architectural approach . 4

1.1.1 Basic components of an SOA . 5
1.1.2 Defining a service . 6

1.2 Web services. 7
1.3 CICS as a platform for service enablement. 9

1.3.1 Connector model. 9
1.3.2 Direct model . 10

1.4 CICS TS as a platform in the cloud . 12
1.5 The modern CICS management experience. 14

Chapter 2. Architectural choices . 17
2.1 CICS application architecture . 18
2.2 Access method architecture . 19
2.3 Application integration requirements . 21

2.3.1 Application interface . 21
2.3.2 Client-to-server coupling . 22
2.3.3 Synchronous or asynchronous invocation . 22
2.3.4 Security . 22
2.3.5 Transactional scope . 23
© Copyright IBM Corp. 1999, 2012. All rights reserved. iii

2.3.6 High availability and scalability . 23
2.4 Integration options. 24

2.4.1 Web services. 24
2.4.2 JCA via CICS Transaction Gateway and WOLA. 27
2.4.3 HTTP and Atom feeds. 31
2.4.4 Messaging. 32
2.4.5 TCP/IP sockets . 34

2.5 Conclusion. 35

Chapter 3. Technology overview . 37
3.1 CICS Web services . 38

3.1.1 Components for CICS Web service . 40
3.1.2 CICS resource relationships . 43
3.1.3 CICS as a service provider application . 44
3.1.4 CICS as a service requester application . 45
3.1.5 Web services using WebSphere MQ as transport 45
3.1.6 Support for MTOM . 46
3.1.7 Java web services using Axis2 . 47
3.1.8 Java web service topology using Axis2. 47

3.2 CICS Transaction Gateway. 49
3.2.1 CICS TG products. 50
3.2.2 CICS TG for Multiplatforms . 50
3.2.3 CICS TG Desktop Edition . 51
3.2.4 CICS TG for z/OS . 52
3.2.5 CICS TG for z/OS modes of operation . 52
3.2.6 CICS TG application programming interfaces. 53
3.2.7 CICS TG and the JCA. 55
3.2.8 Using the CICS ECI resource adapter with different topologies 56

3.3 WOLA . 58
3.3.1 What is WOLA. 58
3.3.2 The benefit of WOLA. 59
3.3.3 CICS and WOLA . 59
3.3.4 How calls to CICS work with WOLA . 60
3.3.5 How calls from CICS work with WOLA . 61

3.4 CICS web support . 63
3.4.1 CICS as an HTTP server . 63
3.4.2 CICS as an HTTP client . 65
3.4.3 Components for CICS web support . 65
3.4.4 ATOM feeds . 66
3.4.5 ATOM feeds in CICS. 67
3.4.6 CICS ATOM support . 68

3.5 WebSphere MQ. 68
3.5.1 CICS-WebSphere MQ adapter . 69
iv CICS and SOA: Architecture and Integration Choices

3.5.2 CICS integration with MQ . 70
3.6 CICS sockets. 75

Chapter 4. Reusing CICS applications with a 3270 presentation layer . . 77
4.1 Terminal-orientated CICS applications . 78
4.2 Technology options . 81

4.2.1 CICS Front End Programming Interface . 81
4.2.2 IBM Rational Host Access Transformation Services (HATS) 81
4.2.3 CICS Link3270 bridge . 82

4.3 Tooling. 83

Part 2. Qualities of service . 87

Chapter 5. Application interfaces . 89
5.1 Application interface issues. 90

5.1.1 CICS program interfaces. 91
5.1.2 EBCDIC message conversion. 96
5.1.3 Service interfaces . 97

5.2 CICS inbound access architecture . 98
5.3 CICS outbound request architecture . 100
5.4 Adapters . 101

5.4.1 Message serialization adapters. 102
5.4.2 Adapter and technology . 105

5.5 CICS Web services . 107
5.5.1 Transport and protocol adapters . 108
5.5.2 Operation identification . 108
5.5.3 Message adapters. 109
5.5.4 XML validation. 113
5.5.5 Binary or invalid XML messages. 113
5.5.6 Message exchange pattern. 113
5.5.7 Data conversion . 114
5.5.8 Coupling considerations . 114

5.6 CICS TG for z/OS . 114
5.6.1 CCI programming model . 115
5.6.2 Transport and protocol adapters . 115
5.6.3 Operation identification . 116
5.6.4 Message adapters. 116
5.6.5 Message exchange pattern. 116
5.6.6 External Call Interface (ECI) . 117
5.6.7 EBCDIC data conversion . 117
5.6.8 Coupling considerations . 118

5.7 WOLA . 118
5.7.1 Transport and protocol adapters . 118
5.7.2 Operation identification . 119
 Contents v

5.7.3 Message adapters. 119
5.7.4 Message exchange patterns . 120
5.7.5 EBCDIC data conversion . 120
5.7.6 Coupling considerations . 121

5.8 CICS web support . 121
5.8.1 Transport and protocol adapters . 121
5.8.2 Operation identification . 123
5.8.3 Message adapters. 124
5.8.4 Message exchange pattern. 124
5.8.5 EBCDIC data conversion . 124
5.8.6 Coupling considerations . 124
5.8.7 REST and dynamic scripting. 125

5.9 WebSphere MQ. 127
5.9.1 Transport and protocol adapters . 127
5.9.2 Operation identification . 127
5.9.3 Message adapters. 128
5.9.4 Message exchange pattern. 128
5.9.5 The MQ DPL bridge client interface . 128
5.9.6 EBCDIC data conversion . 129
5.9.7 Coupling . 129

5.10 CICS sockets. 130
5.10.1 Transport and protocol adapters . 131
5.10.2 Operation identification . 131
5.10.3 Message adapters. 131
5.10.4 Message exchange patterns . 131
5.10.5 EBCDIC data conversion . 131
5.10.6 Coupling considerations . 132

Chapter 6. Security . 133
6.1 Security objectives . 134

6.1.1 Measures required to secure the infrastructure 134
6.1.2 Barriers to implementation . 136

6.2 Traditional CICS security. 136
6.3 Cryptography. 139

6.3.1 Transport Layer Security (TLS) 1.0 protocol 139
6.3.2 ICSF . 140
6.3.3 Cryptographic hardware . 141

6.4 z/OS Communications Server security . 141
6.5 Technology comparison table . 143
6.6 CICS Web services . 144

6.6.1 Transport security . 144
6.6.2 SOAP message security . 145
6.6.3 Java-based SOAP pipeline . 149
vi CICS and SOA: Architecture and Integration Choices

6.6.4 Using an SOA appliance to secure CICS Web services 149
6.6.5 Security considerations for CICS Web services 154

6.7 CICS TG for z/OS . 160
6.7.1 JCA and security . 160
6.7.2 CICS TG for z/OS security . 161
6.7.3 ECI Version 2 and security . 165
6.7.4 External Security Interface (ESI) . 165
6.7.5 Security considerations for CICS TG . 166

6.8 WOLA . 169
6.8.1 Thread identity support . 170
6.8.2 Security considerations for WOLA . 171

6.9 CICS web support . 171
6.10 WebSphere MQ. 176
6.11 CICS sockets. 181

6.11.1 Using AT-TLS . 181
6.11.2 Listener security exit . 182
6.11.3 Security considerations for CICS sockets 183

Chapter 7. Transactional scope . 185
7.1 Transactional objectives . 186
7.2 Transactional building blocks . 187

7.2.1 Traditional CICS units of work. 187
7.2.2 Extended logical units of work. 189
7.2.3 Distributed units of work . 190
7.2.4 Asynchronous messaging transactional model 194
7.2.5 Compensating transactions. 195
7.2.6 Idempotent requests . 196

7.3 Technology comparison table . 197
7.4 CICS Web services . 198

7.4.1 Supported building blocks for CICS Web services 199
7.4.2 Transactional considerations for CICS Web services 201

7.5 CICS TG for z/OS . 202
7.5.1 JCA . 202
7.5.2 ECI v2 . 205
7.5.3 Supported building blocks for CICS TG . 206
7.5.4 Transactional considerations for CICS TG 208

7.6 WOLA . 209
7.6.1 Supported building blocks for WOLA . 210
7.6.2 Transactional considerations for WOLA . 212

7.7 CICS web support . 212
7.7.1 Supported building blocks for CICS web support 213
7.7.2 Transactional considerations for CICS web support 214

7.8 WebSphere MQ. 214
 Contents vii

7.8.1 Supported building blocks for WebSphere MQ 214
7.8.2 Transactional considerations for WebSphere MQ 216

7.9 CICS sockets. 217
7.9.1 Supported building blocks for CICS sockets 217
7.9.2 Transactional considerations for CICS sockets 218

Chapter 8. High availability and scalability . 219
8.1 High-availability objectives . 220

8.1.1 IP connection balancing . 221
8.1.2 CICSPlex SM workload manager . 224

8.2 Scaling. 226
8.3 CICS Web services . 229

8.3.1 Creating an HA infrastructure . 229
8.3.2 Scaling . 232
8.3.3 High-availability considerations for CICS Web services 234

8.4 CICS TG for z/OS . 235
8.4.1 Creating an HA infrastructure . 235
8.4.2 Scaling . 239
8.4.3 High-availability considerations for CICS TG 240

8.5 WOLA . 241
8.5.1 Creating an HA infrastructure . 241
8.5.2 Scaling . 242
8.5.3 High-availability considerations for WOLA 243

8.6 CICS web support . 243
8.6.1 Creating an HA infrastructure . 243
8.6.2 Scaling . 247
8.6.3 High-availability considerations for CICS web support 248

8.7 WebSphere MQ. 249
8.7.1 Creating an HA infrastructure . 249
8.7.2 Scaling . 254
8.7.3 High-availability considerations for WebSphere MQ. 254

8.8 CICS sockets. 255
8.8.1 Creating an HA infrastructure . 256
8.8.2 Scaling . 258
8.8.3 High-availability considerations for CICS sockets. 258

Part 3. Integration scenarios . 261

Chapter 9. CICS Web services scenario . 263
9.1 Objectives . 264
9.2 Architecture . 265
9.3 Implementation . 266

9.3.1 Minimizing risks. 267
9.3.2 Optimized performance and scalability . 269
viii CICS and SOA: Architecture and Integration Choices

9.3.3 Simplifying configuration and infrastructure management 270
9.3.4 Real-time monitoring . 271

9.4 Solution summary . 273

Chapter 10. CICS TG for z/OS scenario. 275
10.1 Objectives . 276
10.2 Architecture . 277
10.3 Implementation . 278
10.4 Solution summary . 279

Chapter 11. Messaging scenario . 281
11.1 Objectives . 282
11.2 Architecture . 283
11.3 Implementation . 284
11.4 Solution summary . 286

Part 4. Appendix . 287

Appendix A. Product capabilities . 289
Product capabilities . 290

Related publications . 293
IBM Redbooks . 293
Other publications . 293
Online resources . 294
Help from IBM . 294
 Contents ix

x CICS and SOA: Architecture and Integration Choices

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 1999, 2012. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS Explorer®
CICSPlex®
CICS®
DataPower®
DB2®
developerWorks®
IBM®

IMS™
MVS™
OMEGAMON®
Parallel Sysplex®
POWER®
RACF®
Rational®
Redbooks®

Redbooks (logo) ®
System z®
Tivoli®
VTAM®
WebSphere®
z/OS®
zEnterprise™

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xii CICS and SOA: Architecture and Integration Choices

http://www.ibm.com/legal/copytrade.shtml

Preface

The CICS® Transaction Server is used extensively for high-volume transaction
processing. Because new IT solutions are rarely deployed on a single IT system
and reuse of existing assets is a common goal, integration between CICS and
other systems is a frequent requirement.

The IT industry has converged on a set of common standards and principles that
have led to the emergence and maturity of the service-oriented architecture
model (SOA) of IT integration. The SOA style of integration involves breaking an
application down into common, repeatable “services” that can be used by other
applications, both internal and external, in an organization, independent of the
computing platforms on which the business and its partners rely.

In recent years CICS has added a variety of support for SOA and now provides
near seamless connectivity with other IT environments. This IBM® Redbooks®
publication is intended to help IT architects to select, plan, and design solutions
that integrate CICS applications as service providers and requesters.

First we provide an introduction to CICS service enablement and introduce the
architectural choices and technologies on which a CICS SOA solution can be
based. We continue with an in-depth analysis of how to meet functional and
non-functional requirements in the areas of application interface, security,
transactional scope, high availability, and scalability. Finally, we document three
integration scenarios to illustrate how these technologies have been used by
customers to build robust CICS integration solutions.

The team who wrote this book

This book was produced by a team of specialists from around the world working
at IBM UK Laboratories, Hursley, England.
© Copyright IBM Corp. 1999, 2012. All rights reserved. xiii

The IBM Redbook team (back left to front right): Chris, Phil, Nigel, Ian, Dan, Subhajit, Mark, and Regis

Chris Rayns is an IT Specialist and Project Leader at the ITSO, Poughkeepsie
Center in New York. Chris writes extensively on all areas of CICS TS and CICS
TG. Before joining the ITSO, he worked in IBM Global Services in the United
Kingdom as a CICS IT Specialist.

Mark Cocker is a Senior Software Engineer in the CICS Strategy and Planning
team at IBM, based at Hursley Laboratory, England. Mark has 20 years of
experience in CICS development, service, beta programs, and the IBM Design
center. He holds a degree in information systems management from
Bournemouth University and is an IBM Certified SOA Associate and Solution
Designer - CICS Enablement for e-business. His areas of expertise include CICS
TS and enterprise connectivty. He has written several CICS SupportPacs and
papers, and he presents on CICS topics regularly at conferences.

Regis David is a Senior IT Product Services professional in France. He has 30
years of experience working on the full scope of the CICS ecosystem. His areas
of expertise include advanced client/server implementations such as web
services, Java Connector Architecture, and RESTful style, including messaging.
He is an expert of pragmatic service-oriented architecture implementations. He
runs multiple presentations in France, focussed on new technology adoption
within CICS and System z®.

Subhajit Maitra is an Senior IT Specialist working for IBM Advanced Technical
Support based in Hartford, CT. His areas of expertise are WebSphere Message
Broker and WebSphere MQ on System Z. He has over 16 years of experience in
information technology as a developer, designer, and architect on various
projects. He has previously worked with the ITSO in building workshops and
xiv CICS and SOA: Architecture and Integration Choices

delivering them worldwide. He holds a master’s degree in computer science from
Jadavpur University, in Kolkata, India.

Dan Millwood is a Software Developer working within the CICS Transaction
Server for z/OS® development team in England. For 17 years he has worked at
IBM on messaging and transaction processing products. He holds a degree in
computer science from Southampton University. His areas of expertise include
WebSphere MQ, WebSphere Application Server, and CICS TS. In his role with
CICS TS, Dan has focused on the integration of CICS TS with other products,
using technologies such as web services.

Ian Mitchell is an IBM Distinguished Engineer with responsibility for the
technical architecture of the CICS Product Portfolio. He has more than 20 years
of experience as a technical leader in IBM Hursley and has been in the forefront
of creating and introducing many important CICS innovations, including workload
management, Sysplex support, business transaction services, Java and EJBs,
web services, event processing, and the CICS Explorer®. In this role Ian has
worked with many of the technical leaders across all the mainframe technology
components. Ian also has close relationships with many of IBM's largest
customers running critical systems using CICS and the mainframe.

Phil Wakelin works for IBM UK in Hursley and is a member of the CICS strategy
and planning teaming. He has worked with many different CICS technologies for
the last 20 years. He is currently responsible for new functionality in the areas of
CICS interconnectivity and CICS Java support. He is the author of many white
papers, SupportPacs, and IBM Redbooks publications.

Nigel Williams is a Certified IT Specialist working in the IBM Design Centre,
Montpellier, France. He specializes in enterprise application integration, security,
and SOA. He is the author of many papers and IBM Redbook publications, and
he speaks frequently on CICS and WebSphere® topics.

Thanks to the following people for their contributions to this project:

John Burgess, Paul Cooper, Rob Jones, Steve Hobson, Colin Paice, and Pete
Siddall
IBM UK Software Group, Hursley

Don Bagwell and Carolyn Elkins
IBM Advanced Technical Skills

Lennie Dymoke-Bradshaw and Michael Lowe
IBM UK Software Group

David Follis and Linwood Overby
IBM US Software Group
 Preface xv

Thanks also to the authors of the previous edition of this book; Martin Keen,
Chris Backhouse, Jim Hollingsworth, Stephen Hurst, Mark Pocock.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xvi CICS and SOA: Architecture and Integration Choices

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xvii

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xviii CICS and SOA: Architecture and Integration Choices

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition might also include minor corrections and
editorial changes that are not identified.

Seventh Edition, March 2012

This revision has been significantly updated to include the additions and changes
described below.

New information
� Features introduced in CICS TS 3.2 V4.1 and V4.2
� Features introduced in WebSphere MQ V7
� Features introduced in CICS TG V7 and V8
� Atom feeds
� WebSphere Optimized Local Adapters (WOLA)
� CICS sockets information added to chapters in Part 2
� High availability in Part 2
� Integration scenarios in Part 3

Changed information
� Part 2, “Qualities of service” on page 87, focus on the z/OS platform for

CICS TG
� Part 2, “Qualities of service” on page 87, was restructured for consistency

across the connectivity options
� Chapter 5, “Application interfaces” on page 89, now includes data conversion
� CICS EJB support information removed
� SOAP for CICS feature information removed

Sixth Edition, October 2006

This revision reflects the addition, deletion, or modification of new and changed
information described below.
© Copyright IBM Corp. 1999, 2012. All rights reserved. xix

New information
� CICS TS V3.1, CICS Web services support
� CICS Web services support customer scenario
� CICS Service Flow Feature

Changed information
� Chapter 1, “Introduction to Service Enablement for CICS” on page 3
� CICS TG V6 updates
� SOAP for CICS and CICS EJB support moved to an appendix

Fifth Edition, February 2005
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� SOAP for CICS feature customer scenario
� CICS TS V2.3, Link3270 bridge extended support
� Chapter 7, “Transactional scope” on page 185

Changed information
� SOAP for CICS feature added to all chapters
� J2EE Connector Architecture added to all chapters
� “Matters of State” chapter removed

Fourth Edition, October 2002
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� CICS TS V2.2, Link3270 bridge
� CICS TS V2.2 ECI over TCP/IP support
� CICS TS V2.3, Link3270 bridge extended support
� Miami-Dade County customer scenario
xx CICS and SOA: Architecture and Integration Choices

Changed information
� CICS TS V2.2 EJB tooling and security (Chapter 4, “Security and Chapter 7,

Application development”)
� CICS TG V5 COMMAREA null stripping (Chapter 6, “Performance and

scalability”)

Third Edition, July 2001
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� CICS TS V2.1 EJB support
� CICS to TCP/IP Sockets Interface
� Patterns for e-business

Changed information
� Application Development for CWS 3270 Web bridge
� Security considerations for CICS Web support (APAR PQ45098)
� Part 3 chapters updated and consolidated into the “CICS Web decision

points” chapter in Part I

Second Edition, March 2001
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� “Matters of State” chapter

Changed information
� “Introduction to CICS and Web-enabling” chapter merged with “CICS/Web

selection Guide” chapter
� “CICS Web Application development,” “Changes to Existing applications,”

and “Portability” chapters consolidated into “Application Development”
chapter

� “Administration” chapter removed
� NetCICS removed as a CICS Web solution
� Customer scenarios updated
 Summary of changes xxi

xxii CICS and SOA: Architecture and Integration Choices

Part 1 Architecture and
technologies

In Part 1 we first position CICS as a platform for service enablement. We then
discuss what architectural approaches and connectivity options are available to
you to service enable your CICS applications. We focus on these solutions:

� Web services
� Java EE Connector Architecture (JCA)
� Web support
� Messaging
� TCP/IP sockets

For each strategic CICS access technology, we provide product information and
an overview of the major components and deployment topologies. Finally, we
review the specific options for reusing 3270-based CICS applications.

Part 1
© Copyright IBM Corp. 1999, 2012. All rights reserved. 1

2 CICS and SOA: Architecture and Integration Choices

Chapter 1. Introduction to Service
Enablement for CICS

SOA is an integration architecture approach that is based on the concept of
services. The business and infrastructure functions that are required to build
distributed systems are provided as services that individually or collectively
deliver application functions to either user applications or to other services.

By adopting an service-oriented architecture (SOA) approach and implementing it
using supporting technologies, companies can build flexible systems that
implement changing business processes quickly and can make extensive use of
reusable components.

This chapter introduces the concept of SOA and discusses how it applies to
CICS. This includes a discussion about the business value of SOA and its IT
benefits, the advantages of transforming CICS assets into SOA solutions, and
the evolution of services into Cloud computing.

1

© Copyright IBM Corp. 1999, 2012. All rights reserved. 3

1.1 SOA: An architectural approach

Business processes are changing faster and faster, and global competition
requires the flexibility that SOA can provide. SOA can help achieve the best
reuse of your existing IT investments, as well as the new services that you are
developing today. SOA makes integration of your IT components easier by
making use of well-defined interfaces between services. SOA also provides a
flexible and secure architectural model for integrating services from business
partners, customers, and suppliers into an enterprise business process.

To simplify the adoption of SOA, there are five common approaches, or entry
points, which you could choose from to be the focus of your initial projects:

� People

Collaboration-improving productivity by giving employees and partners the
ability to create a personalized, consolidated way to interact with others.

� Process

Model, optimize, and deploy processes on the fly and monitor the
effectiveness of the altered processes.

� Information

Improve business insight and reduce risk by using trusted information
services delivered in line and in context.

� Connectivity

Effectively integrate people, processes, and information in a secure
environment with the flexibility to quickly adapt to changing business needs.

� Reuse

Newly created and reusable services are the building blocks of SOA to deliver
reduced cycle times and elimination of duplicate processes.
4 CICS and SOA: Architecture and Integration Choices

Rather than being a revolution, SOA is an evolution of best practices and
technologies that have gone before. It takes advantage of developments in
internet-based technology and interoperability standards to offer unrivalled IT
benefits. There have been many definitions for SOA, but all lead to the concept
of loosely coupled business services that are provided in an interoperable and
technology agnostic manner. A useful definition of SOA is provided by the
OASIS group:

“A paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means
to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.”

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

1.1.1 Basic components of an SOA

At the most basic level, an SOA consists of these components (Figure 1-1):

� Service provider
� Service requester
� Service registry

Figure 1-1 SOA components and operations

Service
Requester

Service
Provider

Service
Registry

Publish1Discover2

Invoke3

Request/Response
 Chapter 1. Introduction to Service Enablement for CICS 5

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Here are more details about each component:

� The service provider implements a service, and in some cases publishes its
interface and access information to a service registry. Each provider must
decide which services to expose, evaluate trade-off between security and
easy availability, determine how to price the services, or figure out how to
exploit the value of the services if they are free. The provider also has to
decide in what category the service should be listed, and what sort of trading
partner agreements are required to use the service.

� The service registry is responsible for making the service interface and
implementation access information available to service requesters. There are
public service registries available over the internet to an unrestricted
audience, as well as private service registries that are only accessible to
users within a company-wide intranet.

� The service requestor discovers entries in the service registry and then binds
to the service provider to invoke the defined service.

Each component can also act as one of the two other components. For instance,
if a service provider needs additional information that it can only acquire from
another service, it acts as a service requester.

1.1.2 Defining a service

SOA is an architectural approach to defining integration architectures that are
based on the concept of services. A service can be described as a function that
can be offered or provided to a requester. This function can be an atomic
business function or part of a collection of business functions that are wired
together to form a process.

There are many additional aspects to a service that must also be considered in
the definition of a service within an SOA. These are the most commonly
agreed-on aspects of a service:

� Services encapsulate a reusable business function.

� Services are defined by explicit, implementation-independent interfaces.

� Services are invoked through communication protocols that stress location
transparency and interoperability.

Reusable business functions
Ideally, a service should be reusable and thus be accessible by more than one
requesting application. For example, a service that offers a calculation such as
an insurance quote could be used by requesters inside the enterprise and by
6 CICS and SOA: Architecture and Integration Choices

third parties, as long as the interfaces of the component that offers the service
are defined clearly.

Clearly defined interfaces
The service interface should encapsulate only those aspects of process and
behavior that are used in the interaction between the requester and the provider.
An explicit interface definition, or contract, binds a service requester with the
provider. The interface should specify only the mutual behavior that is required
for the interaction and nothing about the actual implementation of the requester
or provider. This arrangement means that those system aspects where the
requester and provider are hosted (their platforms) are independent of the
interaction and are free to change. This abstraction allows for flexible
improvements to the underlying IT infrastructure.

Location transparency
SOA does not specify that the requester needs to use any specific protocol to
have access the service provider. A key principle in SOA is that a service is not
defined by the communication protocol that it uses, but instead, should be
defined in a protocol-independent way that allows different protocols to be used
to access the same service. Ideally, a service should only be defined once,
through a service interface, and should have many implementations with
different access protocols. This type of definition helps to increase the reusability
of any service definition.

1.2 Web services

Web services are now the de-facto standard for implementing a basic SOA.
Web services take advantage of existing open-standard web technologies,
such as XML, Uniform Resource Locator (URL), and Hypertext Transfer
Protocol (HTTP), that are themselves a set of standards that facilitate open
system-to-system communication.

High ceremony versus low ceremony
Many of the most mature and rich SOA implementations use the full range of
agreed-on formal standards that have been created by bodies such as W3C and
OASIS. They use Web Services Description Language (WSDL) to provide a rich
description of the services, a service registry to provide publication and
governance for their services, and SOAP as their service invocation mechanism.
Added to this basic framework, they might make use of additional capabilities
specified in standards such as WS-Atomic Transaction or WS-Security. In
demanding such a rich style of implementation, an organization will be
 Chapter 1. Introduction to Service Enablement for CICS 7

demanding a high ceremony approach to the creation and maintenance of
such services.

Other situations will not demand such high ceremony processes to manage the
services. The emergence of RESTful services over the internet is in recognition
of those situations and provides a low ceremony alternative for service
enablement. RESTful systems rely more on the basic convention of the web than
on additional technologies and standards to provide services or define interfaces.

An example of a difference between high ceremony, WSDL/SOAP-based
implementations and a low ceremony RESTful approach is the relative lack of a
formal artifact that describes the “shape” of a service. Systems employing
RESTful principles still require a means to locate services, but rather than use a
specialized registry, rely on existing common means used to locate resources
identified by URL. Similarly, a RESTful system forgoes the richness of a bespoke
vocabulary of operation names demanded in WSDL and leans on the four
HTTP verbs:

� GET
� PUT
� POST
� DELETE

A service based on an Atom API is such a RESTful system and is often used to
provide a simple HTTP-based protocol for creating and updating web resources.
For more detail see 2.4.3, “HTTP and Atom feeds” on page 31.
8 CICS and SOA: Architecture and Integration Choices

1.3 CICS as a platform for service enablement

CICS Transaction Server has many features that make it an excellent platform to
host applications that can be enabled as services. One of the key decisions when
enabling CICS applications as services is whether to use a connector model
(indirect connection) or to host web services directly inside CICS (direct
connection). Figure 1-2 illustrates these two models, where A represents the
adapter, I the integration logic, B the business logic, and D the data access logic.

Figure 1-2 Direct or indirect models for CICS Web service enablement

The choice of architectural approach is a key decision because it might affect the
costs of developing applications and their long-term value. Business factors,
such as the availability of skills, might be just as significant as technical factors
influencing this decision. It is important to recognize that there is no single right
answer, just as there is no right programming language for all applications. Some
technical factors to take into account include application interfaces, security,
transactional scope, availability, and scalability characteristics. These are
discussed in more detail in Part 2, “Qualities of service” on page 87.

1.3.1 Connector model

In the connector model, the service endpoint is hosted outside of CICS, for
example, in WebSphere Application Server. The adapter is deployed in the

CICS TS

Web
service
Client

CICS Program

Business
logic

B

Requester

connector

Web
services
end-point

Application Server

D
Integration

logic

I
SOAP

CICS TS as service provider (direct)

Web
service
Client

CICS
Web

services
support

Integration
logic

Data
access

Business Function

DI

Business
logic

B

Requester

SOAP
AA

Connector model (indirect)

AA
 Chapter 1. Introduction to Service Enablement for CICS 9

application server. It transforms the incoming request message into a
COMMAREA or container that is then passed to the CICS application using a
connector. The CICS Transaction Gateway and the WebSphere Optimized Local
Adapter are two examples of connectors that can be used in this model.

When using the J2C connector technology from Rational® Application
Developer, all the adapter code is generated to access fields within the CICS
COMMAREA and perform necessary conversion and data formatting before
invoking the CICS program via the connector. These tools can also generate
code to easily expose the adapter as a web service, thereby enabling a CICS
program to be exposed as a web service in an application server via the CICS
TG with little if any coding.

1.3.2 Direct model

In the direct model, the service endpoint is hosted in CICS. The adapter is
deployed within CICS, and it transforms the incoming request message into a
COMMAREA or container that is then passed to the CICS application.

CICS Web services support enables a CICS program to be a SOAP web service
provider or service requester. The definition of the SOAP service is defined in a
WSDL file. Typically, tools are used to import the WSDL file and generate a
proxy for the web service client to use to construct and send the SOAP message.

Implementing SOAP-based services naturally encourages a more mature
definition of those services than previously available integration and connectivity
mechanisms. This maturity is supported by the use of governance and life-cycle
management tools such as WebSphere Service Registry and Repository
(WSRR) and Rational Asset Manager (RAM).

SOAP is an XML-based protocol and as such provides ample features that
simplify the handling of the messages. SOAP messages are easy to work with
and, combined with schemas, the message content becomes self-describing.
However, compared to a pure-binary message, a SOAP message might appear
verbose and inefficient. This is the price for loose-coupling and simplicity.

Different interaction patterns demand either synchronous or asynchronous
transport of requests and replies, and CICS supports web services using SOAP
over both HTTP for sync and WebSphere MQ primarily for async.

It is also true that different situations give rise to more or less complexity in the
information flowing into and out of a service. In simple cases, the reduced
complexity can be leveraged with a deployment solely involving CICS
capabilities and a natural, explicit flow of information. As complexity and/or
volume in each request increases, other techniques can be used to deal with the
10 CICS and SOA: Architecture and Integration Choices

complexity of the information. For example, Message Transmission Optimization
Mechanism (MTOM) and XML Optimization Protocol (XOP) can be used to
reduce the volume of a complex or verbose message by changing its encoding
from relatively readable XML to opaque base64.

At the extreme, all of the loose-coupling advantages might be outweighed by the
expense of dealing with large, verbose SOAP messages. Reverting to a
(probably private and proprietary) binary format is more resource-efficient, but
requires both the requester and the provider to agree on the non-standard form
and will likely be much less flexible to change.

Over and above the highly useful transport-level security provided by SSL,
message or element-based security can be used in the situation that demand a
finer-grained control of message content authentication and privacy.

While the principles of loose-coupling and service encapsulation would
discourage the need to create distributed transactions across service provider
boundaries, as a transaction monitor, CICS supports the web services two-phase
commit protocol specified by web services – Atomic Transactions (WS-AT).

Additional service enablement features in CICS TS V4
While many business-critical, system-to-system interaction scenarios demand
the level of contractual agreement enabled by a WSDL-described SOAP-based
message exchange, other situations can be best served with a lighter weight,
more flexible approach. When implementing a service provider, the principles of
Representational State Transfer (REST) can be applied in these cases, and
many CICS applications can fit this model. A RESTful interface is often a
relatively literal reflection of the underlying data, with the HTTP verbs (GET, PUT,
POST, DELETE) being used to implement the common operations create, read,
update, delete (CRUD) on business objects identified simply by a Uniform
Resource Locator (URL).

A good example of a RESTful interface is the Atom protocol, and CICS TS V4
provides support to help you quickly and easily expose CICS-managed data to a
wide variety of requesters using Atom. Atom is an excellent option when
requesters need to find and filter sets (feeds) of information (articles), and then
work with the information.

Service enablement in its wider context can extend to interaction patterns beyond
the familiar request-reply exchange of information. As systems become more
complex and demands for agility increase, an event-based paradigm can help to
expose information from your existing systems more quickly. Many events of
interest to an enterprise are likely to be happening inside CICS applications, but
the application’s design (not to mention its implementation) perhaps did not
 Chapter 1. Introduction to Service Enablement for CICS 11

anticipate the value of those events, and so did not include a means to
expose them.

The event processing capabilities in CICS TS V4 enable non-invasive publication
of such useful events from existing CICS applications, another example of
reusing the applications that you already have in an adaptable and agile way.
Basic business events from the application and the system can be efficiently
captured, filtered, augmented, formatted, and published without writing additional
code. WebSphere MQ is an ideal transport to route the events and associated
data to consumers such as WebSphere Business Events or WebSphere
Business Monitor, which are optimized to perform sophisticated event
correlations from multiple sources and provide business dashboards.

1.4 CICS TS as a platform in the cloud

Cloud computing is a model for enabling convenient, on-demand network-based
access to a shared pool of configureable computing resources such as
service-enabled applications. These resources can be rapidly provisioned and
released with minimal management effort or service provider interaction. This
cloud model builds on top of the service enablement of applications and
promotes additional availability and flexibility. Cloud applications are composed
of five essential characteristics:

� On-demand self-service
� Broad network access
� Resource pooling
� Rapid elasticity
� Measured services

Many of these characteristics are provided by System z and can be readily
exploited when deploying applications as CICS services, for instance, resource
measurement via CICS monitoring, broad network access via TCP/IP or SNA
connectivity, rapid elasticty through CICS open transaction environment, and
System z capacity on demand.
12 CICS and SOA: Architecture and Integration Choices

There are three typical deployment models for cloud services (Figure 1-3):

� Private cloud

The cloud infrastructure is operated solely for an organization.

� Public cloud

The cloud infrastructure is made available to the general public or a large
industry group.

� Hybrid cloud

The cloud infrastructure is a composition of two or more clouds (private,
community, or public) that remain unique entities.

Figure 1-3 Cloud computing model

The private cloud is the model that is most widely used today for CICS-based
services, as enterprise computing resource are typically privately owned by
corporations. However, CICS outsourcing organizations do provide shared
services that are a form of community cloud installations.

In addition, services provided to the consumer can be viewed as being in one of
three models as regards the capability provided to the service consumer:

� Software as a Service (SaaS)

Usage of the provider’s services running on a cloud infrastructure

� Platform as a Service (PaaS)

Deployment of services onto a cloud infrastructure

� Infrastructure as a Service (IaaS)

Provisioning of resources within a cloud infrastructure, where the consumer is
able to deploy and run software

ORGANIZATION CULTURE GOVERNANCE

Cloud Services

Cloud Computing
Model

Hybrid …
Access to client, partner

network, and third party

resources

.…Standardization, capital
preservation, flexibility and

time to deploy

Public …
• Service provider owned and

managed.
• Access by subscription.

Private …
• Privately owned and

managed.
• Access limited to client

and its partner network.

.… Customization, efficiency,
availability, resiliency, security

and privacy
 Chapter 1. Introduction to Service Enablement for CICS 13

For further details on Cloud computing refer to the following website:

http://www.nist.gov/itl/csd/cloud-020111.cfm

1.5 The modern CICS management experience

Configuring and maintaining modern CICS business service implementations
demands comprehensive management facilities. With the majority of enterprises
running many tens or hundreds of CICS regions to support their needs for
capacity, resilience, and workload management, the capabilities of CICSPlex®
Systems Manager (CICSPlex SM) are ever more valuable. With the ability to
provide unified application-oriented or system-oriented views across your
regions and effectively take action, CICSPlex SM is relied upon as part of the
management scheme for many customers, both large and small.

Today's users are demanding a modern experience that closely matches what
they encounter in daily use of other IT or consumer systems, not the
old-fashioned green screen experience so often associated with mainframes.
The CICS Explorer provides that experience starting with read-only resource
access in CICS TS V3 and full-function administration support in CICS TS V4.

Figure 1-4 CICS Explorer: The new face of CICS

Eclipse

Previously… Now …

CICS 3270

ISPF

Web
Runtime

Config Management

Discovery

Performance
14 CICS and SOA: Architecture and Integration Choices

http://www.nist.gov/itl/csd/cloud-020111.cfm

An example of how new functions in the CICS management experience help
systems run more smoothly is CICS Transaction Tracking, which is provided in
CICS TS V4.2. Supplementing end-to-end tracking capabilities provided by
Tivoli®, transaction tracking in CICS enables fine-grained questions to be
answered about related execution resources. Two common scenarios are to
trace back the thread of tasks related to a service request to its point of origin
across several CICS regions and to trace forward the tasks that are serving
requests from a particular listener or terminal owning region, both of which are
supported with dedicated transaction tracking views in the CICS Explorer.

In the days of simple green screen 3270 applications, it was relatively simple to
comprehend and manage the resources required to support a given application.
With today's wider variety of access methods and resources, the range of
definitions needed could make deployment more complex. CICS employs both
its own resource bundles and those from OSGi to help reduce this complexity.

CICS bundles support the definition, deployment, and management of a set of
related resources, including OSGi bundles for Java programs, event bindings,
and Atom feeds enabling the life cycle of disparate resources to be managed
through operations on a single CICS BUNDLE resource.

For the growing number of Java components being used in CICS TS, OSGi
(implemented in the JVM server environment in Version 4.2) is the industry
standard way to package components for server deployment. OSGi bundles
include meta-data, which enables the server to manage installing, enabling,
disabling, and discarding the application classes without requiring disruptive
outages of the server. Part of the management is to ensure that the
inter-component dependencies expressed in the meta-data of the bundles are
respected, eliminating the chance of mismatches while serving requests.
 Chapter 1. Introduction to Service Enablement for CICS 15

16 CICS and SOA: Architecture and Integration Choices

Chapter 2. Architectural choices

This chapter proposes an architecture for your CICS applications and a set of
requirements and connectivity options that influence how to best service enable
CICS assets into an SOA. We focus on the modern connectivity options:

� Web services
� JCA
� HTTP and ATOM feeds
� Messaging
� TCP/IP sockets

When deciding on the best integration solution, consider these questions:

� What interface and granularity is most appropriate for the service requester?

� What interface does the CICS application already provide?

� Is a synchronous or asynchronous interaction pattern more appropriate?

� What are the end-to-end security requirements?

� Should the CICS application have its recoverable resources synchronized
with the service requester?

� What are the availability and scalability targets?

2

© Copyright IBM Corp. 1999, 2012. All rights reserved. 17

2.1 CICS application architecture
It is a good general practice to clearly distinguish application components
containing adapter, integration, business, and data access logic and implement
these in separate layers with clearly defined interfaces:

� The Client, or service consumer, initiates the request. Examples include a
web service requester, web browser, WebSphere MQ client, TCP/IP socket
client, 3270 device, z/OS batch program, and other CICS applications.

� The Adapter layer processes the protocols and data with the client,
establishes the transaction and security context in CICS, and interfaces to the
integration or business layer.

� Optionally when required, the Integration layer implements a sequence of
calls to business logic for situations where it is more efficient, better
encapsulation, or simply makes the services easier to consume if done in
CICS rather than the client making several calls directly to the business layer.

� The Business layer implements the service.

� The Data access layer updates DB2®, VSAM, IMS™, or other resources.

Figure 2-1 CICS application architecture layers

Architecting the CICS application into these layers provides the best opportunity
for reuse by many types of clients today and into the future, and provides an
important opportunity for workload management, high availability, and isolation.

CICS TS

Adapter
layer

Integration
 layer

Data
access
layer

DI

Business
layer

BA

Transaction

Client
18 CICS and SOA: Architecture and Integration Choices

The interface between the layers ideally would be made using the CICS LINK
command. The data is passed with either of these:

� A channel

A named holder of one or more containers. Both the channel and containers
have names, have an easy-to-use CICS set of commands, and are
automatically scoped to the task. A container can hold either text data in one
of the many supported encodings such as EBCDIC, UTF, or ASCII, or binary
data such as a COBOL copybook, ‘C’ structure, or a photograph. The size of
each container is only limited by the storage in the CICS region, so it can
potentially be up to hundreds of megabytes. Together these features provide
a very capable and flexible mechanism to implement the interface.

� A COMMAREA

A single binary data area limited in size to 32 KB. This was used by CICS
applications for many years before the channel interface was available.

CICS also supports the COBOL CALL statement for one program to interface to
another, which can be more efficient at run time than the CICS LINK command.
However, the target program is required to run in the same CICS region and is
therefore only suitable when interfacing between programs within a layer.

2.2 Access method architecture

At a high level the access method used by a client consists of a combination
of these:

� Adapters
� External connectors
 Chapter 2. Architectural choices 19

An adapter is a program that accepts a request and converts the data from an
external interface to the internal interface used by the CICS application. Figure 2-2
shows how a 3270 client, a browser, and a web service requester can access the
same integration layer in the CICS application by using different adapters.

Figure 2-2 Connecting to adapters to reuse a CICS application

The 3270 client interacts with an adapter that uses the CICS RECEIVE
command to obtain data from the screen and about the client before
re-formatting it and calling the integration layer interface. The browser client
ineracts with an adapter that uses the CICS WEB, EXTRACT WEB, EXTRACT TCPIP,
and EXTRACT CERTIFICATE commands to receive the HTML form and data about
the client before reformatting it and calling the integration layer interface. The
web services requester interacts with an adapter that receives the data in a
channel and containers before reformatting it and calling the integration layer
interface. For more details see 5.4, “Adapters” on page 101.

An external connector provides the client a remote call interface and implements
a private protocol to invoke the CICS application. The client uses interfaces with
the external connector to create the format required by the CICS application in a
channel and containers or COMMAREA. An example of an external connector is
CICS Transaction Gateway, which implements the Common Connector Interface
(CCI) specified by the Java EE Connector Architecture (JCA) and is used with
adapters implemented as Java beans.

CICS TS

DI BA

Transaction

3270

Web services

Browser

A

A

A

Clients
20 CICS and SOA: Architecture and Integration Choices

2.3 Application integration requirements

The requirements that affect how best to service enable a CICS application and
integrate it into an SOA solution are introduced in the following areas:

� Application interface
� Client to server coupling
� Synchronous or asynchronous invocation
� Security
� Transactional scope
� High availability and scalability

2.3.1 Application interface

An application interface typically includes a service operation, an input and
output message, a message format, a message exchange pattern, and a
transport protocol. As a service provider, you will need to consider what set of
application interfaces are required to most efficiently fulfill the needs of the
service requesters while also providing flexibility for future reuse.

If you plan to reuse a CICS application, it might be that those interfaces can be
reused without change. If not, you can develop new adapters or programs in the
integration layer to interface with the existing CICS application in the business
layer. For example, a service requester requires details of all outstanding orders
for a customer. The the existing catalog inquiry programs only return a single
order, so you decide to develop a new program for the integration layer to call the
existing inquiry program in a loop to aggregate all the orders into a single
response to the service requester. For more details see Chapter 5, “Application
interfaces” on page 89.
 Chapter 2. Architectural choices 21

2.3.2 Client-to-server coupling

Some access methods are described as tightly coupled, while others are
described as loosely coupled. Tight coupling implies that the client and server
share many assumptions and dependencies. Loose coupling is not a precise
concept, but refers to several possibilities:

� Self-describing interfaces. That is, the service operations, messages, formats,
exchange pattern, and transport protocols are fully described.

� Implementation independence. That is, the client might use dissimilar
technology from the server program, thus offering operating system,
middleware, and programming language independence.

� Server location independence. That is, the client program does not need to be
changed when the location of the server program changes.

2.3.3 Synchronous or asynchronous invocation

The majority of access methods support synchronous invocation, meaning that a
client request receives a single reply from CICS and the client waits for the reply.
In the alternative approach, known as asynchronous invocation, the client request
is not responded to immediately and the client might continue processing before
receiving the response. A polling or event-based mechanism is required so that
the response can be obtained at a later time. In some cases, an immediate
response is sent from the server to the client, confirming receipt of the original
request, therefore indicating that the application response will be delayed.

In general, asynchronous access solutions are more robust. Planned or
unplanned outages, software upgrades, and other operational events have less
impact on a client’s ability to send requests. Synchronous access solutions,
however, normally offer better interoperability, for example, closer coordination
of transactional updates.

2.3.4 Security

The first security requirement to consider is how end users and middle tier
servers will be authenticated. Simple user ID and password authentication is still
widely used, although SSL client certificates, Kerberos tickets, and other
schemes are becoming popular. Whichever technique is adopted, the user's
credentials must eventually be mapped to an external security manager (ESM)
user ID to support the authorization and accounting requirements that normally
apply to CICS applications.
22 CICS and SOA: Architecture and Integration Choices

The security characteristics of different CICS SOA access solutions are
described in detail in Chapter 6, “Security” on page 133.

2.3.5 Transactional scope

This requirement refers to the capability of a given access option to support
these types of transactions:

� Local transactions (one-phase commit), enabling a number of updates
performed by CICS applications to be processed as a single unit of work

� Global transactions (two-phase commit), enabling an external server to
coordinate updates performed by CICS with updates to local resources held
by that server

The web services and JCA architectures both support global transactions. CICS
provides support for the WS-Atomic Transaction specification, allowing us to tie
together a client transaction and the invoked CICS transaction.

The transactional characteristics of different CICS SOA access solutions are
described in detail in Chapter 7, “Transactional scope” on page 185.

2.3.6 High availability and scalability

Response time and CPU cost per transaction are important aspects of
performance in a production system. CICS seeks to minimize these and is highly
optimized for traditional styles of access, such as 3270 terminal access over a
System Network Architecture (SNA) network. Most SOA solutions require
additional elements such as connectors, adapters, and encrypted data flows.
These are less optimized, and impose an overhead on the execution of the target
business program.

Workload management is the process of distributing multiple requests for work
over the resources that can do the work. It optimizes the distribution of
processing tasks, therefore improving performance, scalability, and reliability of
an application. It also provides failover when servers or systems are not
available. The performance and workload management characteristics of
different CICS SOA access solutions are described in detail in Chapter 8, “High
availability and scalability” on page 219.
 Chapter 2. Architectural choices 23

2.4 Integration options
This section introduces the major architectures that can be used to build CICS
SOA solutions. Solutions based on these architectures benefit from the
comprehensive set of development tooling that is provided to help in the
generation of applications.

Standard architectures such as web services and JCA provide built-in support for
qualities of service such as management of security and transactions. These
qualities are slowly being introduced into the web services architecture. For
example, the WS-Security specification, which provides for message-level
security, and the WS-Atomic transaction, which provides two-phase commit
transactional functionality, are now standard.

Standard transports are suitable for use by applications that require greater
control of the protocol and that do not need the development tools that are
generally provided by the standard architectures. These applications will also
normally assume more responsibility for security, transactions, and recovery.

2.4.1 Web services
Web services is an implementation of a service-oriented architecture. A service
is an application component that has a well-defined published interface that
allows other application components to invoke operations on the service without
any knowledge of how the service is implemented.

The technologies that can be used to implement a web services solution have
received wide acceptance as the strategic way of building distributed IT solutions
that integrate heterogeneous applications over the internet and intranets.

The web service specifications are completely independent of programming
language, operating system, and hardware in order to promote loose coupling
between the service requester (or consumer) and service provider. The
technology is based on open standards such as these:

� eXtensible Markup Language (XML).

� SOAP: A standard protocol for exchanging XML messages.

� Web Services Description Language (WSDL), which defines an XML
grammar for describing web services.\

� Universal Description, Discovery and Integration (UDDI), a registry
mechanism that can be used to look up web service descriptions
24 CICS and SOA: Architecture and Integration Choices

Using open standards provides broad interoperability among different vendor
solutions. These principles mean that companies can implement web services
without having any knowledge of the service requesters, and vice versa. This
facilitates just-in-time integration and allows businesses to establish new
partnerships easily and dynamically.

Figure 2-3 shows how a SOAP message consists of an envelope containing
zero or more headers and a body. Application designers determine the contents
of the headers. The SOAP specification itself does not define what headers
should be used. For example, application designers might define a header that
contains authentication credentials or information for transaction management.
The body is where the main end-to-end information (the payload) conveyed in a
SOAP message must be carried. This information might be parameters for
calling a service (for a service request) or the result of calling the service (for a
service response).

Figure 2-3 SOAP message

These are the major advantages of SOAP:

� It provides a standard for exchanging data in XML format, for example, the
parameters used in a program call (for the inbound message) and the data
resulting from the call (for the outbound message).

� It is protocol, platform, operating system, and programming language
independent.

� It is flexible and extensible.

� It enables the use of web services standards such as WS-Security.

SOAP supports the remote procedure call (RPC) style of web service, in addition
to the document message style. Although it is transport protocol independent,
HTTP is the most widely used protocol today for transporting SOAP messages.

A web service is fully defined in a WSDL file. Most major environments that host
applications have development tools that use the WSDL file to generate
easy-to-use proxies or adapters to send and receive SOAP messages on behalf
of applications.

Envelope

 Header

Body

SOAP message
Optional
headers

Actual
message
 Chapter 2. Architectural choices 25

Application programs running in CICS TS can participate in a heterogeneous
web services environment as service requesters, service providers, or both,
using either an HTTP transport or a WebSphere MQ transport. Figure 2-4 shows
an outline of the web services support in CICS.

Figure 2-4 Connecting using CICS Web services

Refer to 3.1, “CICS Web services” on page 38, for more information about using
CICS Web services.

CICS TS

DB

ASOAP/HTTP

SOAP/
WebSphere MQ

CICS web
services
pipeline

or

Client
26 CICS and SOA: Architecture and Integration Choices

2.4.2 JCA via CICS Transaction Gateway and WOLA
The Java Enterprise Edition (JEE) Connector Architecture (JCA) defines a
standard set of APIs and interfaces for connecting from the JEE platform to
heterogeneous Enterprise Information Systems (EIS). The JCA standards enable
vendors such as IBM to provide a JCA resource adapter to connect and call
services in an EIS such as CICS. Figure 2-5 shows the components in the JCA.

Figure 2-5 JEE Connector Architecture components

Figure 2-5 shows the JCA being used in a managed environment. That is, the
application is running in a JEE environment such as WebSphere Application
Server. In this case, management of connections, transactions, and security is
managed by the application server. The JCA can also be used in a non-managed
environment, in which case the application must manage connections,
transactions, and security itself.

The Common Client Interface (CCI) defines a common application programming
model for interacting with resource adapters and is independent of any specific
EIS. Of course, this does not mean that a developer can write exactly the same
code to access one EIS (for example, CICS) that he writes to access another EIS

J2EE Server

(e.g WebSphere Application Server)

Application
Component (e.g. EJB)

System Contracts

Container-Component
Contract

ƒ Connection
Management

ƒ Transaction
Management

ƒ Security
Management

Common Client
Interface (CCI)

EIS Specific
Interface

Connection
Pooling

Transaction
Manager

Security
Manager

J2EE Server

(e.g. WebSphere Application Server)

Application
Component (e.g. EJB)

System Contracts

Container-Component
Contract

ƒ Connection

ƒ Transaction

ƒ Security

Common Client
Interface (CCI)

EIS Specific
Interface

Connection
Pooling

Transaction
Manager

Security
Manager

Enterprise Information Enterprise Information
System (e.g. CICS)System (e.g. CICS)

Resource Adapter
(e.g. CICS ECI
resource adapter)

Resource Adapter
(e.g. CICS ECI
resource adapter)

Note: We strongly recommend that you use a managed environment over a
non-managed environment. The application development costs for a
non-managed environment are significant and the quality of service is
generally not as good as that provided by a managed environment such as
WebSphere Application Server.
 Chapter 2. Architectural choices 27

(for example, an IMS system). However, the generic CCI classes are the same in
that they are independent of the EIS, whereas specific EIS classes cater to the
differences. For example, the parameters used to call a CICS program are
different from those used to invoke an IMS transaction, but the programming
model is the same (independent of the EIS). As a result, you can increase
developer productivity when developing applications to communicate with
multiple EISs. The CCI programming interface is similar to other JEE interfaces,
such as the Java Database Connectivity (JDBC) interface or Java Message
Service (JMS) interface.

Resource adapters
The CICS Transaction Gateway (CICS TG) provides two resource adapters
supporting the External Call Interface (ECI) and the External Presentation
interface (EPI):

cicseci.rar The CICS ECI resource adapter is provided with both
CICS TG for multiplatforms and CICS TG for z/OS. It
supports the XA and LocalTransaction interfaces.

cicsepi.rar The CICS EPI resource adapter is provided only with
CICS TG for Multiplatforms and provided access to
3270-based CICS transactions.

The ECI resource adapter is the simplest to use and the most commonly used
CICS TG resource adapter. Support is provided both for synchronous and
asynchronous calls. However, asynchronous calls using the CICS ECI resource
adapter have their limitations. For example, you cannot make several concurrent
calls and then wait for the response. You must take the response of each
previous call before making another call.

The JCA resource adapters provided by the CICS TG are effective replacements
for the CICS TG base Java classes. Support for the ECI resource adapters is
included in the Rational Software Development Platform series of products,
whereas tooling support for direct use of the ECI Java classes is not.

WebSphere Application Server on z/OS provides a WebSphere Optimized Local
Adapter (WOLA) resource adapter that can call services in CICS providing that
they are in the same z/OS LPAR.
28 CICS and SOA: Architecture and Integration Choices

System contracts
The JCA defines a standard set of system-level contracts between a JEE
application server and a resource adapter. The standard contracts include these:

� A connection-management contract that provides a consistent application
programming model for connection acquisition and enables a JEE application
server to pool connections to a back-end EIS. This leads to a scalable and
efficient environment that can support a large number of components
requiring access to an EIS system.

� A transaction-management contract that defines the scope of transactional
integration between the JEE application server and an EIS that supports
transactional access. This contract allows a JEE application server to function
as a transaction manager, and control two-phase commit transactions across
multiple resource managers (known as global transactions). This contract
also supports the LocalTransaction interface, which refers to one-phase
commit transactions that are managed internally to a resource manager
without the involvement of an external transaction manager. When using the
managed environment with JCA 1.6, the transaction level (LocalTransaction
or XA) can be specified on a connection basis using a connection
factory property.

� A security-management contract that enables secure access to an EIS. This
contract provides support for a secure application environment, which
reduces security threats to the EIS and protects valuable information
resources managed by the EIS. Both container-managed sign-on (in which
the JEE application server is responsible for flowing security context to the
EIS) and component-managed sign-on (in which the application is
responsible for flowing security context to the EIS) are supported.

When used with WebSphere Application Server for z/OS, the CICS ECI
resource adapter enables automatic propagation of security credentials
from the application server to CICS. This functionality is known as thread
identity support.
 Chapter 2. Architectural choices 29

These system contracts are transparent to the application developers, which
means that they do not have to implement these services themselves. In a
managed environment it is these system contracts that make the JCA such a
powerful solution for integrating existing CICS applications with new JEE
applications running in an application server such as WebSphere Application
Server. Figure 2-6 shows how the CICS TG enables SOA access to a CICS
business logic program.

Figure 2-6 Connecting using JCA

A JEE application uses the CCI programming interface to invoke the CICS ECI
resource adapter. The CICS TG ECI classes are packaged with the ECI resource
adapter and are used to pass the application request to the CICS TG.

The JEE application can invoke the CICS business logic program (B) directly if
no message transformation is required. In this case, Rational Application
Developer can be used to create a Java bean to represent a COMMAREA
formatted as COBOL types, with Java methods for getting and setting fields.

A message adapter in CICS is required only if the message is to be transformed.
For example, the request is in XML and the CICS business logic program
requires a COBOL record format. The length of the message is subject to the
normal CICS COMMAREA message length limitation of 32 KB.

CICS TS

DB
CCI

CICS TG

CICS ECI
resource
adapter

Client

A

Message adapter
30 CICS and SOA: Architecture and Integration Choices

The CICS TG is the preferred implementation for JCA connectors to access all
CICS servers from WebSphere Application Server, for applications that require a
high-performing, secure, and scalable access option with tight integration to
existing CICS applications. The CICS TG benefits from ease of installation and
flexible configuration options, and requires minimal changes to CICS, and in
most cases no changes to existing CICS applications. In addition, the CICS TG
supports a range of non-Java clients, including C, C++, COBOL, and .NET.

The JCA is considered a medium coupling architecture, compared with the EJB
architecture (high coupling) and the web services architecture (low coupling).
The JCA can be used with a diverse range of supported environments and
different deployment options. These are described in detail in 3.2, “CICS
Transaction Gateway” on page 49.

2.4.3 HTTP and Atom feeds
Figure 2-7 shows how the HyperText Transmission Protocol (HTTP) can be used
directly with CICS TS. CICS web support provides an HTTP listener and a
message adapter program can be written using CICS WEB APIs.

Figure 2-7 Connecting using CICS web support

CICS supports HTTP basic authentication for user ID identification or the more
secure SSL encryption and authentication with client and server certificates.
CICS web support sets up the transaction and security environment and calls the
message adapter. The message adapter uses the CICS WEB APIs to extract the
HTTP user data, which is typically formatted as an HTML form. The message
adapter also has access to the SSL certificate and HTTP headers and socket
information if required. The message adapter transforms this information and
places it into containers or a COMMAREA and calls the business logic program.

A

CICS TS

DB

CICS Web support
HTTP

Message adapter

Web API

Client
 Chapter 2. Architectural choices 31

If the service requester is a web browser, the response message will typically be
formatted as HTML. If the service requester is an application, the response
message will normally be formatted as XML. The message adapter can use the
CICS XMLTRANSFORM or DOCUMENT APIs to create HTML or XML
documents. The response is returned to the client for display or processing.

HTTP is synchronous and stateless. However, if state management is required,
CICS provides a utility for storing state data indexed by a state management
token that the HTTP client can return on subsequent calls to retrieve the state.

CICS web support also allows a CICS application to initiate an HTTP request
and to receive the response from an HTTP server program, thus providing
bi-directional support for the HTTP protocol.

CICS web support also forms the basis for the CICS support of Atom feeds that
adhere to the Atom Syndication Format and the Atom Publishing Protocol. CICS
exposes resources such as VSAM files and temporary storage queues as Atom
feeds without data access programs. For more information about CICS web
support and Atom, refer to 3.4, “CICS web support” on page 63.

2.4.4 Messaging
WebSphere MQ allows you to easily exchange information across different
platforms, integrating existing business applications in the process. WebSphere
MQ assures reliable delivery of messages, dynamically distributes workload
across available resources, and helps to make programs portable.

WebSphere MQ provides Java Message Service (JMS) APIs and native
WebSphere MQ APIs for use by service requesters on a wide variety of
platforms, with many options for routing and encrypting messages prior to
arriving on WebSphere MQ for z/OS.

Note: CICS TS currently supports the HTTP 1.0 and HTTP 1.1 specifications.
32 CICS and SOA: Architecture and Integration Choices

Figure 2-8 shows the WebSphere MQ trigger monitor program provided by CICS,
which can be used to automatically start an appropriate message adapter
program when messages arrive. The message adapter uses WebSphere MQ
native APIs to receive the message, transform it if required, and call the business
logic program. A reply message can be sent using the reply-to queue defined in
the message. For efficiency, the message adapter program will usually continue
to process messages on the inbound queue until it is empty.

Figure 2-8 Connecting using WebSphere MQ

The WebSphere MQ DPL bridge for CICS provides an alternative option
(Figure 2-9). This generic adapter passes a message from a named input queue
to a business logic program through the COMMAREA. This is ideal in the
situation where the service requester can format the message into a form
acceptable by the business logic program.

Figure 2-9 Connecting using the WebSphere MQ DPL bridge

A

Message adapter

CICS TS

DB

JMS

WebSphere MQ
JMS provider MQ API

WebSphere MQ trigger monitor

Client

A

CICS TS

DBWebSphere MQ DPL Bridge

JMS

WebSphere MQ
JMS provider

Client

A

Message adapter
 Chapter 2. Architectural choices 33

When using the WebSphere MQ DPL bridge, the client application writes a
structured message to the queue. This message must contain information in a
predefined format that the monitoring transaction can use to decide how to
handle the message. Several formats are possible, each starting with a block of
data called an MQMD header. This field contains control information used by the
monitoring transaction like the message format type, along with optional
information, such as a reply-queue identifier and a user ID.

For more information about the use of WebSphere MQ with CICS, refer to 3.5,
“WebSphere MQ” on page 68.

2.4.5 TCP/IP sockets

The TCP/IP Socket Interface for CICS (also known as CICS sockets) is part of
z/OS Communications Server and supports peer-to-peer applications in which
both ends of the connection are fully programmable (Figure 2-10). CICS sockets
is most suitable when you are required to use a protocol not already supported
by CICS TS.

Figure 2-10 Connecting using CICS sockets

CICS sockets is configured and managed using CICS sockets transactions and
configuration files rather than CICS systems management facilities.

CICS sockets provide an iterative listener and a concurrent listener, or you can
write your own listener to meet your needs. The listener and child server use the
CICS sockets APIs to open connections, send and receive data, and perform
general communications control functions. The programs can be written in
COBOL, PL/I, assembler language, or C. Client adapters can be written to create
new outbound connections.

A

CICS TS

DB

CICS Sockets listener
TCP/IP

Message adapter

Child server

Client

Sockets API
34 CICS and SOA: Architecture and Integration Choices

2.5 Conclusion
CICS provides a range of access methods to support modern connectivity
architectures, such as web services and JEE, and other standard transport
mechanisms. With the right external connectors and internal adapters, you can
maximize the reuse of your existing mission-critical CICS assets. Table 2-1
compares the connection architectures and standard transport mechanisms
discussed in this chapter.

Table 2-1 Common architectures and standard transport mechanism

Connectivity
option

Required
middleware

Main capabilities Recommendation

Web services CICS-only solution � Inbound and outbound
� Low coupling
� Synchronous (HTTP)
� Asynchronous (WMQ)
� QoS based on transport type
� Support for some WS-*

standards

Should be first consideration
for service enabling CICS
applications, particularly
when you need to support
multiple service requester
types or need bi-directional
support.

JCA with
CICS TG

CICS TG
JEE server
(normally
WebSphere
Application Server)

� Inbound to CICS
� Medium coupling
� Synchronous
� High qualities of service (QoS)

Most appropriate solution
when service requester is
JEE component and when
high QoS required (high
availability, transactions,
security).

JCA with
WOLA

WebSphere
Application Server
for z/OS

� Inbound and outbound
� Tight coupling
� Synchronous
� High QoS

Particularly useful for JCA
access to and from CICS,
and for very high throughput
and performance
requirements.

CICS web
support

CICS-only solution � Inbound and outbound
� Medium coupling
� Synchronous
� Medium QoS

Use with web services,
RESTful services, and Atom
feeds, or when remote
client/server only supports
HTTP.

WebSphere
MQ for z/OS

CICS-only solution � Inbound and outbound
� Medium coupling
� Asynchronous, with

almost-synchronous
capabilities

� Assured delivery

Exploit WMQ for basic
messaging and flowing web
services.
 Chapter 2. Architectural choices 35

Both CICS Transaction Server and WebSphere Application Server are strategic
middleware products that interoperate well using technologies, such as web
services, to support end-to-end on demand systems. They exploit and
complement z/OS qualities of service, such as high availability and scalability at
a low cost per transaction, with a high level of security. In combination,
WebSphere Application Server and CICS support almost any mission-critical
SOA solution.

CICS sockets z/OS
Communications
Server

� Inbound and outbound
� Very tight coupling
� Synchronous
� Limited QoS

Use when remote
client/server only supports
TCP/IP sockets
communication.

Connectivity
option

Required
middleware

Main capabilities Recommendation
36 CICS and SOA: Architecture and Integration Choices

Chapter 3. Technology overview

In this chapter, we introduce the CICS access technologies. We provide product
information and an overview of the components and topologies.

These are the CICS access technologies that we discuss here and again in
later chapters:

� CICS Web services
� CICS Transaction Gateway
� WOLA
� CICS web support
� WebSphere MQ
� CICS sockets

3

© Copyright IBM Corp. 1999, 2012. All rights reserved. 37

3.1 CICS Web services

Application programs running in CICS can participate in a heterogeneous web
services environment as service requesters, service providers, or both.
Figure 3-1 shows an outline of the web services support in CICS.

Figure 3-1 Web services in CICS

CICS support for web services conforms to open standards, including
these standards:

� SOAP 1.1 and 1.2
� HTTP 1.1
� WSDL 1.1 and 2.0

CICS supports the most common type of communication between service
requester and service provider: SOAP over HTTP.

CICS also receives and sends SOAP messages to WebSphere MQ (WMQ) using
the WMQ transport, both in the role of service provider and service requester.

CICS TS

Client

SOAP

Request

CICS Web
Service
Support

Service
Provider

Application

Service
Requester

Service
Requester
Application

CICS Web
Service
Support

Endpoint

Service
Provider

SOAP

Request
38 CICS and SOA: Architecture and Integration Choices

How does CICS support web services? Figure 3-2 shows an overview of how the
components of the CICS Web services support fit together.

Figure 3-2 Overview of CICS Web services support

Figure 3-1 on page 38 makes a clear distinction between the tools and the
runtime components of CICS Web service support. The tooling includes the IDE
called Rational Developer for System z (RDz) and the CICS Web service
assistant batch utilities. The runtime includes pipeline, message handlers, and
CICS resource definitions. The section below provides more details on the tools
and run time.

Tools
What tools are available to enable CICS programs as web services?

� CICS Web service assistant

The CICS Web services assistant is a set of batch utilities that can help you
transform existing CICS applications into web services and enable CICS
applications to use web services provided by external providers.

The assistant can create a WSDL document from a simple language structure
like a COBOL copybook, or a language structure (copybook) from an existing
WSDL document, and supports COBOL, C/C++, and PL/I. It also generates
information used to enable automatic runtime conversion of the SOAP
messages to containers and COMMAREAs, and vice versa.

The assistant generates a WSBIND file. The WSBIND file is used by CICS to
do message transformation (SOAP to application data and vice versa).

CICS

CICS Web Service

WSDL

WSBind
File

top down

bottom up

Tools

Runtime

PIPELINE CONVERSION
Service

Requester
Business

Logic

IDE Tools
CICS Web
Services
Assistant

Language
Structure
 Chapter 3. Technology overview 39

� Rational Developer for System z (RDz)

RDz facilitates the development of both Java and z/OS-based applications.
The XML services for the Enterprise (XSE) capability of RDz provides tools
that let you adapt COBOL-based applications so that they can consume and
produce XML messages. The Web services Enablement wizard is the XSE
tool that supports the bottom-up approach for creating web services based on
existing CICS COBOL programs.

Both the tools described above can be used to build web services in various
development styles. You can use the tools to build a web service in top-down
style or bottom-up style or meet in the middle:

� Top-down style

This approach is usually the starting point when we have an existing WSDL
document for a web service and we want to either implement or invoke the
web service within CICS. We can use either CICS Web service assistant or
RDz to do this.

� Bottom-up style

This approach is usually the starting point when we have an existing CICS
application that is already in production and has either a COMMAREA or
channel-based interface. We now want to expose this application to remote
client applications using CICS Web services support.

� Meet in the middle

This is a hybrid technique and often involves the use of a wrapper program
that maps between the data format generated by the CICS Web service
assistant (or RDz) and the desired data format used by the existing
application. This is used in complicated scenarios where COMMAREA fields
or language are not supported by the CICS Web service assistant.

3.1.1 Components for CICS Web service

In this section we discuss components for CICS Web service.
40 CICS and SOA: Architecture and Integration Choices

Base components
In addition to the TCP/IP Listener, Secure Sockets Layer (SSL) support, and the
HTTP handler (as described in 3.4.3, “Components for CICS web support” on
page 65), CICS also provides the following base components for CICS Web
service:

� WMQ Listener: The WMQ listener receives WMQ messages and invokes
pipeline processing.

� SOAP protocol handler: The SOAP protocol handler receives SOAP
messages and invokes pipeline processing.

� XML data mapper: The XML data mapper maps SOAP message to
COMMAREA/containers.

Resource components for web service requests
What are the resource definitions that are required to support web services?

The following CICS resources are configured by a systems programmer to
access CICS services over HTTP:

� TCPIPSERVICE

A TCPIPSERVICE definition is required in a service provider that uses the
HTTP or HTTPS as transport. It contains information about the port on which
inbound requests are received, and whether any transport-based security
mechanisms will be applied by CICS.

� URIMAP

A URI mapping or URIMAP resource definition matches the URIs of web
service requests. The URIMAP associates a URI for the request with a
PIPELINE and WEBSERVICE resource that specifies the processing to be
performed. You can use a URIMAP to specify:

– The name of the transaction that CICS uses for running the pipeline alias
transaction (default is CPIH)

– The user ID under which the alias transaction runs

� PIPELINE

A PIPELINE resource definition provides information about the message
handlers that will act on a service request and on the response. The
information about the message handlers is supplied indirectly. The PIPELINE
definition specifies the name of an HFS file, called the pipeline configuration
file, which contains an XML description of the message handlers and their
configuration. There are two kinds of pipeline configuration files:

– One describes the configuration of a service provider pipeline.
– The other describes the configuration of a service requester pipeline.
 Chapter 3. Technology overview 41

� WEBSERVICE

A WEBSERVICE resource defines the aspects of the runtime environment for
a CICS application program deployed in a web services setting. The CICS
Web service assistant is used to generate the mapping between the
application data structure and SOAP messages. The mapping is stored in the
WSbind file. Three objects define the execution environment that allows a
CICS application program to operate as a web service provider or a web
service requester (Figure 3-3 on page 43):

– WEBSERVICE resource: The web service description. This is used to
reference the WSDL file, PIPELINE, and WSbind file.

– WSbind file: The web service binding file.

– PIPELINE resource definition.

Note: What is a web service binding file?

A web service binding file contains abstract representations of the input and
output messages used by the service. When a service provider or service
requester application executes, CICS needs information about how the
content of the messages maps to the data structures used by the application.
This information is held in a web service binding file.
42 CICS and SOA: Architecture and Integration Choices

3.1.2 CICS resource relationships

Figure 3-3 shows the relationships between CICS Web services definitions.

Figure 3-3 CICS Web services resource interrelationships

These are the steps performed when CICS is a service provider:

1. When a web service request is received, CICS searches for a matching
URIMAP resource with its USAGE attribute set to PIPELINE and its PATH
attribute set to the URI found in the incoming request.

2. If a matching URIMAP definition is found, the PIPELINE and WEBSER VICE
definitions from the PIPELINE and WEBSERVICE attributes of the URIMAP
definition are used.

3. The TRANSACTION attribute of the URIMAP definition determines the name
of the transaction that should be attached to process the pipeline.

dynamic
install

CICS
URIMAP

USAGE(PIPELINE)
HOST
PATH

PIPELINE
WEBSERVICE

PIPELINE

CONFIGFILE
SHELF
WSDIR

WEBSERVICE

PIPELINE
WSBIND

WSDLFILE

config

WSBind

WSDL

pick-up directory

HFS

Web service assistant

COMMAREA
structure

BINDING=
URI=
PGMNAME=
PGMINT=
 Chapter 3. Technology overview 43

3.1.3 CICS as a service provider application

In this section we first discuss how to prepare for running a CICS application
as a service provider. Then we discuss how CICS processes the incoming
service request.

An existing COMMAREA-based application can be exposed as a service
provider, normally without any application changes. When CICS is in the role of
service provider, it must perform the following operations:

1. Receive the request from the service requester.

2. Examine the request and extract the contents that are relevant to the target
application program.

3. Invoke the application program, passing data extracted from the request.

4. Construct a response (when the application program returns control) using
data returned by the application program.

5. Send a response to the service requester.

Note: CICS support for web service standards does these things:

� It ensures maximum interoperability with other web services
implementations by conforming with the Web Services Interoperability
Organization (WS-I) Basic Profile 1.1 and WS-I Simple SOAP Binding
Profile1.0.

� It supports the WS-Atomic Transaction and WS-Coordination
specifications. By default, web service requests are stateless. The above
specifications add a layer for transactionality.

� It supports the WS-Security specification. WS-Security is a large
specification that deals with the many aspects of security related to web
services. It covers everything from passing a user ID, single-field
encryption, message encryption, signing, and so on. For more information
about WS-Security, see Chapter 6, “Security” on page 133.

� It conditionally complies with WS-Trust, and support is subject to
restrictions. WS-Trust (one of the six sub-specifications of WS-Security)
allows you to support more forms of identification. CICS, for example, only
supports username tokens and X509 certificates. For more information
about WS-Trust, see Chapter 6, “Security” on page 133.
44 CICS and SOA: Architecture and Integration Choices

3.1.4 CICS as a service requester application

When CICS is a service requester, an application program sends a request,
which is passed through a pipeline to a target service provider. The response
from the service provider is returned to the application program through the same
pipeline. In this section we discuss how to prepare for running a CICS application
as a service requester. Then we discuss how CICS processes the outbound
service request.

When CICS is in the role of service requester, it must perform the
following operations:

1. Build a request using data provided by the application program.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response and extract the contents that are relevant to the
original application program.

5. Return control to the application program.

3.1.5 Web services using WebSphere MQ as transport

CICS can receive and send SOAP messages to WebSphere MQ using the
WebSphere MQ transport, both in the role of service provider and service
requester. As a service provider, CICS uses WebSphere MQ triggering to
process SOAP messages from an application queue. Triggering works by using
an initiation queue and local queues. A local (request) queue definition includes
the following information:

� The criteria for when a trigger message is generated. For example, when the
first message arrives on the local queue, or for every message that arrives on
the local queue. For CICS SOAP processing, specify that triggering occurs
when the first message arrives on the local queue.

� The local queue definition can also specify that trigger data is passed to the
target application, and in the case of CICS SOAP processing (transaction
CPIL), this specifies the default target URL to be used if this is not passed
with the inbound message.

� The process name that identifies the process definition. The process
definition describes how the message is processed. In the case of CICS
SOAP processing, specify the CPIL transaction.

� The name of the initiation queue that the trigger message should be sent to.
 Chapter 3. Technology overview 45

When a message arrives on the local queue, the Queue Manager generates and
sends a trigger message to the specified initiation queue. The trigger message
includes the information from the process definition. The trigger monitor retrieves
the trigger message from the initiation queue and schedules the CPIL transaction
to start processing the messages on the local queue.

As a service requester, on outbound requests you can specify that the responses
for the target web service are returned on a particular reply queue. In both cases,
CICS and WebSphere MQ require configuration to define the required resources
and queues. Figure 3-4 shows how WebSphere MQ acts as transport for CICS
service requester and service provider applications.

Figure 3-4 Example of WebSphere MQ transport flow

Figure 3-4 shows how WebSphere MQ acts as a transport for web service.

3.1.6 Support for MTOM

In standard SOAP messages, binary objects are base64-encoded and included
in the message body, which increases their size by 33%. For very large binary
objects, the larger payload can significantly impact transmission time. CICS
SOAP pipelines can support the Message Transmission Optimization
Mechanism (MTOM) and XML-binary Optimized Packaging (XOP)
specifications. These specifications define a mechanism for sending and
receiving binary data using SOAP, without incurring the overhead of base64
encoding. CICS supports and controls the handling of MTOM messages in both
web service provider and requester pipelines using an MTOM handler program
and XOP processing.

CICS
Web

Service
Support

Service
Provider

Application

Service
Requester
Application

Service
Requester

Service
Provider

Client

z/OS

SOAP
Request

CICS
WebSphere

MQ

SOAP
Request

Endpoint
46 CICS and SOA: Architecture and Integration Choices

3.1.7 Java web services using Axis2

Axis2 is a Java-based implementation of a web services SOAP engine that
supports a number of the web services specifications. Axis2 is provided with
CICS TS V4.2 to process web services in a Java environment.

You can optionally use the Axis2 Java-based SOAP engine to process web
service requests in service provider and service requester pipelines. Because
Axis2 uses Java, the SOAP processing is eligible for off loading to the IBM
System z Application Assist Processor (zAAP). You can opt to use Axis2 by
adding a Java SOAP handler to your pipeline configuration file and creating a
JVM server to handle the Axis2 processing.

Enabling Axis2 does not require regenerating the binding files for any existing
web services that use the pipeline. When CICS is a service provider, the
Java-based handler uses Axis2 to parse the SOAP envelope for a request
message. You can use header processing programs to process any SOAP
headers associated with the SOAP message. Axis2also constructs the SOAP
response message. Figure 3-5 shows this process.

Figure 3-5 Axis2 processing when CICS is a service provider

3.1.8 Java web service topology using Axis2

In this section we discuss Java web service topology using Axis2.

Important: See Chapter 7, “Transactional scope” on page 185, for more
information about scalability.

CICS pipeline

Transport
handler

Service
handler

Transport
handler

Service
handler

Java SOAP
handler

Axis2

JVM server

Header
processing
program

Service
provider

application

Request

Response
 Chapter 3. Technology overview 47

Topology 1
In this topology, a Java application has been written using the Java Architecture
for XML Binding (JAXB) and the Java API for XML Web Services (JAX-WS)
libraries to generate and parse the XML. The Java application can now run in
Axis2 in the same JVM server as the SOAP pipeline processing (Figure 3-6). The
topology in Figure 3-6 is an example of a Java application that is a web service
provider and is processed by the Axis2 SOAP engine in a JVM server. JCICS is
the CICS Java class library that wrappers EXEC CICS commands and provides
to CICS resources such as VSAM files and TSQs.

Figure 3-6 Web service with Java service provider and Axis2

Transport
handler

CICS PIPELINE

Service
handler

Java SOAP
handler

Java
service
provider

Header
processing
program

Web service
requester

CICS REGION

JVM SERVER

Axis2

VSAM

TSQ

JCICS
48 CICS and SOA: Architecture and Integration Choices

Topology 2
The topology shown in Figure 3-7 is an example of a COBOL application that is a
web service provider. The request is processed in a pipeline that is configured to
support Java. The SOAP handler is a Java program that is processed by Axis2
and run in a JVM server.

Figure 3-7 Web service with COBOL service provider and Axis2

Refer to Chapter 7, “Transactional scope” on page 185, for more information
about scalability of the above topologies.

3.2 CICS Transaction Gateway

The CICS Transaction Gateway (CICS TG) is a set of client and server software
components that allow a remote client application to invoke services in a CICS
region. The client application can be either a Java application or a non-Java
application using C, C++, workstation COBOL, or .NET interfaces (depending on
the platform used).

When a Java application is used, then the application can be any type of client
(such as a servlet or an enterprise bean). In the JEE environment, the application

Transport
handler

COBOL
service
provider

CICS PIPELINE

Service
handler

Java SOAP
handler

Header
processing
program

Web service
requester

CICS REGION

JVM SERVER

Axis2
LINK
 Chapter 3. Technology overview 49

is typically a servlet or enterprise bean that is deployed into a JEE application
server, such as WebSphere Application Server. Figure 3-8 shows how CICS
assets can be accessed from multiple environments with CICS TG.

Figure 3-8 Extending CICS assets with CICS TG

3.2.1 CICS TG products

With CICS TG there are three distinct CICS TG products:

� CICS TG for Multiplatforms
� CICS TG Desktop Edition
� CICS TG for z/OS

3.2.2 CICS TG for Multiplatforms

CICS TG for Multiplatforms is supported on the following range of operating
systems and platforms and is designed to support connectivity to all in-service
CICS servers:

� Linux on System z
� Linux on Intel
� Linux on POWER®
� AIX®
� HP-UX
� Oracle Solaris
� Microsoft Windows

CICSCICS TG

ECI v2 applications
(C, C++, COBOL)
ECI v2 applications
(C, C++, COBOL)

3rd party JEE
application servers

.NET applications
(VB, C#)
.NET applications
(VB, C#)

Java applications

Java servlets &
applets

WebSphere
Application Server
50 CICS and SOA: Architecture and Integration Choices

CICS TG for Multiplatforms comprises the following main runtime components:

� The Gateway daemon, which listens for incoming work and manages the
threads and connections necessary to ensure good performance. It provides
connectivity to CICS when using the IPIC protocol.

� The Client daemon, which provides the communication to CICS servers.

� A Java class library or JCA resource adapter, which is deployed into the client
runtime environment. When used in a JCA environment, the resource adapter
is deployed into the JEE application server.

� A ECI v2 client library for use by remote C or .NET clients.

A Java client program can connect to a remote Gateway daemon using the TCP
or SSL protocols. The Client daemon then provides the transport drivers to
connect to the CICS server.

3.2.3 CICS TG Desktop Edition

CICS TG Desktop Edition provides all the capabilities of CICS TG that are
described in the above section. It is licensed and limited to single user access. It
replaces the earlier product CICS Universal Client, but without JCA support.
 Chapter 3. Technology overview 51

3.2.4 CICS TG for z/OS

CICS TG for z/OS is supported on z/OS and supports connectivity to CICS
TS for z/OS. CICS TG for z/OS uses EXCI or IPIC connections provided by
CICS TS to communicate with CICS (Figure 3-9). ECIv2 provides support for
non-Java-based applications.

Figure 3-9 Components of CICS TG for z/OS

Figure 3-9 depicts how Java clients and ECIV2 clients can connect to CICS using
the CICS TG on z/OS. CICS TG can be configured to use EXCI or IPIC to
communicate with CICS.

3.2.5 CICS TG for z/OS modes of operation

There are two principle modes of operation for the CICS TG:

� Remote
� Local

Remote mode of operation
The remote mode of operation uses the Gateway daemon as a long-running task
that listens on specified ports for incoming ECI requests and then forwards them
to the CICS server via the EXCI or the IPIC protocol. The Gateway daemon runs
in its own address space and provides connection and thread management.

CICS TG

EXCI

Gateway
daemon

CICS TSProtocol
handler

MRO

TCP
or SSL

z/OS

IRCctgclient.jar
cicseci.rar
cicseciXA.rar

CICS TG

EXCI

Gateway
daemon

CICS TSCICS TSProtocol
handler

MRO

TCP
or SSL

z/OS

ctgclient.jar
cicseci.rar
cicseciXA.rar

Java
Client

IPIC
IP

ECI v2
Client

TCP
52 CICS and SOA: Architecture and Integration Choices

Local mode of operation
This is only available for Java clients. If the CICS TG is to be used on the same
machine as WebSphere Application Server, it might be more efficient to use the
CICS TG classes within WebSphere Application Server to provide the gateway
functionality. This mode of operation allows WebSphere Application Server to
manage the connections and threads and reduces the communications
overhead. This configuration is known as the local mode of operation.

CICS TG for z/OS has many advantages in the area of systems management,
usability, and performance:

� XA transaction support enables CICS Transaction Server (CICS TS) for z/OS
to participate in a global two-phase commit transaction that is initiated in a
distributed JEE application server, such as WebSphere Application Server.

� Management of the Gateway daemon from SDSF provides better system
administration capabilities.

� Better security with identity propagation, identity assertion, and SSL directly
into z/OS.

3.2.6 CICS TG application programming interfaces

CICS TG for Multiplatforms provides the following programming interfaces for
accessing CICS applications:

� External Call Interface (ECI)
� External Presentation Interface (EPI)
� External Security Interface (ESI)

External Call Interface
The ECI is used for calling COMMAREA or channel-based CICS programs. The
COMMAREA or channel is the buffer that is used for passing the data between
the client and the CICS server. CICS sees the client request as a distributed
program link (DPL) request.

The ECI enables a user application to call a CICS program synchronously or
asynchronously. It enables the design of new applications to be optimized for
client-server operation, with the business logic on the server and the
presentation logic on the client.

Note: To read more about the CICS TG local mode of operation, see this URL:

http://www.redbooks.ibm.com/abstracts/sg247161.html

Note: The CICS TG on z/OS supports only the ECI and ESI interface.
 Chapter 3. Technology overview 53

http://www.redbooks.ibm.com/abstracts/sg247161.html

An ECI request can be invoked from a Java application using a variety
of interfaces:

� The ECIRequest class that is provided by the CICS TG base classes

This interface provides a simple procedural type interface to the ECI. It is
supported in any Java environment (such as a stand-alone application) and
provides similar capabilities to the JCA. However, it does not provide the
same qualities of service (such as XA transaction support).

� The Common Client Interface (CCI) that is provided by the CICS ECI
resource adapters (cicseci.rar)

These classes define a standard architecture for connecting the Java 2
Platform Enterprise Edition (JEE) platform to a heterogeneous EIS, such as
CICS. Java applications interact with resource adapters using the Common
Client Interface (CCI), which is a common framework of classes extended by
each resource adapter to allow communication with a specific EIS. JCA
provides a high quality of service, such as managed security, identity
propagation, and XA (2-phase commit).

The ECIv2 API enables a C client application to communicate with a CICS TG
running on a remote machine in much the same manner as the Java APIs. An
application developer using this API is able to call COMMAREA or
channel-based CICS applications. Applications can make use of the transaction
support in CICS either by having each program run in its own transaction or by
multiple calls within an extended logical unit of work (LUW). Applications written
using this API can be developed for the Windows, Linux, or UNIX platforms that
are supported by the CICS TG. This function is similar to that provided by the
existing Client APIs in the CICS TG. However, an application written using ECIv2
is not required to run on the same machine as a CICS TG installation.

An ECI request can use the following connections:

� EXCI
� IPIC

What is the benefit of IPIC versus EXCI? IPIC provides channel/container
support, sysplex-wide XA support, and identity propagation.

External Presentation Interface
The EPI is used for invoking 3270-based transactions. A terminal is installed in
CICS, and CICS sees the request as running on a remote terminal controlled by
the CICS TG. This interface is not supported on z/OS.
54 CICS and SOA: Architecture and Integration Choices

External Security Interface
The ESI is used for verifying and changing the user ID and password information
held in the CICS external security manager (ESM), such as RACF®.

ESI calls to CICS can be made from Java, .NET, or C clients. It provides two
basic functions:

Verify Password This allows a client application to verify a password for a
given user ID.

Change Password This allows a client application to change the password
for a given user ID.

3.2.7 CICS TG and the JCA

The CICS TG is a JEE connector for CICS TS, and in conjunction with IBM
WebSphere Application Server provides a high-performing, secure, scalable,
and tightly integrated access method in CICS.

The JCA system-level contracts between a JEE application server, such as
WebSphere Application Server and a resource adapter, determine the scope of
the JCA managed environment. The standard contracts include a
connection-management contract, transaction-management contract, and
security-management contract. These contracts provide the mechanisms by
which the management of connections, security, and transactions are performed:

� The connection-management contract enables the application server to pool
and re-use connections into CICS, enabling a more scalable and efficient
environment that can support a large number of concurrent accesses to a
CICS region.

� The transaction-management contract defines the scope of transactional
integration between a JEE application deployed in WebSphere Application
Server and a CICS program.

� The security-management contract defines how security context information
is passed between the application server and CICS.
 Chapter 3. Technology overview 55

3.2.8 Using the CICS ECI resource adapter with different topologies

The JCA system contracts are the key to the qualities of service provided by
WebSphere Application Server and the CICS ECI resource adapter. However,
the qualities of service vary depending on the topology in use. The three most
common topologies are shown in Figure 3-10:

Topology 1 WebSphere Application Server and the CICS TG are both
deployed on a distributed (non-System z) platform.

Topology 2 WebSphere Application Server is deployed on a distributed
platform and the CICS TG is deployed on a z/OS system.

Topology 3 Both WebSphere Application Server and the CICS TG are
deployed on System z.

We discuss topology 2 in more detail in Chapter 5, “Application interfaces” on
page 89, Chapter 6, “Security” on page 133, Chapter 7, “Transactional scope” on
page 185, Chapter 8, “High availability and scalability” on page 219, and
Chapter 10, “CICS TG for z/OS scenario” on page 275.

Figure 3-10 Common topologies for using CICS TG with WebSphere Application Server

CICS

L
P
A

R

L
P
A
R

CICS

CICS
TG

z/OS

L

P
A
R

CICS

CTG

CTG
WAS

WAS

WAS

Network

z/OS

HTML

Service
Consumer

Service
Consumer

SOAP

56 CICS and SOA: Architecture and Integration Choices

Remote Gateway daemon on z/OS
In topology 2, where WebSphere Application Server is deployed on one of the
distributed platforms, it is possible to access CICS through a Gateway daemon
running on z/OS (Figure 3-11).

Figure 3-11 CICS TG topology 2

In this configuration, the protocol used is one of the remote protocols (TCP,
HTTP, SSL, or HTTPS). The communication from the CICS Transaction
Gateway on z/OS to the CICS server utilizes EXCI or IPIC.

This configuration is widely used today for the following reasons:

� Topology 1 only supports native TCP/IP connections into System z systems
for CICS TS V2 onwards, whereas topology 2 provides simple TCP/IP access
to any release of CICS.

� Topology 2 provides advanced security with identity assertion and identity
propagation. See Chapter 6, “Security” on page 133, for details.

� Topology 2 enables integration with z/OS IP workload-management
functions, including Sysplex Distributor and TCP/IP port sharing for better HA.
See Chapter 8, “High availability and scalability” on page 219, for details.

z/OS

CICS TS

CICS
application

C
O
M
M
A
R
E
A

C
H
A
N
N
E
L

WebSphere
Application Server

JSP Servlet

EJB

CICS TG
ECI

resource
adapter

EXCI

IPIC

CCI

Service
request
 Chapter 3. Technology overview 57

� Deploying the CICS TG on z/OS can leverage the existing CICS
systems-management skills within the enterprise for better system administration.

� Topology 2 provides XA transaction support to enable resources to
participate in two-phase commit transactions. See Chapter 7, “Transactional
scope” on page 185, for details

3.3 WOLA

WebSphere Optimized Local Adapters (WOLA) is a functional component of
WebSphere Application Server for z/OS that provides an efficient cross-memory
mechanism for calls both inbound and outbound to and from WebSphere
Application Server for z/OS. It can communicate with external address spaces,
which include CICS, batch, IMS, USS, and ALCS. Because it avoids the
overhead of other communication mechanisms, it is capable of high-volume
exchange of messages. Figure 3-12 shows the topology of WOLA and CICS.

Figure 3-12 WOLA and CICS topology

3.3.1 What is WOLA

WOLA is a set of runtime components and APIs provided with WAS z/OS V7 and
later that enable procedural style calls to and from other sub-systems on z/OS. It
provides an set of APIs for sending data between different z/OS environments.
WOLA provides interfaces to connect in and out of WebSphere Application
Server for z/OS (bi-directional connectivity). WOLA has support for routing
requests between different WAS servers with the development mode support.
For inbound connections to CICS from WAS, JCA resource adapter hides most
of the WOLA implementation details, which makes Java programming easy.

L
P
A
R

CICSWAS

W
O
L
A

Network

z/OS

HTML

Service
Consumer

Service
Consumer

SOAP
58 CICS and SOA: Architecture and Integration Choices

3.3.2 The benefit of WOLA

WOLA started out as a way to allow program access into WebSphere Application
server for high transaction rate batch programs. The benefits of WOLA are:

� Integrated with WAS and thus cheap.

� Low pathlength and thus performs well.

� Bidirectional.

� For inbound connections to CICS from WAS, the JCA resource adapter
(ola.rar) hides most of the WOLA implementation details, which makes Java
programming easy.

A standard JCA resource adapter is used for deployment into WebSphere
Application Server for z/OS so that Java programs can have a standard Common
Client Interface (CCI) to interact with. The CCI interface is not the same one that
is used by CICS TG.

3.3.3 CICS and WOLA

Figure 3-13 shows a high-level overview of the WOLA support in CICS. This
section describes the WOLA CICS Link Server, but the WOLA APIs to accept
work from WAS directly into a CICS program can be used as well. The Host
Service and Receive Request WOLA APIs can be coded directly into a CICS
program and can become the target of work requests from WAS.

Figure 3-13 WOLA support in CICS

WebSphere
Application Server

BBOC Control
transaction

WOLA link
Server task

WOLA task related
user exit (TRUE)

CICS
programs

z/OS Logical Partition
CICS Region

WOLA support in CICS
 Chapter 3. Technology overview 59

These are the three components inside CICS that provide WOLA support:

� The Task Related User Exit (TRUE)

This is the low-level heart of the WOLA support in CICS. It provides the
low-level module support for access to the local communication function of
WAS z/OS. CICS cannot use WOLA without it, and this has to be installed in
any CICS region that wants to use WOLA. The TRUE adapter is designed to
run in a CICS region as a resource manager. In CICS, the TRUE is the
primary vehicle used by resource providers. TRUE support provides the
boundary between the CICS application threads and the external resource
manager threads. Currently, DB2, WebSphere MQ, and TCPIP sockets
execute in CICS using the TRUE support.

� The Link Server Task

The link server task hides the CICS programs from the specifics of WOLA. It
serves as a kind of WOLA handler from WAS to CICS. It accepts the request,
then turns and uses EXEC CICS LINK (DPL) of the named target CICS
program passing either COMMAREA or a single named container. The Link
Server Task does not come into play for calls from CICS to WAS. For CICS to
WAS calls, some custom coding needs to be done with the WOLA API.

� BBOC 3270 control transaction

This is a utility provided to make the management easier and is very handy.
The BBOC control transaction provides a convenient way to start and stop the
TRUE and the Link Server Task and pass in parameters to modify the
behavior of the environment.

3.3.4 How calls to CICS work with WOLA

Any external address spaces (such as CICS) that use the supplied interfaces
must first register with WOLA. A Java program from WebSphere Application
server on z/OS wanting to initiate an optimized local adapter (OLA) call outbound
can be implemented as either a servlet or EJB. The Java program uses the
supplied JCA resource adapter (ola.rar) file to make the call to CICS.
60 CICS and SOA: Architecture and Integration Choices

In CICS, you can use the supplied link server task (BBO$) to act as the receiving
agent on behalf of existing CICS program assets. BBO$ then issues an EXEC
CICS LINK of the program named. No changes to the existing CICS program are
necessary provided that it supports either COMMAREA or channel. WOLA
supports only one input and one output container, and has a fixed channel name,
so it is much more restrictive than traditional CICS channel/container support.
Figure 3-14 shows how the call from WebSphere Application Server to CICS works.

Figure 3-14 Inbound call to CICS

3.3.5 How calls from CICS work with WOLA

This involves some degree of coding to the APIs. The link server task does not
assist in calls outbound from CICS to WebSphere Application Server. There are
two approaches for coding the APIs (Figure 3-15 on page 62):

� Embed the WOLA API processing in the CICS program itself. This is easy to
do if you are writing a new application, or can easily modify an existing one,
but it is a bit more problematic for existing programs where the mandate is to
leave it untouched for modifications.

� The second option is to write a kind of custom WOLA bridge program that can
be linked by your application programs. This becomes a kind of WOLA
Service to existing CICS programs to utilize as your needs require.

Invocation task

Server task

TRUE

CICS
programs

CICS Region

WAS to CICS using WOLA

WOLA API’s
used inside the

task

Link server task handles the
call

An instance of the
invocation task is created

Invocation task invokes CICS
program with EXEC CICS LINK
passing COMMAREA or CHANNEL

Call
from
WAS
comes
to
TRUE
 Chapter 3. Technology overview 61

Figure 3-15 provides an example of outbound call from CICS to WAS using WOLA.

Figure 3-15 Outbound call from CICS

TRUE

CICS program

CICS Region

CICS to WAS using WOLA

Call into
WAS
through
the
TRUE Your Business

Logic

CICS program

Your
Business

Logic

CICS program

Your
Business

Logic

CICS program

Your
Business

Logic

CICS program

Your
Business

Logic

CICS program

Your
Business

Logic

WOLA outbound
API’s to WAS

Custom bridge

WOLA outbound
API’s to WAS

1

2

DPL
62 CICS and SOA: Architecture and Integration Choices

3.4 CICS web support

CICS Web support is a set of resources supplied with CICS TS for z/OS that
enables a CICS region to act as an HTTP server and as an HTTP client. This
allows CICS applications to be invoked by and reply to HTTP requests.
Figure 3-16 shows an overview of CICS Web support.

Figure 3-16 CICS Web support overview

3.4.1 CICS as an HTTP server

When CICS is an HTTP server, a web client can send an HTTP request to CICS
and receive a response. The response can be a static response created by CICS
from a document template or static file, or an application-generated response
created dynamically by a user application program.

The actions of CICS as an HTTP server are controlled by TCPIPSERVICE
definitions and URIMAP definitions, which are used to configure CICS web
support and instruct CICS on how to process requests and responses.

z/OS

CICS

CICS
Web

Support

CICS
Application

InternetHTTP

Web Browser

TCP/IP
 Chapter 3. Technology overview 63

Processing flow for CICS as an HTTP server
Figure 3-17 shows the process flow of CICS as an HTTP server:

1. The user invokes a CICS via a URL.

2. The long-running Sockets listener task detects inbound TCP/IP connection
requests on all ports defined to CICS and invokes the CICS service
associated with the port.

3. When the TCPIPSERVICE definition for a port has the protocol HTTP,
the default transaction ID for the Web attach task is CWXN. When the
protocol is USER, the default is CWXU. The transaction always executes
program DFHWBXN.

4. The Web attach task matches the URL to a URIMAP definition and looks at
the PROGRAM attribute to run the application program for processing the
request. It runs under the default alias transaction, CWBA.

Figure 3-17 Processing inbound HTTP request

Socket

Connection

CWXN
CWBA

CICS
CSOL

start

TCP/IP ?

2.

3. 4.
1.

z/OS

TCP/IP

Processing inbound HTTP request

Note: The CICS TCP/IP listener is completely separate from, and not to be
confused with, the TCP/IP Socket Interface for CICS, which provides an
application level TCP/IP socket interface to CICS applications. It is described
further in 3.6, “CICS sockets” on page 75.
64 CICS and SOA: Architecture and Integration Choices

3.4.2 CICS as an HTTP client

When CICS is an HTTP client, a user application program in CICS can initiate a
request to an HTTP server and receive a response from it. The actions of CICS
as an HTTP client are controlled by user-written application programs. An
application program that makes an HTTP request and receives a response must
use the EXEC CICS WEB API commands.

Processing for CICS as an HTTP client
Processing for CICS as an HTTP client takes place as a sequence of EXEC
CICS WEB APIs to send the request by first establishing a socket connection,
then writing HTTP Header and Body information, before transmitting the request.
Response processing is also done in a sequence of EXEC CICS WEB API’s to
receive the data.

Connection pooling for outbound HTTP connections
By default CICS closes client HTTP connections after an application has finished
using the connection. In CICS TS V4.2, you can set up connection pooling to reuse
the connection to the same host and port. CICS places the connection in a pool in
a dormant state. Connection pooling is implemented by specifying a non-zero
value to the SOCKETCLOSE time-out option on a URIMAP resource definition.

3.4.3 Components for CICS web support

These are the components for CICS web support:

� Base components

– TCP/IP Listener: The Sockets listener task detects inbound TCP/IP
connection requests and invokes CICS Web support by attaching the Web
attach task.

– HTTP Handler: The Web attach task (CWXN) receives data from the web
client and deals with initial processing of the request.

– Secure Sockets Layer (SSL) support is used to provide security for the
CICS Web support implementation. Refer to Chapter 6, “Security” on
page 133, for details.

Note: CICS also supports non-HTTP messages. Support for non-HTTP
requests is primarily intended to provide support for requests from user-written
clients that use non-standard request formats. The processing that takes
place for requests and the response that is provided are defined by the user.
No specific support is provided for any formally defined protocols that are
used for client-server communication.
 Chapter 3. Technology overview 65

� Resource components for inbound http requests

– TCPIPSERVICE resource definitions are used to define each port that you
use for CICS as an HTTP server.

– URIMAP resource definitions match the URLs of requests from web
clients, or requests to an HTTP server, and provide CICS with information
about how to process the requests.

– TRANSACTION resource definitions are used to define alias transactions
for HTTP request processing and linking to the business logic.

� Resource components for outbound http requests

URIMAP is the only resource definition required for outbound http requests
from CICS. This defines the security characteristics and the use of
connection pooling.

� Programming components

CICS provides EXEC CICS WEB application programming interface for
handling HTTP requests and responses. Refer to Chapter 6, “Security” on
page 133, for more details.

3.4.4 ATOM feeds

Atom is both a protocol and an XML format for content providers to provide
XML-based web feeds of updated content. An Atom feed is a web feed provided
using the Atom protocol and format. This provision of updated content is known
as syndicating a web feed. Web users can subscribe to a feed, allowing them to
see new content as soon as it is made available.

A web feed, sometimes just called a feed, is a series of related items that a
content provider publishes on the internet. An Atom feed is a web feed that uses
the Atom Syndication Format and the Atom Publishing Protocol. Atom comprises
an XML-based format that describes an Atom feed and the items of information
in it, and a protocol for publishing and editing Atom feeds.

This format and protocol are described in two Internet Society and Internet
Engineering Task Force (IETF) Request for Comments documents (known as RFCs):

� RFC 4287, The Atom Syndication Format, available here:

http://www.ietf.org/rfc/rfc4287.txt

� RFC 5023, The Atom Publishing Protocol, available here:

http://www.ietf.org/rfc/rfc5023.txt

Content providers often deliver web feeds in an earlier format called RSS. CICS
supports Atom, but does not support RSS.
66 CICS and SOA: Architecture and Integration Choices

http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc5023.txt

The items of information that make up an Atom feed are known as Atom entries.
A content provider publishes, or syndicates, an Atom feed by making it available
through a URL on the internet and updating it with new items. Web pages can
display the items in the Atom feed, and web users can obtain the items from the
feed using a feed reader or web browser.

An Atom feed might be used as part of a mashup, which is a web application that
merges content from a number of data sources so that users can experience and
understand the data in a new way. In a mashup, the data from the Atom feed can
be handled by a widget, which is a script application that runs in a web page.

3.4.5 ATOM feeds in CICS

CICS can serve Atom feeds to web clients. The Atom feeds consist of data that is
supplied by CICS resources or application programs. When you expose a CICS
resource or application program as an Atom feed or collection, users can read
and update the data by making HTTP requests from external client applications,
such as feed readers or web mashup applications.

CICS’s Atom support allows you to quickly expose a VSAM file, a TS queue, or
an application program as an Atom feed (Figure 3-18).

Figure 3-18 CICS ATOM support

CICS TS V4.1

HTTP Client
usually a

Web Browser
or Feed Reader

CICS
ATOM

Support

Program

TS Queue

VSAM File

XML-based standardized
format and content,

with a REST interface

CICS ATOM support
 Chapter 3. Technology overview 67

3.4.6 CICS ATOM support

The CICS ATOMSERVICE resource definition defines an ATOM service, feed,
collection, or category document. It identifies the Atom configuration file, CICS
resource or application program, and Atom binding file that are used to supply
the data for the feed. URIMAP resource definitions handle the incoming requests
and point to the appropriate ATOMSERVICE resource definition:

� The Atom configuration file contains XML that specifies the metadata and
field names for the Atom document that is returned for this resource definition.

� The XML binding file specifies the data structures used by the resource
named in RESOURCENAME, which supplies the data for the Atom document
that is returned for this resource definition.

Figure 3-19 shows how CICS implements ATOM feeds.

Figure 3-19 CICS ATOM implementation

3.5 WebSphere MQ

WebSphere MQ is a family of products available on all major operating system
platforms. It provides an open, scalable, industrial-strength messaging and
information infrastructure, enabling enterprises to integrate business processes.

WebSphere MQ provides Java Message Service (JMS) APIs and native
WebSphere MQ APIs for use by clients on a wide variety of platforms. This
makes it suitable for communication between a range of types of application and
CICS applications.

HFS

XSDBind

ATOM
config

URIMAP

CICS TS V4.1TCPIPSERVICE

CW2A
CWXN

Requester

URIMAP
matching

CSOL

CICS ATOM
Support

REST

ATOMSERVICE

TS Queue File

Program

ATOM implementation in CICS
68 CICS and SOA: Architecture and Integration Choices

Figure 3-20 shows a typical scenario for access of a CICS application using
WebSphere MQ.

Figure 3-20 Using WebSphere MQ as a CICS integration component

Figure 3-20 shows a typical request-reply integration scenario. It uses
WebSphere MQ as the transport to achieve a pseudo synchronous call. The
service requester application puts a request message on a request queue and
waits for the response on the reply queue. WebSphere MQ is configured to send
the request message to the request queue, where a CICS application is listening.
The CICS application uses the CICS-WebSphere MQ adapter to connect to a
queue manager to retrieve the request from the queue. The program processes
the request, formats the response message, and places it the reply queue.
WebSphere MQ is configured to pass the request and reply messages between
the servers, to supply the relationship information that ties the request to the
reply, and to provide the assured delivery of both messages.

CICS supplies the CICS-WebSphere MQ adapter to integrate CICS applications
with WebSphere MQ.

3.5.1 CICS-WebSphere MQ adapter

The CICS-WebSphere MQ adapter runs in the same address space as CICS,
providing the following functions:

� It manages the connections between CICS and WebSphere MQ.

� It supports the use of MQ API calls from CICS applications.

Windows, UNIX, zOS zOS

Service
Requester
Application

GET

CICS

PUT

GET
Message
Adapter

NETWORK

Request Q

Reply Q

MQMQ

Reply Q

Request Q

PUT
 Chapter 3. Technology overview 69

� It provides the CICS: WMQ Bridge that allows CICS programs to be initiated
by messages without having to alter the application.

� It supports triggering with the CICS trigger monitor transaction (CKTI).

3.5.2 CICS integration with MQ

This topology shows CICS integration with WMQ, using WMQ triggering:

� Topology 1: MQ API enabled CICS applications

– Using MQ Triggering

Figure 3-21 shows how the arrival of a message on the queue triggers a
CICS application to process the message from an MQ API aware
application.The flow is based on information provided in WebSphere MQ
resource definitions and a CICS-provided transaction called CKTI.

Figure 3-21 CICS MQ triggering

zOS

MQPUT

MQGET

Application
Request
Queue

Reply Queue

MQ

CKTI

Initiation
Queue

a b

d

CICS

c

e

70 CICS and SOA: Architecture and Integration Choices

This is a description of what is happening in Figure 3-21 on page 70:

i. A message arrives on a request queue to be processed. This request
queue has been defined to MQ with the triggering capability turned on.
The definition also names the special initiation queue that will be used
and the MQ process that provides the CICS transaction to be
executed. The MQ process defines the CICS transaction that should
be started when the trigger conditions are met.

ii. When the triggering conditions are met, MQ puts a special message
(called a trigger message) on the initiation queue.

iii. CKTI monitors the initiation queues, waiting for trigger messages. The
CKTI program is a long-running daemon process. It gets the trigger
message from the initiation queue, and uses information from that
message to begin processing.

iv. CKTI starts the WMQ application transaction defined in the MQ
process associated with the trigger message. The trigger message is
passed to the application program associated with the transactions.

v. The CICS application uses the information from the trigger message to
open the request queue and begin processing the request messages in
that queue. For throughput and performance reasons, this application
will typically continue to get messages from the queue until it is empty.

– MQ API based application with no triggering

This is a topology where the CICS application does not rely on MQ
triggering. It can be a long-running transaction that remains active in the
CICS region continuously, or it can be initiated in other ways. This can
also be an application that is using MQ to pass messages forward without
being initiated by an MQ message.

� Topology 2: CICS-WebSphere MQ bridge

CICS and MQ provide a bridge that allows non-MQ API enabled programs to
be initiated by MQ messages and reply via an MQ message without making
changes to the application logic. This allows applications from anywhere with
the MQ network to request a CICS-based service, with no changes to the
CICS application code.

The request messages have to be structured to include the standard
WebSphere MQ header, the MQMD, the CICS directive, and the message
body in a format that the CICS application can parse and use. The CICS
directive can be as simple as a CICS program name, if the service being

Attention: The initiation queue and the process are set by the WMQ
administrator rather than by the CICS administrator.
 Chapter 3. Technology overview 71

requested is a simple call that can be satisfied by a LINK to a CICS program
passing the message body as a COMMAREA. If the request is more complex,
then the MQ CICS Information Header (CIH) might be necessary to supply
control options for the applications.

The WebSphere MQ bridge supports two types of bridging. The most
common is the COMMAREA interface, also known as the DPL Bridge. It also
supports the 3270 bridge, also known as the Terminal interface:

– COMMAREA interface (DPL bridge)

CICS programs that are called using EXEC CICS LINK, known as
distributed program link (DPL) programs. This bridge does not support
channels. It can be used to run a single CICS program, or a set of CICS
programs that form a unit of work.

Figure 3-22 on page 64 shows how the CICS-WebSphere MQ bridge works.

Figure 3-22 CICS-WebSphere MQ bridge workflow

This is a description of what is happenning in Figure 3-22:

i. Step a: A message arrives on a request queue to be processed.

ii. Step b: The CICS bridge monitor task, which is constantly browsing the
queue, recognizes that a start unit of work message is waiting.

iii. Step c: The CICS bridge monitor starts a CICS DPL bridge task.

iv. Step d: The CICS DPL bridge task makes an MQGET call to remove
the message from the request queue.

zOS

MQPUT

MQGET

CICS DPL
Bridge task

Request Q

Reply Q

MQ

CICS Bridge
Monitora

b

e

CICS

cd

User
Application

MQGET with Browse

LINK

RETURN

fg
72 CICS and SOA: Architecture and Integration Choices

v. Step e: The CICS DPL bridge task builds a COMMAREA from the data
in the message and issues EXEC CICS LINK for the program requested
in the message.

vi. Step f: The program returns the response in the COMMAREA used by
the request.

vii. Step g: The CICS DPL bridge task reads the COMMAREA, creates a
message, and puts it on the reply-to queue specified in the request
message.

After step g, if there are more messages for the same unit of work on the
request queue, then the DPL Bridge task repeats steps d through g.

– Terminal interface (3270 bridge)

3270 transactions are CICS transactions that were designed to be run
from a 3270 terminal. The transactions can use Basic Mapping Support
(BMS) or terminal control commands. They can be conversational or part
of a pseudo conversation. You can use the CICS-WebSphere MQ 3270
bridge using the CICS Link3270 mechanism to access the CICS
transaction. The request message provides the data needed to run a
CICS 3270 transaction. The CICS transaction runs as if it has a real 3270
terminal, but instead uses one or more WebSphere MQ messages to
communicate between the CICS transaction and the WebSphere MQ
application. The workflow is similar to that shown in Figure 3-22 on
page 72.

� Topology 3: Asynchronous consume

Asynchronous consume in WebSphere MQ is a way of invoking a program by
the arrival of a message instead of using the tradition MQ Triggering
described above or doing a MQGET waiting for a message to arrive. It is a
message-driven function directly invoked by the queue manager. The
advantages of asychronous consume are that application threads are not tied
up and that the application does not necessarily have to be changed to
support the MQ API. The disadvantage is that it can be more CPU costly than
an MQ API program.
 Chapter 3. Technology overview 73

The CICS MQ adapter supports the MQAPI functions to support asynchronous
consumption. These are the MQCB (register message consumer) function,
which is used to register a CICS load module as a callback routine, and the
MQCTL function, which starts the message consumer. Figure 3-23 shows an
example of asynchronous consumption of a message.

Figure 3-23 Asynchronous consume

This is a description of what is happening in Figure 3-23:

1. Program A in CICS opens queues with the MQOPEN API and registers a
message consumer program B using the MQCB API.

2. The remote application puts messages on queues that need to be processed
in CICS.

CICS Region WebSphere MQ

Application

Application

MQPUT
MQCMIT

MQOPEN
MQCB

MQOPEN
MQCB

MQCTL

Callback module

2

1

3

4

Program A

zOS
74 CICS and SOA: Architecture and Integration Choices

3. Program A uses the MQCTL API to start the message consumer.

4. The callback module starts to process the messages. WMQ passes the
messages from the queues in a channel. The callback module processes the
message and can optionally send the response back to a reply queue.

3.6 CICS sockets

The TCP/IP Socket Interface for CICS (also known as CICS sockets) is a feature
of z/OS Communications Server that brings the TCP/IP sockets API to your
CICS applications (Figure 3-24).

Figure 3-24 CICS to TCP/IP Sockets Interface

There are two fundamentally different models used to create CICS sockets
applications:

� Iterative server

This is the simplest model and provides in-line processing of the socket and
the calls to the associated business logic. Because there is only one
transaction serving the socket, all the messages sent over the socket are
processed serially in the same CICS task.

� Concurrent server

CSKL is the supplied concurrent server task and starts child server
transactions for every message received. Different child server transactions
can be invoked depending on the pre-defined formats of the incoming

CICS
Region

TCP/IP

givesocket()

Sockets
Listener

Transaction
(CSKL)

EZAC

TCP/IP

z/OS
Comms.
Server

Sockets
client

z/OS

Child
Server

Transaction

EXEC CICS
START

Supplied
transactionsEZAO

EZAP
 Chapter 3. Technology overview 75

messages, and multiple instances of child server tasks can run in parallel to
process multiple sockets.

The main function of the CICS to TCP/IP Sockets Interface is provided by the
Sockets Listener transaction (CSKL). This is a long-running task that listens for
incoming TCP connection requests on a specified port. The provided EZAC
transaction can be used to configure the Sockets Listener, and in addition the
EZAO and EZAP transactions can be used for operational requests. It uses a
CICS Task Related User Exit (TRUE) to enable the use of native socket functions.

After CSKL receives a TCP connection request, it performs an EXEC CICS START
command for a child server transaction, and passes control of the socket
conversation using the givesocket() call. The child server transaction is the
user-written socket application, and must retrieve the socket data using an EXEC
CICS RETRIEVE and take control using a takesocket() call. This user application
can be written in any language supported by CICS, including C, COBOL,
Assembler, or PL/I. The design of the client/server communication is entirely up
to the user application, which is responsible for all design issues including
authentication and data conversion issues.

For further details, refer to the Communications Server manual, IP CICS Sockets
Guide, SC31-8518, and to CICS/ESA and TCP/IP for MVS™ Sockets Interface,
GG24-4026.

Note: The child server transaction is also capable of initiating outbound TCP
connections and receiving incoming requests.
76 CICS and SOA: Architecture and Integration Choices

Chapter 4. Reusing CICS applications
with a 3270 presentation
layer

From the late 1960s to early 1990s, the terminal devices such as the 3270 were
the most popular type of client for CICS applications. The presentation and
business layers in these CICS applications were optimized and limited to the
capabilities of the terminal, often requiring more than one screen interaction to
validate and accumulate the necessary information before finally processing the
request against a database.

This resulted in some CICS applications combining the presentation and
business layers in the same program. This presents challenges when needing to
reuse the business layer to support new client types. In this chapter, we examine
three technologies that enable the reuse of these types of applications without
requiring them to be significantly changed.

4

© Copyright IBM Corp. 1999, 2012. All rights reserved. 77

4.1 Terminal-orientated CICS applications

CICS applications that support clients that are 3270 devices are sometimes
referred to simply as 3270 programs. They were designed to be used by an IBM
3270 Display Station or similar buffered terminal device. Invocation usually
corresponds to a single interaction in an end-user dialog, starting with receipt of
a message from the terminal and ending with transmission of a reply message to
the same device. Input data from the terminal device is carried in a datastream,
which the application acquires through a RECEIVE command. After processing, an
output datastream is transmitted back to the terminal device through a SEND
command. Terminal-oriented programs must be capable of analyzing
device-specific input data streams and building output data streams to be
transmitted to the terminal.

CICS TS also provides a service known as Basic Mapping Support (BMS), which
simplifies application programming for terminals such as the IBM 3270 Display
Station. This enables the programmer to define a static layout for each screen to
be displayed, with identified fields for dynamic content acquired through a
RECEIVE MAP command. This in turn causes BMS to analyze the datastream and
to return record-formatted data to the application. Similarly, the application
presents output data in record format using a SEND MAP command, which causes
BMS to build an output datastream for the terminal. BMS is widely used because
it frees the application programmer from needing knowledge of device specifics
and enables applications to be device-independent to some degree.

A pseudo-conversational model is normally associated with terminal-oriented
transactions. A pseudo-conversational sequence of transactions contains a
series of transactions that look to the user like a single conversational transaction
involving several screens of input. However, each transaction in the sequence is
in fact a single transaction that handles one input, sends back the response, and
then terminates.

Access to terminal-oriented programs
Many programs remain that do not have such a clear separation of concerns as
COMMAREA programs, combining presentation layers and business into a
single program, such that the business layer cannot be reused easily by other
client types.
78 CICS and SOA: Architecture and Integration Choices

In this section, we focus on three technologies that enable a 3270 application to
be re-used:

� CICS Front End Programming Interface (FEPI)
� IBM Rational Host Access Transformation Services (HATS)
� CICS Link3270 Bridge

Figure 4-1 shows the differences between these technologies at a high level.

Figure 4-1 Comparison of FEPI, HATS, and the Link3270 Bridge architectures

In Figure 4-1, the client at the top of the diagram connects into CICS TS using an
integration technology such as web services or CICS TG. A CICS application is
invoked, which uses the FEPI API to tell CICS to communicate with the target
3270 program through VTAM® (Virtual Terminal Access Method) by emulating a
3270 terminal.

The client in the middle of Figure 4-1 connects over HTTP to an application
running in WebSphere Application Server (WAS) on either a distributed platform
or z/OS. The application, which is generated via HATS tooling, emulates a 3270
terminal and connects through VTAM to the target 3270 program.

CICS TS

W A S
HA TS

Application

WAS z /O S Com ms Server

V TAM

CICS TS

C ICS FE P I
com ponent

CICS TS

App
using
FEPI

z /O S Com ms Server

V TAMFEP I

TELNE T
3270

CICS TS

App
us ing
Link-
3270

B ridge V ectors

C ICS Link3270
Bridge

com ponent

Client

Target 3270
program

Target 3270
program

Target 3270
program

Client
A PI

Client
 Chapter 4. Reusing CICS applications with a 3270 presentation layer 79

The client at the bottom of Figure 4-1 on page 79 connects into CICS TS using a
technology such as web services or CICS TG. A CICS application is invoked,
which in turn invokes the CICS Link3270 bridge, passing data in the form of
bridge vectors. The CICS Link3270 bridge bypasses VTAM and interacts directly
with the target 3270 program.

FEPI
FEPI is an API provided by CICS TS. It allows a CICS application to behave as if
it were a user interacting with a CICS 3270 application via a terminal. The CICS
FEPI component acts as a virtual terminal. It communicates via VTAM to the
target 3270 program, in the same way as a real terminal would. The CICS
application using the FEPI API sends commands such as “Position the cursor at
point X on the screen then enter the text ABC”. The benefit of this approach is
that the target 3270 program is being called through VTAM as it would be from a
real terminal. Therefore, the behavior of the target 3270 program will be as it is
for any other terminal.

HATS
HATS provides the ability to create a new presentation layer, such as a web front
end, to an existing CICS 3270 program. Tooling is provided to enable the user to
easily generate modern presentation layers that map to the input expected by the
target 3270 program. The tooling generates a runtime component, which runs in
an environment such as WebSphere Application Server (WAS). A client can
connect to WAS from a web browser. The generated WAS application would parse
the clients input, then interact with the target 3270 program through a telnet 3270
server, which in turn communicates with VTAM. From the perspective of the target
3270 program in CICS, this is just another terminal connecting via VTAM.

CICS Link3270 bridge
The CICS Link3270 bridge allows an application in CICS TS to call a CICS 3270
application, and is similar in its aims to FEPI. The difference in the approaches is
that the Link3270 bridge removes the need for requests to flow out of CICS TS
via VTAM to the target 3270 program. Instead, the Link3270 bridge component
interacts directly with the target 3270 program, so for example, when the target
3270 program issues a RECEIVE call to obtain data from the terminal, this call is
handled by the Link3270 bridge component, which passes the required data to
the target 3270 program. The invoking application passes data to the Link3270
bridge in a format known as bridge vectors. The bridge vectors are used by the
Link3270 bridge to build the information requested by the target 3270 program.
The benefit of this approach is the removal of the need to interact via VTAM. The
potential drawback is that the target 3270 program is now being driven in a
different manor from its original design, and there are some CICS API restrictions
to which the target 3270 application must adhere. See the “Link3270
80 CICS and SOA: Architecture and Integration Choices

programming considerations” section of the CICS TS External Interfaces Guide,
SC34-6449, for further details.

4.2 Technology options

In this section, we explore each of the three technologies in further detail.

4.2.1 CICS Front End Programming Interface

The Front End Programming Interface (FEPI) is a CICS API. The function is
called a front-end programming interface because it enables you to write CICS
application programs that drive other CICS 3270 programs. That is, it provides a
front end to those programs. The interface simulates the terminals that the other
programs use. The ability to drive these 3270 programs from another CICS
program allows the existing 3270 programs to be used in different ways without
changing them. An application could make calls to multiple 3270 programs to
provide a new service. The existing 3270 programs can be on the same system
as the simulating program or on a different system. If the newly written
applications do not contain presentation logic themselves, then they could be
exposed as services using one of the architectural styles and technology choices
discussed throughout this book.

For further information about FEPI, refer to the CICS TS Information Center, in
particular, the Front End Programming Interface User’s Guide, SC34-7169.

4.2.2 IBM Rational Host Access Transformation Services (HATS)

If your goal is to provide a more modern, web-based interface to your existing
3270 programs, HATS can help achieve this. HATS assists with the creation of a
new presentation layer for the existing 3270 programs and does so without
requiring those programs to be changed, which minimizes the risk involved.

The HATS solution provides a quick and easy way to replace 3270 displays with
a simple point-and-click interface and provides the tools needed to quickly and
easily transform 3270 programs to web, portlet, rich client, or mobile device user
interfaces, or to create a web service front end to a 3270 program.

HATS has a development component called the HATS toolkit. The HATS toolkit
features a wizard-based development process for creating HATS applications to
transform existing 3270 programs. The development process is similar
regardless of whether you are extending your CICS 3270 programs to the web,
portal, a mobile browser, a rich client, or as web services. The HATS solution
 Chapter 4. Reusing CICS applications with a 3270 presentation layer 81

enables you to tailor your application to a specific set of end users, hide
unnecessary information, organize data into tables, or display only required input
fields. You can also provide drop-down lists of valid values for an input field,
change the size and location of text, and provide navigation buttons to reduce
data entry errors and increase productivity.

There is no specialized HATS runtime server. For a web interface, all of the
necessary runtime information is deployed into an Enterprise Archive (EAR) file
and runs in WebSphere Application Server or WebSphere Portal. For a rich client
interface, the necessary runtime information can be generated to run in an
environment such as the Eclipse Rich Client Platform. The generated code takes
care of the interaction with the target 3270 program.

For further information about HATS, refer to this website:

http://www.ibm.com/software/awdtools/hats/

4.2.3 CICS Link3270 bridge

The Link3270 bridge provides a callable interface to allow you to run 3270-based
CICS transactions without emulating a 3270 terminal. This has the benefit that
3270-based user transactions can be retained within CICS TS where necessary,
and access to them exposed via a more simple callable interface.

The 3270 terminal and end user are replaced by an application program, known
as the bridge client application. Commands for the 3270 terminal in the 3270
user transaction are intercepted by CICS TS and replaced by a messaging
mechanism that provides a bridge between the client application and the 3270
user transaction.

This mechanism provides a link interface that can be accessed using a
distributed program link (DPL), an External Call Interface (ECI) request, or an
External CICS TS Interface (EXCI) request. The bridge client requests services
of the Link3270 bridge using COMMAREA messages in a prescribed format
called bridge vectors, and the Link3270 bridge returns results to the bridge client
in formatted messages.

The Link3270 bridge provides an interface to enable 3270-based CICS
transactions to be invoked using a LINK request, and without the facilities of a
3270 terminal. As such, it is not a means of providing web access (because there
is no direct means of generating HTML), but it is an important enabling
technology because it allows a client module to link to existing 3270 transactions.
The client module could itself be exposed to external clients that need access to
the business logic.
82 CICS and SOA: Architecture and Integration Choices

http://www-01.ibm.com/software/awdtools/hats/

The client application uses the Link3270 bridge to run 3270 transactions by
passing a COMMAREA that identifies the transaction to be run and contains
the data used by the user application. The response contains the 3270 screen
data reply.

For further information about the Link3270 bridge, refer to the CICS TS
Information Center, in particular the External Interfaces Guide, SC34-7168.

4.3 Tooling

While HATS comes with its own tooling, the Link3270 bridge and FEPI require
a programmer to write a program that builds the interactions between the
invoking application and the target 3270 application. Performing this process
manually can be complex and time consuming, so it is worth considering tooling
that can assist with this process. IBM provides Rational Developer for System z
(RDz), which contains a component called the Service Flow Modeler, which can
be used to simplify the development of applications that need to interact with
3270 programs.

As an example, perhaps you have two 3270-based terminal applications that you
want to call serially to compose a new CICS application, and you want that CICS
application to be made available as a web service. The Service Flow Modeler
provides tooling to record the terminal interactions with the target 3270
programs, model the new application, and generate runtime code and artifacts
that can be deployed into CICS TS. The result is a web service enabled CICS
application that uses the Link3270 bridge or FEPI to invoke the 3270 applications
that it relies on. Use of this tooling can make development of such applications
considerably easier than manual coding. This tooling is discussed in the
following section.

RDz Service Flow Modeler
The Service Flow Modeler (SFM) provides the tooling for generating flows that
can be deployed into CICS TS. Within CICS TS is a component called the
Service Flow Runtime (SFR), which provides the runtime environment for the
generated flows.

It is important to note that SFM can generate flows that use FEPI, HATS, or the
Link3270 bridge technology to access terminal-oriented applications that contain
3270 presentation logic.

SFM enables distributed applications to make business requests of existing
CICS 3270 and COMMAREA applications as callable services. It enables
customer-written applications to integrate seamlessly with business-critical 3270
 Chapter 4. Reusing CICS applications with a 3270 presentation layer 83

and COMMAREA applications by generating service flows that contain a web
service interface.

SFM provides modern graphical tooling based on the Eclipse platform. The
tooling provides a means to simplify the re-use of existing 3270 and
COMMAREA applications within business processes by assisting with tasks
such as these:

� Interactions with terminal-based programs can be recorded in a simple
manner by following a guided wizard.

� Application flow, conversion, and integration can be orchestrated within
the tooling.

� The completed business process flow, including terminal interactions, can be
generated as code for the Service Flow Runtime in CICS TS.

� The generated business process can be automatically deployed into
CICS TS.

� Support is provided for exposing business processes as web services inside
CICS TS.

For further information about the Service Flow Modeler, refer to the “Enterprise
Service Tools for Web services and SOA” section of the IBM Rational Developer
for System z information center:

http://publib.boulder.ibm.com/infocenter/ratdevz/v8r0/index.jsp

CICS Service Flow Runtime
CICS Service Flow Runtime (SFR) is a run time that enables business processes
created with SFM to be deployed and run in a CICS environment. SFR is a
strategic solution that is used to avoid being forced into programming-intensive
solutions that are prone to error, especially when the host CICS applications are
changed for maintenance or upgrade.

SFR uses SFM-generated adapter services to provide the sequencing of 3270
screens in a CICS application. Thus, when a service request comes to CICS
from a distributed application, SFR navigates the appropriate 3270 screen
sequences, formulates a consolidated response, and sends a single service

Note: Running the business process inside CICS TS can be important for
performance, as a client invoking the business process over the network only
makes one invocation to the business process, which could then call multiple
CICS programs sequentially. An alternative approach is to run the business
process outside of CICS TS and make a call to CICS TS for each CICS
program that needs to run, but this approach will make more calls over the
network, which can be costly.
84 CICS and SOA: Architecture and Integration Choices

http://publib.boulder.ibm.com/infocenter/ratdevz/v8r0/index.jsp

response to the requester. Figure 4-2 shows a conceptual view of a generated
service flow deployed into CICS.

Figure 4-2 A conceptual view of a generated service flow deployed into CICS TS

In Figure 4-2, CICS TS exposes a web service that can be invoked from any web
service enabled client application. On receipt of a web service request, the
message is parsed by CICS TS and converted into a data structure suitable for
use in a CICS program. The service flow then makes a call to a 3270 program
using FEPI. On return from that call, the service flow makes a second call to a
3270 program, this time using the Link3270 bridge. Finally, a response message
is built by the service flow, converted to a web service response message by
CICS TS and returned to the invoking application.

For further information, refer to the CICS TS Information Center, in particular the
Service Flow Runtime User’s Guide, SC34-6913.

C IC S TS

CICS FEP I
com ponent

Target 3270
program 1

C IC S TS

VTA M

Target 3270
program 2

CICS Link 3270
B ridge

com ponent

P ars e inbound
S OA P /HTTP

Call 3270
program 1

C all 3270
program 2

Create outbound
S OA P/H TTP

G enerated
S ervice F low
 Chapter 4. Reusing CICS applications with a 3270 presentation layer 85

86 CICS and SOA: Architecture and Integration Choices

Part 2 Qualities of service

In Part 2 we provide an in-depth analysis of the important factors that are likely to
affect your choice of integration technology. This includes factors that affect
application interfaces, security, transactional scope, high availability, and scalability.

Part 2
© Copyright IBM Corp. 1999, 2012. All rights reserved. 87

88 CICS and SOA: Architecture and Integration Choices

Chapter 5. Application interfaces

This chapter considers the application interface issues that might impact the
access technology choice. We first discuss the common interface types and
message formats that are used to access CICS applications. Then for each of
the strategic CICS integration technologies we review how each technology
provides the client interface through a set of functions, including these:

� Transport and protocol adaptors
� Operation identification
� Message adapters
� Message exchange patterns

5

© Copyright IBM Corp. 1999, 2012. All rights reserved. 89

5.1 Application interface issues

An interface is a point of interaction between two components. These
components communicate using input and output messages that are exchanged
using a transport protocol.

This point of interaction is commonly defined as a combination of these properties:

� An operation, function, procedure, or method that identifies the point of
interaction. We refer to it as an operation in this chapter.

� Input or output messages that are exchanged when accessing this operation.
The messages are often stored within an envelope such as a WebSphere MQ
message, an HTTP request, or a SOAP envelope.

� Message formats that define the message structure.

� Message exchange patterns that identify the type of interaction with
the operation.

� A transport protocol that is used to communicate between the components.

Newer technologies such as web services formulate these interaction properties
within a service definition document (a WSDL file, for example), enable
automatic interface creation through tooling, and simplify component integration
by using standards. Older technologies, such as the CICS sockets support, use a
proprietary approach, relying on local programming skills.

Most implementations use the concept of headers to supply message metadata
or quality of service information. This ranges from a user-defined private CICS
sockets implementation, to a proprietary CICS ECI flow, to standard HTTP
transport headers and SOAP envelopes.

The most common use of CICS is as a server or service provider. The
application interface is determined by the CICS application that is already in
place most of the time. The interface granularity and coupling requirements are
important factors in determining the most appropriate access technology to use.

CICS can also be a client or service requester. In this role the application
interface is normally determined by the server or service provider.

The application interface must address the following challenges:

� Transport handling

� Operation identification

� Message envelope extraction from the transport layer
90 CICS and SOA: Architecture and Integration Choices

� Message serialization and deserialization

Serialization is the process of converting a data structure or object state into a
format that can be stored or transported across a network connection link and
“resurrected” later in another computer environment. Deserialization is the
reverse process.

� Message exchange pattern identification

These concerns are mostly addressed by the native CICS infrastructure and
associated application development tooling that is used to generate a
message adapter.

5.1.1 CICS program interfaces

CICS supports a rich set of interfaces within which these are the two principal ones:

� 3270 interface
� LINK interface

3270 interface
CICS applications written to interact with a user via a terminal can use the 3270
interface. The characteristics of the 3270 interface are as follows:

� The operation is imbedded within the 3270 data stream. It is typically a 3270
function key representation.

� The message is serialized as a 3270 data stream.

� The message format is dynamic and mapped to 3270 screen layouts. The CICS
BMS function supplies an adapter that allows an application to use a language
structure message interface rather than a 3270 data stream message.

� The type of interaction is conversational (one long CICS transaction that
converses with the 3270 terminal interface) or pseudo conversational (each
interaction with the 3270 terminal is a separate transaction).

� The transport is SNA.

See “Access to terminal-oriented programs” on page 78 for information about
how you can re-use applications that are currently written with a 3270 interface.

Important: Most of today’s CICS applications have been in place for a long
time. Application interface modernization with no modification to the existing
application interface will most likely require an adapter. When CICS is a client,
an adapter or proxy is also likely to be required to enable the interaction with
the server.
 Chapter 5. Application interfaces 91

LINK interface
The CICS LINK interface allows one program to transfer control to another in a
synchronous manner and continue operation after the called program has
returned. It is used for communication between CICS programs running on the
same CICS server or in the form of a Distributed Program Link (DPL) when the
target program is running remotely. The LINK also allows non-CICS programs
running on different platforms to interact with CICS applications.

An advantage of DPL is that you can write an application without knowledge of the
location of the requested programs. That is, it offers a location independence. It
also facilitates communication between heterogeneous programming languages.

The characteristics of the LINK interface are as follows:

� The CICS program name represents the operation.
� The CICS message format is a COMMAREA or channel.
� The message format is normally defined by a language structure.
� The type of interaction is similar to a Remote Procedure Call (RPC).
� Many different transport mechanisms can be used.

Additional optional properties of the LINK can be used to control quality of
service information, for example:

� The CICS transaction code to be used to identify the workload associated
with the CICS program.

This is an optional property that applies to a DPL client type of LINK. A best
practice is to always identify a workload to CICS. This enables CICS
optimizations and capabilities such as workload management, location
transparency, security, auditing, or monitoring. Although it can be set on the
LINK, another best practice is to delegate the setting of this property to the IT
system administrator.

� The CICS commit transactional behavior (that is, whether the DPL is part of a
distributed transaction).

The best practice is to leave the transactional behavior decision to the IT
system infrastructure.

� The CICS region target location identification.

Again, it is best left to the IT system infrastructure to determine the target
CICS region based on static or dynamic criteria.

Note: For the rest of this chapter we concentrate on the application interface
considerations for applications that use the LINK interface.
92 CICS and SOA: Architecture and Integration Choices

LINK and DPL APIs are provided for a range of different types of access,
including these:

� Command-level APIs for programming languages such as these:

– COBOL, C, and PLI
– Object-oriented classes for C++
– JCICS classes for Java

� SOAP web service interactions, which map web service requests to
LINK interactions.

� WebSphere MQ through the DPL Bridge function, which maps a message
to a CICS LINK interaction.

� CICS TG through the ECI or CCI support.

� WOLA support, which maps a CCI request to a CICS LINK interaction.

User-coded adapters can also supply LINK or DPL support for other specific
requirements. They typically use CICS APIs to simplify the coding.

COMMAREA message
The CICS COMMAREA message is a byte area with a maximum length of 32 kb.
The message is common to both the request and the response, which requires
its length to be the maximum between them. This is usually the response
message length. Determining and handling the real length of significant data
within the COMMAREA can prove to be difficult, so in most cases the length is
set to the maximum length.

The message format is usually defined by a language structure where fields are
positional. However, CICS does not impose any restriction on the format, and
therefore other formats such as XML can also be used.

The COMMAREA is a multipurpose and fixed message interface. As such, it
imposes redefinitions of the same physical area, the most trivial being the
request and response layouts. To solve this problem, some implementations
define two separate request and response areas in the same unique
COMMAREA layout. As the interface evolves, this introduces a level of
complexity that might not be acceptable today.

Channel message
Over time, CICS LINK interface requirements have evolved and the
COMMAREA is often considered to be too restrictive. As a result, CICS
introduced a channel message, which adds flexibility to the length and
organization of the data passed on a LINK request.
 Chapter 5. Application interfaces 93

Containers are named blocks of data designed for passing information between
programs. Programs can pass any number of containers between each other.
Containers are grouped together in sets called channels. Figure 5-1 shows an
example channel and an analogy with an XML document.

Figure 5-1 CICS channel message representation

The channel interface offers a rich EXEC CICS CONTAINER API that can be
used to implement LCRUD services:

� List or discover the current set of containers in a channel.
� Create or PUT a container in a channel.
� Read or GET a container from a channel.
� Update or PUT replace a container in a channel.
� Delete a container from a channel.

The CICS infrastructure provides a set of services that simplifies the
programming effort:

� Channel life cycle and memory allocation/de-allocation

� Monitoring and statistics data on channel usage

� Codepage conversion for character containers

� Message size optimization, for example, where read-only containers are not
returned to the client application

The channel message enables a more structured interface so that different types
of business data can be encapsulated within an appropriately named container. It
is common to have a different set of containers for the request and response
messages. The benefits of using channels and containers include:

� More readable (understandable) code and interface
– For easier maintenance
– For better productivity

� An interoperable interface that is CICS implementation neutral
� Reuse of the container structure definitions within multiple channel interfaces

From a business perspective the channel message offers the best interface.
From a runtime perspective, however, it has a higher cost of infrastructure than a

Customer_Info

Account_Info

Error_Info

English_Channel
<English_Channel>

<Customer_Info>blablabla</CustomerInfo>
<Account_Info>$$$$$$$$$</Account_Info>

or
<Error_Info>Bye Jove, an error !</Error_Info>

</English_Channel>OR
94 CICS and SOA: Architecture and Integration Choices

COMMAREA interface. The following section gives guidance on how to chose
between the different LINK and message options.

LINK use cases
Figure 5-2 shows a typical LINK interaction.

Figure 5-2 Example LINK interaction

Figure 5-2 shows the following components:

� The client that uses a flavor of a LINK request such as a CICS DPL, ECI
request or web service request.

� A micro flow that performs a sequence of LINK requests, thus increasing the
granularity of the interface exposed to the client. A micro flow can be
implemented as a CICS service flow using the RDz tooling (see “RDz Service
Flow Modeler” on page 83). This is a convenient way to expose
coarse-grained services from multiple fine-grained LINK interfaces or even
3270 interface programs.

� The arrows on the right in Figure 5-2 illustrate access to CICS or
non-CICS programs.

� CICS components and sub-programs: A component typically exposes a
business interface, while a sub-program typically exposes an IT interface.

The primary use case of a channel is to expose a message interface to external
clients or consumers. The business logic itself is likely to become a client or
consumer of other exposed interfaces. These can be CICS or non-CICS
programs. Typical CICS programs use a LINK or low-level language facilities
such as a COBOL call to access CICS interfaces. Business logic should not
contain access technology related code, such as WebSphere MQ, HTTP or web
services. The best practice is to use an intermediate adapter dedicated to the
remote interface access technology. Figure 5-2 shows an INVOKE SERVICE
call, which was introduced with CICS TS V4.

An EXEC CICS LINK couples the service call to a CICS program. The INVOKE
SERVICE call currently offers the choice between a CICS LINK or a web service
requester implementation. The type of access is fully transparent to the

Client
Flavor of

LINK PROGRAM(‘OPERATION’)
CHANNEL(‘MESSAGE’)

COMPONE
NT
or
Sub-
program

COBOL program

EXEC CICS LINK PROGRAM(‘COMPONENT’)
EXEC CICS INVOKE SERVICE(‘COMPONENT’)

or CALL sub-program

Service/Component

CICS InfrastructureCICS Infrastructure

Micro

Flow
 Chapter 5. Application interfaces 95

application code. The decision to use one or the other is delegated to a CICS
deployment action. This reduces the coupling between the business logic and
the technology used to interact with other service components.

For CICS-to-CICS interface access, the scope of solutions is a LINK channel or a
LINK COMMAREA or a local low-level language call to function. They range from
high quality to average quality, and average CPU cost to minimum CPU cost.

The best practice is to use a selection of different types of LINK interactions
based on the granularity of the accessed interface:

� A coarse-grained interface or business service interface is the place for
business agility optimization, so normally the best choice is the LINK channel
interface. It can be superseded by an INVOKE SERVICE.

� A fine-grained interface is the place for a low-level language call. A fine
grained interface is likely to be a technical interface rather than a business
function. This is the place for IT optimization.

� A medium-grained interface could be the place to use a LINK with
COMMAREA, which balances application development flexibility with
performance factors like CPU cost and memory optimization.

5.1.2 EBCDIC message conversion

CICS TS runs on an EBCDIC platform and so the LINK interface expects EBCDIC
messages. When sending data from distributed systems that use different
character sets, it is common practice to perform the conversion within CICS.

CICS implements different data conversion techniques dependent on the type
of client:

� CICS uses native z/OS services to handle conversion of UNICODE
messages for web service requests.

� CICS supplies the DFHCCNV conversion service for CICS TG COMMAREA
messages. A PROGRAM entry in the CICS DFHCNV table supplies the
conversion information. This is a system programming task that requires
synchronization between the development and the production support teams.
Unicode conversion is not supported.

Note: You can create generic templates that apply to multiple programs by
specifying a prefix that can be matched against multiple program names.
96 CICS and SOA: Architecture and Integration Choices

� CICS web support provides data conversion support with its WEB
SEND/RECEIVE APIs.

� The container resource manager supports data conversion services for
character data containers with its GET and PUT CONTAINER APIs.

5.1.3 Service interfaces

For SOA-based solutions, the application interface is abstracted into a service
interface. The first and immediate benefit of this interface is interoperability,
where any client implementation can easily access the service. This is the IT
view of SOA. A second benefit is service reuse, where services can be
composed into business processes. This is the business view of SOA.

The SOAP web services world is composed of sub-programs or methods and is
a perfect fit with the CICS LINK interface. This implies extended capabilities that
enable different qualities of service for the interaction, but also some complexity.

Web 2.0 technologies have emerged over recent years that extend SOA to
web-based applications using technologies such as REST and POX:

� REST is a style of a web architecture that describes simple interfaces that
transmit domain-specific data (whose patterns are identified using
conventions) over HTTP (whose methods are used as action verbs) without
any additional messaging layer such as SOAP.

� Plain Old XML (POX) is a term used to describe basic XML. It is coined from
the phrase plain old Java object (POJO) and is in contrast to a more layered
XML usage, such as that used in SOAP-based interactions.

CICS supports both SOA-based and WOA-based solutions. These are the
characteristics of a “modern” CICS service interface:

� The operation is abstracted (typically using SOAP or REST artifacts).
� The message is serialized as an XML document or JSON flow.
� The message format is abstracted using XML or JSON.
� The transport is HTTP or WebSphere MQ.

Note: The best practice is to exchange character data on DPL requests.

Important: Web-oriented architecture (WOA) is a style of software
architecture that extends service-oriented architecture (SOA) to web-based
applications and is sometimes considered to be a light-weight version of SOA.
 Chapter 5. Application interfaces 97

5.2 CICS inbound access architecture

Figure 5-3 illustrates the CICS architecture that supports inbound access to CICS.

Figure 5-3 CICS inbound access architecture

On the right of Figure 5-3 you can see the different application logic layers:

� Presentation
� Integration
� Business
� Resource

The CICS Service Flow run time runs service micro-flows generated from IBM
Rational Developer for System z (RDz). These flows then use the LINK or
LINK3270 bridge interfaces.

I

B

R

P

Transport
Handlers

TCP/IP

VTAM

WMQ

Protocol
Handlers

C
H
A
N
N
E
L

Message
Adapters

3270
Logic

B
R
I
D
G
E

SNA
APPC

WMQ Bridge

IP Sockets
WMQ

ECI

HTTP

3270

Private
XML

SOAP

XML

ATOM

Ressource

Service Flow

Business
Logic

Message

COBOL, PLI, C,

C++, JAVA

L
I
N
K

C
O
M
M
A
R
E
A

WMQ Bridge
98 CICS and SOA: Architecture and Integration Choices

The CICS infrastructure services are grouped across three layers:

� Transport handlers

This is where the low-level transport is handled. From an application
perspective, TCP/IP, VTAM, and WebSphere MQ interfaces are handled
transparently by CICS.

� Protocol handlers

This is where the operation and the message envelope are processed. The
operation is identified and translated into a CICS implementation, that is,
transaction code and program name. The message envelope is extracted
from the transport protocol.

CICS supplies native and transparent support for high-level protocols such as
SOAP over HTTP or WebSphere MQ. TCP/IP sockets is a low-level protocol
that requires more complex application code. Medium-level protocols such as
HTTP benefit from simple CICS API support.

� Message adapters

The CICS infrastructure supplies a SOAP/XML message adapter and a
WebSphere MQ DPL bridge adapter.

CICS Atom feed support adds a new capability to the standard CICS program
interfaces. Rather than accessing a program, it is more likely that an Atom
feed accesses a data resource. The ATOM specification RFCs define a
standard XML format, along with a REST style http interaction. The CICS
infrastructure uses these standards to invoke the CICS resource manager
handling the type of data resource associated with the feed. Currently, CICS
supports CICS Temporary Storage and VSAM data access.

Atom feeds can also be used to access CICS programs. This requires
some programming effort. The CICS Dynamic Scripting feature supplies a
simpler model.

Note: WOLA is not represented in Figure 5-3. WOLA provides an extension to
the depicted CICS integration capabilities.
 Chapter 5. Application interfaces 99

5.3 CICS outbound request architecture

Figure 5-4 illustrates the CICS architecture that supports outbound access
from CICS.

Figure 5-4 CICS outbound access architecture

Outbound access to external application interfaces requires the CICS client code
to initiate the interaction. As discussed earlier, the business logic should not
include access technology related code, so an adapter is typically invoked
through an EXEC CICS LINK using a modern channel interface or a
COMMAREA. The LINK extends the CICSPlex architecture choices and is a best
practice to be used rather than a low-level language call.

Transport
Handlers

TCP/IP

VTAM

WMQ

Protocol
Handlers

SNA

APPC

IP Sockets
WMQ

DPL

HTTP

Message
Adapters

3270

Private
XML

SOAP

XML

Business
Logic

Message

COBOL, PLI, C,
C++, JAVA

C
H
A
N
N
E
L

L
I
N
K

C
O
M
M
A
R
E
A

100 CICS and SOA: Architecture and Integration Choices

CICS infrastructure services are grouped across three layers:

� Message adapters

This is where the message serialization/deserialization occurs. It is
transformed into the representation required by the external interface. For
example, CICS supplies a SOAP/XML web services adapter.

� Protocol handlers

This is where the protocol-related information required by the external
interface is processed. CICS processes standard protocol implementations
such as HTTP or DPL. TCP/IP sockets and WebSphere MQ require
dedicated code.

� Transport handlers

This is where the low-level transport is handled.

5.4 Adapters

An adapter addresses one or more of the following requirements:

� Business logic access technology transparency

These fall into two categories:

– A transport adapter that handles the low-level transport, such as TCP/IP

– A protocol adapter that identifies the operation and supplies message
envelope transparency

� Message serialization/deserialization transparency

Message serialization/deserialization should be separate from the business
logic. Such an adapter can also address EBCDIC data conversion. Typical
examples are Java or XML to and from COBOL conversions.

� CICS LINK transparency

When the existing interface is not using a CICS LINK interface (for example, a
COBOL call) and the technology used implies a LINK interface (for example,
a CICS Web services provider application), a simple LINK adapter is required
that adapts a LINK interface into a COBOL call.
 Chapter 5. Application interfaces 101

� Business service exposure with no modification to the existing
programming interface

This is a message mapping adapter that maps an existing CICS program
interface to a new business interface. For example, an adapter may expose
an interface of 20 XML elements that are mapped from the selected 20 fields
in an existing COMMAREA that contains many more fields.

� Business service granularity

A micro flow adapter can be used to increase the granularity of a service
interface. It maps the course-grained business interface into multiple fine
grained program interfaces.

The first three adapters focus on physical access technology interactions. They
are mandatory. The last two adapters focus on abstracted business interactions.
They are optional and address maturity issues.

CICS application adapters can be implemented on the client side (a JCA
connector, for example) or the server side (for example, REST patterns) or both
(for example, web services or WOLA). The complexity of the implementation
depends on the access technology that is used. The use of application tooling
can significantly simplify the solution.

Depending on the access technology, CICS adapters can take various forms:

� CICS TS native support
� Generated code from IDE tools
� Connector client code
� Bespoke user code
� A mix of implementations

Adapters can also be deployed as part of an Enterprise Service Bus (ESB)
implementation, so that the message adaptation is performed by the ESB, either
partially (message simplification for example) or fully.

5.4.1 Message serialization adapters

A primary function of a message adapter is serialization/deserialization that
handles the mapping of a Java object or XML representation to a byte array.
Such an adapter can be hand coded. However, this is a non-trivial task involving
the calculation of field lengths and placement and data type conversions. The
message serialization adapter implementation depends on the message
representation technology, such as Java objects, XML, or JSON.
102 CICS and SOA: Architecture and Integration Choices

Java, Rational J2C tooling, and JZOS
The J2C wizards available with Rational Developer for System z (RDz) and
Rational Application Developer (RAD), or with the JZOS Toolkit, provide tooling
that generates code to handle message serialization/deserialization, producing
getter and setter methods for each field in the message structure. The generated
classes can then be used by Java methods to manipulate the COMMAREA or
channel CONTAINERs as required.

The Rational J2C wizards can be used to create a complete CCI proxy with a few
clicks. It not only generates the serialization/deserialization classes but also
generates a skeleton J2C bean capable of accessing a CICS application. In a
more industrial world, the few clicks can be replaced by batch procedures. The
wizards also support optional EBCDIC data conversion. A typical CICS
application interface access can be implemented and tested in a few steps:

1. Generate the serialization/deserialization data classes from the
language structure.

2. Generate a skeleton J2C bean capable of accessing the CICS application.

3. Create a J2C bean method used for invoking the operation on the
CICS server.

4. Create a web service to expose the functionality provided by the generated
J2C bean.

5. Test the created web service using the web services explorer.

The JZOS Batch Toolkit for z/OS supplies a set of handy tools for Java on z/OS.
Within these tools JZOS supplies a RecordClassGenerator utility for Assembler
and COBOL language structures. This utility takes a sequential file as input and
generates the serialization/deserialization Java bean class. The sequential file is
generated from the ADATA compiler option. This is a two steps process:

1. Compile the CICS program with the ADATA compiler option to generate a
binary file.

2. Run the JZOS Java utility to create the data classes from the binary file.
 Chapter 5. Application interfaces 103

Pure XML or POX
This section addresses pure XML processing, where the XML message is not
handled by the CICS Web service native support. XML message parsing and
generation (deserialization/serialization) can be performed as follows:

� Using CICS TS V4 XMLTRANSFORM APIs

You can use TRANSFORM XMLTODATA to convert XML to application data, and
TRANSFORM DATATOXML to convert application data to XML. The DFHSC2LS
and DFHLS2SC utilities generate the xsdbind file, which is analogous to the
wsbind file created using the CICS Web services tooling.

This is a nice balance between programming simplicity and infrastructure
optimization.

� Using the COBOL XML PARSE verb

This is a CICS neutral implementation. The programming style is more
complex, as is the maintenance. The CPU consumption is higher than the
CICS XMLTRANSFORM, but the processing can be executed partly on a
zAAP processor.

� Using Java facilities

This is a CICS neutral implementation. The Java code is likely to be
generated from standard Java tooling. The CPU consumption is likely to be
higher than using CICS XMLTRANSFORM, but the processing can be
executed on a zAAP processor.

� Using the CICS DOCUMENT APIs for XML generation

The DOCUMENT APIs can be used to create XML documents from
predefined skeletons. The variable parts of the skeleton (identified by
&myVariable; patterns) are substituted dynamically by the CICS
DOCUMENT support. This is a low-cost and convenient way to generate
error or information messages.

As a general rule, using the CICS XMLTRANSFORM APIs creates a nice
balance between development agility and infrastructure costs.

Atom
With emerging Web 2.0 technologies, messages often need to be serialized as
XML documents in the Atom Syndication Format. CICS supplies a native
message serialization adapter which exposes CICS resources such as
temporary storage queues and VSAM files as Atom feeds with no need for
user-written code. An application program can also be exposed as a feed. In
such a case, however, a user-written message adapter is required. This can be
quite a complex task. The CICS Dynamic Scripting feature offers a simpler
adapter implementation using WebSphere sMash or Project Zero facilities. The
104 CICS and SOA: Architecture and Integration Choices

adapter is written in Groovy or PHP from a few lines of code using Project Zero
renderers or APIs.

JSON
The JavaScript Object Notation (JSON) format is often used for serializing and
transmitting structured data over a network connection. It is used primarily to
transmit data between a server and web application in an AJAX web application
programming model, serving as an alternative to XML. JSON message
serialization can be implemented in CICS using the Dynamic Scripting feature.
The message adapter is written in Groovy or PHP using Project Zero renderers
or APIs.

5.4.2 Adapter and technology

Below is a summary of the different adapter implementations typically used in a
CICS environment:

� Web service provider

The CICS native web services support supplies adapters for the direct
exposure of existing LINK interfaces. Simple message optimizations can be
performed, for example, whitespace removal and specific field selection. The
adapters are created using the DFHLS2WS or DFHWS2LS utilities and
enabled by deploying the generated wsbind files. When required, a message
adapter can be generated using the RDz Enterprise Service Toolkit (EST) or
they can also be user-written.

� Web service requester

The CICS native web services support supplies a full set of adapters for
“simple” messages. The adapters are created using the DFHWS2LS utility
and enabled by deploying the generated wsbind files. WSDL optimizations
can be performed to simplify the messages with no impact on the service
provider. An alternative adapter might be required for more complex
messages. It can be generated using the RDz EST wizards or implemented
by user-written code.

� JCA or ECI with the CICS TG for z/OS

CICS TG and CICS TS supply a native transport adapter. The protocol and
message serialization adapters are implemented on the client side. For JCA,
the adapters are generated using Rational J2C wizards. For Java on z/OS,
the JZOS Toolkit can be used to generate the message adapter.

� JCA with WOLA

The transport adapter is supplied by the WOLA connector. The protocol and
message serialization adapters are implemented on the client side. Rational
 Chapter 5. Application interfaces 105

J2C wizards or the JZOS Toolkit can be used to generate the message
adapter Java beans.

� CICS WOLA requester

The transport and protocol adapters are hand coded from low-level WOLA
connector APIs. The message serialization adapter is typically implemented
on the WAS z/OS server side. Rational J2C wizards or the JZOS Toolkit
generate the message adapter Java beans.

� CICS HTTP server

CICS TS supplies a native transport adapter. The protocol adapter is hand
coded using high-level CICS web support APIs, typically a WEB
RECEIVE/SEND sequence. The message format is optional, and a
user-written message adapter is normally required.

� CICS HTTP client

CICS TS supplies a native transport adapter. The protocol adapter is hand
coded from high-level CICS web support APIs, typically a WEB
OPEN/CONVERSE/CLOSE sequence. The message format is optional and a
user-written message adapter is normally required.

� REST server

The Project Zero engine supplies a native REST support. JCICS Java
classes supply a LINK interface to invoke the program resource identified by
the REST URI. A REST adapter implements protocol, message serialization,
and link adapter tasks from a few scripting language lines. It is composed of
two parts:

– A Project Zero REST event handler along with a JSON or Atom or XML
message handler based on a few lines of PHP or Groovy scripting code.

– A JCICS LINK client along with Java message
serialization/deserialization. JZOS or Rational J2C wizards generate the
message adapter Java beans.

� REST client

A REST client is a specific use case of a CICS HTTP client.

� WebSphere MQ

The CICS DPL bridge supplies native support for the transport and protocol
adapters. The message adapter is likely to be a client implementation.

When the DPL bridge is not used, a protocol adapter is required, typically a
simple MQGET/MQPUT sequence. The message format is optional and a
user-written message adapter is normally required.

� CICS Sockets

Everything is hand coded.
106 CICS and SOA: Architecture and Integration Choices

The following sections of this chapter provide more details for each of the access
technologies summarized in the above list.

5.5 CICS Web services

CICS Web services supports inbound and outbound connectivity to and from
CICS applications. The following web service development approaches can all
be used with CICS:

� Bottom-up development

Where we want to expose an existing application as a web service, we would
most likely consider a bottom-up approach. We start with the language
structures for our current application and go through a process where we
work upward, developing the WSDL and other infrastructure elements
required for exposing a CICS application as a web service.

� Top-down development

Where we wish to access an existing web service, we consider a top-down
approach. We start with the WSDL, as published by the web service, and
work downward, generating the CICS language structures, then developing
the application code in order to create the CICS Web service application.

� Meet-in-the-middle development

It is also possible that there is an existing web service definition that we are
eager to use, and also an existing CICS application that can be used as the
web service implementation. In this case, we can use our XML to language
structure mapping tools to map the web service interface, to the CICS
application program. This is called the meet-in-the-middle approach because
the existing web service definition “meets” or “maps” to the original language
structure interface. This approach requires a message mapping adapter.

Table 5-1 summarizes how the different approaches can be used in
different situations.

Table 5-1 Web service development approaches

Approach Application WSDL Web service type

Bottom-up Existing New Service provider

Top-down New Existing Service provider

Top-down New New Service provider

Top-down New Existing Service requester
 Chapter 5. Application interfaces 107

In this section, we focus on the application interface considerations for CICS
Web services. For a full description of the different development approaches and
development tools see the ITSO Redbooks publication Application Development
for CICS Web Services, SG24-7126.

5.5.1 Transport and protocol adapters

The CICS Web services infrastructure provides transparent support for the
transport and protocol adapters for SOAP over HTTP and SOAP over
WebSphere MQ. The creation and deployment of the adapters are normally
handled by the systems programmer.

5.5.2 Operation identification

The operation is defined within the WSDL file by the service provider. The WSDL
operation name abstracts the real implementation name (that is, JEE method or
CICS program). Interoperability is achieved using the first XML tag of the SOAP
body as the representation of the operation.

Provider
When CICS is the service provider, the operation is typically the name of the
target CICS program. The DFHLS2WS utility (used in the bottom-up approach)
appends the “Operation” suffix to the CICS program name to build the operation
name. For example MYPROG becomes MYPROGOperation. This default behavior can
be modified if required. The DFHWS2LS utility (used in the top-down approach)
uses the WSDL operation name.

Requester
A CICS Web service requester application must specify the WSDL operation
name on the EXEC CICS INVOKE interaction:

INVOKE SERVICE(webservice name) OPERATION(operation name)

Meet-in-the-middle Existing Existing Service provider

Approach Application WSDL Web service type

Note: Prior to CICS TS V4 the INVOKE WEBSERVICE call is used.
108 CICS and SOA: Architecture and Integration Choices

5.5.3 Message adapters

The CICS Web services infrastructure provides transparent support for message
adapters. When you use the web services assistants, or other tooling, you do not
have to write your own code for parsing inbound messages and for constructing
outbound messages. CICS maps data between the body of a SOAP message and
the application program's data structure. In addition, you can customize the way in
which variable-length values and white space are handled by using settings on the
CICS assistants and by adding facets directly into the XML schema.

Web service provider
Below we look at the specific considerations related to service provider
implementations:

� Message serialization is typically performed transparently by CICS from the
wsbind file generated by the DFHLS2WS utility or RDz. DFHLS2WS imposes
several restrictions, such as the use of COBOL OCCURS DEPENDING ON and COBOL
REDEFINE, which are not supported.

Most restrictions can be addressed by using RDz to generate a message
adapter. As a last resort, a user-written message adapter can be used to
handle the most complex cases.

� Message mapping can be performed by simple modifications to the input
language structure supplied to DFHLS2WS. Here are some common examples:

– An existing COBOL field does not need to be exposed.

It can be defined as a COBOL filler. DFHLS2WS will not expose it in
the WSDL.

– The name of an existing field is meaningless or too wordy.

The field can be renamed safely. This is an easy answer to typical XML
questions such as these:

• Must XML tags be meaningful or human readable?
• What is the impact of wordy XML tags on the infrastructure costs?

A simple mapping adapter can be used to address other requirements, for
example:

– When an existing interface is using a COMMAREA message that is
common to both the request and the response, DFHLS2WS can be used
to generate a channel interface, and user-written code is used to move the
channel CONTAINER fields to the COMMAREA.

– When an existing application interface uses a COBOL CALL rather than
an EXEC CICS LINK, the need to create a link adapter is a good
opportunity to optimize the message interface, so it is delegated to a
message mapping adapter.
 Chapter 5. Application interfaces 109

– When a SOAP-FAULT message is to be returned rather than an error
code in the response message.

– When an existing program interface uses a COMMAREA, the business
message is longer than 32 kb, and the current web services
implementation segments/rebuilds the message using an intermediate
server. A better solution might be a direct exposure of the business
message from a CICS channel, which would lower the number of
client/server interactions and simplify the client proxy implementation.

Meet-in-the-middle approach
A simple submit and go or click and go approach using DFHLS2WS imposes a
language structure coupling to the exposed interface. The generated XML
schema might not always be appropriate for the service requester, especially if
the requester is a business partner rather than an internal requester. These are
common examples:

� When the use of COBOL PIC X(6) imposes a mandatory XML string element
of a fixed length (six characters in this case).

� When using a COBOL OCCURS ‘list’ definition, DFHLS2WS generates the
equivalent fixed list XML element (minOccurs=maxOccurs=COBOL
OCCURS value). Most of the time, this is likely to be acceptable. But for long
lists or nested lists, or high throughput workloads, this can be an issue and
might require being optimized.

To address such situations, a meet-in-the-middle approach can be used to create
a user message mapping adapter:

� Use the bottom-up DFHLS2WS utility to generate the WSDL and XML
schema from the language structure.

� Use a WSDL graphical tool (for example, RDz) to modify the XML schema
and to transform it into a more suitable service interface.

� Use the top-down DFHWS2LS utility to generate the new language structure.

� Write a message mapping adapter to map the new interface to the existing
CICS program interface.
110 CICS and SOA: Architecture and Integration Choices

This procedure can be used for simple mapping requirements. However, you
may prefer to use the RDz Enterprise Service Toolkit (EST) wizards to generate
the mapping adapter. Figure 5-5 shows a screenshot from the RDz graphical
mapping wizard.

Figure 5-5 RDz meet in the middle data mapping wizard

When new CICS applications have to be exposed, the best practice is to model
the WSDL from a business service perspective, and then to generate to a
language structure interface from DFHWS2LS.

Web service requester
Below we look at the specific considerations related to CICS service requester
implementations. While a CICS Web service provider application can be invoked
transparently by the CICS infrastructure, a CICS Web service requester program
explicitly uses EXEC CICS INVOKE SERVICE to invoke the service provider
interface. This is normally done in a new message adapter program:

� Simple message serialization can be performed transparently by CICS from
the wsbind file generated by the DFHWS2LS utility or RDz.

In real life, however, most of the CICS Web service requester
implementations access an object-oriented implementation of a web service
provider. The object implementations imply intensive use of XML facets, such
as nillable or minOccurs=0 or maxOccurs=unbound, which are not natively
supported by procedural languages. A hand-coded message serialization
adapter is required most of the time. DFHWS2LS provides a set of handy
transformation capabilities in order to simplify the adapter implementation.
Here are a few typical examples:

– An XML boolean element is exposed as a single byte field whose content
is X’00’ when false and X’01’ when true.
 Chapter 5. Application interfaces 111

– A nillable XML element attribute is exposed as a single byte field whose
content is X’01’ when nill.

– A minOccurs=x and maxOccurs=y XML facet conversion depends on the
INLINE-MAXOCCURS=a_limit parameter of the DFHWS2LS utility.

IF INLINE-MAXOCCURS is less than or equal to the maxOccurs value,
then it is converted inline into a counter field and a fixed array interface.
The counter is the number of occurrences of the field element in the array.
Otherwise a container-based conversion occurs, which uses a counter
field and a 16-character CICS CONTAINER name field interface. The
named container contains the list elements.

The best practice is to use the inline conversion for small lists and to use
the container-based mapping for larger amounts of data. The
container-based mapping also optimizes memory consumption so long as
the SET option of the GET CONTAINER is used.

� Message mapping is normally required when a CICS service requester
application invokes a web service that has an object-oriented implementation.
Whereas language structure descriptions imply a tight message coupling,
with object oriented implementations it is the exact opposite: Everything is
optional, nillable, unbound, and so on. For interoperability or service
orientation, such a “help yourself interface” is not always a best practice. A
significant part of the ROI is related to the optimization of the service
interfaces described in the WSDL. The WSDL file should be an enabler to
automation, reuse, first time successful interactions, and predictable
execution behavior.

From real-life experience there are two common situations:

– Internal local service provider

In such a case the service interface is generally optimized by the service
provider team using WSDL and XML tooling.

– External remote service provider (for example, a business partner)

In such a case the service interface can be optimized locally or using an
ESB. The local optimization is performed using WSDL tooling to add
restrictions to the XML schema elements. The WSDL describes the
service contract and, while it cannot be extended by the consumer, its
scope can be restricted by the consumer. This is where the message
adapter logic can be simplified and optimized, for example, request
message mandatory elements can be described as such, and sensible
limits can be defined with no impact on the provider.

Complex interfaces result in complex message conversion logic. In such
cases an ESB might be a better solution. For other situations, a pragmatic
approach might be a combination of message mapping in CICS and in
an ESB.
112 CICS and SOA: Architecture and Integration Choices

5.5.4 XML validation

By default the CICS Web services pipeline does a simple message validation.
For example, unknown tags are rejected. Full XML message validation can be
activated using the VALIDATE option of the WEBSERVICE definition.

5.5.5 Binary or invalid XML messages

CICS supports and controls the handling of MTOM messages in both web
service provider and requester pipelines using an MTOM handler program and
XOP processing.

Where MTOM/XOP is not the right solution, and when specific message
processing is required, the CICS message data mapping can be disabled by
using the XML-ONLY parameter of DFHWS2LS.

5.5.6 Message exchange pattern

The WSDL 2.0 specification supports the explicit definition of Message
Exchange Patterns (MEPs) within the WSDL document. Four MEPs can be used
with CICS Web services:

� In-only, where no response is to be returned.

� In-out, which is an RPC equivalent.

� In-optional-out, which is a possible combination of the two previous patterns.
It adds some complexity to the interface, but it is supported.

� Robust-in-only, where a response message is returned only if it is a
SOAP fault.

The WSDL 1.0 specification does not support MEPs explicitly. However, CICS
supports the following patterns implicitly:

� In-out: The WSDL defines request and response messages for an operation.
� In-only: The WSDL does not define a response message for an operation

Note: Validation of a SOAP message against a schema incurs considerable
processing overhead, and you should normally specify VALIDATION(NO) in a
production environment.
 Chapter 5. Application interfaces 113

5.5.7 Data conversion

Web services messages are encoded in UNICODE. The CICS infrastructure
automatically handles EBCDIC data conversion. The LOCALCCSID parameter
of the CICS SIT defines the local EBCDIC codepage to be used, for example,
1147 for France.

5.5.8 Coupling considerations

Web services technologies are often referred to as being loosely coupled. This is
true from an IT implementation point of view:

� Loosely coupled client/server transport and protocol

� Loose coupling between the WSDL artefacts, the application interface, and
the CICS implementation

� Loosely coupled Unicode exchanges

From an application interface point of view, however, the degree of coupling is
dependent on the answer to the question “What happens if I modify the format of
a message?” If the answer is that for any modification “I must supply a new
WSDL to all my consumers,” then this cannot be considered a loosely coupled
solution.

The coupling of the message is to be balanced with interoperability of the
interactions. This is where simple message adapters and ESB-based solutions
can be useful. Also, CICS supports the xsd:any and xsd:anyType XML types,
which can be used to extend an interface with no impact on existing users.

5.6 CICS TG for z/OS

A CICS TG for z/OS connector access to a CICS application interface is a
straight DPL call issued from the CICS mirror transaction to this interface. It
supports both the COMMAREA and the channel message representation. CICS
TG provides an inbound-only access to CICS.

CICS TG supports the JCA CCI interface and since CICS TG V8 it also supports
ECIv2 calls from non-Java clients.
114 CICS and SOA: Architecture and Integration Choices

5.6.1 CCI programming model

Applications using the CCI have a common structure, independent of the EIS
that is being used. The JCA defines connections and ConnectionFactories,
which represent the connection to the EIS.

An application must start by obtaining a ConnectionFactory from which a
connection can be obtained. The properties of this connection can be overridden
by a ConnectionSpec object. The ConnectionSpec class is the CICS-specific
class ECIConnectionSpec.

After a connection has been obtained, an interaction can be created from the
Connection to make a particular request. As with the connection, interactions can
have custom properties set by the CICS-specific InteractionSpec class
(ECIInteractionSpec). To perform the interaction, you call its execute() method
and use CICS Record objects to pass the message data (Example 5-1).

Example 5-1 Common Client Interface

ConnectionFactory cf=<JNDI lookup>
Connection c = cf.getConnection(ConnectionSpec)
Interaction i = c.createInteraction()
InteractionSpec is = newInteractionSpec();
i.execute(spec, input, output)

The ConnectionFactory has custom properties that are used to specify
connection details, for example, the Gateway daemon to be used is set using the
ConnectionURL property. When the ConnectionFactory has been created, it can
be made available for use by any enterprise application through the JNDI.

5.6.2 Transport and protocol adapters

For the CICS TS application, the CICS TG for z/OS connector provides
transparent support for both the transport and protocol adapters.

For the CICS TG client application, the transport and protocol adapters are
provided through the CCI interface or the ECIv2 APIs supplied by the CICS
TG connector.
 Chapter 5. Application interfaces 115

5.6.3 Operation identification

The operation is the name of the CICS program name that is linked to. It is
supplied by the CICS TG client:

� For CCI, the setFunctionName method of the ECIInteractionSpec class is
used to set the program name property.

� For ECIv2, the ECI program name is used to specify the CICS program name.

5.6.4 Message adapters

A COMMAREA or a channel message is represented as a Java object or an
ECIv2 byte array. The serialization adapter is typically implemented on the Java
side using RDz or RAD J2C tooling. When the JEE container is WebSphere
Application Server for z/OS, the JZOS Toolkit can also be used. For ECIv2
clients, this task is not required.

Because the COMMAREA is common to both the request and the response
messages, it is common practice to set the length to a maximum value (normally
the maximum length of the response message). This can be a best practice in
terms of coupling or versioning. To optimize the network flows, the CICS TG
implements a mechanism known as COMMAREA null stripping, which strips
trailing nulls from the COMMAREA message before transmitting it across the
network. Null stripping applies to both the request and the response messages
and is transparent to the client application programs and CICS server programs,
which always see the full-size COMMAREA.

This is a direct COMMAREA or channel message exposure. For such a
bottom-up approach, a user-written CICS message mapping adapter is not
normally required.

5.6.5 Message exchange pattern

The CCI interaction supports the SYNC_SEND, SYNC_RECEIVE, and
commonly used interaction SYNC_SEND_RECEIVE:

� SYNC_SEND_RECEIVE is a synchronous call.

� SYNC_SEND and SYNC_RECEIVE supply a form of an asynchronous
interaction where the client code polls for the response. The interactions
require the CICS server connection to be active.

ECIv2 supports the ECI_SYNC pattern, which is functionally equivalent to CCI
SYNC_SEND_RECEIVE.
116 CICS and SOA: Architecture and Integration Choices

The pattern used by the client is transparent to the target CICS application.

5.6.6 External Call Interface (ECI)

The ECI emulates an EXEC CICS LINK DPL call for non CICS TS clients. This
means that the CCI or ECIv2 client code supports the properties that we
described earlier for the LINK interface.

In a CCI-managed environment most of the connection properties, such as the
CICS server name, are set using a connection factory and are transparent to the
client interface. The ECIConnectionSpec object allows the client application to
override certain properties. For example, it can set the UserName and password
properties for the connection.

The ECIInteractionspec object contains the details of the CICS application interface
to be accessed. Within a rich set of properties here are the most important:

� The interaction verb (for example SYNC_SEND_RECEIVE)

� The function name (the CICS program to LINK to)

� The Java record representation of a COMMAREA

� The ECIchannelRecord representation of a channel

� The CICS transaction code to be used to identify the workload to be executed
within the CICS server (set by using the setTPNName() method of the
ECIInteractionSpec object)

A best practice is to set a specific CICS transaction code for an interaction. Using
specific transaction codes enables CICS infrastructure optimizations such as
workload management, security, and accounting. Another good practice is to use
the CICS TG for z/OS support for mapping a server logical name to a CICS
physical name, thus hiding the physical name from the client implementation.

5.6.7 EBCDIC data conversion

COMMAREA message data conversion in CICS requires a DFHCNV program
entry. For character containers, channel messages are converted transparently
by CICS on the GET CONTAINER calls.

When complex messages are exchanged, RDz or RAD J2C tooling can be used
to generate the data conversion code, for example, when using COBOL zoned
decimal fields with a non-English codepage. In this case no entry must be
defined in DFHCNV, and the conversion is performed on the Java client side.
 Chapter 5. Application interfaces 117

5.6.8 Coupling considerations

Using the CICS TG connector to access a CICS application interface implies a
medium coupling:

� The message is a byte array, typically a COMMAREA. A channel message
interface reduces this coupling.

� CICS infrastructure properties such as the program name or the transaction
code are set by the client code. The use of a framework lowers the coupling
but it does not suppress it.

� It is a direct COMMAREA or channel exposure. The use of J2C tooling to
create record beans lowers this coupling.

� The EBCDIC data conversion requires application programmer and system
programmer synchronization. Character data messages lowers this coupling.

5.7 WOLA

WOLA provides inbound and outbound connectivity between CICS and
WebSphere Application Server for z/OS:

� Inbound connectivity to CICS from a servlet or EJB is similar to the CICS TG
for z/OS connector support, in that is based on the Common Client Interface
(CCI) and implements ECI-like interactions. This is a direct LINK interface
exposure that supports both the COMMAREA and the channel message
representation.

� Outbound connectivity from a CICS application requires some coding to the
WOLA-specific APIs.

5.7.1 Transport and protocol adapters

The transport is an optimized cross-memory pipe between CICS TS and
WebSphere Application Server for z/OS that is used for passing data (normally
byte arrays) between applications very quickly. Transport is handled by the
WOLA components:

� For CICS LINK interface server applications, the WOLA components provide
a transparent support for the transport and protocol adapters. The Link Server
Task accepts calls from WebSphere Application Server for z/OS, then issues
EXEC CICS LINK against the named CICS program, passing either a
COMMAREA or a channel.

� The Link Server Task does not assist in calls outbound from CICS. Instead,
the CICS application initiates the interaction using the WOLA APIs.
118 CICS and SOA: Architecture and Integration Choices

There are two broad approaches:

– Embed the WOLA API processing in the CICS program itself.

– Write a custom WOLA bridge program that can be linked to by the existing
business logic programs. In this sense it becomes a kind of WOLA Service
to existing CICS programs to utilize as your needs require.

5.7.2 Operation identification

For WebSphere client applications, the operation is the real CICS program
name. It is set using the InteractionSpecImpl serviceName property.

For CICS client applications the operation is the EJB Home JNDI name.

5.7.3 Message adapters

WOLA itself pays no attention to the contents of what is being passed back and
forth between WebSphere Application Server and CICS. It does not care about
data layout and it does not care about code pages:

� For inbound connectivity to CICS, the message serialization adapter is
implemented on the Java side using RDz or RAD J2C tooling, or the
JZOS Toolkit.

� For outbound connectivity from CICS, the message is a byte array, the 31-bit
address of which is passed on the WOLA API calls. The BBOA1INV API
provides a simple invoke call where the maximum length of the response
must be known. The BBOA1GET API is a receive call that supports limited
data truncation support.
 Chapter 5. Application interfaces 119

5.7.4 Message exchange patterns

WOLA is primarily a synchronous connector, but it does have limited
assynchronous support:

� For inbound connectivity to CICS, the WOLA CCI connector supports the
SYNC_SEND_RECEIVE pattern.

� For outbound connectivity from CICS, you can use either the basic WOLA
APIs or the advanced APIs:

– The basic APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control. For example, on the
BBOA1INV (invoke) API program control is not returned to the CICS
program until WAS returns the response. The CICS task and the WOLA
connection are tied up during that time.

– The advanced APIs allow you to operate asynchronously. That allows
your program to receive program control immediately, which allows your
program to go off and do other work. This allows for greater utilization
of resources.

5.7.5 EBCDIC data conversion

EBCDIC codepage conversion can be done within CICS or within WebSphere
Application Server:

� For inbound connectivity to CICS, codepage conversion is normally done
using record beans generated by RDz or RAD J2C tooling.

For character containers, channel messages can be converted transparently
by CICS on the GET CONTAINER calls.

� For outbound connectivity from CICS, codepage conversion is normally done
in WebSphere Application Server using record beans generated by RDz or
RAD J2C tooling.

Note: The CICS data conversion program (DFHCCNV) is not called from
the LINK Server Task.
120 CICS and SOA: Architecture and Integration Choices

5.7.6 Coupling considerations

Using WOLA implies a tight coupling, especially when the WOLA APIs are used.
This is to be expected for such a high-performance technical connector:

� The WOLA connector can only be used for connectivity between CICS and
WebSphere Application for z/OS.

� The WOLA APIs are low level and require specific programming skills.

� CICS infrastructure properties, such as the program name or the transaction
code, are set by the client code. The use of a framework lowers the coupling,
while it does not suppress it.

� The message is a byte array. For inbound calls to CICS this is typically a
COMMAREA, although a channel message interface reduces this coupling.
Inbound requests run under the same link server transaction code.

5.8 CICS web support

The HTTP specification defines the client/server exchange formats to be used to
communicate between an HTTP client and an HTTP server:

� HTTP request

An HTTP request is made by a client, to a named host, which is located on a
server. The aim of the request is to access a resource on the server.

� HTTP response

An HTTP response is made by a server to the client. The aim of the response
is to provide the client with the resource that it requested or to inform the
client that the action that it requested has been carried out, or to inform the
client that an error occurred in processing its request.

An HTTP message is composed of a request line, including such things as the
method, URL path and the status code, a series of HTTP headers, and an
optional body.

CICS supports the HTTP 1.0 and HTTP 1.1 specifications, and the web support
can be used for inbound and outbound requests.

5.8.1 Transport and protocol adapters

When using the CICS web support, you will most likely write an HTTP-aware
transport and protocol adapter. CICS web support supplies a rich set of APIs (EXEC
CICS WEB), which hides the complexity of HTTP from the adapter programmer.
 Chapter 5. Application interfaces 121

Simple interactions that do not need access to specific HTTP information, such
as header content or query string data, do not require any transport-specific
code. More complex interactions might require some knowledge of the HTTP
information. CICS web support provides specific HTTP transport APIs that can
be used to simplify the task of writing an HTTP-aware adapter. This support
includes these:

� HTTP header access, including read, write, and discovery of headers

� URL parsing

� Query string data handling

� Manipulation of HTTP context information such as the method (GET, for
example), hostname, scheme, version, path, or TCP/IP port number.

HTTP body
The HTTP body contains the message. CICS web support supplies the WEB
RECEIVE and the WEB SEND APIs, which can be used to process HTTP
messages. Both APIs support a message buffer or a CONTAINER interface:

� WEB RECEIVE

The message buffer API supports truncated messages. Truncation occurs
when a received message is longer than expected. Application interfaces
should always define whether fixed length or variable messages are
exchanged. When variable messages are exchanged, a maximum size
should always be defined. When it is possible to receive very long messages,
an average message size can be defined. These different patterns determine
the truncation protocol to used by CICS.

The CONTAINER API does not define a maximum message length.

� WEB SEND

If query string data information needs to be added in the URL, it must be
specified using the QUERYSTRING parameter of the WEB SEND API.

CICS web support supports HTTP 1.1 chunking, which is how HTTP supports
message segmentation. For inbound messages, CICS handles the chunking
sequences. For outbound messages the WEB SEND API must define the chunk
segment length.

When CICS is the client, it needs to connect to the HTTP server. The connection
is established by a WEB OPEN API call and closed (or returned to the pool) by a

Note: Unless the CONTAINER is to be passed to other channel interfaces,
the buffer API is normally the best practice.
122 CICS and SOA: Architecture and Integration Choices

WEB CLOSE API call. The URIMAP parameter hides the physical server name
from the application.

HTTP-specific information
The HTTP protocol addresses interoperability issues such as message format
identification and error code representation by using a set of protocol
parameters, including these:

� Mediatype

The HTTP mediatype information must be supplied on a WEB SEND (for
example, text/xml) according to the message format to be included in the
HTTP body.

� Method

An HTTP request message must contain a valid HTTP method. When CICS
is a client, the WEB SEND supports the GET, POST, PUT, DELETE, HEAD,
OPTIONS, and TRACE methods. When CICS is the server, the method can
be retrieved by a WEB EXTRACT.

� Status code

An HTTP response message must contain a valid HTTP status code (for
example, HTTP 500). It must be set on a WEB SEND when CICS is a server.
It is retrieved on a WEB RECEIVE when CICS is a client.

5.8.2 Operation identification

The operation of an HTTP request is identified by the Unified Resource Identifier
(URI), which is the path part of the URL. In CICS the URIMAP resource defines
the characteristics of the application interface such as these:

� The program name

� The transaction code

� Any static information to be returned (for example, a friendly error message to
be returned in case of temporary service unavailability)

� HTTP server redirection information

For a CICS client, the URIMAP on the WEB SEND API specifies the operation
(path information) for the specific resource in the server that the CICS application
will access.
 Chapter 5. Application interfaces 123

5.8.3 Message adapters

The message format is defined in the Content-Type HTTP header information
and can be character or XML or other formats. A message mapping adapter
is optional.

5.8.4 Message exchange pattern

The HTTP protocol does not define a message exchange pattern. HTTP
interactions are typically SEND_RECEIVE exchanges.

CICS supports HTTP 1.1 pipelining, which allows a client to issue multiple
requests without waiting for a response. The responses are returned by the
server in the sequence in which the requests were received. This is a form of an
asynchronous pattern.

5.8.5 EBCDIC data conversion

The WEB RECEIVE and WEB SEND API support EBCDIC character data
conversion as required. This means that the mediatype header information defines
the body as character data. When the message buffer API is used, the
SRVCONVERT option indicates that data conversion is to take place. When the
CONTAINER API is used, the conversion is performed on the GET CONTAINER call.

The default HTTP body codepage is defined by the Content-Type HTTP header.
CICS uses it as the client codepage. It can be overridden.

The default EBCDIC codepage is defined by the LOCALCCSID option in the
CICS SIT. It can also be overridden.

5.8.6 Coupling considerations

CICS web support is seen as a medium coupled access technology. In fact, it
has loose coupling characteristics in addition to tight coupling characteristics.

It can be seen as a loosely coupled solution in the following ways:

� The HTTP protocol is widely implemented.

� The URL abstracts the operation.

� HTTP standard headers solve the Content-Type or Mediatype or
Content-Length coupling issues.

� The URIMAP decouples the adapter from concrete implementation details.
124 CICS and SOA: Architecture and Integration Choices

It can also be seen as a tightly coupled solution in the following ways:

� Message serialization/deserialization is not defined, and the level of coupling
depends on the technology used, from tight byte array messages to loose
xml messages.

� The HTTP method usage pattern is not defined. REST patterns help to
address this.

� Adapters must be hand coded.

5.8.7 REST and dynamic scripting

An important concept in REST is the existence of resources (sources of specific
information), each of which can be referred to using a global identifier (a URI). To
manipulate these resources, components of the network (clients and servers)
communicate through a standardized interface (using HTTP and HTTP verbs)
and exchange representations of these resources (the actual documents
conveying the information).

REST defines a set of conventions to give a meaning to URIs and HTTP
methods. For example, an HTTP GET on a collection URI is a LIST request,
whereas a GET on a resource URI is a RETRIEVE request. CICS web support
supplies the native HTTP support, but specific application code is required to
implement REST-style applications.
 Chapter 5. Application interfaces 125

The CICS Dynamic Scripting feature supplies a native REST support using the
Project Zero event driven support. The ITSO Redbooks publication Introduction to
CICS Dynamic Scripting, SG24-7924, provides detailed information about
implementing the feature. When using the feature, a REST adapter can be
implemented using a few lines of Groovy or PHP. Figure 5-6 describes the adapter
implementation.

Figure 5-6 A REST adapter

The adapter leverages the Project Zero event-driven support to handle the
REST-style interaction patterns. CICS Dynamic Scripts run within a CICS JVM.
This enables the use of JCICS classes to access CICS ressources. The JCICS
LINK interface supports the COMMAREA or the CHANNEL interface. These are
the steps required (Figure 5-6):

1. The COBOL message representation is compiled with the ADATA COBOL
compiler option. This generates a binary adata file.

2. The JZOS utility generates the message access Java bean and the geter and
setter methods from the adata file.

3. At run time the PHP or Groovy script creates a COMMAREA object from the
bean setter methods.

4. The dynamic script issues a JCICS interaction.
126 CICS and SOA: Architecture and Integration Choices

5. The script receives the response COMMAREA using the bean getter methods.

5.9 WebSphere MQ

A WebSphere MQ interface can be used by CICS applications in two ways:

� An application can use the WMQ APIs for getting or putting messages to
queues. The best practice is to use an adapter so that the business logic is
encapsulated from the WMQ transport.

� The WebSphere MQ DPL bridge for CICS provides an alternative option that
allows DPL interactions inbound to CICS COMMAREA-based programs. No
adapter is required in this case.

The ideal interaction use case for WebSphere MQ is an asynchronous model.
However, in real life it tends to be a used as a synchronous RPC style interaction.

5.9.1 Transport and protocol adapters

The CICS WebSphere MQ attachment enables the use of the MQ APIs within
CICS applications. CICS connects to a queue manager and provides transparent
transport adapter support.

WMQ API enabled applications require a user-written protocol adapter, which
typically uses an MQGET/MQPUT interaction sequence.

CICS DPL programs that are accessed through the WebSphere MQ DPL bridge
benefit from the protocol adapter supplied by the bridge. While the bridge hides
the WMQ details from the CICS application, it might expose the CICS LINK
properties to the WMQ client application via the MQCIH message header.

5.9.2 Operation identification

The operation is likely to be identified by the queue name. When this is not the
case, for example, when the queue serves multi-purpose messages, the
operation must be identified somewhere in the message descriptor or in an
application-specific header.

Note: In Figure 5-6 the REST adapter exposes a coarse-grained message
from two medium-grained COMMAREAs.
 Chapter 5. Application interfaces 127

The CICS DPL bridge implementation uses such a multi-purpose message
queue. The operation is the CICS program name and is identified by the first
eight characters of the message or by a field in the MQCIH message header.

5.9.3 Message adapters

A message adapter uses WMQ native APIs to receive the message, transform it
if required, and call the CICS business logic program. A reply message can be
sent using the reply-to queue defined in the message.

The message can be character, bytes, or XML, as defined in the WMQ message
descriptor. When message serialization is required, for example, when the client
is a Java application, it is normally implemented on the client side. Java
implementations benefit from the Rational J2C tooling or JZOS Toolkit.

When using the CICS DPL bridge to directly access a COMMAREA-based
appplication, a message mapping adapter is not normally required.

5.9.4 Message exchange pattern

Most of the time, the message exchange pattern is not defined explicitly.
Although the MQMD header contains information that might imply the type of
interaction, such as the message type.

WebSphere MQ is an asynchronous transport mechanism. When using a
synchronous application model (MQPUT followed by MQGET) care needs to be
taken to manage timeout situations.

Event-driven processing and publish/subscribe are alternative patterns in which
CICS can participate.

5.9.5 The MQ DPL bridge client interface

The client sets a number of fields in the MQMD and MQCIH structures in request
messages for the CICS DPL bridge.
128 CICS and SOA: Architecture and Integration Choices

The WMQ DPL bridge interface operates in different ways:

� If a message has a format of anything other than MQCICS, then the simple
DPL bridge is assumed. The first eight characters of the message body is
used as the target of the CICS LINK, with the remainder of the message body
passed as a COMMAREA.

� If the message format is MQCICS, then the message has a CICS header
prior to the message body. This header contains control information that can
take these actions:

– Direct multiple transactions to be executed.
– Direct additional, or alternative, authorization.
– Provide a different message type.
– Provide other directives to the bridge-processing program.

5.9.6 EBCDIC data conversion

WebSphere MQ supplies native message data conversion. The MQMD supplies
the client encoding information in addition to the format information.

Conversion is carried out by two different routines, one for the MQCIH structure
and another for the data or vectors supplied in the message. You can ensure that
the MQCIH is converted by specifying MQFMT_CICS in the MQMD.Format field.

If you are driving a DPL program that neither receives nor returns COMMAREA
data, or if the COMMAREA data is purely character data, you can achieve data
conversion by specifying MQFMT_STRING in the MQCIH.Format field. If your
COMMAREA data is not purely character data, you must write your own
conversion routine.

5.9.7 Coupling

WebSphere MQ offers a loose coupling between applications. However,
potential coupling issues might need to be addressed:

� Message serialization/deserialization is not defined. The level of coupling
depends on the technology used, from tight byte array messages to loosely
coupled xml message.

� The message exchange pattern is not defined. Specific WMQ message
headers can be used to identify the type of exchange pattern being used.

� Message adapters need to be user-written.

Note: A number of advances have been made with WMQ V7 to provide better
linkages between request and reply messages, including message properties.
 Chapter 5. Application interfaces 129

5.10 CICS sockets

Sockets implementations use a low-level technical interface and require specific
programming skills. CICS sockets-enabled programs are normally early
applications inherited from the past. New TCPI/IP connector applications should
be based on the HTTP protocol which can be seen as a mature program to
program TCP/IP sockets protocol.

The best practice is to use an adapter so that the business logic is encapsulated
from the sockets transport. With CICS sockets implementations, all integration
aspects must be addressed by user-written code. Issues to consider include these:

� Has all the data been received?

TCP/IP sockets do not guaranty that all the data has been received. This
requires a loop on the read operation and information about the real length of
the message in order to know when to stop the loop.

� What happens if a socket call does not return control, for example, on a
connect?

A best practice is to use asynchronous (or non-blocking mode) calls rather
than synchronous (or blocking) ones.

� How are hostnames handled?

� How is data conversion done?

This can be complex, as the codepage information sent with a request might
also need to be converted.

� How do I handle error situations?

� How do I produce meaningful error messages?

� What impact will IPv6 have on the application?

Some of these issues can be addressed by the use of a private header that is
flowed with each message. Other issues need to be addressed by low-level
programming techniques.
130 CICS and SOA: Architecture and Integration Choices

5.10.1 Transport and protocol adapters

When CICS is a server, the CICS sockets feature supplies a concurrent IP
listener transaction (CSKL):

� CSKL can be implemented as a standard listener, where the initial send
emitted by a client must supply a CICS header at the beginning of the
message. This header supplies a mandatory CICS transaction code of the
child server along with optional data.

� CSKL can also be implemented as an enhanced listener, where the CICS
header is not required. The default CICS transaction code is set in the CSKL
configuration file and can be overridden by an exit.

You can also create your own listener.

When CICS is a client, the sockets application must connect to the external
sockets server using an IP address. The API supports gethost type calls.

Messages are exchanged using SEND and READ API variations. As discussed
previously, the message receive code should implement a loop based on the
message length information.

5.10.2 Operation identification

The operation identification is a private implementation.

5.10.3 Message adapters

This task is performed by user-written application code. A private header can be
used to identify the message data type, for example, text/XML.

5.10.4 Message exchange patterns

No message exchange patterns are defined. Sockets programming requires the
client and server implementations to be in sync in order to avoid situations in
which they are in receive state at both sides.

5.10.5 EBCDIC data conversion

The CICS sockets feature supplies conversion routines limited to a single
codepage, the defaults being EBCDIC 037 and ASCII ISO-8859, which limits the
conversion to American English. To support other codepages, such as the French
1147 codepage, the provided translation tables must either be modified, which is
 Chapter 5. Application interfaces 131

a time-consuming task, or other conversion services must be used, such as the
EXEC CICS CONTAINER API or native calls to the iconv conversion service.

5.10.6 Coupling considerations

CICS sockets implies a very tight coupling at every level.
132 CICS and SOA: Architecture and Integration Choices

Chapter 6. Security

In a recent study done by IBM1, the majority of CEOs and CIOs identified risk
management as an area where they will focus IT to help their organizations'
strategy over the next five years. Therefore, because CICS applications and their
associated data constitute some of the most valuable assets owned by an
enterprise, the protection of these assets is a essential part of any CICS
integration project.

When you consider the security design for your CICS application, you need to
weigh the following key issues:

� How will you ensure that the users of the application are properly authenticated?

� What authorization mechanisms will be used to protect access to the CICS
system and access to resources such as transactions, files, and databases?

� How will you protect the confidentiality of data that is transported between the
different tiers of the physical configuration?

� How will you meet audit and compliance regulations?

In this chapter, after a review of general security objectives, we discuss the main
security considerations for each of the strategic CICS integration technologies.

6

1 The Essential CIO, Insights from the Global Chief Information Officer Study, found at
http://www.ibm.com/services/c-suite/cio/study.html.
© Copyright IBM Corp. 1999, 2012. All rights reserved. 133

http://www.ibm.com/services/c-suite/cio/study.html

6.1 Security objectives

Whereas business agility through better integration and a service-oriented
approach are key to innovation and gaining market share, this cannot be done at
the cost of customer confidentiality and transaction security. Measures taken to
minimize risk are an important ingredient to any viable IT strategy. When our
countermeasures are insufficient and are surmounted by either intentional or
unintentional events, the cost to a business can be staggering.

In this section we discuss the key objectives in the creation of a secure infrastructure.

6.1.1 Measures required to secure the infrastructure

A complete security solution puts mechanisms in place to achieve the
following objectives:

� Authentication

Authentication is the process of validating the identity claimed by the
accessing entity. Authentication is performed by verifying authentication
information provided with the claimed identity. The authentication information
is generally referred to as the accessor’s credentials. A credential can be the
accessor’s name and password. It can also be a token provided by a trusted
party, such as a Kerberos ticket or an X.509 certificate.

� Identification

Identification is the ability to assign an identity to the entity accessing the
system. Typically the identity is used to control access to resources.
Depending on the security model in which the identification is performed, the
identity may come from the authentication credentials or it might be asserted
from another server.

� Authorization

Authorization is the process of checking whether an identity that has already been
authenticated should be given access to a resource that it is requesting. A typical
implementation of authorization is to pass to the access control mechanism a
security context that contains the identity that has been authenticated.

Note: Authentication is usually one of the earliest steps in a request
workflow. When authenticated, an identity can be asserted to the
downstream process steps, meaning that these steps trust the upstream
steps to have already successfully authenticated the identity.
134 CICS and SOA: Architecture and Integration Choices

� Integrity

Integrity ensures that transmitted or stored information has not been altered in
an unauthorized or accidental manner. Typically it is a mechanism to verify
that what is received over a network is the same as what was sent.

� Confidentiality

Confidentiality ensures that an unauthorized party cannot obtain the meaning
of the transferred or stored data. Typically confidentiality is achieved by
encrypting the data.

� Auditing

With auditing, you capture and record security-related events (such as a user
signing onto or off of a system) so that you can analyze them later, perhaps
after a breach of your security has occurred.

� Non-repudiation

Non-repudiation means that a sender and a receiver of data are able to
provide legal proof to a third party that the sender did send the information
and the that receiver received the identical information. Neither side is able
to deny.

A solution for non-repudiation must provide proof of the integrity and origin of
data, and an authentication mechanism that with very high assurance can be
claimed to be genuine. The most common method of asserting the origin of
data is through the use of digital signatures and a form of Public Key
Infrastructure (PKI).

Different CICS integration projects will have different security objectives. After
the specific objectives are understood, you can evaluate the types of security
mechanisms that best meet the specific set of objectives.

Note: Most of the CICS integration technologies described in this book
support the use of digital signatures (SSL/TLS or XML digital signatures),
which can be used as part of a solution for non-repudiation. This book,
however, does not cover other aspects of non-repudiation solutions.
 Chapter 6. Security 135

6.1.2 Barriers to implementation

Although security is an essential part of any solution design, implementation can
be hampered by a variety of technical factors. The following list summarizes
some of the key factors that might be of considerations:

� End-to-end security is often hampered by the issue of how to provide secure
access between middleware components that use disparate security
technologies, such as user registries and security token formats.

� Often security is at odds with performance, because the most secure
techniques are normally the most expensive to implement, requiring the most
processing overhead.

� The range of options is vast and the required skill level is high, both of which
can sometimes slow down the implementation.

� It is not always easy to establish a clear set of security requirements, thus
making the job of the security architect difficult.

6.2 Traditional CICS security

In a CICS environment, the assets that you normally want to protect are the
application programs and the resources that are accessed by the application
programs. To prevent disclosure, destruction, or corruption of these assets, you
must control access to the CICS region and to different CICS components.

You can limit the activities of a CICS user to only those functions that the
user is authorized to use by implementing one or more of the following CICS
security mechanisms:

� Transaction security

This ensures that users who attempt to run a transaction are entitled to do so.

� Resource security

This ensures that users who use CICS resources, such as files and transient
data queues, are entitled to do so.

� Command security

This ensures that users who use CICS system programming commands
are entitled to do so.

� Surrogate security

This ensures that a surrogate user is authorized to act on behalf of
another user.
136 CICS and SOA: Architecture and Integration Choices

When CICS security is active, requests to attach transactions, and requests by
transactions to access resources, are associated with a user ID. When a user
makes such a request, CICS calls the external security manager (such as RACF)
via a SAF2 interface to determine whether the user ID has the authority to
complete the request. If the user ID does not have the correct authority, CICS
denies the request.

In many cases, a user is a human operator, interacting with CICS through a
terminal or a workstation. However, the user can also be a web browser user or,
in a web services solution, a program executing in a client system.

Identifying the user
When a human operator signs on to a CICS region at the start of a terminal
session, he is challenged to provide a user ID and password. The user ID
remains associated with the terminal until the terminal operator signs off.
Transactions executed from the terminal, and requests made by those
transactions, are associated with that user ID.

For connections from web users, there are other ways that the user of a CICS
transaction can be identified, including these:

� An HTTP client can provide HTTP basic authentication information (a user ID
and password). The transaction that services the client’s request, and further
requests made by that transaction, are associated with that user ID.

� A client program that is communicating with CICS using the Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) can supply a client certificate
to identify itself. The security manager maps the certificate to a user ID. The
transaction that services the client’s request, and further requests made by
that transaction, are associated with that user ID.

In addition to these transport-level authentication mechanisms, web service
clients can also pass authentication data, in the form of a security token, within
the SOAP message itself. CICS provides direct support for Username tokens
and X.509 certificates, and it can also interoperate with a Security Token Service
(STS), such as Tivoli Federated Identity Manager, to provide more advanced
authentication of web services.

For a complete discussion of traditional CICS security, refer to the CICS TS V4.2
RACF Security Guide, SC34-7179.

Identity assertion
Modern enterprise information processing systems typically consist of multiple
software components, for example, a WebSphere Application Server running on

2 Security Access Facility (SAF) is the high-level infrastructure that allows you to plug in a
commercially available security product, such as RACF.
 Chapter 6. Security 137

a distributed platform, and CICS and DB2 running on z/OS. This often introduces
the challenge of how to provide secure access between middleware components
that use disparate security technologies. As stated above, any user of CICS that
requires access to data will usually need to provide a valid credential for
authentication and subsequent authorization via RACF security manager. But
what if the user does not have a RACF user ID?

The solution has often been to provide a form of identity assertion, where the
distributed identity is mapped to a RACF identity and then asserted to CICS
without a password check. However, no matter what solution is used for identity
assertion, the process of mapping distributed user identities to a RACF identity
has typically been a one-way function, resulting in the loss of the original
distributed identity after the mapping occurs. Although effective, such mapping
solutions have several issues, including lack of end-to-end accountability,
inflexibility, and loss of control.

z/OS identity propagation
z/OS identity propagation is a newer form of identity assertion provided by z/OS
V1R11. Together with new functions in CICS TS V4.1, and WebSphere
DataPower® or CICS Transaction Gateway (CICS TG), it supports a
cross-platform, end-to-end security solution, providing for identity assertion,
control, and auditing.

Identity propagation addresses the issues associated with previous identity
assertion solutions by allowing the z/OS security administrator to create a set of
flexible rules, stored in the RACF database, ensuring that the distributed identity
persists after the mapping stage and remains visible for operational support and
auditing. For information about how z/OS identity propagation can be used with
CICS Web services see “z/OS identity propagation support with CICS Web
services” on page 151, and for information about how z/OS identity propagation
can be used with CICS TG see “z/OS identity propagation support with CICS TG”
on page 163.

Note: z/OS identity propagation is supported with CICS TS V4.1 with a set of
enabling APARs:

� PK83741
� PK95579
� PM01622

APAR PK98426 is also required if you are using CICSPlex SM.
138 CICS and SOA: Architecture and Integration Choices

6.3 Cryptography

Cryptography is the scientific discipline for the study and development of ciphers,
in particular, encryption and decryption algorithms. These cryptographic
procedures are the essential components that enable secure communication to
take place across networks that are not secure. SSL/TLS encryption uses both
symmetric and asymmetric keys.

� Symmetric (secret) key

Secret key cryptography means that the sender and receiver share the same
(symmetric) key, which is used to encrypt and decrypt the data.

The secret key encryption and decryption process is often used to provide
privacy for high-volume data transmissions.

� Asymmetric (public/private) key

Public/private key cryptography uses an asymmetric algorithm. The private
key is known only by its owner and is never disclosed. The corresponding
public key can be known by anyone. The public key is derived from the private
key, but it cannot be used to deduce the private key. Either key of the pair can
be used to encrypt a message, but decryption is only possible with the other
key.

Most of the CICS integration options discussed in this publication support
security solutions that are based on these cryptographic procedures,
including SSL/TLS.

6.3.1 Transport Layer Security (TLS) 1.0 protocol

CICS supports two security protocols that can be used to provide secure
communication over the internet. The first is the Secure Sockets Layer (SSL) 3.0
protocol. The second is the Transport Layer Security (TLS) 1.0 protocol, which is
based on SSL 3.0.

The primary goal of SSL/TLS is to provide privacy (confidentiality) and data
integrity between two applications communicating over the internet. The protocol
allows client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery.

When a TLS client and server first start communicating, a handshake occurs.
During the handshake, the client and server agree on which version of the TLS
protocol they will use, select a cipher suite, optionally authenticate each other,
and use public key encryption techniques to generate shared secrets.
 Chapter 6. Security 139

SSL/TLS requires a server X.509 certificate, which is stored in the server’s
certificate key ring. The certificate is used as part of the handshake server
authentication process. The client validates the server certificate. Successful
server authentication requires that the Certificate Authority (CA) that signed the
server certificate be considered trusted by the client. To be considered trusted,
the certificate of the CA must be in the key ring of the client.

SSL/TLS optionally uses a client X.509 certificate that is used as part of the
handshake client authentication process. To use client authentication, the client
must have a client X.509 certificate. The server validates the client certificate.
Successful client authentication requires that the Certificate Authority (CA) that
signed the client certificate be considered trusted by the server. To be
considered trusted, the certificate of the CA must be in the key ring of the server.

CICS uses z/OS System SSL (a component of z/OS Communications Server) to
support both the SSL and TLS protocols.

Application Transparent Transport Layer Security
Application Transparent Transport Layer Security (AT-TLS) consolidates TLS
implementation in one location, such that exploiters can then use these
centralized services without having to implement the TLS protocol themselves.
AT-TLS is based on z/OS System SSL, and transparently implements these
protocols in the TCP layer of the stack.

For TCP/IP access to CICS, you can either use the CICS-provided SSL/TLS
support or AT-TLS. The CICS-provided support requires more configuration but
allows client X.509 certificates to be used for authentication and identification.

See 6.11, “CICS sockets” on page 181 for an example of how AT-TLS can be
used to secure TCP/IP connectivity to CICS.

6.3.2 ICSF

The Integrated Cryptographic Service Facility (ICSF) is a software element of
z/OS that works with cryptographic hardware features and RACF to provide
secure, high-speed cryptographic services in the z/OS environment. ICSF
provides the application programming interfaces by which applications, and
subsystems such as CICS, request the cryptographic services.

Note: CICS makes use of cryptographic services provided by ICSF.
140 CICS and SOA: Architecture and Integration Choices

6.3.3 Cryptographic hardware

When using cryptographic functions to secure CICS applications, it is important to
minimize the performance overhead by utilizing hardware cryptographic devices.

The cryptographic hardware features available to your CICS regions depend on
the type of System z server that you are using. These are the main cryptographic
hardware capabilities available today:

� CP Assist for Cryptographic Functions (CPACF)

CPACF offers a set of symmetric cryptographic functions available on all CPs
of a zEnterprise™ server. The CPACF feature provides hardware acceleration
for DES, triple-DES, AES, MAC, and SHA cryptographic services. It provides
high-performance hardware encryption, decryption, and hashing support.
CPACF has to be enabled to be used, but it is a non-chargeable feature
(feature code 3863).

� Crypto Express 3 feature

The optional Crypto Express 3 (CEX3) comes as a pluggable feature that
provides a high-performance and secure cryptographic environment. Each
CEX3 feature contains two cryptographic engines, each of which can be
configured as an asynchronous cryptographic coprocessor (CEX3C) or
accelerator (CEX3A). The CEX3A provides hardware support to accelerate
the computationally intensive public key operations used by SSL/TLS during
the handshake process.

6.4 z/OS Communications Server security

A range of z/OS Communications Server security functions can be used to
protect access to your CICS applications. These are the two goals of z/OS
Communications Server network security support are:

� To protect the mainframe from the network

� To protect critical mainframe data (such as the data accessed by CICS
applications) within the network

Note: If available, CPACF will be used by System SSL for encrypting data
packets, but it provides no assistance for SSL handshakes.
 Chapter 6. Security 141

Security functions that achieve these goals are implemented throughout the
layers of the communications stack. Figure 6-1 shows the various z/OS
Communications Server network security functions with these goals in mind.

Figure 6-1 z/OS Communications Server security functions

First, we look at the functions that protect the z/OS system from the network,
from the bottom of the network stack to the top:

� IP packet filtering is a network layer function. It blocks unwanted traffic from
entering the z/OS system. In addition, it controls whether traffic is allowed to
leave the system. This function is controlled with a set of filter rules, which are
defined as a security policy to z/OS.

� Intrusion Detection Services are implemented at both the network and
transport layers of the TCP/IP stack. It detects and protects against potentially
malicious or damaging behavior directed at the system’s open network
services. This function is controlled with an IDS policy that is defined to z/OS.

� SAF protection is provided at the transport layer to control local user access
to TCP/IP resources such as the TCP/IP stack, network resources, and TCP
and UDP ports. These TCP/IP resources are defined to SAF using the SAF
SERVAUTH profile.

� Applications that are part of z/OS Communications Server use SAF for
identification, authentication, and access control for files, datasets, and other
application resources.

Both Kerberos and SSL/TLS are located as
extensions to the sockets APIs and applications
have to be modified to make use of these security
functions.

IPSec resides at the networking layer and is
transparent to upper-layer protocols,
including both transport layer protocol and
application protocol.

IP packet filtering blocks out all IP
traffic that this systems doesn't
specifically permit.

Protect the system

Intrusion detection services protect
against attacks of various types on
the system's services. IDS
protection is provided at both the IP
and transport layers.

The SAF SERVAUTH class is used to
prevent unauthorized user access to
TCP/IP resources (stack, ports,
networks)

SAF to authenticate users and prevent
unauthorized access to datasets, files,
and SERVAUTH protected resources.

AT-TLS is TCP/IP stack service that provides
SSL/TLS services at the TCP transport layer and
is transparent to upper-layer protocols.

Protect the data in the network

TCP transport layer

SSL /
TLS Kerberos

API layer

Application layer
SAF protection

IP Networking layer

Application specific

IDS

AT-TLS

SAF

IDS

IP Filtering

IPSec
142 CICS and SOA: Architecture and Integration Choices

Next, we look at the security functions that protect data that flows to and from the
z/OS system in the network:

� IPSec is implemented at the network layer and provides authentication,
message integrity validation, and encryption for network traffic. IPSec can be
configured at a very wide scope to cover all traffic between two systems, or at
a narrow scope to protect traffic for specific applications. Because it is
implemented at the IP layer, it can protect all application protocols without
requiring any application changes.

� AT-TLS applies SSL or TLS protection to inbound and outbound network
traffic within the transport layer.

Both IPSec and AT-TLS are controlled using a network security policy.

� z/OS provides SSL/TLS application interfaces so that applications can
continue to access SSL/TLS services as a sockets layer service.

Kerberos services are also available for applications as a sockets layer
service.

6.5 Technology comparison table

This section describes which security models are supported by the various
access technologies that CICS supports. Table 6-1 provides this comparison in
table form. Refer to the following sections for a more detailed explanation.

Table 6-1 Security models: Technology comparison table

CICS Web
services

CICS TG
for z/OS

WOLA CICS web
support

WebSphere
MQ

CICS
sockets

Basic
authentica-
tion

Supported Supported Not
supported

Supported Supported Supported

Identity
assertion

Supported Supported Supported Supported Supported Supported

z/OS
identity
propagation

Supported
when using
DataPower
and CICS
TS V4.1

Supported
when using
JCA with
CICS TG V8
and CICS
TS V4.1

Not
supported

Not
supported

Not
supported

Not
supported

SSL/TLS Supported Supported Supported Supported Supported Supported
with AT-TLS
 Chapter 6. Security 143

6.6 CICS Web services

Whereas service enablement improves openess and business agility, it also
introduces new security risks. These security risks need to be countered by
measures that protect access to the service and ensure confidentiality of data as
it is transported across the SOA infrastructure. CICS supports a wide range of
transport-based and message-based security options.

6.6.1 Transport security

Transport-based security is normally the first option considered for CICS Web
services. Different transport security options are available depending on the
transport used for invoking a CICS Web service.

Transport security options for HTTP
When a CICS Web service is invoked using HTTP, you can use basic
authentication to authenticate the web service client, and you can also use
SSL/TLS to both authenticate the client and to ensure message integrity
and confidentiality:

� CICS service provider and requester applications can be protected by HTTP
basic authentication (see “CICS web support security” on page 172).

� CICS service provider and requester applications can be secured using
HTTPS (HTTP over a SSL/TLS connection). See “CICS web support security”
on page 172 for more information about using HTTPS with CICS.

Transport security options for WebSphere MQ
When a CICS Web service is invoked using WebSphere MQ (WMQ), you can
use any of the WMQ built-in security mechanisms or you can use message
security, or a combination of both. See “Security considerations for WebSphere
MQ” on page 180 for more information about WMQ security options.

Message
security

Supported
with WS.*
standards

Not
supported

Not
supported

Not
supported

Supported
with WMQ
AMS

Not
supported

CICS Web
services

CICS TG
for z/OS

WOLA CICS web
support

WebSphere
MQ

CICS
sockets

Note: A security solution can use a combination of transport-based and
message-based security mechanisms.
144 CICS and SOA: Architecture and Integration Choices

6.6.2 SOAP message security

Transport-based security mechanisms are mature and have been optimized over
a long period of time. However, basic authentication and SSL/TLS are
point-to-point security mechanisms and might not be suitable for more complex
configurations that involve intermediaries. As illustrated in Figure 6-2, if the
service requester identifies itself to the intermediate server (for example,
WebSphere Application Server or an ESB), and the intermediate server identifies
itself to the service provider, the target service will normally run with the identity
of the intermediate gateway rather than the service requester.

Figure 6-2 Transport-level security with an intermediate server

The WS-Security specification provides a foundational set of SOAP message
extensions for building secure web services by defining new elements to be used
in the SOAP header for message-level security. It specifies the use of security
tokens, digital signatures, and XML encryption to protect and authenticate SOAP
messages. It specifies the use of digital signatures to provide integrity for XML
elements in a SOAP message, and it specifies the use of encryption to provide
confidentiality for XML elements in a SOAP message. The specification allows
you to protect the body of the message or any XML elements within the body or
the header. You can give different levels of protection to different elements within
the SOAP message.

 Service
provider

Intermediate
 server

 Security
credentials

 Service
requester

 Security
credentials
 Chapter 6. Security 145

One advantage of using WS-Security over SSL/TLS is that it can provide
end-to-end message-level security. This means that the service can run with the
identity of the service requester because the requester’s identity can flow with
the message across the intermediary servers. Message security can also be
protected even if the message goes through multiple untrusted intermediaries
(Figure 6-3).

Figure 6-3 SOAP message security with an intermediate server

Figure 6-4 shows how a SOAP message can be extended with security data that
is used to authenticate the service requester and to protect the message as it
passes between the service requester and the CICS service provider. The
network portion of the diagram could contain any number of intermediate nodes,
some of which might not be trusted.

Figure 6-4 An example of a typical scenario with WS-Security

 Service
provider

Intermediate
 server

 Service
requester

 Security
credentials

<SOAPMessage
with WS-Sec>

Account
No.
Balance

Network

Bank Teller 1

Bank Data
Center

[Security Token]
User: Teller1

Password: XYZ

Digital Signature

Authentication
Security Token

Integrity
Signature

Confidentiality
Encryption

CICS
146 CICS and SOA: Architecture and Integration Choices

The SOAP message shown in Figure 6-4 on page 146 contains three pieces of
security data:

� A security token used to authenticate and identify user Teller1

� An XML digital signature to ensure that no one modifies the message while it
is in transit without the modification being detected

� An account balance XML element that is encrypted to ensure confidentiality

CICS also supports the WS-Trust specification, which provides a framework
for requesting and issuing security tokens and managing trust relationships
between web service requesters and providers. This extension to the
authentication of SOAP messages enables CICS Web services to validate and
exchange security tokens of different types using a trusted third party known as a
Security Token Service (STS). IBM Tivoli Federated Identity Manager (TFIM) can
act as an STS by providing the necessary framework to support
standards-based, federated identity management between enterprises that have
established a trust relationship.

To read more about the WS-Security and WS-Trust specifications, refer to
this website:

http://www.oasis-open.org/

CICS supports a wide range of message-based options for securing
SOAP messages:

� Basic authentication

In service provider mode, CICS can accept a Username token in the SOAP
message header for authentication on inbound SOAP messages. The
Username token contains a username element and a password element.
CICS verifies the username and password using an external security
manager such as RACF. If this is successful, CICS sets the user ID of the
pipeline task to this value.

Username tokens that contain a password are not supported on outbound
SOAP messages when CICS is the service requester. This is because CICS
does not have access to a user’s password. However, if there is a
requirement to do this, then it is possible to write a header processing
program that adds a Username token to the outbound SOAP message.

� Advanced authentication

In service provider and requester pipelines, you can verify or exchange
security tokens with a Security Token Service (STS) for authentication
purposes. The STS enables CICS to accept and send messages that have
security tokens in the message header that are not normally supported, for
example, LTPA and Kerberos tokens or SAML assertions.
 Chapter 6. Security 147

http://www.oasis-open.org/

For an inbound message, you can select to verify or exchange a security
token. If the request is to exchange the security token, CICS must receive a
Username token back from the STS. For an outbound message, you can only
exchange a Username token for a security token.

� Signing with an X.509 certificate

In service provider and service requester mode, you can digitally sign a part
of the SOAP message to ensure that the data is not modified in transit.

An X.509 certificate that is used for signing can also be used for
authentication. This type of security token is known as a binary security
token. In service provider mode, CICS maps the certificate to a RACF user ID
and sets the user ID of the pipeline task to this value. In service requester
mode, CICS can send an X.509 certificate in the SOAP message header to
the service provider that is then used for authentication purposes.

� Encrypting

In service provider and service requester mode, you can use XML encryption
to encrypt the SOAP message body using a symmetric algorithm such as
Triple DES or AES. A symmetric algorithm is where the same key is used to
encrypt and decrypt the data.

� Identity assertion

In service provider pipelines, CICS can accept a Username token or X.509
certificate in the SOAP message header as an asserted identity. When a
Username token is used, the password is not required. When an X.509
certificate is used the certificate is mapped to a RACF user ID. CICS trusts
the provided identity and sets the user ID of the pipeline task to this value.

In service requester pipelines, CICS can send a Username token without the
password in the SOAP message header to the service provider.

� z/OS identity propagation

In service provider mode, you can use an unauthenticated Extended Identity
Context Reference (ICRX). An ICRX identity token is a z/OS identifier that
maps to a user ID. CICS resolves the ICRX identity token to a RACF user ID
and sets the user ID of the pipeline task to this value. For more information
about z/OS identity propagation see “z/OS identity propagation support with
CICS Web services” on page 151.

Important: ICSF must be started and configured with cryptographic
devices in order to use the CICS WS-Security XML digital signature and
XML encryption support.
148 CICS and SOA: Architecture and Integration Choices

6.6.3 Java-based SOAP pipeline

In CICS TS V4.2, as well as the native SOAP pipeline, CICS supports using the
Axis2 Java-based SOAP engine to process web service requests in provider and
requester pipelines. When using a Java-based SOAP pipeline, you should be
aware of the following additional security considerations:

� All transport-based security mechanisms (for example, SSL/TLS) are
supported.

� For non-Java web service applications, where the Java-based SOAP pipeline
is being used in place of the normal SOAP pipeline, all SOAP
message-based security mechanisms continue to be supported.

For Axis2 web service Java applications, for example, JAX-WS applications,
where the complete processing of the web service invocation takes place
within a JVM, SOAP message-based authentication and identification
(including identity assertion and z/OS identity propagation) are not supported.

6.6.4 Using an SOA appliance to secure CICS Web services

An SOA appliance can be used as an SOA Gateway or an ESB. One role of the
appliance can be to secure service requests, thus offloading expensive XML and
cryptography processing from the target server that runs the service.

The WebSphere DataPower XI52 is an SOA appliance that is well known for its
security features and its high throughput in XML processing. It can be integrated
in a DMZ and it can detect and reject XML attacks. The appliance can act as an
XML accelerator and transformation engine, be used as a firewall and security
device (authentication, authorization, auditing, encryption and decryption, and so
on), and also function as an Enterprise Service Bus (ESB). It can perform
complex security checks without performance degradation.

Restriction: Authentication and identification using SOAP message security
are not supported for Axis2 web service Java applications.
 Chapter 6. Security 149

DataPower can be used in conjunction with CICS Web services to help secure
the services and to offload expensive operations by processing the complex part
of XML messages (such as an XML digital signature) at wirespeed (Figure 6-5).

Figure 6-5 Using a WebSphere DataPower SOA Appliance with CICS Web services

DataPower is typically used in the following scenarios:

� To process encrypted or signed SOAP or XML messages, thus off-loading
some of the CPU-intensive XML processing from CICS

� To intercept and reject malicious SOAP or XML messages

� To transform XML data to non-XML data, for example, COBOL binary data

� To switch from the HTTPS protocol to another protocol, for example, HTTP or
WebSphere MQ, thus off-loading the SSL/TLS processing from CICS

These DataPower capabilities are also available in the DataPower XI50z, which
is a blade-form factor that is installed in the zEnterprise Blade Extension (zBX).
Some of the additional benefits from using DataPower XI50z include these:

� Secure integration between DataPower and the virtual servers within
the zEnterprise through the use of the high-speed intraensemble data
network (IEDN)

� Extended ESB integration across the zEnterprise

� Centralized installation, operations, and management of DataPower using the
Unified Resource Manager3

3 The Unified Resource Manager provides integrated management across all elements of the
zEnterprise.

CICS
Service

Providers

Service
Requesters

SOAP

SOAP

SOAP

Cobol/
MQ
Appl

DataPower XI52

Encrypted and
Signed SOAP/HTTP

In-the-clear
SOAP/HTTP

Malicious
SOAP/HTTP

COBOL/MQ
150 CICS and SOA: Architecture and Integration Choices

To read more about DataPower XI52 and DataPower XI50z, refer to this URL:

http://www.ibm.com/software/integration/datapower/xi50/#

z/OS identity propagation support with CICS Web services
WebSphere DataPower can be used to implement identity propagation with
CICS Web services. Figure 6-6 shows an overview of a CICS Web services
identity propagation scenario.

Figure 6-6 z/OS identity propagation with CICS Web services

Figure 6-6 shows an employee of the business partner of a bank (Bob) who
makes a web service call that is authenticated by WebSphere DataPower. After
successful authentication, WebSphere DataPower propagates the user’s
distributed identity (in the form of a distinguished name) to the CICS core
banking application. The bank has a requirement to authorize requests based on
a generic RACF user ID that represents the business partner, but also to keep an
audit trail of which business partner employee invoked the service.

This is the sequence of processing steps:

1. A partner employee Bob uses a partner client application that sends a web
service request to the bank.

2. The service requester application generates a BinarySecurityToken element
from Bob’s X.509 certificate, signs the message with Bob’s private key, and
sends the request to the target endpoint, which is configured to be the
DataPower appliance.

Web services
requester

JAX-WS
Web

Services

Partner Client
Application

CICSCICS

z/OS

WebSphere
DataPower XI52

Bank

Bob

CN=Bob Clark, OU=Retail,
O=IBMPartner1, C=UK

RACMAP ID(PARTNER1) MAP
USERDIDFILTER(NAME(‘O=IBMPartner1,C=UK'))

REGISTRY(NAME(‘*’)) WITHLABEL(‘Partner1')

PARTNER1

CN=Bob Clark, OU=Retail, O=IBMPartner1, C=UK

ICRX

SOAP/HTTP

RACF
User ID

RACF

SMF

 RACF user ID

 Distiguished Name

Audit Record
 Chapter 6. Security 151

http://www.ibm.com/software/integration/datapower/xi50/#

3. DataPower verifies the XML digital signature.

4. DataPower extracts the identity of the service requester (CN=Bob Clark,
OU=Retail,O=IBMPartner1,C=UK) using the certificate passed as part of the
<X509/> element of the digitally signed message.

5. DataPower authenticates the user by validating the signer certificate of the
digitally signed message.

6. DataPower propagates Bob’s identity (Bob’s DN) to CICS in the form of an
ICRX over a trusted SSL connection.

7. CICS receives the SOAP message from DataPower. The PIPELINE
configuration file includes the CICS-supplied WS-Security handler program
which locates the ICRX in the WS-Security header and uses the ICRX to
identify the user.

8. CICS issues a RACROUTE REQUEST=VERIFY to map the ICRX into the
RACF user ID PARTNER1.

9. The CICS task runs under the mapped RACF user ID (PARTNER1) but
retains the association with the original distributed identity (CN=Bob Clark,
OU=Retail, O=IBMPartner1, C=UK).

The advantage of this solution is that the original caller's identity is not lost. It is
stored as an extension to the RACF identity. An interesting aspect of
ICRX-based identity propagation is that it makes shared role-based RACF user
IDs (DEV/MANAGER/SYSADMIN/OPERATOR, and so on) more desirable than
in the past because an audit trail to a specific individual can be maintained even
if the target RACF identity is shared.

Note: DataPower provides a range of authentication mechanisms including
LDAP authentication, SSL client authentication, SAML authentication, and
many more.

Important: This mapping is based on the RACMAP command issued by the
security administrator that maps all employees of the business partner to
the same RACF user ID.
152 CICS and SOA: Architecture and Integration Choices

Trust
For identity assertion with web services, the intermediate server should establish
a trust relationship with the CICS region by authenticating itself and then by
being recognized as a trusted partner of the CICS region. CICS supports two
different models for establishing this trust relationship:

� Trust token

The intermediary server sends a trust token to CICS.

� Blind trust

Trust is established at the transport level, for example, with SSL client
authentication.

The CICS Web services identity propagation support is normally used with the
blind trust model, which has the advantage that the trust established between the
intermediary server and CICS can be persistent. This can occur, for example, by
using SSL persistent connections or a Virtual Private Network (VPN). It does not
need to be re-established for each SOAP message. When using SSL client
authentication to establish the trust relationship, the SSL certificate that
WebSphere DataPower uses to identify itself can be associated with a RACF
user ID, and surrogate user checking can then be used to authorize this user ID
to assert the RACF ID that is mapped from the distributed identity.

For detailed information about configuring identity propagation with CICS Web
services and WebSphere DataPower refer to z/OS Identity Propagation,
SG24-7850.

Note: A surrogate user is a RACF user ID that is authorized to act on behalf of
another user (the original user).
 Chapter 6. Security 153

6.6.5 Security considerations for CICS Web services

Figure 6-7 shows a typical web services security scenario in which a client
makes a call to an intermediate server, which then makes a web service call
to CICS.

Figure 6-7 CICS Web services security questions

The following sections containing lists of questions and comments will help you
to choose between the different options available for securing the CICS Web
service shown in Figure 6-7.

Authentication
Consider the following authentication-related questions:

� Does the service requester need to authenticate?

This can be decided for specific services rather than there being a general
rule for the application. It might be appropriate to run read-only services using
a generic user ID, whereas more sensitive services might need the requester
to authenticate. In CICS, this split can be made by running secured services
on a different pipeline to unsecured services.

� Who authenticates the service requester? CICS or an intermediary server?

CICS can authenticate service requesters directly, or an intermediary might
be able to provide an authentication service to CICS. In this case, the
intermediary server authenticates the service requester and then flows an
asserted identity to CICS.

CICS TS

Service
Requester

CICS
Web

Services
support

Business
Logic

program

Intermediate
Server

Pipeline

App
WS-Security/
WS-Trust

Authentication and/or
Identification

SOAP/HTTPS

Confidentiality
and Integrity

Authorization

Authentication and
Identification

Audit
Audit

Client

Authorization
154 CICS and SOA: Architecture and Integration Choices

� Will you use transport-based or SOAP message based authentication?

You might choose to use only transport-based security to secure your CICS
Web services environment in these circumstances:

– No intermediaries are used in the web service environment. Or, if there
are intermediaries, you can guarantee that after the data is decrypted, it
cannot be accessed by an untrusted node or process.

– The transport is only based on HTTP.

– Performance is your primary concern (see “Performance” on page 158).

– The web services client is a stand-alone Java program.

WS-Security can only be applied to clients that run in a web services
environment that supports the WS-Security specification (for example,
WebSphere Application Server).

You might choose to use WS-Security (possibly in addition to transport-level
security) in these circumstances:

– Intermediaries are used, some of which might be untrusted.

Security credentials that flow in the SOAP message can pass through any
number of intermediaries. Protecting confidential information in the actual
SOAP message can avoid the overhead of encrypting and decrypting via
SSL at every intermediary node.

– Multiple transport protocols are used.

WS-Security works across multiple transports and is independent of the
underlying transport protocol.

– You might choose to implement your own security procedures and
processing by writing a custom message handler program that can
process secure SOAP messages in the pipeline.

� If you chose SOAP message-based security, what token type will be used?

– Username tokens, X.509 certificates, and ICRX tokens can be processed
directly by the CICS-supplied security handler.

– You will most likely have to configure the CICS-supplied handler to call an
STS if other token types are used.

– You can also use an STS to process non-standard token types or you can
write a custom security handler.
 Chapter 6. Security 155

Identification
Consider the following identification-related question: How will you assign the
RACF user ID for running the CICS business logic program?

� It might come from the authentication credentials.

� It might be asserted by an intermediate server, either as a Username token,
X.509 certificate, or a ICRX.

� It might be assigned by a user-written message handler that runs as part of
the pipeline processing.

� It might be hard-coded in CICS.

Authorization
Consider the following authorization-related question. Does the CICS task need
to run with the service requester’s identity?

If it is not necessary to run the CICS task with the service requester’s identity, a
RACF user ID can be specified in a URIMAP (this avoids running the web service
with the CICS default user ID).

If it is necessary to run the CICS task with the service requester’s identity:

� In the case where no intermediaries are used, CICS authorization processing
can be based on the RACF user ID that is associated with the security token
that is used by the requester to authenticate.

� In the case where intermediaries are used, CICS authorization processing can
be based on the asserted identity token that is passed by the intermediary.

Surrogate authorization checking should be used to ensure that the intermediary
has the correct authority to start work on behalf of the asserted identity.
156 CICS and SOA: Architecture and Integration Choices

Integrity
Consider the following integrity-related questions:

� Does the integrity of the data warrant protection?

If SOAP messages do not contain critical data, or if the messages are only
transmitted within an internal secure network, then it might be reasonable to
flow unsigned messages.

A single CICS region can process signed and unsigned messages. For
example, you can define pipelines that expect to receive signed messages
and other pipelines that will reject signed messages.

� Are intermediaries used?

SSL/TLS only provides integrity of the data during the message transmission.
XML signatures might be necessary to protect message integrity within every
intermediary node.

� Does CICS need to deal with signed messages?

It might be appropriate for an intermediary server to terminate an HTTPS
session and forward the request to CICS across a secured network as an
HTTP request.

Equally, it might be appropriate for an intermediary server to validate an XML
digital signature and forward an unsigned message to CICS. In this case, it is
still possible for the service requester’s identity to flow with the unsigned
message so that it can be used for CICS resource authorization checking.

Confidentiality
Consider the following confidentiality-related questions:

� Does the sensitivity of the data warrant encryption?

If SOAP messages do not contain sensitive data, or if the messages are only
transmitted within an internal secure network, then it might be reasonable to
flow unencrypted messages.

� Are intermediaries used?

SSL/TLS only provides privacy of the data during the message transmission.
Protecting confidential information in the actual SOAP message using XML
encryption might be necessary to protect message confidentiality within every
intermediary node.

Be aware that XML encryption might make it difficult to perform content-based
routing of SOAP messages because the intermediary server will not be able
to read all parts of the message body.
 Chapter 6. Security 157

� Does CICS need to deal with encrypted messages?

It might be appropriate for an intermediary server to terminate an HTTPS
session or to decrypt XML-encrypted messages and forward unencrypted
messages to CICS.

� Does CICS call an STS?

You should use SSL/TLS to keep the connection to the STS secure.

Auditing
Consider the following auditing-related questions:

� Does the service request need to be audited?

Typical information that needs to be captured is the RACF user ID used for
running the CICS task, the operation, and the nature of the data update.

� Do you need an audit log that contains the original distributed identity?

Consider the z/OS identity propagation support that provides for identity
assertion, control, and auditing as part of the built-in processing within CICS,
RACF, and DataPower.

� Will you create an audit trail in CICS or in an intermediary server, or both?

It might be that you need an audit trail in all the servers that are involved in
processing a request.

DataPower is an ideal place to perform auditing because it provides a
configurable solution that supports multiple format log records that can be
stored on the appliance or transferred off-device.

Performance
Security is often at odds with performance. That is, the most secure technologies
are often expensive to implement. Inevitably, the need to implement a solution
that meets the security requirements must be balanced against the need to meet
the solution’s performance objectives.
158 CICS and SOA: Architecture and Integration Choices

After you have a clear understanding of the security requirements and security
implementation options, consider the following CICS performance-related questions.

� Will you use transport-based security or SOAP message security?

SSL/TLS is a mature technology that has been optimized over a long period
of time, and there are ways of optimizing performance such as persistent
TCP/IP connections and SSL session ID reuse. These optimizations mean
that expensive security functions, such as SSL handshaking, can be avoided
for service requests following the initial handshake.

WS-Security support, in comparison, is completely stateless, and expensive
security functions, such as XML digital signature validation, are repeated for
each service request.

In practice, the most optimum solution is often to use a combination of
transport-based and SOAP message based security, for example,
transport-based security for confidentiality and data integrity and SOAP
message-based security for transport of security tokens.

� Where is authentication done and how many times?

The cost of authentication in CICS is dependent on the security token used in
the authentication. Simple security tokens like UsernameTokens are less
expensive than binary security tokens such as X.509 certificates. More
advanced authentication using a STS will incur an additional overhead.

If authentication is done by an intermediary server, where possible, the
intermediary server should flow an asserted identity to CICS. This avoids the
overhead of authenticating multiple times.

� Are you using hardware cryptographic devices?

Cryptographic hardware and Integrated Cryptographic Hardware Facility
(ICSF) are prerequisites for CICS XML digital signature and XML encryption
processing. They are also required in order to maximize performance when
CICS is configured to use SSL/TLS.

� What cipher suite are you using?

To utilize hardware cryptography, the chosen cipher suite algorithm must be
available in hardware.

� Is there a need for an SOA appliance?

An SOA appliance such as WebSphere DataPower can be used in
conjunction with CICS Web services to help secure the services and to
offload expensive operations by processing the complex part of XML
messages (such as an XML signature) at wirespeed.
 Chapter 6. Security 159

6.7 CICS TG for z/OS

In this section, we look into the security issues that arise when using the CICS
TG to connect to CICS. We consider the security options when using the JCA
resource adapter and also when connecting from an ECI Version 2 client.

6.7.1 JCA and security
The JCA defines a standard set of system-level contracts between a JEE
application server and a resource adapter. These system-level contracts define
the scope of the managed environment that the JEE application server provides
for JCA components. One of the standard contracts is the security management
contract that enables secure access to an EIS. Both container-managed sign-on
(in which the JEE application server is responsible for flowing security context to
the EIS) and component-managed sign-on (in which the application is
responsible for flowing security context to the EIS) are supported.

When deploying a JEE component, the application deployer must set the
res-auth element in the deployment descriptor to indicate which method is
being used:

� Container managed security

If you are using container-managed security, you must set the res-auth
deployment descriptor element to Container. The application deployer must
set up the authentication information (for example, set the user ID and
password to be used for the connection). In some circumstances, the
container can derive an identity to use from the currently executing Java
principal. The application uses the getConnection() method of the
connection factory and lets the application server manage the security to sign
on to CICS.

� Component-managed security

For component-managed security, the res-auth element needs to be set to
Application. The application code can then supply the user ID and password
when making the connection.

Different applications can use different security methods (container-managed or
component-managed) based on the application deployment descriptor.
However, container-managed security is normally recommended because it is a
good practice to separate the business logic of an application from qualities of
service such as security.
160 CICS and SOA: Architecture and Integration Choices

6.7.2 CICS TG for z/OS security
When using the JCA with CICS TG for z/OS, WebSphere Application Server
normally accesses CICS through a Gateway daemon running on z/OS
(Figure 6-8).

Figure 6-8 CICS TG for z/OS

In Figure 6-8, the JCA resource adapter provided by CICS TG is used to send an
External Call Interface (ECI) request to CICS. The Gateway daemon is the entry
point to the System z platform in which the CICS system is running, so it is
normal to secure incoming ECI requests from clients.

The CICS TG for z/OS supports the following options for securing ECI requests:

� Basic authentication

When using an EXCI connection between the Gateway daemon and CICS,
the Gateway daemon can be configured to validate a user ID and password
for each ECI request.

When using an IPIC connection between the Gateway daemon and CICS, CICS
can be configured to validate a user ID and password for each ECI request.

� Identity assertion

After the user has authenticated to WebSphere Application Server, the user’s
password is unlikely to be available to send to the Gateway daemon. In this
case, the Gateway daemon and CICS can be configured to accept a user ID
without a password. In this case, establish a trust relationship between the
application server, the Gateway daemon, and the CICS server (see “Trust” on
page 162).

Note: A passphrase can also be used with CICS TG V8.1. A passphrase is
similar to a password in usage, but is generally longer for added security.

IPIC

z/OS

CICS

CICS TGECI
WebSphere
Application

Server

JCA
Resource
Adapter

JCA
Resource
Adapter

JCA
Resource
Adapter EXCI

RACF
user ID
RACF
user ID
 Chapter 6. Security 161

� Identity propagation

This is a unified security solution that provides additional accountability, which
is achieved by passing a distributed identity to CICS instead of a user ID and
password.

This is another form of identity assertion, and therefore you should establish
the required trust relationships (see “Trust” on page 162).

� SSL/TLS

SSL/TLS can be used for confidentiality, data integrity, and optionally for
X.509 certificate authentication.

Trust
For identity assertion and identity propagation with CICS TG, we recommend
that the connection between WebSphere Application Server and the Gateway
daemon be configured as a trusted connection using one of the following ways:

� Using SSL client authentication to authenticate the application server to the
Gateway daemon.

� Using a Virtual Private Network (VPN) or other network security configuration
(see “z/OS Communications Server security” on page 141).

� Using a CICS TG security exit that allows simple pre-configured rules to be
set, ensuring that only specific application servers with a known key can
connect. For more information about using a CICS TG security exit, refer to
the CE51 SupportPac available here:

ftp://ftp.software.ibm.com/software/htp/cics/support/supportpacs/
individual/ce51.pdf

A trust relationship should also be configured between the Gateway daemon and
the CICS server in one of the following ways:

� When an EXCI connection is used, trust can be established using the
multiregion operation (MRO) bind and link security mechanisms:

Bind security Verifies that the system wanting to connect (bind) to
CICS is authorized to do so.

Link security The link user ID is the user ID associated with the
Gateway daemon, which is passing the request to
CICS. The link user ID, like the user ID flowed with the
message, must be authorized to access all transactions
and resources invoked as a result of the request.

Surrogate security checks can also be enabled to confirm that the user ID
associated with the Gateway daemon (the link user ID) has the appropriate
authority to flow a specific user ID to CICS.
162 CICS and SOA: Architecture and Integration Choices

� When an IPIC connection is used, trust should be established in one of the
following ways:

– Using a pre-defined CICS IPCONN resource definition, which is a basic
form of security that only allows a Gateway daemon configured with the
correct name to connect to CICS

– Using sysplex sockets, which can ensure that if non-SSL IPIC
connections are used into CICS then they must come from an IP stack
on the same sysplex

– Using NET ACCESS zones, which are RACF-based rules used by the IP
stack that can prevent/allow preselected IP addresses from connecting to
a given TCP/IP service in use by CICS

– Using a firewall technology

z/OS identity propagation support with CICS TG
Identity propagation provides a new security architecture for controlling identity
assertion when connecting JEE applications to CICS. Identity propagation
provides for a variety of identity assertion configurations when the WebSphere
Application Server and CICS components are connected in a secure topology.
When using the Gateway daemon on z/OS, identity propagation is only supported
when the Gateway daemon and CICS region are located on the same sysplex.

Figure 6-9 shows an overview of a CICS TG identity propagation scenario.

Figure 6-9 z/OS identity propagation with CICS TG

IPIC

z/OS

CICSCICS TGCICS TGSSL
WebSphere
Application

Server

JCA
Resource
Adapter

JCA
Resource
Adapter

JCA
Resource
Adapter ICRX

RACF
user IDAlice

RACF

SMF

 RACF user ID

 Distinguished Name

Audit Record

RACMAP ID(ALICEJ) MAP USERDIDFILTER(NAME(‘CN=Alice Jones,
OU=SalesDept,O=IBM,C=UK’)) REGISTRY(NAME(‘ldaps://myldap.uk.ibm.com’))
WITHLABEL(‘Alice’)

LDAP

Basic Authentication
CN=Alice Jones,
OU=SalesDept, O=IBM, C=UK

ALICEJ

CN=Alice Jones,OU=SalesDept,O=IBM,C=UK
 Chapter 6. Security 163

Figure 6-9 on page 163 shows an employee (Alice) who logs on to the
company’s WebSphere Application Server. After successful authentication, the
WebSphere application makes a JCA call to CICS. The company has a
requirement to authorize requests based on Alice’s RACF user ID.

The sequence of processing steps is as follows:

1. Alice logs on to the application server and authenticates with her distributed
identity (CN=Alice Jones,OU=SalesDept,O=IBM,C=UK).

2. The CICS TG provided login module that the JEE application is configured to
use attaches Alice’s distributed identity in the form of Distinguished Name
(DN), onto the outbound request to the CICS TG.

3. The SSL connection from the application server to the Gateway daemon is
client authenticated, thus establishing a trust between the two servers.

4. The Gateway daemon receives Alice’s DN and flows it as part of an Extended
Identity Context Reference (ICRX) to CICS.

5. CICS receives the request from the Gateway daemon and uses the ICRX to
identify the user.

6. CICS issues a request to RACF (RACROUTE REQUEST=VERIFY) to map
the ICRX into the RACF user ID ALICEJ.

7. The CICS task runs under the mapped RACF user ID (ALICEJ) but retains
the association with the original distributed identity (CN=Alice
Jones,OU=SalesDept,O=IBM,C=UK).

SSL/TLS support with CICS TG
The CICS TG for z/OS provides SSL/TLS support via the Java Secure Sockets
Extension (JSSE). SSL/TLS provides integrity and confidentiality for the data
passed between the client and the Gateway daemon, and, optionally, for
authentication using a client X.509 certificate.

Note: Identity propagation is supported only when using ECI calls over IPIC
connections to CICS.

Important: This mapping is based on the RACMAP command issued by the
security administrator that maps Alice’s distributed identity to her RACF
user ID.

Important: The advantage of this solution is that the original caller's identity is
not lost. It is stored as an extension to the RACF identity.
164 CICS and SOA: Architecture and Integration Choices

The features of the SSL/TLS support available with CICS TG z/OS include these:

� RACF keyring support

SSL keystores can be stored in a RACF database.

� System z hardware cryptographic support

This provides the ability for the CPU to offload SSL handshakes to
hardware. This can substantially reduce the CPU cost of SSL handshakes
and SSL data encryption.

� SSL cypher suite selection

The choice of SSL cypher suite can be configured.

6.7.3 ECI Version 2 and security
When connecting from an ECI Version 2 client, the most likely security
implementation will be basic authentication because SSL/TLS is not supported
with ECI Version 2 clients.

The Gateway daemon and CICS can be configured to accept an asserted user
ID without a password. However, some form of network security will be required
(see 6.4, “z/OS Communications Server security” on page 141) to make sure that
the request is coming from a trusted client.

6.7.4 External Security Interface (ESI)

The ESI is used for verifying and changing the user ID and password information
held in the CICS external security manager (ESM), such as RACF.

ESI calls to CICS can be made from Java, .NET, or C clients. It provides two
basic functions:

Verify password This allows a client application to verify a password for a
given user ID.

Change password This allows a client application to change the password
for a given user ID.

Restriction: The ECI Version 2 client can only communicate with a CICS TG
using the TCP network protocol. The use of SSL/TLS is not supported.

Note: In CICS TG V8.1, the ESI is supported with ECI Version 2 clients.
 Chapter 6. Security 165

6.7.5 Security considerations for CICS TG

Figure 6-10 shows two CICS TG security scenarios:

� Any client makes a call to a WebSphere Application Server, which then
makes a JCA call to CICS using the CICS TG resource adapter.

� An ECI Version 2 client makes a call to CICS via the CICS TG.

Figure 6-10 CICS TG security questions

The following list of questions and comments will help you to choose between the
different options available for securing the ECI requests to CICS shown in
Figure 6-10.

Note: Prior to CICS TG V8.1, only the CICS TG Multiplatforms products
supported ESI and only with SNA APPC connections. CICS TG V8.1 extends
the ESI support to CICS TG for z/OS, and the ESI APIs are also enhanced to
support password phrases.

CICS

CICS
TG

Business
Logic

Program

WebSphere
Application

Server

JEE
Application

Authentication and/or
Identification

SSL

Confidentiality
and Integrity

Authorization

Authentication and
Identification

Audit
Audit

Client

Authorization z/OS

JCA resource
adapter EXCI

IPIC

Remote C client
application

ECI Version 2

TCP

TCP

1

2

166 CICS and SOA: Architecture and Integration Choices

Authentication
Consider the following authentication-related questions:

� Does the requester need to authenticate?

This can be decided for specific requests rather than a general rule for all
requests. It might be appropriate to run one Gateway daemon for
unauthenticated requests and another for authenticated requests.

� Who authenticates the requester, CICS TG or an intermediary server?

CICS TG can authenticate requesters directly, or an intermediary might be
able to assert an identity to CICS.

Identification
Consider the following identification-related question. How will you assign the
RACF user ID for running the CICS business logic program?

� It might come from the authentication credentials presented to the
Gateway daemon.

� It might be asserted by WebSphere Application Server, either as a RACF
user ID or an ICRX.

� It might be hard-coded in the CICS.

Authorization
Consider the following authorization-related question. Does the CICS task need
to run with the requester’s identity?

If it is not necessary to run the CICS task with the requester’s identity, a RACF
user ID can be specified in the CICS IPCONN resource definition (if using an IPIC
connection) or in the SESSIONS resource definition (if using an EXCI connection).

If it is necessary to run the CICS task with the requester’s identity, implement a
form of identity assertion by flowing either a RACF user ID to the CICS TG, or by
implementing identity propagation.

When using identity assertion, a trust relationship should be established between
the requester and the Gateway daemon, and between the daemon and CICS
server (see “Trust” on page 162).

Integrity and confidentiality
Consider the following integrity and confidentiality related question. Does the
integrity and privacy of the data warrant protection?
 Chapter 6. Security 167

If messages do not contain critical data, or if the messages are only transmitted
within an internal secure network, then it might be reasonable to flow messages
in the clear.

If messages need to be protected, configure a secure connection between the
requester and the Gateway daemon using a VPN or an SSL/TLS connection.

Auditing
Consider the following auditing-related questions:

� Does the request need to be audited?

Typical information that needs to be captured is the RACF user ID used for
running the CICS task, the operation, and the nature of the data update.

� Do you need an audit log that contains the original distributed identity?

Consider z/OS identity propagation support, which provides for identity
assertion, control, and auditing as part of the built-in processing within CICS,
RACF, and CICS TG.

Performance
The CICS TG is one of the best-performing connectivity options, especially for
short-to-medium length messages. However, there is always a performance cost
associated with security, so consider the following performance-related questions.

� Where is authentication done and how many times?

The cost of authentication in CICS TG is dependent on whether you are using
user ID and password authentication or X.509 certificates.

If authentication is done by a WebSphere Application Server, the JCA
resource adapter provided by the CICS TG can assert the original user’s
identity to CICS. This avoids the overhead of authenticating multiple times.

� Will you use SSL/TLS?

When using SSL/TLS, it is particularly important to have an efficient
connection-pooling mechanism, because otherwise, a significant proportion
of the time, from making the connection to receiving the result from CICS and
closing the connection, can be in the SSL handshaking. The JCA
connection-pooling mechanism mitigates this overhead by allowing
connections to be pooled by the WebSphere Application Server pool manager
so that SSL handshaking for each request is not required.

Note: SSL/TLS is not supported for ECI Version 2 clients.
168 CICS and SOA: Architecture and Integration Choices

� Are you using hardware cryptographic devices?

Cryptographic hardware and ICSF is required to maximize performance when
the Gateway daemon is configured to use SSL/TLS.

You need to configure the Gateway daemon to use hardware cryptography.

� What cipher suite are you using?

To utilize hardware cryptography, the chosen cipher suite algorithm must be
available in hardware.

6.8 WOLA

In a z/OS-only topology a JEE application running in a WebSphere Application
Server can connect to CICS using the WebSphere Optimized Local Adapters
(WOLA) JCA adapter. In this scenario, because both WebSphere and CICS are
running on the same LPAR, a local cross-memory mechanism is used for
connecting the two servers. This has certain security advantages:

� The application server and CICS are able to share the same RACF user
registry for authentication and authorization checks.

� The application server and CICS are installed in the same MVS LPAR and,
therefore, the connection between the servers is inherently more secure.

� It allows the identity associated with the WebSphere thread to be asserted
into CICS so that the CICS task runs with the same identity. This form of
identity assertion is known as thread identity support.

Important: The default with the CICS TG for z/OS is for hardware
cryptography not to be used.
 Chapter 6. Security 169

6.8.1 Thread identity support
WOLA is bi-directional and therefore also can be used to connect from CICS to a
WebSphere Application Server running on z/OS (WAS z/OS). Thread identity
support is available in both directions. Figure 6-11 shows the outbound and
inbound WOLA integration scenarios and shows for each case whether thread
identity support is enabled.

Figure 6-11 WOLA security options

Figure 6-11 shows the following scenarios:

1. Outbound from WAS z/OS using the WOLA Link Server task in CICS

For receiving requests in CICS and processing them with the WOLA Link
server task (BBO$), you can indicate when you start the link server that you
want to have the link server assert the propagated WebSphere thread identity
to the CICS task that runs the target business logic program. This is done with
the SEC=Y parameter on the CICS BBOC control transaction.

Surrogate security checks can also be enabled to confirm that the user ID
associated with the WOLA link server task has the appropriate authority to
start the CICS task with the WebSphere thread identity.

2. Outbound from WAS z/OS using the WOLA APIs in CICS

For greater performance you can bypass the WOLA Link Server task. In this
case, a CICS program uses the WOLA APIs directly. Thread identity assertion
is not performed, and the user ID of the task that issues the WOLA APIs is
also used for the task that runs the business logic program.

WOLA
Link
Server

WOLA
APIs

WOLA
APIs

WAS z/OS CICS
Thread identity

Thread identity

No thread
identity

RACF
user ID
RACF
user ID

Business
logic

program
JEE

Application

RACF
user ID
RACF
user ID

11

22

33
170 CICS and SOA: Architecture and Integration Choices

3. Inbound to WAS z/OS using the WOLA APIs in CICS

Inbound requests to WAS z/OS run under the identity that is asserted in the
EJB container, and optionally this identity can be the user ID that is being
used for the calling CICS task. This requires the identity to have READ
access to the WAS z/OS CBIND class. This behavior is controlled by the
WebSphere environment variable ola_cicsuser_identity_propagate.

6.8.2 Security considerations for WOLA

When requests pass between CICS and WAS z/OS, either inbound or outbound,
take into account specific security considerations:

� For requests outbound from WAS z/OS, you need to determine whether the
CICS started task should run with the WebSphere thread identity.

� For requests inbound to WAS z/OS, you need to determine whether the
WebSphere application should run with the user ID of the calling CICS task or
the CICS region user ID.

� If thread identity support is not required and performance is the highest priority:

– For outbound from WAS z/OS to CICS, this is accomplished by specifying
SEC=N and REU=Y on the WOLA Link Server BBOC START_SRVR command, or
by using the WOLA APIs directly and not using the link server task.

– For inbound from CICS to WAS z/OS, this is accomplished by setting the
reg_flag_C2Wprop flag on the BBOA1REG API.

� You do not need to consider encryption of requests from WAS z/OS to CICS
because cross-memory communication is used. However, implement a trust
mechanism based on CICS surrogate security.

6.9 CICS web support

In this section we consider the security issues that arise when using CICS web
support. Figure 6-12 on page 172 shows how CICS web support can be used for
different types of clients:

� Web browser
� Atom feed reader
� Web service requester

Note: Thread identity support is also available when using the CICS TG JCA
resource adapter in local mode. See the ITSO Redbooks publication CICS
Transaction Gateway for z/OS Version 6.1, SG24-7161.
 Chapter 6. Security 171

The security capabilities provided with CICS web support can therefore be used
in each of these different scenarios.

In Figure 6-12 CICS acts as an HTTP server. A web client sends an HTTP or
HTTPS request to CICS. The security processing done by CICS is dependent on
how you configure the TCPIPSERVICE and URIMAP, and whether an Analyzer
program is used. CICS can also act as an HTTP client, in which case only the
URIMAP is used to control security processing.

Figure 6-12 CICS web support

CICS web support security
The following security options are available with CICS web support:

� Basic authentication

Basic authentication is an HTTP feature whereby the user ID and password
are flowed over the network in a scrambled format that uses the Base64
encoding scheme. It is, however, easily unscrambled.

To use HTTP basic authentication for an inbound web request to CICS,
specify BASIC as the value of the AUTHENTICATE attribute of the
TCPIPSERVICE definition.

For outbound web requests from CICS, use a URIMAP definition to specify
that basic authentication credentials can be captured by the global user exit,
XWBAUTH. XWBAUTH then passes this information to CICS on request, and
CICS sends the information in an HTTP authorization header.

CICS TS

CICS
Sockets
Domain

HTTP

Web alias
Trans RACF

user ID
RACF
user ID

Pipeline
alias
Trans RACF

user ID
RACF
user ID

Atom alias
Trans

RACF
user ID
RACF
user ID

Web Attach
Trans

URIMAP
matching

Analyzer
Program

HTTPS

Web Browser
or

Atom feed reader
or

Web service
requester

TCPIPSERVICE
172 CICS and SOA: Architecture and Integration Choices

� HTTPS

HTTPS (HTTP over SSL/TLS) can be used for confidentiality, data integrity,
and optionally for X.509 certificate authentication. HTTPS has the following
advantages:

– It provides a fast and secure transport.

– It provides for authentication using a client X.509 certificate.

– It provides integrity for the data passed between the HTTP client and the
HTTP server.

– It provides confidentiality for the data by using efficient secret key
cryptography.

– It can be used with hardware cryptographic devices that can significantly
reduce the cost of SSL handshakes and data encryption.

– It is mature and similarly implemented by most vendors, and therefore, is
subject to few interoperability problems.

HTTPS connections will automatically use the TLS 1.0 protocol, unless the
client specifically requires SSL 3.0.

CICS uses System SSL to support SSL/TLS, which in turn makes use of
ICSF services and hardware cryptographic if available.

To use HTTPS for an inbound web request to CICS, specify YES as the value
of the SSL attribute of the TCPIPSERVICE definition. Specify CLIENTAUTH if
you also want the client to send a client certificate.

To use HTTPS for an outbound web request from CICS, specify HTTPS as
the protocol in the target URI. If the remote server requests a client certificate,
then the default CICS certificate will be sent unless a URIMAP is specified on
the EXEC CICS WEB OPEN command, in which case the certificate named in the
URIMAP will be sent.

� Specifying a user ID in the URIMAP

The USERID attribute of the URIMAP resource specifies the user ID to be used
for the attached alias task. This user ID will apply to all inbound requests that
match the SCHEME, HOST, and PATH specified in the URIMAP. This should
only be used when the specific user does not need to be authenticated, but a
user ID other than the CICS default user ID is required to authorize access to
the associated resources.

Important: The use of cryptographic hardware and ICSF is strongly
recommended to maximize performance when CICS is configured to use
SSL/TLS.
 Chapter 6. Security 173

An example of when this might be used is if the CICS default user ID is not
authorized to run any alias transactions. If the real user is to be authenticated
using an HTML forms-based dialog, then an alias transaction is required. A
special user ID can be set up to allow a specific alias transaction and
associated programs to be run before the real user ID is established.

� Analyzer program

In most cases an analyzer program is not required. For example, it is not
required if a suitable URIMAP definition is used.

However, an analyzer program can use any information in the incoming HTTP
request, for example, information obtained using the EXEC CICS WEB and
TCPIP API to determine what user ID should be used for the alias task.

The analyzer can also be used to specify that the user must supply their her
ID and password. This can be done via HTTP Basic Authentication or a
HTML forms-based dialog.

Note: You should write or customize an analyzer program to authenticate
the user only if the other methods of authentication are unsuitable. The
analyzer program can perform other functions though, for example, it is a
good place to write an audit log of web access to your CICS region.
174 CICS and SOA: Architecture and Integration Choices

Security considerations for CICS web support
Figure 6-13 shows a CICS web support security scenario in which a web client
makes a call to CICS.

Figure 6-13 CICS web support security questions

The sections contain lists of questions and comments that will help you to
choose between the different options available for securing the CICS web
support scenario shown in Figure 6-13.

Authentication
Consider the following authentication-related questions:

� Does the web client need to authenticate?

This can be decided for specific requests rather than there being a general
rule for the application. It might be appropriate to run read-only requests using
a generic user ID, which can be specified in a URIMAP.

� What authentication mechanism will be used?

HTTP basic authentication is popular and easy to configure. However, the
HTTP basic authentication scheme can only be considered a secure means
of authentication when the connection between the web client and the CICS
region is secure. If the connection is insecure, the scheme does not provide
sufficient security to prevent unauthorized users from discovering and using
the authentication information for a server. If there is a possibility of a
password being intercepted, basic authentication should be used in

CICS TS

CICS
Web

support

Business
Logic

program

Web
Client

Confidentiality
and Integrity

Authorization

Authentication and
Identification

HTTPS

HTTP
 Chapter 6. Security 175

combination with HTTPS, so that SSL encryption is used to protect the user
ID and password information.

SSL client authentication requires more setup and is more expensive.
Consider ways of optimizing performance, such as persistent TCP/IP
connections and SSL session ID reuse. These optimizations mean that SSL
handshaking can be avoided for requests following the initial handshake. To
utilize hardware cryptography, the chosen cipher suite algorithm must be
available in hardware.

For outbound web requests from CICS, by default CICS closes the
connection after an application has finished using it. In CICS TS V4.2, you
can set up connection pooling to reuse the connection to the same host and
port. This is an important performance consideration if using HTTPS for
outbound web requests.

Identification
Consider the following identification-related question. How will you assign the
RACF user ID for running the CICS business logic program?

� It can come from the authentication credentials.
� It can be hard-coded in a CICS URIMAP.
� It can be extracted from the HTTP message by an analyzer program.

Authorization
Consider the following authorization-related question. Does the CICS task need
to run with the web client’s identity?

If it is not necessary to run the CICS task with the client’s identity. A RACF user
ID can be specified in a URIMAP.

Integrity and confidentiality
Consider the following confidentiality and integrity related question. Does the
integrity and privacy of the data warrant protection?

HTTPS can be used to provide integrity and confidentiality of the data during the
transmission.

6.10 WebSphere MQ

WebSphere MQ (WMQ) is a popular choice for integrating CICS applications
with applications running in other servers. WebSphere MQ has a rich set of
security mechanisms, including channel, connection, command, and resource
security checking.
176 CICS and SOA: Architecture and Integration Choices

From a CICS integration perspective, the most relevant security options for
consideration are as follows:

� User identities in messages

The message descriptor (MQMD) structure contains the control information
that accompanies the application data when a message travels between the
sending and receiving applications. The structure is an input/output parameter
on the MQGET, MQPUT, and MQPUT1 calls. An identity context is part of the MQMD
that contains identity-related information such as the User Identifier.

The User Identifier field can be set by the application, or on z/OS more
typically it is set by the environment, for example, CICS. For an MQPUT from
a CICS application, this can be the CICS task user ID.

� CICS DPL bridge

When using the CICS DPL bridge, different bridge security options can be
configured, allowing for authentication of the bridge client or assertion of the
User Identifier in the MQMD. An additional field (MQCIH.Authenticator) in the
CICS bridge header (MQCIH) structure can be set to the password that is to
be associated with the user ID in the MQMD.UserIdentifier field. Together, the
values are used by RACF to determine whether the user is authorized to link
to the DPL program.

The level of authentication that you can use with the DPL bridge is as follows:

LOCAL This level is the default. The bridge task and the CICS
programs that are run by the bridge task are started
with the CICS default user ID.

IDENTIFY The bridge task is started with the user ID specified in
the message (MQMD). CICS programs run by the
bridge run with the user ID from the MQMD. There is no
password checking. The user ID is treated as trusted.

VERIFY_UOW The bridge monitor checks the user ID (in the MQMD)
and password (in the MQCIH) before starting the
bridge task. CICS programs run by the bridge run with
the user ID extracted from the MQMD. If the user ID or
password is invalid, the request fails with return code
MQCRC_SECURITY_ERROR. Subsequent messages
processed by this transaction are not checked.

VERIFY_ALL This is the same as VERIFY_UOW except that the
bridge task checks the user ID and password in
every message.
 Chapter 6. Security 177

� Securing access to WebSphere MQ resources

As with CICS, RACF can be used to secure access to WMQ resources. WMQ
checks for certain RACF classes and profiles within those classes to
determine what security checks to perform.

The RACF class MQADMIN is used to activate security for WMQ resources.
Because RACF classes are shared across a Sysplex, there is a mechanism
for turning off WMQ security, for example, in a test system.

WMQ uses RACF profiles called switch profiles to toggle security at lower
levels than the sysplex. Switch profiles contain the name of an individual
queue manager or queue sharing group:

– If security for the particular queue manager is not required, then WMQ sets
its internal subsystem security switch off and performs no security checks.

– If security checking is activated for a queue manager, WMQ checks the
existence of specific RACF classes (MQCONN, MQCMDS, MQQUEUE,
MQPROC, and MQNLIST) to control what resource level checks are
performed. For example, MQCONN controls connection security (can
CICS connect to this queue manager?) and MQQUEUE controls queue
resource security (which queues can CICS access and how?).

The hlq.RESLEVEL profile is defined in the MQADMIN class, and it controls
how many user IDs are subject to API security checks. CICS can pass two
user IDs to the queue manager:

– The user ID associated with the CICS address space
– The user ID associated with the CICS task

� SSL/TLS

SSL/TLS can be used to secure messages that are transported between
queue managers. You specify the cryptographic algorithms to be used by
supplying a CipherSpec as part of the channel definition.

� WebSphere MQ Advanced Message Security

The SSL/TLS support provided by WebSphere MQ provides security for
messages while they are in transmit but not when they are held on message
queues. WebSphere MQ Advanced Message Security (WMQ AMS) extends
this support by providing end-to-end data protection of messages.

Although the SSL/TLS support provided by WebSphere MQ facilitates the
encryption and decryption of message data transmitted between two queue
managers, or a client application and a queue manager, message data
remains unencrypted when it resides on message queues. In addition,
WebSphere MQ does not facilitate the signing of message data to ensure the
identity of its author, or guarantee that message data has not been modified
while on a queue or in transit between queues.
178 CICS and SOA: Architecture and Integration Choices

WebSphere MQ Advanced Message Security (WMQ AMS) expands
WebSphere MQ security services to provide data signing and encryption at
the message level. The expanded services guarantees that message data
has not been modified between when it is originally placed on a queue and
when it is retrieved. In addition, WMQ AMS verifies that a sender of message
data is authorized to place messages on a target queue.

Figure 6-14 shows how WMQ AMS works.

Figure 6-14 WebSphere MQ Advanced Message Security

This is the sequence of events shown in Figure 6-14:

a. The sender application uses the MQPUT API to put a message to a queue.

b. The MQPUT call is intercepted by a security exit that passes control to the
WMQ AMS client interceptor, which manages pre-processing and
post-processing for MQI calls. For example, if the target queue has a
policy to sign and encrypt data messages, the WMQ AMS client
interceptor signs and encrypts the message, then issues the actual call to
WebSphere MQ to put the modified message to the target queue.

c. The signed and encrypted message is transmitted across the WebSphere
MQ network.

d. The receiver application uses the MQGET API to get the message from
a queue.

e. The WMQ AMS client interceptor performs signature checking and
decryption as specified by the queue's data-protection policy, and then
returns the original message to the calling application.

Note: When a CICS application issues a put to or get from a WMQ AMS
protected queue, WMQ AMS uses a certificate associated with the CICS
task user ID to sign, or sign and encrypt, according to the queue's policy.

a &@Ja !̂

WebSphere MQ network

App Put
message

MSG
&@Ja !̂

MSG

WMQ
AMS

WMQ
AMS

Get
message

App

b

c

d

e

 Chapter 6. Security 179

For more information about WMQ AMS refer to the information center:

http://publib.boulder.ibm.com/infocenter/mqams/v7r0m1/index.jsp

Security considerations for WebSphere MQ
Figure 6-16 on page 183 shows a typical WebSphere MQ implementation.

Figure 6-15 WebSphere MQ security questions

The following sections provide lists of questions and comments will help you to
choose between the options available for securing the WMQ requests to CICS
(Figure 6-15).

Authentication
Consider the following authentication-related question. How does the WMQ
client authenticate?

Typically, authentication of the originating user has been done in advance, and it
is a question of asserting a user identifier as part of the identity context in the
message descriptor (MQMD).

User ID and password authentication can be enabled when using the DPL bridge.

CICS TS

Business
Logic

program

Message
adapter

Message
adapter

Intermediate
Server

AppClient

WebSphere MQ

DPL
bridge
DPL

bridge

Put
message

Put
message

Get
message

Get
message

Identification

Confidentiality
and Integrity

Authorization

Authentication and
Identification

Authorization
180 CICS and SOA: Architecture and Integration Choices

Identification
Consider the following identification-related question. How will you assign the
RACF user ID for running the CICS business logic program?

� It might come from the authentication credentials presented by a DPL
bridge client.

� It might be asserted as a RACF user ID by a WMQ client.

� It might be allowed to default to the CICS default user ID.

Authorization
Consider the following authorization-related question. Does the CICS task need
to run with the requester’s identity?

If it is necessary to run the CICS task with the requester’s identity, implement a
form of identity assertion by flowing a RACF user ID in the MQMD.

When using identity assertion with the DPL bridge, the user ID of the bridge monitor
must have surrogate authority for all the user IDs used in request messages.

Integrity and confidentiality
Does the integrity and privacy of the data warrant protection?

You can use SSL/TLS to secure messages that are transported using WMQ. In
addition, you can also consider the use of WMQ AMS if messages require
encryption while held in queues, or if message signing is required.

6.11 CICS sockets

CICS sockets are normally used when the programmer needs close control over
the TCP/IP communication between the client and CICS application. Inherently,
this form of communication does not benefit from all of the CICS-supplied access
security mechanisms that are available with other integration options.

6.11.1 Using AT-TLS
The z/OS Communications Server TCP/IP stack provides Application
Transparent Transport Layer Security (AT-TLS). This allows socket applications
that use the TCP protocol to transparently use SSL/TLS to communicate with
partners in the network. CICS sockets enabled applications can take advantage
of this support.
 Chapter 6. Security 181

To enable support for AT-TLS for a CICS sockets application, you need to create
an AT-TLS policy configuration that matches the configuration of the CICS
Sockets Listener transaction that uses it:

� The AT-TLS policy configuration includes settings that define whether the
application is a listener or a client, the IP addresses, and the ports that are
used for communication, and whether client authentication is required.

� The CICS Listener parameters include settings that define the transaction
identifier, port, and whether the RACF user ID associated with the client’s
certificate is retrieved (GETTID option).

When the GETTID option is configured, the Listener waits for the TLS
handshake to complete on the accepted connection and then checks to see
whether an associated user ID is present. A user ID is present when client
authentication is defined in AT-TLS policy, the client passed in a certificate,
and the certificate was registered with RACF with an associated user ID. This
user ID is passed into the Listener security exit, if one is configured.

6.11.2 Listener security exit
The CICS sockets interface provides a security exit that can be used to
authenticate socket clients. The Sockets Listener transaction (CSKL) links to the
security exit before starting the child server task. The security exit decides
whether to allow the Listener to start the server transaction based on the
information it is passed, which includes this information:

Transaction ID Transaction requested by client
Data area User data received from client
Address IP address of client
Socket Socket descriptor

Note: It is entirely up to the security exit as to the criteria that it uses to permit
or deny the request.
182 CICS and SOA: Architecture and Integration Choices

6.11.3 Security considerations for CICS sockets

Figure 6-16 shows a typical CICS sockets implementation.

Figure 6-16 CICS sockets security questions

The following list of questions and comments will help you to choose between the
different options available for securing the socket requests to CICS shown in
Figure 6-16 on page 183.

Authentication
Consider the following authentication-related question. How does the sockets
client authenticate?

A user ID and password can be included in the data sent by the client. The
security exit can then verify the user’s credentials using the CICS VERIFY USER.

SSL client authentication can be enabled using AT-TLS.

Identification
Consider the following identification-related question. How will you assign the
RACF user ID for running the CICS business logic program?

A user ID can be included in the data sent by the client. The Child Server
transaction that runs the business logic program can be started with the user ID
that is passed by the sockets client.

When SSL client authentication is used, the user ID that is associated with the
client’s certificate can be retrieved.

CICS TS

Sockets
Listener
CSKL

(Security
Exit)

Child
Server
Task

Authentication and/or
Identification

Confidentiality
and Integrity

Authorization

Sockets
Client

Sockets
Client

ST ART
Sockets

API

z/OS
Communications

Server

TCP/IP
(System SSL)

TLS
 Chapter 6. Security 183

Authorization
Consider the following authorization-related question. Does the CICS task need
to run with the requester’s identity?

A user ID used in a basic authentication, or a user ID that is associated with the
client’s certificate, can be used to start the child server task.

You can also implement a form of identity assertion by flowing a RACF user ID in
the data sent by the sockets client. When using identity assertion, a trust
relationship should be established between the sockets client and CICS.

Integrity and confidentiality
Does the integrity and privacy of the data warrant protection?

If messages need to be protected, a CICS sockets enabled application can take
advantage of the AT-TLS support provided by z/OS Communications Server. As
shown in Figure 6-16 on page 183, the TLS encryption is done by TCP/IP on
behalf of CICS.
184 CICS and SOA: Architecture and Integration Choices

Chapter 7. Transactional scope

CICS TS is the predominant transaction processing system in use in today’s IT
systems. Therefore, any service requester that needs to connect to and utilize
information from within CICS TS will most likely need to consider the
transactional scope of such calls.

When considering the transactional scope of your new service requester, you
need to think about the following key issues:

� Do any of the programs that you invoke within CICS TS perform work on
recoverable CICS TS resources, such as VSAM files or DB2 tables?

� Do you need to ensure that multiple calls to the same CICS program are
handled as a single recoverable unit?

� Do you need to coordinate recoverable work within CICS TS with work that is
performed on other recoverable resources outside of CICS TS?

� Do you require CICS TS to control the runtime infrastructure to manage your
transactional integrity or will your applications handle it themselves?

In this chapter, after a review of different transactional options, we discuss the main
transactional considerations for each of the strategic CICS integration technologies.

7

© Copyright IBM Corp. 1999, 2012. All rights reserved. 185

7.1 Transactional objectives
A transaction is a unit of activity within which multiple updates to recoverable
resources can be made atomic (that is, an indivisible unit of work (UOW)), such
that all or none of the updates are made permanent.

A classic example of a transaction is the movement of money from one bank
account to another. There are two operations:

� Deduct the money from the sending account.
� Add the money to the receiving account.

To avoid losing or gaining money is it important that both operations occur (the
transaction commits) or that neither operation occurs (the transaction is rolled
back). This can be achieved by performing both operations within the same unit
of work, then committing or rolling back the unit of work.

Within a distributed transactional system, each distributed system is either
referred to as a resource manager or a transaction manager. The transaction
manager controls the outcome of the transaction (should it commit or roll back?)
and is responsible for the recovery of its resources. It has to implement a
recoverable logging mechanism in order to be able to coordinate multiple
resource managers. The resource managers control access to recoverable
resources, and as such have to implement the necessary network flows and
logging procedures to provide transactional coordination.

CICS TS can be both a transaction manager and a resource manager.

When considering CICS integration, consider the following questions related to
the transactionality of your architecture:

� Do you have recoverable resources that need to be transactional?
� Where are those resources accessed from?
� Where are the transactions managed from?

There are several approaches to managing transactions and there are several
different transactional scopes. The intention of the remainder of this chapter is to
enable you to take the following actions:

� Determine the transactional approach/scope that is required for your
integration architecture.

� Use 7.4, “CICS Web services” on page 198 to understand which integration
technologies support the transactional approach/scope that you decide upon.

� Refer to the sections about the integration technologies to gain further
information about how they support the transactional approach/scope that
you require.
186 CICS and SOA: Architecture and Integration Choices

Before considering the different transactional building blocks, it is important to be
aware that CICS has traditionally used the term transaction in a different context
from meaning a unit of work, so let us first look at CICS transactions and
associated terminology.

In this chapter, we refer to a CICS-transaction as the work initiated in a CICS
region and that runs as a CICS task under a four-character transaction ID
(tranid). These tranids are static definitions that specify the initial program to be
loaded and the properties of the CICS-transaction under which the program will
run. They are defined in TRANSACTION definitions within the CICS resource
definition online (RDO) database.

7.2 Transactional building blocks

In this section, we examine the different transactional building blocks that can be
used to ensure that the overall architecture of the system has the appropriate
transactional characteristics. We start with an overview of the scope of units of
work within CICS TS, then consider transactional scopes that extend across a
wider distributed environment.

7.2.1 Traditional CICS units of work

At task initiation, CICS TS implicitly starts a unit of work for all CICS transactions.
This is usually the initial boundary of the transactional work to be undertaken. All
updates to recoverable resources or requests to other transactional systems are
now part of this unit of work, until either a synchronization point (syncpoint) is
reached within the CICS program, or the CICS-Transaction finishes and the task
terminates (Figure 7-1).

Figure 7-1 CICS TS synchronization points

EXEC CICS
SYNCPOINT End of task

Unit-of-work 1 Unit-of-work 2

Transaction initiation

Load initial program

Start of task
 Chapter 7. Transactional scope 187

In certain circumstances, such as when an inter-system distributed program link
(DPL) request is made, the CICS-Transaction that is linked to can be coordinated
by a remote CICS region. In the region that is linked to, a mirror task runs. The
job of the mirror task is to handle the communication from the calling CICS
region. On return to the calling CICS region, the mirror task remains suspended
until the end of the transaction, when it is told to commit the unit of work. This is
referred to as a long-running mirror task (Figure 7-2).

Figure 7-2 Link with long-running mirror task

Start of mirror task

Mirror
transaction

unit-of-work

CICS region 2

CICS region 1

Distributed
Program Link

Mirror task suspends

Commit

Mirror task issues
SYNCPOINT

Commit
response

termination of
mirror task

Distributed
Program Link
188 CICS and SOA: Architecture and Integration Choices

Additionally, the converse situation is also possible; this is where the invoked
CICS-Transaction runs in a separate transactional context to that of the invoking
application. This is referred to as running with sync-on-return, which refers to the
fact that the controlling mirror transaction in CICS issues a syncpoint on returning
control to the calling application (Figure 7-3). The use of a sync-on-return type
link also allows the called CICS program to issue EXEC CICS SYNCPOINT
commands, because it is not subordinate to another transaction manager.

Figure 7-3 Link with SYNCONRETURN

7.2.2 Extended logical units of work

Extended logical units of work (Extended LUW) extend the concept of allowing a
remote CICS region to coordinate a transaction in another CICS region, as
described in 7.2.1, “Traditional CICS units of work” on page 187. In an extended
LUW, an invoking application that is external to CICS TS can coordinate a
transaction in a CICS region.

The invoking application makes a call to a CICS region, which runs a program
under a unit of work and returns, leaving the unit of work uncommitted. The
invoking application can then make further calls to the same CICS region and
CICS TS performs transactional resource updates under the same unit of work.

Start of mirror task

Mirror
transaction

unit-of-work

CICS region 2

CICS region 1

Distributed Program Link with
SYNCONRETURN

termination of
mirror task

Link to user
program

Return to
mirror
transaction

ECI request,
non-extended

EXEC CICS
SYNCPOINT

Note: If you are considering integrating applications with existing CICS
programs, it is important to understand the scope of units of work within those
programs so that you can design and implement the right overall transactional
architecture for your solution.
 Chapter 7. Transactional scope 189

The invoking application controls whether the unit of work is committed or
rolled back.

One of the technologies that offers this capability is CICS Transaction Gateway
(CICS TG) (Figure 7-4).

Figure 7-4 Extended logical unit of work

In Figure 7-4, CICS TG is shown using a communications protocol called the
External Call Interface (ECI) to invoke a CICS program. On return from the CICS
program, the mirror task suspends. A second ECI request is made from CICS
TG, which is processed by the same mirror task and uses the same unit of work.
On return from the program, the mirror task suspends again, until it is told by
CICS TG to commit the unit of work, at which point it issues a SYNCPOINT.

7.2.3 Distributed units of work

Distributed units of work add value when transactional resource updates need to
be synchronized across different systems. For example, a service requester
might need to make a local update to a database within a unit of work, then
invoke CICS TS to make a transactional update to a VSAM file within the same
unit of work. To ensure that the updates across all the resource managers are all
committed or are all rolled back, a protocol known as two-phase commit is used.

Start of mirror task

Mirror
transaction

extended unit-of-work

CICS region

CICS Transaction
Gateway

1st ECI
request

2nd ECI
request

Mirror task suspends

Commit

Mirror task issues
SYNCPOINT

Commit
response

termination of
mirror task

Note: In cases where there is only one resource manager, the resource
manager can be told to either commit or roll back. This is often referred to as
one-phase commit.

Note: Distributed units of work are also known as global units of work.
190 CICS and SOA: Architecture and Integration Choices

Two-phase commit protocol overview
An essential part of all transactional standards is the two-phase commit process.
This is an architected set of flows that transaction managers use to ensure that
all resource managers in a transaction can be reliably coordinated, irrespective
of any failure. It is implemented by various transactional protocols, and the
fundamental concepts are essentially the same. The following description
summarizes the flows according to the XA specification. XA is a specification for
distributed transaction processing, allowing two-phase commit processing.

From the point at which a distributed unit of work begins to the first phase of
commit described below, the unit of work is known as being in-flight. While a unit
of work is in-flight, CICS TS (or any other resource manager enlisted in the
transaction) can choose to roll back the unit of work. For example, if CICS TS
terminated abnormally, at restart it would automatically roll back the unit of work.

In the first phase (or stage 1) of commit processing, the transaction manager
asks all the resource managers to prepare to commit recoverable resources
(prepare). Each resource manager can vote either positively (prepared) or
negatively (rolled-back). If a resource manager is to reply positively, it records
stably the information that it needs to do so and replies prepared, and is then
obliged to follow the eventual outcome of the transaction as determined at the
next stage. The resource manager is now described as indoubt, because it has
delegated eventual transaction control to the transaction manager.

In stage 2, providing that all the resource managers voted positively, the
transaction manager replies to each resource manager with a commit flow. Upon
receipt of the commit flow, the resource manager finalizes updates to
recoverable resources and releases any locks held on the resources. The
resource manager then responds with a final committed flow, which indicates to
the transaction manager that it is no longer in doubt. If the final committed flow is
not received by the transaction manager, the transaction manager must assume
that the commit was also not received by the resource manager and must
re-transmit the commit.
 Chapter 7. Transactional scope 191

Figure 7-5 shows the two phases of the commit process: prepare, followed by
commit (or roll back).

Figure 7-5 Two-phase commit

Optimizations for distributed units of work
Distributed units of work add additional protocol flows, so they should only be
used when really needed. Sometimes there are optimizations that can be made

Note: In-doubt units of work cannot be unilaterally rolled back by one of the
resource managers without the risk of a mixed outcome to the unit of work
(where some resources are committed and some are backed out). This is an
important consideration when choosing to use distributed units of work.

While the unit of work is prepared, resources will be locked. If the resource
manager loses contact with the transaction manager, these resources could
be locked for a period of time until contact is re-established. Locked resources
can impact the running of a system, so when considering distributed units of
work, it is important to consider the availability of the transaction manager, the
reliability of the network connection, and the impact to the workloads in the
event of a communications failure with the transaction manager.

Resource managers can often be configured to take a best guess at the
outcome of a prepared unit of work, if the unit of work is not committed or
rolled back by the transaction manager in a reasonable amount of time. This is
known as a heuristic decision. It stops locks from being held too long, but
creates the risk of a mixed outcome.

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

 C
ommit

Commit

Transaction
Manager

Global
Transaction

Pre
pare

d

Prepare

Stage 1 - Prepare

Pre
par

e

Prepared

Transaction
Manager

Resource
Manager

Resource
Manager

Committ

ed

Committed
192 CICS and SOA: Architecture and Integration Choices

by the systems involved in a distributed unit of work, which allows a one-phase
commit to be used. These are discussed below.

Read only
If a resource manager has registered for a unit of work but has not performed any
recoverable updates, when it is told to prepare, it can return a state of read only.
This tells the transaction manager that the resource manager is not interested in
the transaction, so the transaction manager does not need to send a commit or
rollback request to the resource manager.

Last resource optimization
Although the two-phase commit process is usually a prerequisite to distributed
transactional support, there are certain instances where a single-phase commit
process can be sufficient. This is referred to as last resource optimization and is
implemented by a variety of transaction managers. It essentially allows the
commit decision to be delegated to the one-phase commit resource, allowing the
one-phase commit to participate in a distributed unit of work with any number of
two-phase commit capable resources (Figure 7-6).

Figure 7-6 Last resource optimization

At transaction commit, the transaction manager first prepares the two-phase
commit resource managers and, if this is successful, the one-phase
commit-resource is then called to commit. The two-phase commit resources are

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

Commit

Global
Transaction

Prepare

Stage 1 - Prepare

Pre
par

e

Transaction
Manager

Resource
Manager

Resource
Manager

Resource
Manager

(one phase)

Resource
Manager

(one phase)

Transaction
Manager

1

2

C
om

m
it

Commit

3

5

4

 Chapter 7. Transactional scope 193

then committed or rolled back depending on the response of the one-phase
commit resource, effectively delegating transaction coordination to the
one-phase commit resource.

Unlike a two-phase commit resource, there is no recovery from a communication
failure with a one-phase commit resource. Such a communication failure during
commit of the one-phase commit resource introduces the risk of a mixed
outcome to the transaction. The two-phase commit resources are rolled back, but
the outcome of the one-phase commit resource is unknown. It could have
committed or rolled back. Applications must therefore be configured to accept the
additional risk of such heuristic outcomes.

Last resource optimization is implemented within WebSphere Application
Server as Last Participant Support and within CICS TS and APPC flows as last
agent optimization.

Only agent
If there is only one resource manager that makes transactional updates within a
distributed unit of work, then the two-phase commit process is not required. With
only agent support, the transaction manager uses a one-phase commit in this
instance (the prepare phase is dropped). The resource manager is told directly to
commit or roll back.

7.2.4 Asynchronous messaging transactional model

In a synchronous model, the expectation is that the service requester and the
service provider will both be available at the same time. An asynchronous model
removes this requirement by adding an intermediary queue of work. The service
requester puts a request message onto the queue. The service provider gets the
request message from the queue. This pattern introduces a different
transactional model, with two transactions typically used to ensure that the
request message is delivered to the service provider. Figure 7-11 on page 214
shows an example of this processing.

In the asynchronous messaging transactional model:

1. The service requester puts a request message to a queue in the same unit of
work as it performs local transactional resource updates. The service
requester commits the unit of work.

2. The request message can now be consumed by CICS TS within a new unit of
work. If CICS TS needs to make transactional updates, these are done within
the same unit of work, which is then committed.
194 CICS and SOA: Architecture and Integration Choices

To ensure that the request message is delivered, define it to be persistent. It is
the responsibility of the messaging product to ensure that the message can be
recovered in the event of a failure.

Figure 7-11 on page 214 is an example of a one-way style of asynchronous
messaging. The service requester does not expect a reply message. The
assured delivery characteristics of the WebSphere MQ transport, together with
the transactionality used in CICS TS to process the message, allows this model
to work. The model can be extended such that CICS TS puts a reply message to
another queue within the same unit of work as it read the request message and
processed it. The reply message can then be consumed by the service requester
or another consumer.

Pseudo-synchronous request reply
A common messaging pattern is pseudo-synchronous, where the service
requester puts a request message and then issues a get, waiting for the reply
message. In this model, you must decide whether to use persistent messages. If
persistent messages are not used, it is possible that the service requester will not
receive a reply, as the request or the reply message can be lost in the event of a
failure. If persistent messages are used, a reply should be received, but the
length of time before it is received is unknown and the requester might time out
waiting for it. In these circumstances you could consider idempotent requests, as
described in 7.2.6, “Idempotent requests” on page 196.

Conversational request reply
Another pseudo-synchronous pattern is conversational, where the requester
sends a request, gets the reply back, and sends one or more further requests
based on the information in the reply. CICS TS can enable conversational
requests to make updates to transactional resources within the same unit of
work, for example, an extended logical unit of work. In this case, the request
messages consumed by CICS TS and the response messages put by CICS TS
are performed outside of the extended logical unit of work.

7.2.5 Compensating transactions

A compensating transaction is a group of operations that undoes the effects of a
previously committed transaction. There are many circumstances where
compensating transactions might play a role:

� They might be used to restore consistency after an unrecoverable failure that
prevented a distributed unit of work from normal completion.

� A resource manager might have been left in-doubt because it did not receive
a reply in the second stage of the two-phase commit process. If so, it might
have taken a heuristic decision about the probable outcome of the
 Chapter 7. Transactional scope 195

transaction, and so some participants might have committed while others
did not.

� When one of the distributed unit of work participants is a non-transactional
resource manager. If such a transaction performs a rollback, its
non-transactional participant might need to be rolled back via the
compensating transaction.

� In certain business transaction scenarios, especially ones that span several
systems, maintaining long-lived locks and restricting data access for extended
periods of time might not be acceptable options. In these situations, it might
not be desirable to map business transactions into single distributed units of
work, but split them into more manageable units of work and provide
compensating transactions to perform rollbacks.

7.2.6 Idempotent requests

An idempotent request is one that will only ever be processed once by the
service provider, no matter how many times it is sent from the service requester.

It is sometimes possible for a response message not to be delivered back to an
invoking application:

� The request message could be lost en-route to the service provider.

� The service provider could fail after committing transactional resource
updates, but before sending the response.

� A response message could be lost en-route back to the service requester.

� The invoking application could fail after issuing a request and before receiving
the response.

In these cases, the service requester does not know whether the request was
processed. You could choose to resend the request, but if the request had
already been processed, then the same update might be made a second time,
which might not be appropriate.

An idempotent request contains a unqiue identifier. If the request is sent to the
service provider and the service provider has already processed a request with

Note: It is important to stress that an application that depends on
compensating transactions must have extra logic to deal with failures and the
possibility that further updates are made to the resource in between the
original committed transaction and the undo transaction. Otherwise, the data
might be left in an inconsistent state. For these reasons, their usage should be
carefully evaluated.
196 CICS and SOA: Architecture and Integration Choices

that unique identifier, it does not process it a second time. The service provider
replies with the same data that it would have returned on the original response to
the request. Using idempotent requests does put an emphasis on the service
requester to create/obtain a unique identifier and to persist that identifier, if you
want the service requester to be able to resend a request after recovering from a
failure. In CICS TS, a service requester could use a named counter server to
obtain a unqiue ID, or as an example it could be a combination of fields, such as
a customer account number and a timestamp.

This capability can be used in any situation where the service requester is not
determining the commit/rollback decision. If the service requester is determining
the commit/rollback decision, it can issue a rollback of the unit of work before
re-sending the request.

7.3 Technology comparison table

This section describes which transactional building blocks are supported through
the various access technologies that CICS TS supports. 7.4, “CICS Web
services” on page 198 provides this comparison in table form. Refer to the
technology-specific sections that follow Table 7-1 for a more detailed explanation.

Table 7-1 Transactional building blocks: Technology comparison table

Note: As compensating transactions and idempotent requests are
technology agnostic, they are not included in the table, but can be considered
for all technologies.

CICS Web
services

CICS TG
for z/OS

WOLA CICS web
support

WebSphere
MQ

CICS
sockets

Traditional
CICS units of
work

Supported Supported Supported Supported Supported Supported

Extended
logical units of
work

Not
supported

Supported
when using
JCA and
ECI v2

Not
supported

Not
supported

Supported Not
supported
 Chapter 7. Transactional scope 197

7.4 CICS Web services

Web services provide an open standards based communications method and
enable interoperability between a wide range of service requesters and service
providers. CICS TS can be both a service requester and a service provider. As a
service requester, through the use of distributed units of work, CICS TS can
coordinate transactional updates across service providers, extending the types
of transactional resources that CICS TS can manage to any with a web service
interface. This is a very powerful feature. As a service provider, distributed units
of work enable updates in CICS TS to be coordinated by an external transaction
manager with updates to resources external to CICS TS.

In the next section, we examine which of the building blocks can be used with
CICS Web service support.

Using
distributed
units of work to
coordinate
service
requester and
service
provider
updates

Supported
when using
WS-Atomic
Transactions

Supported
when using
JCA

Supported
when using
JCA from
WebSphere
Application
Server for
z/OS on
same LPAR

Not
supported

Not
supported

Not
supported

Optimizations
for distributed
units of work

Not
supported

Supported
when using
WebSphere
Application
Server

Supported Not
supported

Not
supported

Not
supported

Asynchronous
messaging
transactional
model

Supported
when using
WebSphere
MQ

Not
supported

Not
supported

Not
supported

Supported Not
supported

CICS Web
services

CICS TG
for z/OS

WOLA CICS web
support

WebSphere
MQ

CICS
sockets
198 CICS and SOA: Architecture and Integration Choices

7.4.1 Supported building blocks for CICS Web services

Figure 7-7 shows transactional scopes supported by CICS Web services.

Figure 7-7 Transactional scopes supported by CICS Web services

Traditional CICS units of work
The default transactional behavior of web services is undefined by the web
service specifications. For inbound web service requests into CICS TS, CICS TS
creates a unit of work under which to process recoverable updates, as described
in 7.2, “Transactional building blocks” on page 187. This enables updates to
multiple CICS resources, spanning multiple CICS regions, to be all committed or
all rolled back. For outbound web service requests from CICS TS, you need to
refer to the documentation of the service provider to understand whether multiple
resource updates are performed within a unit of work or outside of a unit of work.

Distributed units of work
CICS TS provides support for distributed units of work over web services through
implementation of a web services standard called WS-Atomic Transactions
(WS-AT). WS-AT implements the two-phase commit protocol described in 7.2.3,
“Distributed units of work” on page 190. The WS-AT protocol messages are
themselves web services messages, and so are a form of XML.

The WS-AT specification can be found here:

http://www-128.ibm.com/developerworks/library/specification/ws-tx

CICS TS

Service
Requester

CICS
Web

Services
support

Business
Logic

program

Intermediate
Server

Pipeline

AppClient

Key

Distributed UOW

Traditional CICS UOW
 Chapter 7. Transactional scope 199

http://www-128.ibm.com/developerworks/library/specification/ws-tx

A thorough overview of CICS TS support for WS-AT is available in the IBM
Redbooks publication Implementing CICS Web Services, SG24-7206.

When acting as a web service requester, CICS TS can coordinate transactional
updates across other systems that support the WS-AT protocol. When acting as
a web service provider, CICS TS can participate in distributed transactions that
are coordinated by an external transaction manager. Both the web service
requester and the web service provider must support the WS-AT protocol in
order to interoperate when distributed units of work are required.

Asynchronous messaging transactional model
CICS TS supports web services over the WebSphere MQ transport. Web service
requests can be one-way or request/response.

For inbound web service requests, the asynchronous messaging transactional
model enables assured delivery of the web service request message into CICS
TS. Further information about configuring one-way web service requests over
WebSphere MQ can be found in CICS TS V4.2 Web Services Guide,
SC34-7191. For outbound web service requests, refer to the documentation of
the service provider to understand whether messages are consumed under the
same unit of work as transactional resource updates are made.

CICS TS requires a connection to a WebSphere MQ Queue Manager running
on the same LPAR as the CICS region. For inbound requests, having got a
message from the queue, in the event of an error, any transactional resource
updates made by the business logic program are backed out, and the get of
the MQ message is also backed out. The message becomes available on the
queue again.

Pseudo-synchronous request reply
The pseudo-synchronous usage of WebSphere MQ can also be used for the web
service request/response messaging pattern. In this pattern the requester is
waiting for a response, and if there is a need for distributed units of work, the use
of WS-Atomic Transactions can be considered. See “Distributed units of work” on
page 199.

Compensating transactions
There is no specific support needed for writing compensating transactions within
CICS TS. The user can write an additional CICS Web service that can be called

Note: There is little value in using persistent MQ messages if the WS-AT
protocol is being used to support distributed units of work. In the rare event
that a non-persistent message was lost, the distributed unit of work could be
rolled back and the request sent again.
200 CICS and SOA: Architecture and Integration Choices

to perform the business logic necessary to compensate for a previous
transactional update.

Idempotent requests
If the decision is made not to use distributed units of work, then idempotent
requests could be used to ensure that in the event of a response message not
being received, a request message can be retransmitted without causing the
same updates to be made twice at the service provider.

7.4.2 Transactional considerations for CICS Web services

The following list of questions and comments will help you to choose between
the tranactional building blocks available for CICS Web services:

� Is the traditional CICS unit of work support good enough?

If all the transactional resources that you need to coordinate are accessed
from CICS TS, the traditional CICS unit of work support should meet your
requirements. This will be the best-performing option.

� Do you need distributed units of work?

If you need to coordinate updates to resources in CICS TS with updates to
resources in other systems synchronously, distributed units of work could be
the answer. Alternative solutions include compensating transactions, or using
WebSphere MQ if an asynchronous model is appropriate.

� What is the overhead of using WS-Atomic Transactions to enable distributed
units of work?

The WS-Atomic Transactions protocol messages are web services messages
and are a form of XML. There is a processing cost for parsing XML that
should be taken into consideration. A typical (successful) transaction involving
WS-AT will involve three request/response web services message pairs
being sent between the transaction manager and each participating resource
manager for each distributed unit of work (register/registerresponse,
prepare/prepared, and commit/committed).

� Should you use web services for distributed units of work, or an alternative
technology like CICS TG?

Web services are based upon open standards. One of the key benefits that
they provide is a wide level of interoperability with other systems. This
interoperability is gained by using XML-based messages and keeping
standards as simple as possible. Web services provide inbound and
outbound capabilities.
 Chapter 7. Transactional scope 201

CICS TG is a product designed specifically to connect environments such as
Java EE application servers into CICS TS. It is highly optimized for these
environments, and is the most commonly used connector into CICS TS.

� How will distributed units of work affect high availability?

Considerations need to include deadlock avoidance and unit of work affinities.
Refer to 8.3.3, “High-availability considerations for CICS Web services” on
page 234 for further details.

� For inbound calls to CICS TS, do your CICS programs already make
SYNCPOINT calls?

If so, you will need to change those programs if you want the unit of work to
be coordinated from the invoking application. If a CICS program attempts to
issue an explicit SYNCPOINT when the CICS region that it is running in is not
coordinating the transaction, the SYNCPOINT command fails with an error
return code, which if unhandled causes a program abend. The CICS region
can be told to allow syncpoints by invoking the CICS program with
SYNCONRETURN, as described in 7.2.1, “Traditional CICS units of work” on
page 187, but this means that the CICS updates are not coordinated by the
invoking application.

7.5 CICS TG for z/OS

In this section, we look at the transactional scope options when using the CICS
TG to connect into CICS TS. We consider the options when using the JCA
resource adapter and also when connecting from an ECI v2 client.

7.5.1 JCA

One of the primary use cases of the CICS TG connector technology is to provide
a highly optimized connection between a Java EE application server and CICS
TS. In this section we look at the transactional capabilities that the CICS TG
provides in this scenario.

The Java EE Connector Architecture (JCA) is part of the Java EE standard
implemented by application servers such as WebSphere Application Server. The
JCA specifies the system contracts for connection management, transaction
management, and security management that exist between the application
server and enterprise information systems (EIS) such as CICS TS (Figure 2-5 on
page 27).
202 CICS and SOA: Architecture and Integration Choices

For transaction management, the resource adapter is required to implement one
of the following contracts, as defined in the resource adapter's deployment
descriptor (ra.XML):

� XAResource

An XAResource is a transaction participant that is called during two-phase
commit and that can influence the outcome of the transaction. Typically, an
XAResource is implemented by a resource manager and is used to support
the external coordination of the resource manager's transaction branch.
Enlistment of an XAResource in a transaction is managed by the application
server and is not a concern of the application.

� LocalTransaction

A resource adapter that can participate in transactions that are local to the
resource manager (one-phase commit), but that cannot participate in two-phase
commit transactions (other than as an only agent or a last participant).

� NoTransaction

A resource adapter with no transactional properties, that can participate in a
transactional context but is not influenced by, and has no effect upon, the
outcome of the transaction.

The CICS Transaction Gateway for z/OS supplies two resource adapters:

� ECI resource adapter

The ECI resource adapter implements the LocalTransaction interface.

� ECI XA resource adapter

The ECI XA resource adapter implements the XAResource interface and has
full support for distributed units of work.

JCA support is provided in WebSphere Application Server within the web and
EJB containers, both of which provide support for the JCA connection pooling
mechanism and propagation of the transaction context from the Java EE
component to a JCA interaction.

The web container provides limited transactional support, details of which can be
found in the WebSphere Application Server documentation.

The EJB container is ideally suited to the deployment of transactional
components and provides support for both container-managed transactions and
bean-managed transactions. Container-managed transactions are the preferred
mechanism, as this delegates transactional control to the application server,
allowing the application developer to concentrate on developing the business
logic, while still allowing the transactional properties of the application to be
 Chapter 7. Transactional scope 203

decided upon deployment. The key to transactional control with
container-managed transactions is the EJB transaction attribute.

EJB transaction attribute
The transaction attribute is set in the assembly descriptor section of the EJB
deployment descriptor (that is, the ejb-jar.xml file). This attribute is used by the
EJB container to control under which circumstances a global transaction is
started when a bean method is invoked.

This transaction attribute appears in the <container-transaction> section and is
specified with the <trans-attribute> tag. For example, the following XML
specifies that the execute() method on the CICSTGTesterCCI bean has the
transaction attribute of Required:

<container-transaction>
<method>

<ejb-name>CICSTGTesterCCI</ejb-name>
<method-intf>Remote</method-intf>
<method-name>execute</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

The possible values for the transaction attribute are NotSupported, Required,
RequiresNew, Supports, Mandatory, and Never, and their meanings are
described in Table 7-2.

Table 7-2 EJB transaction attribute settings

Transaction
attribute

Meaning Resulting ECI JCA
request

CICS TS mirror
task

NotSupported Bean method cannot execute within
context of an OTS transaction

Non-extended LUW SYNCONRETURN

Required Bean method must execute within
context of an OTS transaction

Extended LUW Long running

RequiresNew Bean method must execute within
context of a new OTS transaction

Extended LUW Long running

Supports Bean method can execute with or
without an OTS transaction context

Non-extended or
extended LUWa

SYNCONRETURN
or long running

Mandatory Bean method must execute within
context of client's OTS transaction

Extended LUW or
Exception thrown b

Long running

Never Bean method must not be invoked in
context of an OTS transaction

Non-extended LUW SYNCONRETURN
204 CICS and SOA: Architecture and Integration Choices

Generated code
There are a number of products available, such as WebSphere Integration
Developer, that will automatically generate code that uses the JCA to invoke
CICS TS applications. This additional level of abstraction means that the
transactional settings mentioned in Table 7-2 on page 204 must be made through
the tooling so that the auto-generated code contains the right transactional
scope.

7.5.2 ECI v2

The CICS Transaction Gateway can also be used from unmanaged
environments, such as Microsoft .NET or native C applications. In unmanaged
environments, the emphasis is on the application to control transactionality, and
the options are more limited than from a managed Java EE environment.

7.5.3, “Supported building blocks for CICS TG” on page 206 describes the
options available and whether they are supported when using JCA or ECI v2.

a. For Supports the result depends on the existing transactional context. The bean method is exe-
cuted either under the caller's transaction context, and the ECI call will use an extended logical unit
of work, or, if there is none present, then it executes under an unspecified transaction context.
b. For Mandatory, the bean method is executed under the caller's transactional context. If the caller
does not supply a context (that is, there is no global transaction active), then the execute fails with
an exception.
 Chapter 7. Transactional scope 205

7.5.3 Supported building blocks for CICS TG

Figure 7-8 shows different transactional scopes supported by CICS TG.

Figure 7-8 Transactional scopes supported by CICS TG

Traditional CICS units of work
For inbound requests into CICS TS, CICS TS will always create a unit of work
under which to process recoverable updates, as described in 7.2, “Transactional
building blocks” on page 187. This enables updates to multiple CICS resources,
spanning multiple CICS regions, to be all committed or all rolled back. When this
capability meets your needs, use the ECI Resource Adapter.

This capability is available through JCA and ECI v2.

Extended logical units of work
If all your transactional resource updates are made in CICS TS, you need to
make multiple requests to the same CICS region, and you want all the resource
updates to be in the same unit of work, you can use extended logical units of
work through the ECI Resource Adapter.

This capability is available through JCA and ECI v2.

CICS

CICS
TG

Business
Logic

Program

WebSphere
Application

Server

JEE
Application

SSL
Client

z/OS

JCA resource
adapter EXCI

IPIC

Remote C
client

application

ECIv2

TCP

TCP

Key

Distributed UOW

Extended Logical UOW

Traditional CICS UOW
206 CICS and SOA: Architecture and Integration Choices

Distributed units of work
When you need transactional resource updates in CICS TS to be
committed/rolled back in the same unit of work as transactional resource updates
outside of CICS TS, you can use the ECI XA Resource Adapter.

The use of the ECI XA resource adapter provides the ability for any number of
CICS regions to participate in a global transaction with two-phase commit
coordination with a number of other XAResource capable resource managers.

This capability is available through JCA, but not through ECI v2.

Optimizations for distributed units of work
Where possible, products such as WebSphere Application Server and CICS TS
optimize distributed units of work into a one-phase commit. Examples of these
optimizations are last resource optimization, only agent, and read only, as
described in “Optimizations for distributed units of work” on page 192.

These optimizations are available when using JCA from WebSphere Application
Server into CICS TS.

Compensating transactions
There is no specific support needed for writing compensating transactions within
CICS TS. The user can write an additional CICS program that can be called via
the CICS TG to perform the business logic necessary to compensate for a
previous transactional update.

Idempotent requests
If the decision is made not to use distributed units of work, then idempotent
requests could be used to ensure that in the event of a response message not
being received, a request message can be retransmitted without causing the
same updates to be made twice at the service provider.
 Chapter 7. Transactional scope 207

7.5.4 Transactional considerations for CICS TG

The following list of questions and comments will help you to choose between the
different tranactional building blocks available for CICS TG:

� Is the traditional CICS unit of work support good enough?

If all the transactional resources that you need to coordinate are accessed
from CICS TS, the traditional CICS unit of work support should meet your
requirements. This will be the best-performing option.

� Do extended logical units of work meet your needs?

If all the transactional resources that you need to coordinate are accessed
from CICS TS, but you need to make multiple calls from the invoking
application into CICS TS and you want those calls to use the same unit of
work, then extended logical units of work could meet your needs. There is no
resync capability with extended logical units of work, so if CICS TS is told to
commit, does the commit, and then there is a failure, the invoking application
will not be able to learn whether the commit occurred.

With WebSphere Application Server (WAS), you can alternatively use
distributed units of work. If CICS TS is the only resource manager making
transactional updates then WAS can optimize the two-phase commit to a
one-phase commit. This gives the same quality of service as extended logical
units of work, but with the benefit that there is a resync capability, so if CICS
TS is told to commit, does the commit, and then there is a failure, WebSphere
Application Server resyncs with CICS TS when the failure is resolved and can
learn the result of the commit.

� Do you need distributed units of work?

If you need to coordinate updates to resources in CICS TS with updates to
resources in other systems synchronously, distributed units of work could
be the answer. Alternative solutions include compensating transactions, or
using WebSphere MQ with persistent messages if an asynchronous model
is appropriate.

� Does my Java EE Application Server support distributed unit of work
optimizations?

If you are using JCA through WebSphere Application Server, the
optimizations are supported. If you are using an alternative application server,
you will need to refer to your product documentation.

� How will distributed units of work affect high availability?

Considerations need to include deadlock avoidance and unit of work affinities.
Refer to 8.4.3, “High-availability considerations for CICS TG” on page 240, for
further details.
208 CICS and SOA: Architecture and Integration Choices

� For inbound calls to CICS TS, do your CICS programs already make
SYNCPOINT calls?

If so, you need to change those programs if you want the unit of work to be
coordinated from the invoking application. If such a CICS program attempts to
issue an explicit SYNCPOINT when the CICS region that it is running in is not
coordinating the transaction, SYNCPOINT fails with an error return code, which
if unhandled causes a program abend. The CICS region can be told to allow
syncpoints by invoking the CICS program with SYNCONRETURN, as
described in 7.2.1, “Traditional CICS units of work” on page 187, but this
means that the CICS updates are not coordinated by the invoking application.

� If you use last resource optimization, will the applications in the distributed
unit of work be able to continue to meet the business needs if a failure in the
one-phase commit resource results in a mixed outcome to a transaction?

Applications that exploit last resource optimization are subject to an increased
risk of a mixed outcome in a global transaction, if the one-phase commit
resource fails during the commit processing. It is important to understand the
implications of this to your system.

7.6 WOLA

WebSphere Optimized Local Adapters (WOLA) provide a high-speed
bi-directional cross-memory pipe between WebSphere Application Server for
z/OS and CICS TS. The support in WebSphere Application Server for z/OS is via
JCA. An explanation of JCA can be found in 7.5, “CICS TG for z/OS” on
page 202. To enable the WOLA connection through JCA, a JCA resource
adapter called ola.rar is provided.
 Chapter 7. Transactional scope 209

7.6.1 Supported building blocks for WOLA

Figure 7-9 shows different transactional scopes supported by WOLA.

Figure 7-9 Transactional scopes supported by WOLA

Traditional CICS units of work
For inbound requests into CICS TS, CICS TS will always create a unit of work
under which to process recoverable updates, as described in 7.2, “Transactional
building blocks” on page 187. This enables updates to multiple CICS resources,
spanning multiple CICS regions, to be all committed or all rolled back.

Distributed units of work
WOLA provides two-phase commit global transaction support for both CICS
to WebSphere Application Server and WebSphere Application Server to CICS
program invocations. Both the native language and EJB portions of an
application can participate in the same global transaction using two-phase
commit when the native language portion of the application is running in
CICS TS.

WOLA
Link
Server

WOLA
APIs

WOLA
APIs

WAS z/OS CICS

Business
logic

program
JEE

Application

Key
Traditional CICS UOW

Distributed UOW
210 CICS and SOA: Architecture and Integration Choices

When calling from CICS TS into an optimized local adapter EJB, a z/OS
Resource Recovery Services (RRS) unit of recovery token is passed from CICS
TS to WebSphere Application Server, which uses this token to create its own unit
of recovery that is then cascaded to the unit of recovery received from CICS TS.
When the CICS TS transaction reaches a syncpoint, RRS drives the WebSphere
Application Server unit of recovery to completion.

When calling from WebSphere Application Server for z/OS into a CICS TS
transaction using WOLA, an XA-capable transaction context is passed from
WebSphere Application Server to CICS TS. The WOLA CICS link server running
in CICS TS reads the XA transaction context and creates a new unit of work to
run the specified native language program. When WebSphere Application Server
reaches a syncpoint, XA protocol messages are exchanged between
WebSphere Application Server and the link server. The link server drives the
appropriate CICS functions to complete the unit of work.

To read more about WOLA support for CICS TS, refer to this URL:

http://www.ibm.com/developerworks/websphere/techjournal/1102_mulvey/110
2_mulvey.html?ca=drs-

Optimizations for distributed units of work
WOLA supports the only agent optimization, as described in “Optimizations for
distributed units of work” on page 192. This optimization ensures that if CICS TS
is the only resource manager participating in a distributed unit of work, the
distributed unit of work is optimized to a one-phase commit.

Compensating transactions
There is no specific support needed for writing compensating transactions within
CICS TS. The user can write an additional CICS program that can be called via
WOLA to perform the business logic necessary to compensate for a previous
transactional update.

Idempotent requests
If the decision is made not to use distributed units of work, then idempotent
requests can be used to ensure that in the event of a response not being
received, a request can be retransmitted without causing the same updates to be
made twice at the service provider.
 Chapter 7. Transactional scope 211

http://www.ibm.com/developerworks/websphere/techjournal/1102_mulvey/1102_mulvey.html?ca=drs-

7.6.2 Transactional considerations for WOLA

The following list of questions and comments will help you to choose between the
different tranactional building blocks available for WOLA.

� Are you able to run WebSphere Application Server for z/OS and CICS TS on
the same LPAR?

If so, consider WOLA. If not, consider an alternative technology such as
CICS TG.

� Is the traditional CICS unit of work support good enough?

If all the transactional resources that you need to coordinate are accessed
from CICS TS, the traditional CICS unit of work support should meet your
requirements. This will be the best-performing option.

� Do you need distributed units of work?

If you need to coordinate updates to resources in CICS TS with updates to
resources in other systems synchronously, distributed units of work could be
the answer. Alternative solutions include compensating transactions, or using
WebSphere MQ if an asynchronous model is appropriate.

� How will distributed units of work affect high availability?

Considerations need to include deadlock avoidance and unit of work affinities.
Refer to 8.5.3, “High-availability considerations for WOLA” on page 243, for
further details.

� For inbound calls to CICS TS, do your CICS programs already make
SYNCPOINT calls?

If so, you will need to change those programs if you want the unit of work to
be coordinated from the invoking application. If a CICS program attempts to
issue an explicit SYNCPOINT when the CICS region that it is running in is not
coordinating the transaction, SYNCPOINT fail switch an error return code, which
if not handled causes a program abend. The CICS region can be told to allow
syncpoints by invoking the CICS program with SYNCONRETURN, as described in
7.2.1, “Traditional CICS units of work” on page 187, but this means that the
CICS updates are not coordinated by the invoking application.

7.7 CICS web support

CICS TS provides built-in support for communications over HTTP. In this section
we discuss the transactional scope options for CICS web support.
212 CICS and SOA: Architecture and Integration Choices

CICS web support uses standard CICS transactions to process a single request
from a web client. Any updates to recoverable resources will be committed or
rolled back prior to sending the HTTP response, assuming that an explicit
SYNCPOINT request has not been made by the application.

7.7.1 Supported building blocks for CICS web support

Figure 7-10 shows transactional scopes supported by CICS web support.

Figure 7-10 Transactional scopes supported by CICS web support

Traditional CICS units of work
For inbound requests into CICS TS, CICS TS will always create a unit of work
under which to process recoverable updates, as described in 7.2, “Transactional
building blocks” on page 187. This enables updates to multiple CICS resources,
spanning multiple CICS regions, to be all committed or all rolled back. This is the
default behavior when using CICS web support.

Compensating transactions
There is no specific support needed for writing compensating transactions within
CICS TS. The user can write an additional CICS program that can be called via
CICS web support to perform the business logic necessary to compensate for a
previous transactional update.

Idempotent requests
Idempotent requests could be used to ensure that in the event of a response
message not being received, a request message can be retransmitted without
causing the same updates to be made twice at the service provider.

CICS TS

Service
Requester

CICS
Web

support

Business
Logic

program

Intermediate
Server

AppClient

Key
Traditional CICS UOW
 Chapter 7. Transactional scope 213

7.7.2 Transactional considerations for CICS web support

The following question and comments will help you to choose between the
different tranactional building blocks available for CICS web support. Is the
traditional CICS unit of work support good enough?

If all the transactional resources that you need to coordinate are accessed from
CICS TS, the traditional CICS unit of work support should meet your
requirements. If it does not, then you might need to look at an alternative
technology that supports a wider range of transactional scopes.

7.8 WebSphere MQ

WebSphere MQ provides an alternative approach to the synchronous
request/reply pattern, through its assured delivery and asynchronous messaging
qualities of service. Often used as the basis for an enterprise service bus, it
provides a common API across multiple platforms and is a popular method for
connecting systems together.

7.8.1 Supported building blocks for WebSphere MQ

Figure 7-11 shows transactional scopes supported by CICS TS when used with
WebSphere MQ.

Figure 7-11 Transactional scopes supported by WebSphere MQ

CICS TS

Service
Requester

MQ
bridge

Business
Logic

program

Intermediate
Server

AppClient

WebSphere MQ
for z/OS

Key

Distributed UOW (Get from queue)

Distributed UOW (Put to queue)
214 CICS and SOA: Architecture and Integration Choices

Asynchronous messaging transactional model
Figure 7-11 on page 214 highlights how two different units of work are used in
the asynchronous messaging transactional model to perform the asynchronous
equivalent of a synchronous distributed unit of work. In the first unit of work, the
service requester performs local transactional resource updates and puts a
persistent request message to the MQ queue. The unit of work is then
committed. In the second unit of work, CICS TS reads the request message from
the MQ queue and runs the business logic program that updates transactional
resources. The end result is that transactional resources in both the service
requester and the service provider are updated as they would be in a distributed
unit of work. The difference between the synchronous and asynchronous models
is that there is a time delay between the two units of work and there is a reliance
on WebSphere MQ to look after the request message until the service provider
consumes it.

CICS TS requires a connection to a WebSphere MQ Queue Manager running on
the same LPAR as the CICS region. Having got a message from the queue, in
the event of an error, any transactional resource updates made by the business
logic program are backed out, and the get of the MQ message is also backed
out. The message becomes available on the queue again.

It is possible to tell CICS TS that the backend CICS program should be linked to
with SYNCONRETURN specified. This is done via a flag set in the request
message. When the dynamic program link (DPL) request is made to the CICS
program, if that program is remote on another CICS region, the remote CICS
region will then take a sync point prior to returning. The effect of this is that the
business logic is run in a different unit of work to the get of the request message
and the put of the reply message (if there is one).

Extended logical units of work
The WebSphere MQ DPL bridge provides a variation on extended logical units of
work. A request message can indicate that it starts a unit of work, continues a
unit of work, or ends a unit of work. When the bridge sees a request message
that starts a unit of work, it reads that message from the queue outside of the unit
of work that it creates to run the target backend CICS programs. It also puts the
reply message outside of the unit of work. This means that the reply message is
returned immediately to the requesting application, but the unit of work under
which the CICS updates were made is kept open. Request messages continue to
be read, backend CICS programs are called within the same unit of work, and
reply messages are put, until the CICS bridge sees a message that indicates to it
that the unit of work should be committed or rolled back.
 Chapter 7. Transactional scope 215

Compensating transactions
There is no specific support needed for writing compensating transactions within
CICS TS. The user can write an additional CICS program that can be called via
WebSphere MQ to perform the business logic necessary to compensate for a
previous transactional update.

Idempotent requests
If you are implementing pseudo-synchronous requests, where the requester
puts a request message and waits for a reply message, then there is the risk
that messages could get lost in the event of a failure, or that messages are
delayed and the requester times out. Idempotent requests can be used to ensure
that in the event of a response message not being received, a request message
can be retransmitted without causing the same updates to be made twice at the
service provider.

7.8.2 Transactional considerations for WebSphere MQ

The following list of questions and comments will help you to choose between
the different tranactional building blocks available for WebSphere MQ:

� Is it okay for transactional updates between the application putting the
request message (requester) and the application consuming the request
message (provider) to be made asynchronously to each other?

In an asychronous model, the requester and provider do not need to both be
active at the same time. This means that updates made to recoverable
resources by the requester will be made before corresponding changes are
made at the provider.

� When should you use persistent messages?

Persistent messages are of most value for one-way asynchronous messaging.
If you are using MQ as a pseudo-synchronous request/reply mechanism, then
it is likely the requester will time-out waiting for a reply at some point.
Therefore, persistent messages are of less value, as the requester will need a
method for handling timeouts, such as idempotent requests.

� What if a request message cannot be processed?

In the asynchronous messaging transactional model described in
“Asynchronous messaging transactional model” on page 200, in the event of
a failure at the provider, the request message would be rolled back onto the
queue and become eligible to be read again. If the failure was caused by the
contents of the message, then processing the message a second time could
cause the same failure and another backout. This repeated pattern is known
as a poison message scenario and is usually handled by stating that if a
message is rolled back n number of times, it should then be moved to another
216 CICS and SOA: Architecture and Integration Choices

queue for exception processing. It is the responsibility of the user to provide
exception processing logic.

� For inbound calls to CICS TS, do your CICS programs already make
SYNCPOINT calls?

If so, you will need to change those programs if you want the unit of work to
be coordinated from the invoking application. If a CICS program attempts to
issue an explicit SYNCPOINT when the CICS region that it is running in is not
coordinating the transaction, SYNCPOINT fails with an error return code, which
if not handled causes a program abend. The CICS region can be told to allow
syncpoints by invoking the CICS program with SYNCONRETURN, as described in
7.2.1, “Traditional CICS units of work” on page 187, but this means that the
CICS updates are not coordinated by the invoking application.

7.9 CICS sockets

CICS sockets provide a low level of support, and this is reflected in the
transactional scope options available.

7.9.1 Supported building blocks for CICS sockets

Figure 7-12 shows transactional scopes supported by CICS sockets.

Figure 7-12 Transactional scopes supported by CICS sockets

Traditional CICS units of work
For inbound requests into CICS TS, CICS TS will always create a unit of work
under which to process recoverable updates, as described in 7.2, “Transactional
building blocks” on page 187. This enables updates to multiple CICS resources,

CICS TS

CICS
sockets

Business
Logic

program

Client

Key
Traditional CICS UOW
 Chapter 7. Transactional scope 217

spanning multiple CICS regions, to be all committed or all rolled back. This is the
default behavior when using CICS sockets.

Compensating transactions
There is no specific support needed for writing compensating transactions within
CICS TS. The user can write an additional CICS program that can be called via
CICS sockets to perform the business logic necessary to compensate for a
previous transactional update.

Idempotent requests
Idempotent requests could be used to ensure that in the event of a response
message not being received, a request message can be retransmitted without
causing the same updates to be made twice at the service provider.

7.9.2 Transactional considerations for CICS sockets

The following question and comments will help you to choose between the
different tranactional building blocks available for CICS sockets. Is the traditional
CICS unit of work support good enough?

If all the transactional resources that you need to coordinate are accessed from
CICS TS, the traditional CICS unit of work support should meet your
requirements. If it does not, then you might need to look at an alternative
technology that supports a wider range of transactional scopes.
218 CICS and SOA: Architecture and Integration Choices

Chapter 8. High availability and
scalability

Continuous availability is a key quality of the z/OS operating environment. In this
chapter, we start by providing an introduction to high availability and the technologies
applicable to the z/OS operating environment. Then for each of the CICS access
technologies, we discuss the best approach for optimizing the availability of the
solution, and the resulting implications on the scalability of the system.

These are the key questions that we consider for each solution:

� What are the benefits of a high-availability configuration?
� What are the barriers to adopting high availability?
� How is each technology likely to scale?
� How do you balance IP network connections?
� How do you route requests between CICS regions?

8

© Copyright IBM Corp. 1999, 2012. All rights reserved. 219

8.1 High-availability objectives

For business-critical applications to be available at all times, the underlying IT
infrastructure must be able to support continuous service availability across
planned and unplanned outages and be able to accommodate varying usage
levels without failure. A well-designed high-availability infrastructure can provide
a solution to these issues by building on the unique technology provided in a
System z Parallel Sysplex®.

Benefits of a highly available infrastructure
The cost of downtime is so great that many of today's enterprises can no longer
afford planned or unplanned outages. Even beyond the financial aspects,
downtime can also affect key areas of customer loyalty, market competitiveness,
and regulatory compliance. A high-availability infrastructure provides a solution
to these issues by allowing the system as a whole to continue to function even if
individual components cease to function.

Barriers to implementation
Although high-availability configurations are highly desirable, implementation can
be hampered by a variety of technical factors. The following list summarizes
some of the key factors that might be of consideration:

� Management of state

For CICS applications this is often caused by application affinities due to
information stored in CICS temporary storage or transient data queues that
are local to the CICS region. It might also be due to the usage of terminal or
session identifiers that are unique to a transaction instance.

� Persistent connections

Network-based workload balancing techniques such as port sharing or
Sysplex Distributor work at the IP socket level, and so are only effective if
connections are periodically established, allowing the connection balancing
component to distribute requests among the available servers.

� Transactional recovery implications

For CICS applications this is a specific concern when dealing with distributed
units-of-work where multiple updates to resource managers need to be
coordinated. For further details on the different transaction models supported
in CICS refer to Chapter 7, “Transactional scope” on page 185.

� Additional complexity

Using additional software or hardware components in a high-availability
infrastructure might be prohibitive. Examples are the additional overhead of
routing via the z/OS coupling facility, or the additional pathlength of routing via
220 CICS and SOA: Architecture and Integration Choices

additional CICS systems or of using shared resource manages such as
VSAM RLS.

� Fail-back

If components (such as CICS regions) are restarted, it might not be possible
for work to be automatically switched back to the restarted systems.

� Uneven distribution

Unbalanced distribution across software components can cause problems,
such as over usage of CPU in specific CICS regions or z/OS LPARs.

Problems that an HA solution might not solve
A highly available configuration can address many issues, but it does not
necessarily solve all potential availability issues. The following list summarizes
the key problems be considered when designing an HA infrastructure:

� Storm drain

All requests are sent to a failing system, as this is seen by the routing
component as the optimum location due to a low number of connections or
the rapid response time of failing requests. This can be mitigated through
automated operations to terminate failing systems, or through the use of the
WLM server-specific recommendations.

� Killer applications

An application that has adverse affects on the target system to which it is
sent, causing each system in turn to fail as it is distributed across all available
destinations. Isolating applications into different towers can help address
this issue.

In the following sections we provide an overview of the z/OS solutions for
balancing IP connections and dynamically routing CICS requests between CICS
regions. Further details about how they can be exploited by specific CICS
integrating technologies are supplied later in this chapter.

8.1.1 IP connection balancing

IP connection balancing is a widely adopted mechanism for distributing socket
connections across clusters of servers. There are many implementations
provided both in specialist hardware and in routing software. On z/OS the port
sharing and Sysplex Distributor functions of Communications Server provide
highly efficient and customisable solutions that operate within the heart of the
Parallel Sysplex.
 Chapter 8. High availability and scalability 221

Port sharing
TCP/IP port sharing is a unique feature provided by the z/OS Communications
Server, which enables a group of cloned servers to listen on the same port. New
connections are distributed across the available servers using a weighted
round-robin algorithm based on the efficiency of the server application in
accepting new connection requests and managing the socket backlog queue.
Additionally, feedback from WLM can also be used to influence distribution (see
“WLM server-specific recommendations” on page 224).

Port sharing is a very simple feature to implement that can rapidly detect a failed
server and that can be exploited by any z/OS IP-based application, including CICS
regions, WebSphere MQ queue managers, and the CICS Transaction Gateway.

Figure 8-1 Port sharing

Sysplex Distributor
Sysplex Distributor offers the ability to distribute IP connections across cloned
servers running on different IP stacks (usually on different LPARs). It is based on
the virtual IP address (VIPA) technology in the z/OS Communications Server and
provides three key high availability functions:

� Distribution of connections across a sysplex cluster

This provides the ability to implement a dynamic VIPA as a single
network-visible IP address for a set of servers that belong to the same cluster.
A client located anywhere in the IP network will see the cluster as one IP
address, regardless of the number of server instances that it actually
includes. Individual connection requests will be distributed across the server
instances according to a variety of criteria such as responsiveness of the
server in accepting connections and feedback from MVS workload manager.

z/OS LPAR

CICS1

Port
1234

TCP/IP Stack

CICS2

Connection requests

to port 1234

For recovery
reasons, IP
connection
balancing
technology,
such as port
sharing or
Sysplex
Distributor,
cannot be used
to dynamically
balance
IPIC-based
connections
into CICS
regions.
222 CICS and SOA: Architecture and Integration Choices

� Dynamic VIPA activation

Dynamic VIPA activation allows an application to create and activate an IP
address so that the IP address moves when the application moves between
LPARs in the sysplex.

� VIPA takeover and takeback

Another IP stack in the sysplex can be configured as the backup for a
continuously active dynamic VIPA (DVIPA), such that the DVIPA is
automatically activated on an alternate stack whenever the primary IP stack
suffers an outage. In addition, the primary stack can take back the DVIPA
after the failed stack has been restored. This takeback is non-disruptive to
existing connections, and the takeback is not delayed if existing socket
connections are open. This provides redundancy at the IP stack level with
minimal impact to the functioning of the server applications.

As such, Sysplex Distributor offers an efficient means of distributing IP requests
from within the heart of a z/OS Parallel Sysplex and can be used in conjunction
with port sharing to create a sysplex-wide high-availability cluster of cloned
servers. Figure 8-2 shows a scenario showing port sharing and Sysplex
Distributor use by CICS regions.

Figure 8-2 Sysplex distributor and port sharing

A more detailed discussion of Sysplex Distributor can be found in IBM z/OS
V1R12 Communications Server TCP/IP Implementation: Volume 3 High
Availability, Scalability, and Performance, SG24-7898.

Sysplex
Distributor

Sysplex

V
I
P
A

LPAR

LPAR

1.1.1.1

2.2.2.2
1.2.3.4

Unadvertised IP address

Advertised IP
address

Connection requests

to IP address 1.2.3.4

CICSCICS

CICSCICS

IP stack

Port
Sharing

IP
Stack

IP
Stack

CICSCICS

CICSCICS

Port

Sharing

LPAR

Advertised IP
address
 Chapter 8. High availability and scalability 223

WLM server-specific recommendations
MVS workload manager (WLM) can optionally be exploited by both port sharing
and Sysplex Distributor when making routing decisions for TCP/IP socket
connections. The feedback takes into account a variety of WLM factors, including
service classes, velocity goals, displaceable CPU capacity, and optionally
abnormal transaction completion and server-specific health. For further details
about its potential usage with CICS integration technologies, see 8.4, “CICS TG
for z/OS” on page 235, and 8.6, “CICS web support” on page 243.

8.1.2 CICSPlex SM workload manager

Typically, CICS regions are used in a cluster termed a CICSplex, which can then
be managed by the CICSPlex Systems Manager component to create a
managed cluster termed a CICSPlex (Figure 8-3). This provides increased
capacity beyond that of a single CICS region and also enables different
sub-groups of regions to be used for specialized purposes.

Figure 8-3 CICS dynamic routing

CICS regions that accept incoming requests are designated as terminal owning
regions (TORs) or listener regions and are responsible for receiving requests
from clients and routing them onto specialized application-owning regions

Database
Manager

VSAM

FOR

AOR

TOR

AOR

Database
Manager

VSAM

FOR

AOR

TOR

AOR

DB2

Database
Manager

VSAM

FOR

AOR

TOR

AOR

Database
Manager

VSAM

FOR

AOR

TOR

AOR

DB2

CICSPlex SMCICSPlex SM

LPAR LPAR

DB2
224 CICS and SOA: Architecture and Integration Choices

(AORs). Further specialized file owning regions (FORs) can also be used to
provide shared file access to VSAM or other file stores.

CICSPlex SM workload manager provides three key functions for dynamic
distribution of requests between CICS regions:

� Workload distribution

For a given unit of work, CICSPlex SM selects the target region expected to
provide the best response time, taking into account the health and capacity of
the target regions.

� Workload affinity

CICSPlex SM honors requirements to route successive transactions to the
same target until a defined event causes the affinity to end.

� Workload separation

CICSPlex SM routes transactions within target scopes based on specific
criteria such as transaction ID, user ID, or terminal name.

Dynamic routing models
CICSPlex SM provides two principal routing algorithms for the distribution of
work across target CICS regions:

� Queue algorithm

This calculates a weight based on the existing transaction load in the target
CICS region together with the probability of the transaction abending in the
target region.

� Goal algorithm

This calculates a weight based on the ability of target regions to meet
response time goals defined in z/OS workload manager for each transaction’s
service class.

For both of these algorithms link weights are also factored in so that target
regions are favored if they are local to the same LPAR or use a more efficient
connection type. This provides a bias in favor of sending work over faster
connections, expecting better response times as a result.

CICS TS V4.2: Additionally, in CICS TS v4.2 link neutral versions of these
routing algorithms can be selected, whereby the locality of the target region
does not factor in the routing decision. This removes the bias in favor of
sending work to local regions, providing a more even distribution of requests
across multiple LPARs in the CICSPlex.
 Chapter 8. High availability and scalability 225

Avoiding transactional deadlocks
A key consideration when creating a CICS dynamic routing infrastructure is the
avoidance of transactional deadlocks. This can occur if two requests within the
same distributed unit-of-work (UOW) are dynamically routed to two different
AORs, but subsequently access the same recoverable resource (such as a
shared VSAM file). If this occurs the second request in the UOW will suspend, as
it will wait for a lock when trying to update the shared resource, which has
already been locked by the first CICS task (Figure 8-4).

Figure 8-4 Transactional deadlocks

8.2 Scaling

CICS has proven to be a high-performing and scalable transaction-processing
system. Good performance implies the efficient use of computing resources and
a resulting rapid response time. Scalability implies that the system is capable of
running a large number of simultaneous transactions without a significant
degradation in response time and that the cost of running a transaction does not
increase as the workload increases. A truly scalable solution can therefore be
regarded as one that initially performs well at a low rate of usage and whose

CICS TS V4.2: To avoid transactional deadlocks it is often necessary to
ensure that all DPL requests that are dynamically routed to remote regions are
routed to the same AOR if they are within the same distributed unit-of-work.
CICS TS V4.2 provides built-in support for this through CICSPlex SM WLM
support for UOW affinities.

Routing
region AOR

PROG2

MRO

DPL

C
P
S
M

Deadlock when
second request
attempts update

DPL

Shared
File

AOR

PROG2

PROG1
LINK
LINK

LPAR
226 CICS and SOA: Architecture and Integration Choices

throughput increases in linear proportion to the number of end users, up to the
point at which it saturates the system. This is known as positive linear scaling.

The two graphs in Figure 8-5 illustrate how a linearly scalable system should
behave. The plot of CPU usage against throughput (transactions per second)
shows that the cost per transaction should remain constant as the workload
increases. The plot of throughput against the number of users shows a linear
increase as workload increases, until a resource constraint is reached. The plots
are simplistic and are for illustration purposes only. The assumption is made that
each user is initiating the same amount of work.

Figure 8-5 Performance of a linearly scalable system

Because computer systems are not infinitely fast, there is always a limit at which
the system is saturated. The question is whether this limit is acceptable, and
what is the limiting factor.

Limiting factors
CICS provides a wide range of facilities to help applications scale when faced with
increasing system load. However, there are key considerations that need to be
taken into account to ensure that applications can scale to their maximum extent:

� Multitasking

A single CICS region has the potential to run up to 999 simultaneous tasks.
Each instance of a threadsafe application is allocated to a TCB and runs in
parallel with other applications to fully utilize available processors. However,
all non-threadsafe applications are dispatched to run on a single
quasi-reentrant (QR) TCB when it becomes available, and are therefore
limited in scalability by the capacity of a single CPU and the frequency at
which other applications give up control. If your applications are
non-threadsafe then the best way to scale beyond the bounds of a single

(number of users)

Workload
(T

ra
ns

/s
e

co
nd

)
T

hr
ou

gh
p

ut

Throughput vs. Workload

resource
constraint

(transactions/second)

Throughput

(m
s/

tr
an

sa
ct

io
n)

C
P

U
 C

os
t

CPU cost vs. Throughput
 Chapter 8. High availability and scalability 227

CPU is to dispatch work across multiple CICS regions using dynamic routing,
which can also provide redundancy, in addition to increased scaling.

� TCB switching

Depending on how CICS programs are defined, what resource managers
they invoke (such as DB2 or WebSphere MQ), and which CICS commands
they execute, CICS tasks can either be dispatched on the QR TCB or on an
open TCB (such as an L8, L9, or T8). Each TCB switch has a considerable
overhead (around 2,000 instructions), and application design needs to
minimize these switches while balancing the need to dispatch work across
multiple CPUs. For a more detailed discussion about the implication of TDB
switching in CICS, see Threadsafe Considerations for CICS, SG24-6351.

� Optimizers and appliances

CICS provides the ability to use a variety of optimizers and appliances to
improve the scalability of applications. These include the following range
of options:

– System z Application Assist Processor (zAAP)

zAAP processors are speciality processors that can be used to offload
Java workloads from the System z general-purpose CPs, with the aim of
reducing processing costs. Any applications that run within a CICS JVM
server or JVM Pool can be offloaded to zAAP, which includes Java
applications and PHP or Groovy applications, in addition to SOAP
processing that runs using the Axis2 pipeline.

– System z Integrated Information Processors (zIIPs)

zIIP processors are similar in concept to zAAPs but are designed to
offload TCP/IP and XML processing. When used with CICS, they can be
used to offload TCP/IP messages over 32 KB when using Hipersocket
connections between LPARs and can assist with XML parsing through
support for the XML system services parser.

– Cryptographic coprocessors, such as the CPACF and CEX2, can be used
to accelerate public and private key encryption. For further details see
Chapter 6, “Security” on page 133.

– WebSphere DataPower appliance: WebSphere DataPower is a
purpose-built SOA appliance for delivering optimized and scalable SOA
solutions. As specialized SOA hardware, it can be used to offload

Tip: z/OS V1.11 added a new capability that enables zAAP-eligible
workloads to run on the zIIP. This new capability is ideal for customers
without enough zAAP or zIIP eligible workload to justify a specific
speciality engine.
228 CICS and SOA: Architecture and Integration Choices

expensive operations from middleware solutions such as CICS, thus
improving the overall scalability of the solution. Typical operations include
the processing of large XML messages, validation of XML digital
signatures, and XML schema-validation. These DataPower capabilities
are also available in the DataPower XI50z, which is a blade-form factor
that is installed in the zEnterprise Blade Extension (zBX).

8.3 CICS Web services

Web services provides an open standards based communications method based on
XML-formatted SOAP messages and enable interoperability between a wide range
of service requesters and providers. CICS can act as both a service requester and
provider, and there are different considerations when using these two scenarios. In
the following section we analyze the different choices available at the IP and CICS
routing layers when creating a highly available infrastructure, and provide
recommendations in terms of best practices for the different choices available.

8.3.1 Creating an HA infrastructure

There are two underlying transports supported by the CICS Web services
support:

� SOAP/HTTP
� SOAP/ MQ

Both of these transports support the creation of high-availability connections
using either IP connection balancing or WebSphere MQ load balancing
techniques. For further details about how each of these technologies can be
used with CICS Web services, refer to 8.6, “CICS web support” on page 243 and
8.7, “WebSphere MQ” on page 249.

Dynamic routing
CICS Web service provider applications support two dynamic routing models for
the routing of requests between listening regions and AORs:

� DPL
� Pipeline transaction routing
 Chapter 8. High availability and scalability 229

DPL routing
In this scenario (Figure 8-6) the routing occurs when the pipeline task links to the
target business logic program after the inbound SOAP request has been mapped
to a COMMAREA or a container. The DPL routing is controlled by the program
specified in the CICS DTRPGM system initialization parameter. These are the
advantages of this scenario:

� DPL routing supports MRO, IPIC, or APPC connections.

� DPL routing can be used with both CICS and Axis2 pipelines.

� DPL routing generally is more efficient, as the SOAP message has already
been parsed and transformed into a COMMAREA or containers.

� Setup is much simpler to perform, as no pipeline resources are required in
the AOR.

Figure 8-6 DPL routing

However, due to the way that CICS dynamic DPL functions, the transaction ID
used in the AOR to execute the DPL request will default to either the value
specified in the local program definition or the default mirror transaction (CSMI).
For monitoring reasons it might be beneficial to make this the same as the
transaction ID used for the pipeline task, which can be achieved using the
XPCREQ global user exit.

CWXN

CPIH

Business
Logic

CICS listener
(router)

CICS back-end
(AOR)

Web attach

task Mirror task

C
H

A
N

N
E

L

Pipeline
task

DPL
230 CICS and SOA: Architecture and Integration Choices

Pipeline transaction routing
In this scenario (Figure 8-7) the entire pipeline task is routed from the listening
region to the AOR, where further processing of the SOAP message occurs
before the program links to the business logic. The transaction that runs the
pipeline and business processing is eligible for routing when the transaction is
defined with DYNAMIC=YES. The routing is controlled by the program specified
in the DSRTPGM system initialization parameter. These are key considerations
of this model:

� Pipeline routing is only supported for MRO connections, so it is limited to
CICS regions within the sysplex.

� Pipeline routing is not supported for Axis2 web service Java applications
(where the complete processing of the web service take place with the
CICS JVM).

� The link to the business logic in the AOR runs under the pipeline alias task,
which can be useful for monitoring and accounting.

Figure 8-7 Pipeline routing

For an example on using inbound and outbound Gateway-owning regions in a
CICS Web services high-availability configuration, see Chapter 10, “CICS TG for
z/OS scenario” on page 275. For further details about CICS workload
management, refer to the IBM Redbooks publication CICS Web Services
Workload Management and Availability, SG24-7144.

Using two-phase commit
Web Services Atomic Transactions (WS-AT) can be used to provide two-phase
commit support for distributed transactions using web services in CICS. WS-AT
is documented in detail in Chapter 7, “Transactional scope” on page 185. When
WS-AT is used with a CICS Web service provider application special
considerations have to be taken to ensure that transactional recovery can be

CWXN

CPIH

Business
Logic

CICS listener
(router)

CICS back-end
(AOR)

Web attach

task

Application
Handler

Pipeline task

C
H

A
N

N
E

L

Pipeline
task

Transaction

Route
 Chapter 8. High availability and scalability 231

guaranteed to complete between the web service requester and provider. CICS
provides a solution to this in the form of the WS-AT directory data set
(DFHPIDIR). This data set is designed to be shared between CICS regions
involved in pipeline processing for WS-AT. All the regions that use the data set
must be connected by MRO connections to allow dynamic routing of the pipeline
to the correct region (Figure 8-8). Once shared it enables creation of a single
logical web service provider consisting of multiple instances of CICS regions
acting as web service providers, listening on the same port and IP address
(when using SOAP/HTTP) or the same shared queue (when using SOAP/MQ).

Figure 8-8 IP connection balancing with Web Service Atomic Transactions

For further details about designing and configuring WS-AT configurations in
CICS refer to Implementing CICS Web Services, SG24-7657.

8.3.2 Scaling

The scalability of CICS Web service applications is primarily dependant on the
size and complexity of the SOAP messages. The CPU consumed by the parsing
process has been well studied, and these are the general rules to consider when
creating a web service:

� Keep message size small and message structure simple.

� If large amounts of data need to be exchanged, consider the use of binary
optimization using MTOM. For more details see Chapter 5, “Application
interfaces” on page 89.

� If you cannot use options 1 or 2 within your web service provider application
consider an optimizer technology such as DataPower, which can perform the
specialized parsing function, or usage of the Axis2 pipeline, which can offload
XML parsing to zAAPs speciality processors. For further details about how to

SOAP requests
over HTTPWeb service

requester

LPAR

LPAR

Listener

region 1

DFHPIDIR
MROMRO

IP
 L

o
a

d
 b

alan
cin

g

Listener

region 1
AOR

AOR
232 CICS and SOA: Architecture and Integration Choices

calculate the CPU consumed by the CICS parsing process refer to A Guide to
CICS Web Services Performance, SG247354.

Using DataPower to scale
WebSphere DataPower appliances provide a range of abilities to offload key
components of SOAP message processing from the CICS region. If the message
is very long or complex, then CPU cost is proportional to the length/complexity,
and in this case it might be worth the additional development effort to manage
the body XML processing in DataPower. In this case there are basically two
ways for DataPower to transfer the XML-parsed binary data for usage by CICS:

� Wrapped in a MTOM attachment and using a CICS MTOM Web service
� Using WebSphere MQ

The choice for a particular scenario depends on a variety of factors, such as
existing usage of WebSphere MQ, and if there is a requirement to reuse the
same access mechanisms for all services.

Axis2
In CICS TS V4.2 there is an additional option of running the Axis2 web services
framework inside a CICS JVM server. This supports a variety of configurations,
as outlined in Chapter 3, “Technology overview” on page 37. Usage of Axis2
allows for maximum zAAP offload and is likely to reduce general CPU usage in
either of these cases:

� If the XML messages are large and complex

� If the web service provider application is developed using a native Java
SOAP processing API such as JAX-WS

Note: Although general CPU usage might be reduced with the Axis2 SOAP
pipeline, and this can improve scalability if CPU is limited, it might have a
detrimental affect on response times, as overall CPU usage is likely to increase.
 Chapter 8. High availability and scalability 233

8.3.3 High-availability considerations for CICS Web services

When designing your CICS integration solution with CICS Web services, the
following questions are the key considerations that will need to make:

� Which transport should you use (WebSphere MQ versus HTTP)?

WebSphere MQ and HTTP transports are both highly scalable, and the CPU
cost of the two transports is broadly similar. However, the total CPU transport
cost of SOAP/HTTP is around 10% lower than SOAP/MQ, although the usage
of message queuing can provide the benefit of assured delivery and better
resiliency in cases of temporary network failures.

Both transports offer connection balancing techniques, however, message
queuing offers a wider variety of connection distribution options, both at the IP
level and at the message level.

� Which CICS routing model should be used?

CICS dynamic routing offers both pipeline transaction routing and DPL as
choices for routing of web services requests. DPL is invariably the best
choice, as it is simpler to configure, supports all topologies, and generally
performs better as the requests routed to the AORs are not XML formatted.

� When do you use DataPower?

The CPU cost of parsing web service messages is proportional to the length
and complexity of the XML message. If the message is long or complex then it
is often worth the additional development effort to manage the XML body
processing in DataPower and transform this into a binary payload using
WebSphere MQ or MTOM. Additionally, if WS-security digital signature
processing functions are required, then the overhead of processing the digital
signature information can be offloaded to WebSphere DataPower (see “z/OS
identity propagation support with CICS TG” on page 163).

� What is the impact of two-phase commit?

WS-AT can be used to provide two-phase commit with the CICS or Axis2
pipeline. However, as with any use of distributed transactions, the number of
interactions during the scope of the unit-of-work can have significant affects
on scalability, as CICS transactions will remain active for longer and locks will
be held for longer on recoverable resources. In addition, use of WS-AT with
cloned listener regions requires additional setup using a shared WS-AT
directory data to ensure that transactional integrity is preserved.
234 CICS and SOA: Architecture and Integration Choices

8.4 CICS TG for z/OS

The CICS Transaction Gateway for z/OS provides a connector infrastructure
for quickly providing access to existing CICS applications. This includes a
mature set of functions that can be integrated with other software components
across the Parallel Sysplex to provide a fully redundant and highly available
connector technology.

8.4.1 Creating an HA infrastructure

There are two key issues when creating a highly available CICS TG infrastructure:

� Gateway groups
� CICS server selection
 Chapter 8. High availability and scalability 235

Gateway cloning and IP connection balancing
The Gateway daemon is the runtime component of the CICS TG that handles
incoming client connections and routes work to the appropriate CICS system. To
provide for redundancy, a highly available Gateway group can be created
consisting of a cluster of cloned Gateway daemons. The Gateway daemons
must all use the same configuration and must be listening on the same external
IP endpoint, which can be achieved by using port sharing within the same LPAR
or Sysplex Distributor across LPARs within a sysplex (Figure 8-9).

Figure 8-9 Gateway groups and IP connection balancing

Each Gateway daemon in the Gateway group works in conjunction with RRS and
is capable of providing peer recovery with the connected CICS regions in case of
in-doubt failures during two-phase commit XA transaction processing.

Dynamic server selection
Dynamic server selection (DSS) is a function of the CICS TG on z/OS that
provides the ability for the CICS TG run time to dynamically select a CICS server
for any given ECI request (Figure 8-10 on page 237). This feature allows each
Gateway daemon in a Gateway group to route requests appropriately, for
instance, selecting a local CICS region or routing specific requests to a
specialized group of AORs. This function is also integrated with the two-phase
commit XA transaction support provided by the CICS TG and is designed to
ensure that after a CICS server has been dynamically selected for any given ECI

LPAR

Distributing
Stack

V
I
P
A

Sysplex
Distributor

LPAR

Gateway
daemon

Gateway
daemon

Gateway
daemon

Gateway
daemon

WAS

Port
Sharing

Port
Sharing

Gateway group

Business
Logic

Business
Logic

CICS

Mirror
Task

Business
Logic

Business
Logic

CICS

Mirror
Task

CICS

Business
Logic

Business
Logic

CICS

Mirror
Task

Business
Logic

Business
Logic

CICS

Mirror
Task
236 CICS and SOA: Architecture and Integration Choices

request, all future requests within the scope of the unit-of-work will be routed to
the same CICS server until the unit-of-work completes.

Figure 8-10 Gateway groups and dynamic server selection

In CICS TG for z/OS V8.1, DSS can either be defined in policies within the CICS
TG configuration or it can be controlled dynamically using the CICS request exit.
Policy-based DSS supports generic or server-specific rules and provides a
choice of round-robin or failover algorithms.

The CICS request exit is a user exit deployed into a Gateway daemon. A fully
functional working sample that uses text-based configuration files is provided in
CICS SupportPac CA1T. This SupportPac provides the ability to configure
workload management via round-robin or failover polices, with primary and
secondary levels of failover and configureable time-outs to enable fail back to
primary CICS regions after they are restarted and online policy updates.

WLM and server-specific health
The CICS TG for z/OS can be configured to report server-specific health values
to WLM. These health values are dynamically calculated for a given Gateway
daemon as a percentage value based on the number of failing ECI requests in a

Note: The CICS EXCI user replaceable module, DFHXCURM, also provides
the ability to retry failed ECI requests. However, its usage is no longer
recommended with the CICS TG, as it does not support IPIC connections and
is not integrated with CICS TG statistics and systems monitoring.

LPAR

Distributing
Stack

V
I
P
A

Sysplex
Distributor

LPAR

CICS

Gateway
daemon

CICS
Request

Exit

CICS

Round robin
distribution

CICS

Gateway
daemon

CICS
Request

Exit

CICS
Round robin
distribution

Failover route to
backup LPAR

LPAR

Distributing
Stack

V
I
P
A

Sysplex
Distributor

LPAR

CICS

Gateway
daemon

CICS
Request

Exit

CICS
Request

Exit

CICS

Round robin
distribution

CICS

Gateway
daemon

CICS
Request

Exit

CICS
Request

Exit

CICS
Round robin
distribution

Failover route to
backup LPAR
 Chapter 8. High availability and scalability 237

configured interval. The health values for each Gateway daemon will then be
used by IBM Communications Server during the distribution of new socket
connections by port sharing or Sysplex Distributor. To enable this support it is
necessary to both enable health reporting support in each Gateway daemon and
to enable WLM weights to be used for a shared port or DVIPA.

Server-specific health can be used in conjunction with DSS to provide a
mechanism to prevent storm drain scenarios by the removal of a specific
Gateway daemon from IP connection balancing within the sysplex when all of its
available CICS servers are offline (Figure 8-11). In addition, because WLM also
provides feedback on displaceable CPU capacity, it can be useful in allocating
connections to LPARs where there is sufficient general-purpose or zAAP
processor to run the required workload.

Figure 8-11 CICS TG and health reporting with port sharing

LPAR

Distributing
Stack

V
I

P
A

Sysplex
Distributor

LPAR

CICS

CICS

Round robin
distribution

Gateway
daemon

Dynamic
Server

Selection

Dynamic
Server

Selection

Failover route to
backup LPAR

WLM

CICSCICS

Health=0%
CICSCICS

Gateway
daemon

Dynamic
Server

Selection

Dynamic
Server

Selection
238 CICS and SOA: Architecture and Integration Choices

8.4.2 Scaling

The CICS TG for z/OS provides a highly optimized inbound CICS connector
infrastructure for a wide variety of clients. The key factor affecting the scalability
of a CICS TG solution is usually the payload size of each request. The amount of
data transmitted for each payload depends on both the application design and
whether COMMAREA or channel-based requests are being sent to CICS:

� When using channel-based requests, only containers within the channel that
have been modified are returned back to the calling application. Therefore, an
efficient design ensures that different containers are used for input and output
to ensure that only the data required is transmitted.

� When using COMMAREA-based requests, CICS provides the ability to
dynamically truncate the inbound or outbound data flows that contain trailing
blank (null) data.

� XA two-phase commit provides an optimized mechanism for supporting
distributed units of work between JEE application servers and CICS, with a
small delta cost per transaction. However, as with any use of distributed
transactions, the number of interactions during the scope of the unit-of-work
can have significant affects on scalability, as CICS transactions will remain
active for longer and locks will be held for longer on recoverable resources.
See Chapter 7, “Transactional scope” on page 185, for more information.

� Using SSL for security can add overhead both to the process of connection
establishment and also to the encryption of each request. The first priority is
to ensure that connections are re-used wherever possible, as the most
significant overhead is the SSL handshake during connection establishment.
Additionally, usage of SSL cipher suites, such as DES, AES, or Triple DES,
that are supported using the System z CPACF hardware ensures that the cost
of encryption is a low as possible.

For further details on managing the CICS TG refer to Exploring Systems
Monitoring for CICS Transaction Gateway V7.1 for z/OS, SG24-7562.
 Chapter 8. High availability and scalability 239

8.4.3 High-availability considerations for CICS TG

This section summarizes the key decision factors affecting a high-availability
configuration with the CICS TG for z/OS.

When to use Dynamic Server selection or WLM health
Use Dynamic Server selection or WLM health in these situations:

� Policy-based DSS supports CICS region failover and failback with zero
failures and is easy to configured and deploy.

� Using the CICS Request Exit gives a highly customizable solution for primary
distribution to local CICS regions and secondary failover to CICS regions on
remote LPARs, with the ability to change definitions at run time.

� WLM can work in conjunction with DSS to provide the ability to remove a
Gateway from IP connection balancing if all available CICS servers are
unavailable. However, it requires additional operator intervention or automation
to perform fail-back to a given Gateway daemon after CICS regions are
restarted after failure. However, it can also be used in a multi-LPAR scenario to
help distribute requests to systems with more available CPU.

How to handle failback for restarted Gateway daemons
If IP connection balancing is in use across a group of cloned Gateway daemons,
then restarted Gateways might not be allocated connections if all existing
connections are being reused from a connection pool. To ensure that such
Gateway daemons can be efficiently used in a failback situation, we suggest that
the CICS TG idletimeout or the WebSphere Pool property for aged or unused
time-out are set to ensure that connections are periodically recycled.

Impact of XA global transactions on a HA solution
These are details of the impact of XA global transations on an HA solution:

� Using XA global transactions requires the creation of a highly available
Gateway group with identical configurations and access to RRS.

� If CICSPlex SM is already in use for routing DPL requests from routing
regions to AORs, then CICS TS V4.2 UOW affinity support should be used to
ensure that all requests within an XA global transaction are routed to the
same AOR to prevent potential transactional deadlocks. For more details see
“Avoiding transactional deadlocks” on page 226.

� If ECI requests are to be routed from a Gateway daemon to a CICS region on
a different LPAR, then IPIC connections must be used, as EXCI does not
support the use of RRS for transactional requests sent between LPARs.
240 CICS and SOA: Architecture and Integration Choices

8.5 WOLA

WebSphere Optimized Local Adapters (WOLA) is a functional component of
WebSphere Application Server for z/OS that provides an efficient cross-memory
mechanism for calls from both inbound to WAS z/OS and outbound from WAS
z/OS within an LPAR.

8.5.1 Creating an HA infrastructure

WOLA supports both connections inbound to CICS and outbound from CICS. The
following section summarizes the high-availability support for each configuration.

WOLA inbound to CICS
There are two high-availability components provided when connecting to CICS
from WOLA:

� Connection factory failover

This function is provided as part of the JCA support in WebSphere Application
Server V8. The WebSphere Application Server high-availability support
provides the ability to specify an alternate connection factory JNDI name in
the connection factory pool custom properties. Each connection factory can
optionally specify an alternate connection factory JNDI that will be used if the
target CICS region is not available (Figure 8-12).

Figure 8-12 WOLA: Connection factory failover

Business
Logic

Business
Logic

AOR

Mirrpr
Task

Business
Logic

Business
Logic

AOR

Mirrpr
Task

Business
Logic

Business
Logic

AOR

Mirrpr
Task

LPAR

Invocation
Task

CICS

WAS

Link
Server Task

LINK
WOLA APIs

Connection
Factory

getConnection()

Invocation
Task

CICS

Link
Server Task

LINK
 Chapter 8. High availability and scalability 241

The WOLA resource failover process is triggered when an application makes
a getconnection() request for a resource (such as CICS) that has failed.
When this situation occurs, a pre-defined alternate connection factory naming
a backup CICS system is then used for the getconnection(). The number of
failed attempts before the failover is tried can be set using the failure
threshold property in the connection pool. In addition, WOLA uses a polling
mechanism to detect when a primary resource is available again and will
automatically start using the primary connection factory CICS system when it
has successfully started and registered with the WOLA run time.

� Round-robin request distribution

This provides the ability to distribute requests across multiple CICS regions. It
must be enabled using a specific WOLA environment variable, and once
enabled distributes requests in a round-robin way across all CICS regions
that have registered using the same service registration. However, if requests
are within the same transactional scope, they will always be directed to the
CICS region first used, until the transaction is committed.

WOLA outbound from CICS to WAS
There is no high-availability functionality when making outbound calls from CCIS
to WAS using WOLA, and so if the WAS system is not available, calls from CICS
to WAS will not succeed.

Outbound calls do, however, support the usage of WLM for the prioritization of
work in WAS. When using this function the WLM priority from the calling CICS
transaction can be used to set the WLM service class for the EJB invoked in WAS.

8.5.2 Scaling

WOLA provides an efficient cross-memory mechanism for calls both inbound to
WAS z/OS and outbound from WAS z/OS. It it designed for use with tightly
coupled applications that make frequent or rapid calls between components.
242 CICS and SOA: Architecture and Integration Choices

8.5.3 High-availability considerations for WOLA

The following questions summarize the key high-availability considerations when
using WOLA:

� Does WOLA support CICS dynamic routing?

Yes, dynamic routing of CICS DPL requests can be used for inbound calls to
CICS using WOLA. However, the invocation task and the link server task
must run in the same CICS region that is registered with WOLA.

� Under what circumstances will WOLA failover to a backup?

The WAS V8 connection factory failover function redirects requests to the
backup CICS region as soon as a specified number of JCA calls fail with a
ResourcException. In addition, new connections automatically use the
primary CICS region as soon as it successfully re-registers with WAS,
although existing connections continue to the backup CICS region.

� Can WOLA be used to route requests between LPARs in a sysplex?

No, WOLA uses a cross-memory transport, and as such the WAS sub-system
and the CICS region must be running in the same LPAR. If its necessary to
route requests across a CICSplex environment, you can use CICS dynamic
routing of DPL requests to achieve this. See “DPL routing” on page 230 for
more details.

8.6 CICS web support

CICS provides built-in support for communications over HTTP. In this section we
discuss the high-availability options for CICS web support and the key factors
that affect scalability.

8.6.1 Creating an HA infrastructure

When creating a highly available infrastructure for CICS web support the issues
should discussed in this section should be considered.

IP connection balancing
When accessing CICS applications using CICS web support, IP connection
balancing can be used to provide a simple means of distributing requests across

Note: CICS web support is also used as the HTTP transport for CICS ATOM
feeds and for CICS Web service requests.
 Chapter 8. High availability and scalability 243

multiple listener regions running within the sysplex. Both port sharing and
Sysplex Distributor can be used to distribute requests within or across LPARs in
a sysplex. For more details refer to “Port sharing” on page 222 and “Sysplex
Distributor” on page 222.

Optionally, WLM health metrics can also be used by port sharing or Sysplex
Distributor to affect the distribution of new socket connections across cloned
CICS listener regions. This is recommended in these cases:

� WLM service classes are used to prioritize the dispatching of transactions
within the CICS regions using CICSPlex SM goal mode routing algorithms.

� Requests are dispatched under the same transaction ID in the listening
regions and AORs.

Note: CICS TS V4.2 provides a new MAXPERSIST option to control the
number of persistent HTTP connections allowed for each HTTP listener. This
is controlled via a predefined limit on the TCIPSERVICE resource and is
designed to be used to prevent any one listener region from becoming
permanently overloaded beyond a certain threshold.
244 CICS and SOA: Architecture and Integration Choices

SSL session-ID reuse
SSL session ID reuse allows an HTTP client and server to communicate with a
shortened SSL handshake by allowing the client to reuse an SSL session ID
without re-negotiating encryption keys with the server. When using CICS SSL
support, session ID re-use is enabled using the SSLDELAY SIT parameter,
which allows CICS to store and reuse a session ID for a certain period.
Optionally, SSL session-IDs can also be stored in a sysplex wide cache. This
can provided a significant performance advantage if SSL connections are used
with IP connection balancing across multiple CICS regions (Figure 8-13).

Figure 8-13 CICS web support: SSL session ID reuse

HTTP requests
over SSL

SSL null handshake

SSL resume session

Coupling
Facility

T
C

P
/IP

 C
o

n
n

ec
tio

n
 B

alan
c

in
g

LPAR

LPAR

SSL
session-ID

Full SSL
handshake

Full SSL
handshake

SSL resume session

Cached session-ID

SSL resume session

Listener Region

Listener Region
 Chapter 8. High availability and scalability 245

CICS dynamic routing
CICS does not provide the ability to route the web alias transaction (CWBA) from
a listener region to an AOR. Thus, any program that issues CICS WEB commands
must run within the listener region that handles the HTTP communication.
Instead, if dynamic routing is required, we recommend that when the web
application invokes the business logic in a CICS application, the LINK to the
business logic is dynamically routed to an AOR using a DPL (Figure 8-7 on
page 231).

Figure 8-14 CICS web support: Dynamic routing

CWXN
CWBA Business

Logic

CICS listener CICS back-end
(AOR)

Web attach

task

Mirror task
C

O
M

M
A

R
E

A

DPL

HTTP

Web

Alias
246 CICS and SOA: Architecture and Integration Choices

8.6.2 Scaling

CICS web support provides a highly efficient infrastructure for sending, receiving,
and marshalling HTTP requests from directly within CICS and can support up to
65,000 concurrent connections due to the support for asynchronous TCP/IP
receives. The key factors affecting the scalability of a CICS web support solution
are usually the payload size of each request and the reuse of connections:

� Payload size

The size of the payload is the principal factor affecting the performance of
HTTP requests into CICS. The obvious rule is to keep your payload small and
simple. However, in the real world, you do not always have the luxury of
adhering to this rule. Larger messages result in higher CPU usage in both
CICS and the IP stack and additional storage requirements. CPU usage
typically increases linearly with payload size (Figure 8-15). The goals should
be an awareness of these impacts with an aim to minimize the size of the
input and output messages.

Figure 8-15 CICS web support: CPU usage versus message size

� Connection reuse

When HTTP is used for inbound requests to CICS, persistent connections
outperform non-persistent connections. The reason for this is that when using
persistent connections, the client can reuse both the underlying socket
connection and the CWXN task in CICS for subsequent messages. If the
connection is not persistent, then the client will have to establish a new
connection and also cause a new CWXN transaction to be created for every

0 10 20 30

Message size in KB

1

2

3

4

5

6

C
P

U
 m

s
 / tran

s
ac

tio
n

 Chapter 8. High availability and scalability 247

message. As such, we recommend setting SOCKETCLOSE on the
TCPIPSERVICE definition to NO to take full advantage of the benefits of
connection pooling.

When HTTP is used for outbound requests from CICS, then CICS TS V4.2 can
now cache HTTP connections so that the dormant connection can be reused
by any application that connects to the same host and port. This is controlled
via the URIMAP resource and can significantly improve the scalability of web,
web service, or EP applications using HTTP for outbound requests.

In addition to payload size and connection reuse, the method of mapping URI to
resources and the usage of SSL are also factors affecting scalability:

� URIMAPs should be used to map HTTP requests to CICS resources and set
the alias transaction. If an analyzer program is required for specialized
security or adding functions, then avoid performing any processing that is
likely to invoke delays, such as allocating storage, ENQs, or I/O requests.

� When using SSL the overheads of encryption can be substantially reduced by
pooling connections, re-using SSL sessions, and exploiting encryption
algorithms that are supported by the System z cryptographic hardware.

In addition, when using SSL connections there is a pool of S8 TCBs used for
SSL processing. These are used by CWXN or the alias task for the SSL
handshake and to encrypt and decrypt data being sent and received. The S8
TCBs are used for the duration of the function that they are performing and
returned to the pool afterwards. However, if a large number of concurrent SSL
sessions need to be used, then the pool size can be increased up to a
maximum of 1024 per region.

8.6.3 High-availability considerations for CICS web support

This section summarizes the key decision factors affecting a high-availability
configuration with CICS web support.

How to route requests to AORs
DPL is the only available choice for routing work from web listening regions to
AORs and can be used together with CICSPlex SM dynamic routing to distribute
work across multiple AORs.

Tip: If DPL requests are issued from the web alias to an AOR and it is
required to keep a consistent transaction ID across the listener and AOR, then
it might be necessary to use the XPCREQ user exit to propagate the
transaction ID into the AOR.
248 CICS and SOA: Architecture and Integration Choices

How to ensure CICS listener regions are not overloaded
When using IP connection balancing across multiple listener regions in
conjunction with HTTP persistent connections, it is possible that individual CICS
regions can become overloaded with too many HTTP connections, while others
remain less well utilized. The CICS TS V4.2 TCPIPSERVICE option to control the
number of persistent HTTP connections for each listening HTTP port can be used
to address this situation by setting a maximum limit on the number of persistent
connections per listener. This ensures that any connections beyond this limit are
either redistributed to other listeners or used as non-persistent connections.

How to handle failback for restarted CICS listeners
If CICS listener regions are restarted when IP connection balancing is in use,
then they might not be allocated new IP connections if persistent connections are
in use. The best solution for this is to ensure that HTTP persistent connections
are periodically recycled by setting a timed value for the SOCKETCLOSE setting
on the TCPIPSERVICE so that connections are periodically recycled.

When to use WLM feedback with IP connection balancing
WLM feedback to Communications Server port sharing or Sysplex Distributor is
recommend in these cases:

� WLM service classes are used to prioritize the dispatching of work within the
CICS regions according to response time or velocity goals.

� Tasks run under the same transaction IDs in the listening region and AORs.

8.7 WebSphere MQ

This section discusses how to create a highly available messaging infrastructure
when using WebSphere MQ, and the implications of this on the scalability of the
system. For further details about creating WebSphere MQ high-availability
configurations refer to WebSphere MQ in a z/OS Parallel Sysplex Environment,
SG24-6864.

8.7.1 Creating an HA infrastructure

When WebSphere MQ is used as the transport there are a variety of
high-availability options that can be used to distribute messages across different
queues. The two principal mechanisms are clustering and queue sharing groups,
which can also be used together with IP connection balancing solutions.
 Chapter 8. High availability and scalability 249

Clustering
A cluster is a network of queue managers that are logically associated
(Figure 8-16). Clustering both simplifies system administration and allows you to
define instances of the same queue on more than one queue manager. This later
ability provides a push distribution high-availability solution. Messages for a
clustered queue are distributed throughout the actual queue managers in the
cluster using a simple routing algorithm, such as round robin. The target queue
managers can be running at different locations and on different platforms.

Figure 8-16 WebSphere MQ clustering

Queue sharing groups
Queue sharing groups are a unique feature of WebSphere MQ for z/OS that use
the functionality of the Parallel Sysplex coupling facility and DB2 data sharing
groups to provide a sysplex-wide shared queue model. Any queue manager in
the group can service any shared queue and can continue processing a queue if
a queue manager in the queue-sharing group fails. WebSphere MQ detects
whether a queue manager disconnects from the coupling facility abnormally and,
where possible, other queue managers in the group perform peer recovery to
complete pending units of work for that queue manager. Shared queues are
supported by CICS TS V4 and can be used by both the CICS-supplied trigger
monitor or the CICS DPL bridge. In addition, shared queues can be exploited for
both inbound messages and outbound messages.

There are two typical CICS high-availability models used for queue sharing,
trigger every and trigger first or depth, based on the mechanism for writing trigger
messages to the initiation queue. In the trigger first/depth model a trigger
message is written to the initiation queue after the message level in the request
queue has reached the specified depth, whereas in the trigger every model a
message is written to the initiation queue for every message arriving on the

Round
robin

routing

MQ

application

CICS

MQ
GET

LPAR

MQ PUT

Cluster

Queue

Manager

Queue

Manager

MQ

application

CICS

MQ
GET

LPAR

Queue

Manager
250 CICS and SOA: Architecture and Integration Choices

queue. Typically, trigger first is used to start long-running transactions, and
trigger every when the message rate is low, such as a few messages a second.

In the trigger first or depth scenario (Figure 8-17) the initiation queue is usually
defined as private in each queue manager. This ensures that when messages
arrive on the request queue, trigger messages will be created in each initiation
queue in each queue manager. This causes the CICS trigger monitor transaction
(CKTI) in each CICS region to start a transaction to process messages until the
queue is empty. This model is typically used for long-running applications that
need to be triggered at the start of business processing, and is more efficient
than trigger every, as less trigger messages are created and fewer CICS
transactions started. However, if multiple CICS regions in the same LPAR are
configured to use the same initiation queue, then it does not provide a way of
distributing work across these regions, as only one CKTI transaction will be
invoked to process the request queue.

Figure 8-17 Queue sharing groups: Trigger first or depth

With the trigger every model, a trigger message is written to the initiation queue
for every message that arrives on the request queue (Figure 8-18). If the
initiation queue is shared across the sysplex, then one CKTI transaction will be
triggered for each message that arrives on the request queue. This model
ensures that as many MQ applications that are started in CICS as messages
arrive on the shared request queue, and this helps to improve the distribution of
work across large numbers of CICS regions. However, it is not as efficient as
trigger first/depth because some CICS transactions are likely to be started that

CICS

CKTI

MQ

application

Queue
Manager

Initiation
Queue

Queue
Manager

Initiation
Queue

MQ PUT

MQ
GET

Get trigger
message

Get trigger
message

MQ
GET

Get trigger
message

Coupling
Facility

LPAR

LPAR

Request
Queue

CICS

CKTI

MQ

application
 Chapter 8. High availability and scalability 251

do not consume messages, and when used with high message rates can result
in the flooding of CICS with too many active transactions.

Figure 8-18 Queue sharing groups: Trigger every

With the trigger every model a trigger message is written to the initiation queue
for every message that arrives (Figure 8-18). In this scenario the initiation queue
is usually shared so that only one CICS trigger monitor transaction (CKTI) will be
triggered for each message that arrives. This model ensures that as many
WebSphere MQ applications are started as messages arrive on the shared
request queue, and thus allows workload to be distributed across a large number
of CICS regions. However, it is not as efficient as alternative models because
some applications are likely to be started that do not consume messages, and
thus it is recommended for low-volume messaging.

IP connection balancing and shared channels
Shared channels are a feature of the WebSphere MQ channel initiator that
enables you to use IP connection balancing technology to distribute incoming
connections across a set of eligible queue managers. If any queue manager
within the queue sharing group fails, remote queue managers are still able to
connect to the queue sharing group through a shared channel and put their
message on to the shared queues.

Queue
Manager

CICS

CICS

CKTI

Queue
Manager

MQ PUT

MQ

application

MQ
GET

Get trigger
message

Get trigger
message

LPAR

LPAR

Request
Queue

Init
Queue

CKTI

MQ

application

MQ
GET
252 CICS and SOA: Architecture and Integration Choices

Queue sharing groups can be used in tandem with Sysplex Distributor
(Figure 8-19). In this scenario, a queue manager can be cloned across a set of
LPARs and listen on a single shared virtual IP address to receive connections
from remote queue managers.

Figure 8-19 Queue sharing groups with IP connection balancing

CICS

Shared
channel

Queue
Manager

LPAR

MQ

application

MQ

application

CICS

Shared
channel

Queue
Manager

MQ GET

MQ PUT

CICS

Distributing
Stack

V
I
P
A

Sysplex
Distributor

LPAR

Coupling
Facility

MQ

application

MQ

application

MQ GET

CICS

MQ PUT

Shared
queue

MQ GET

MQ PUT
 Chapter 8. High availability and scalability 253

8.7.2 Scaling

WebSphere MQ provides a highly scalable infrastructure for asynchronous
messaging, which can be exploited by applications running within CICS. These
are the key considerations in terms of scaling:

� Payload size

The larger the payload the higher the overhead in terms of both CPU and
network I/O. If using shared queues, messages over 63 KB in size require the
use of DB2 as a message store, which will have a higher overhead than using
the coupling facility that is used for smaller messages.

� Threadsafe

MQ GETs can be issued from a threadsafe CICS program and can run on an
L8 CICS TCB. However, CICS START commands are not threadsafe, so any
STARTs issued will cause a TCB switch to the QR TCB.

� Persistent messages

These have a higher overhead compared with non-persistent messages due to
the logging and recovery requirements associated with message persistence.

� How many queue managers are required

Typically, one queue manager per LPAR is usually sufficient, and this can
be shared by multiple CICS regions. However, multiple queue managers
can be used, and they can listen on a shared port to provide both redundancy
and scalability.

8.7.3 High-availability considerations for WebSphere MQ

This section summarizes the key decision factors affecting a high-availability
configuration with the CICS and WebSphere MQ.

Clustering versus queue sharing
Clustering provides a push distribution model, is simple to implement with lower
operational overheads, and is supported across all WebSphere MQ platforms.
However, it is does not guarantee full availability, as in-flight messages can get
stuck either in the transmit queue or the local queue on the target queue
manager if the queue manager fails.

Queue sharing provides a pull distribution model, which provides the advantage
that the performance of the consuming system can dictate how many messages
will be processed. It also has the advantage that it provides peer recovery for
in-flight messages, which removes the window of failure during queue manager
failure, and the same infrastructure can be used for inbound and outbound
254 CICS and SOA: Architecture and Integration Choices

message distribution. However, queue sharing is more involved to configure and
requires the usage of a coupling facility and a DB2 data-sharing group.

How to handle high-volume queues
When using a queue with a high message arrival rate, the messages might arrive
faster than a single CICS transaction can consume them. In this case it is often
best to not use triggering, but instead to start an instance of the processing
application in each CICS region at startup using an infinite get-wait. If the volume
is consistently heavy and not a daily cyclical issue, this option is effective and
less expensive overall than triggering. However, there are also several potential
triggering-based solutions that can be considered:

� Develop a trigger monitor that analyzes queue depth or the number of open
handles and starts additional instances of the processing application as
required, either on the same region or on a remote region.

� Create a processing application that starts a new CICS transaction for every MQ
GET issued from the request queue. Any further processing of the messages can
then be performed in the started transaction rather than congesting the original
message-consuming application. This is a good option if there is extensive
message-processing performed in the message-consuming application.

� Create a processing application that, after reading a fixed number of
messages, restarts a new instance of itself and ends. This allows CICSPlex
SM to route the work to another CICS region.

� If your CICS applications are threadsafe, create a trigger monitor capable of
starting multiple processing application instances at once. This can improve
parallelism and thus help speed draining of the request queue.

� For a working example of a pattern for implementing some of these
techniques, refer to the following IBM developerWorks® article:

http://www.ibm.com/developerworks/websphere/library/techarticles/0511
_suarez/0511_suarez.html

8.8 CICS sockets

CICS sockets provides a low-level interface for interfacing with CICS applications
using the TCP/IP socket protocol. For further details refer to z/OS V1R12
Communications Server IP CICS Sockets Guide, SC31-8807.
 Chapter 8. High availability and scalability 255

http://www.ibm.com/developerworks/websphere/library/techarticles/0511_suarez/0511_suarez.html

8.8.1 Creating an HA infrastructure

There are two listener models provided to create CICS sockets applications:

� Iterative server

This is the simplest model and provides in-line processing of the socket and
the calls to the CICS business logic. Because there is only one transaction
serving the socket, all the messages sent over the socket are processed
serially in the same CICS task (Figure 8-20).

Figure 8-20 CICS sockets: Iterative server

� Concurrent server

CSKL is the supplied concurrent server transaction and starts child server
transactions for every message received. Different child server transactions
can be invoked depending on the pre-defined formats of the incoming
messages, and multiple instances of child server tasks can run in parallel to
process multiple sockets (Figure 8-21).

Figure 8-21 CICS sockets: Concurrent server

LPAR

Server
Task

CICS

1.TCPIP
stack Business

Logic
LINK

LPAR

Child
Server
Task

givesocket

START

CICS

1. 2. 3
takesocket

RETRIEVE

TCPIP
stack

Business
Logic

CSKL
256 CICS and SOA: Architecture and Integration Choices

IP connection balancing with CICS sockets
CICS sockets supports IP connection balancing and can be used with port
sharing and Sysplex Distributor to balance incoming sockets across multiple
CICS regions.

CICS dynamic routing
CICS sockets support two different models for dynamic routing of work to CICS
AORs as follows:

� Routing STARTs and givesocket

This model is supported with the concurrent server and works as shown in
Figure 8-22. The child server task is started in the AOR by defining the
transaction as remote. This function ships the START command to the AOR,
which then takes ownership of the original socket using the takesocket
command. The child server task can be routed to any region in the same
LPAR that is bound to the same IP stack as the listener region.

Figure 8-22 CICS Sockets: Routing STARTs

LPAR

Child
Server
Task

givesocket

START

Listener
Region

takesocket

RETRIEVE

TCPIP
stack

Business
Logic

AOR

CSKL
 Chapter 8. High availability and scalability 257

� DPL

Dynamic Program Link is supported with both the concurrent server and the
iterative server model and works as shown in Figure 8-23. In this scenario the
routing occurs using DPL when the server task links to the target business
logic program passing a COMMAREA or CHANNEL. For further discussion of
the routing models refer to “What CICS routing model should be used” on
page 258.

Figure 8-23 CICS Sockets: DPL

8.8.2 Scaling

CICS sockets is a low-level programming interface, and as such the qualities of
service are very much dependant on the application design. These are key
factors affecting the scalability of the solution:

� Usage of the concurrent or iterative listener

� Ensuring that the CICS sockets listener transaction has the highest
dispatching priority within the CICS region

8.8.3 High-availability considerations for CICS sockets

This section summarizes the key design questions when creating an HA
infrastructure for use with CICS sockets

What CICS routing model should be used
The DPL routing model is the recommended routing model and provides the
benefit that all the socket handling code is run in the listener region and the DPL
can be routed to any CICS region in the CICSplex. The START routing model
can be beneficial if the listening region becomes overloaded. However, it is
limited to the same LPAR and requires additional setup of the CICS sockets
TRUE in the AOR.

LPAR

givesocket

START

CICS

takesocket

RETRIEVE

TCPIP
stack

Business
Logic

CSKL
Child Server

Task
LINK DPL

C
O

M
M

A
R

E
A

258 CICS and SOA: Architecture and Integration Choices

How to route long-running tasks
CICS does not provide a built-in mechanism to allow STARTed transactions to
return data back to the parent task that initiated them. This means that if multiple
requests are being sent over a persistent socket connection, then a more
complex application design is required to allow the STARTed child task to return
data back to the listener transaction. CICS offers a range of facilities to assist
with this scenario, including usage of Transient Data Queues (TDQs) or
Business Transaction Services (BTS).

How to handle multiple socket application
Either define a concurrent listener on the same port to start a different transaction
based on the format of the incoming message or define a different listener task
(with unique transaction IDs) that invokes different child server transactions.
 Chapter 8. High availability and scalability 259

260 CICS and SOA: Architecture and Integration Choices

Part 3 Integration
scenarios

In Part 3 we summarize three customer-based CICS integration scenarios. For
each of the scenarios we provide the customer context, describe the specific
project requirements, and highlight the strengths of the chosen solutions. The
scenarios cover the following CICS integration technologies:

� CICS Web services

In this scenario, we show how web services can be used to create a loosely
coupled solution in which CICS services can be invoked from a variety of
different platforms.

� CICS Transaction Gateway for z/OS

We describe how the CICS TG for z/OS provides a transactional connector
from the Java EE environment. We also focus on the techniques that can be
used to create a high-availability configuration.

� Messaging

In the final scenario, we look at how a messaging infrastructure based on
shared queues can be used to create a highly responsive and robust solution
for credit card processing.

Part 3
© Copyright IBM Corp. 1999, 2012. All rights reserved. 261

262 CICS and SOA: Architecture and Integration Choices

Chapter 9. CICS Web services scenario

This chapter looks at the example of a bank that wants to extend some of its CICS
core banking services such as account transfers and posting inquiries to internal
distributed systems and selected business partners. We review how the
implementation of CICS Web services and the DataPower XI50z improves the bank’s
business agility, reduces IT costs, minimizes risk, and simplifies IT complexity.

9

© Copyright IBM Corp. 1999, 2012. All rights reserved. 263

9.1 Objectives

Many banks have embarked on a core banking transformation strategy to gain
flexibility and reduce cost. A service-oriented architecture (SOA) is normally the
preferred architecture because it facilitates maximum reuse of existing assets.

Web services can be used to enable CICS integration based on a common set of
standards covering message format, protocol, and security. An ESB pattern
provides the greatest flexibility, providing the ideal location for functions such as
data transformation, protocol switching, and enforcement of security policy. The
DataPower XI50 appliance provides these ESB capabilities with an ease of use
and performance that is unmatched by other ESB solutions.

Solution requirements
It is the main functional requirements of the project that led to the choice of using
CICS Web services support with the DataPower XI50. Table 9-1 shows how CICS
Web services support meets the major functional requirements of the project.

Table 9-1 Main functional requirements

Functional requirement Solution

Ability to invoke CICS Web services from
any platform (including J2EE and .Net)

Web services are platform neutral.

Ability to support a variety of different
authentication mechanisms

DataPower provides an extensive set of
authentication options out of the box.

Ability to implement an end-to-end
security solution based on identity
propagation

CICS Web services and DataPower
support z/OS Identity Propagation.

Ability to distinguish requests between
internal requests and external requests

DataPower is able to apply different
security policies dependent on the type of
service requester.

Bi-directional support (CICS can be
service provider or service requester)

CICS Web services support is
bi-directional.

Support for long messages CICS Web services and DataPower
support the use of Message
Transformation Optimization Mechanism
(MTOM) for long messages.

Ability to publish CICS services to a
service registry

CICS Web services can be published to
the WebSphere Services Registry and
Repository (WSRR)
264 CICS and SOA: Architecture and Integration Choices

These are the main non-functional requirements of the project:

� Minimized risks

The business-critical web services must be available at all times to authorized
users. The infrastructure must be able to support continuous service
availability across planned and unplanned outages.

� Optimized performance and scalability

The solution must be optimized and must meet the performance and
scalability expectations of the customer. One of the prime objectives is to
demonstrate how a CICS Web services workload can be dynamically
managed based on performance goals.

� Simplified configuration and infrastructure management

Services need to be enabled quickly and the SOA infrastructure must be easy
to manage.

� Real time monitoring

Detailed real-time information (including service hit rates, response times,
and message lengths) must be available for problem diagnosis. See 9.3.4,
“Real-time monitoring” on page 271 for information about how we monitored
the CICS Web services.

In 9.3, “Implementation” on page 266, we take a brief look at how the
non-functional requirements of the project were addressed.

9.2 Architecture

CICS Web services can be accessed directly from a service requester or
indirectly via a service bus. A service bus approach has several advantages:

� Service requesters do not need to have knowledge of the specific physical
location of service providers. The service is virtualized.

� The service bus can manage the security characteristics of inbound or
outbound web services requests, changing transports, and performing
security tasks such as authentication and identity mapping, and propagating
identities to the target service provider

� The service bus can simplify the management of service deployment
and configuration.
 Chapter 9. CICS Web services scenario 265

While there are a number of service bus implementations that meet the above
requirements, the choice was made in this project to use the DataPower XI50 as
a service bus component (Figure 9-1).

Figure 9-1 CICS Web service virtualization

9.3 Implementation

The DataPower XI50 is a purpose-built SOA appliance for delivering highly
manageable, security-enhanced, and scalable SOA solutions. As specialized
SOA hardware, it provides many core functions to SOA deployments in a
hardened device including integrated Enterprise Service Bus (ESB) capabilities,
data enablement and integration features, and the capacity to improve web
services management and SOA governance.

The DataPower XI50z provides the same application functionality as the XI50.
What makes the DataPower XI50z different is the physical integration within the
zEnterprise system. The DataPower blade is installed as an optimizer within the
zBX. For zEnterprise customers, this provides additional value opportunities in
areas such as security and extended System z integration. In addition to the
physical integration within zEnterprise, the DataPower XI50z benefits from the
integrated management provided by Unified Resource Manager. The DataPower
XI50z blades are managed as part of the zEnterprise ensemble.

Service
Interface

Internal
Service

Requestor

Service
Requestor

External
Service

Requestor

Service
Interface

Existing business
application

Handle inbound request
(message security, tokens,
XML optimization etc.)

SOA runtime
(DataPower)

SOA runtime
(CICS)

Handle inbound request
(tokens, map XML to
COMMAREA, assign
transaction id etc.)
266 CICS and SOA: Architecture and Integration Choices

Figure 9-2 shows the bank’s chosen deployment pattern for the DataPower XI50z.

Figure 9-2 DataPower XI50z deployment

The DataPower XI50z is an ideal choice for an SOA Gateway or ESB when the
target services are traditional z/OS assets such as CICS and IMS applications, data
residing in DB2 for z/OS, or other services deployed on virtual servers within the
zBX. These service interactions then benefit from the fast secure Intraensemble
Data Network (IEDN) connecting the virtual servers within the ensemble.

9.3.1 Minimizing risks

Deploying the DataPower XI50z as an SOA Gateway minimizes the bank’s risks
in the following ways:

� It enables tight integration between the bank’s security domains and user
registries, thus minimizing the risk of unauthorized access to the core
banking systems.

� It minimizes the risk of outage by benefiting from the unparalleled availability
and workload management capabilities of zEnterprise.

z196zBX

DataPower
XI50z blades

IEDN

zEnterprise

CICS core
banking services

Web
service

requesters

HMCHMCHMCHMC
 Chapter 9. CICS Web services scenario 267

End-to-end security
The bank has to prepare for stringent compliance regulations, which dictate that
all service invocations must be audited and that the originating user's identity
must be included in the audited record. The current security model does not fulfill
this requirement because when the distributed identity is mapped to a RACF
user ID, the originating user's identity is lost.

The z/OS identity propagation support available with CICS TS V4.1 and
z/OS V1.11 solves the bank's security challenge. The DataPower XI50z
authenticates the credentials supplied by the client and maps them to a
z/OS-specific ICRX token that contains the distributed identity of the user. The
request is then forwarded to CICS over the secure IEDN and CICS passes the
token to RACF so that the client's identity can be mapped to a RACF user ID.
The advantage of this solution is that the original caller's identity is not lost. It is
stored as an extension to the RACF identity. See “z/OS identity propagation
support with CICS Web services” on page 151, for more information about how
CICS Web services support identity propagation.

High availability
When deploying CICS Web services in a parallel sysplex, you can take
advantage of the z/OS-specific workload management capabilities, including
Sysplex Distributor and MVS Workload Manager (WLM). Figure 9-3 shows the
parallel sysplex configuration used for this project.

Figure 9-3 CICS Web services high availability configuration

CICS AOR
Brand abcCICS
Listener

CICS AOR
Brand abc

CICS AOR CICS AOR
Brand abc

CICS AOR

DB2

VIPA

DB2
Data Sharing

CF

CICS AOR
Brand abcCICS
Listener

CICS AOR
Brand abc

CICS AOR CICS AOR
Brand abc

CICS AOR

DB2

SOAP/HTTPSOAP/HTTP

Link Link

LPAR1 LPAR2

VIPA
268 CICS and SOA: Architecture and Integration Choices

Here we describe Figure 9-3 on page 268:

� Sysplex Distributor is used for workload management of TCP/IP connections
across two LPARs (LPAR1 and LPAR2).

� Multiple CICS regions on each LPAR listen on a shared TCP/IP port.

� Program link requests are dynamically routed to cloned AORs using
CICSPLex SM.

� CICS business logic programs running in the AORs share access to business
data using DB2 data sharing.

The bank also chooses to use Sysplex Distributor to distribute requests across
the DataPower blades within the zBX (Figure 9-4). This simplifies workload
management and improves availability. It also allows the bank to remove the
external workload distribution appliances that have been used previous to
this solution.

Figure 9-4 Using Sysplex Distributor for high availability

9.3.2 Optimized performance and scalability

The scalability of CICS Web service applications is primarily dependant on the
size and complexity of the SOAP messages. The chosen security model can also
have a big impact. For very long or complex messages, or for certain types of
security solution, it can be optimal to front-end the CICS Web services with an
SOA appliance.

Tier 1
distribution

Tier 2
distribution

Sysplex
Distributor

DataPower
XI50z

Sysplex
Distributor

zBX

Web
service

requesters

CICS

CICS

CICS

CICS

z196IEDNExternal
network
 Chapter 9. CICS Web services scenario 269

Using an SOA appliance fits well with the bank's strategy to deploy different
components of workloads on the best fit platform. DataPower is a clear best fit for
heavy XML processing and security functions. For example:

� When DataPower is used to parse the SOAP body of very large messages,
the bank's tests show that this reduces the processing cost in CICS by up
to 75%.

� Using DataPower to validate XML signatures is shown to be more than five
times more efficient than a software-based solution.

Using DataPower as an optimizer in this way frees up resources for other
processing, such as transactional, data access, and business logic.

In addition, performing such processing in a special-purpose optimized blade has
additional benefits for the bank in lowering power consumption, reducing overall
cost, and improving scalability.

9.3.3 Simplifying configuration and infrastructure management

An appliance is easy to configure and allows solutions to be “dropped in” quickly,
thus saving time and labor costs. Figure 9-5 shows the configuration differences
between an appliance and a typical software-based ESB.

Figure 9-5 How an appliance simplifies configuration

An ESB appliance can save labor costs by providing one configuration point and
no programming. A software-based ESB, however, typically has broader reach
through a full programming model, but a wider set of configuration points.

Config ConfigConfig

ESB
software

Application
Server

Database

Operating systemOperating system Config

Hardware

Firmware

Config

XML
Acceleration

Crypto
Acceleration

Special
purpose

hardware

Software-based ESB ESB appliance
270 CICS and SOA: Architecture and Integration Choices

The choice of the DataPower XI50z also fits with the bank's aim to minimize
infrastructure management by managing different platforms in a consistent way.
The zEnterprise Unified Resource Manager simplifies the bank’s platform
management by providing a single operations console. The Unified Resource
Manager also:

� Monitors the health and energy consumption of the DataPower XI50z blade.

� Consolidates error logging across the ensemble, which consists of the
DataPower XI50z blade and all resources (z196 and zBX components) that
are part of the workload.

� Simplifies problem determination by providing call home support for current or
expected problems.

9.3.4 Real-time monitoring

Another challenge faced by the bank is to efficiently monitor the services that it
provides to its business partners and internal systems, in particular, to monitor
against a set of pre-defined response time goals, to be able to identify a problem
when it occurs and quickly identify the location and root cause of the problem.
 Chapter 9. CICS Web services scenario 271

The bank has extended its existing IBM Tivoli Monitoring infrastructure, which
provides the enterprise infrastructure dashboard through the IBM Tivoli
Enterprise Portal (Figure 9-6).

Figure 9-6 IBM Tivoli Monitoring infrastructure

Here we describe Figure 9-6:

� IBM Tivoli Composite Application Manager Agent for WebSphere DataPower
Appliance is used to perform detailed monitoring of DataPower.

� IBM Tivoli OMEGAMON® XE for CICS is used for detailed analysis of web
services in CICS, including tracking against service response-time goals.

� IBM Tivoli Composite Application Manager for SOA is used to monitor the
end-to-end performance of the web services across both the CICS and
DataPower runtime environments.

DB2

ITCAM for
SOA

IBM Tivoli Monitoring
• Tivoli Enterprise Portal Server
• Tivoli Enterprise Monitoring Server

ITCAM for
SOA DataPower

Agent

OMEGAMON®
XE

for CICS

ITCAM Agent
for

WebSphere
DataPower

zEnterprise

CICS TS

Tivoli Enterprise Portal

ITCAM for
SOA Agent

AOR

CPPEPM01

CWPISI05

TOR

TransferB

Posting

Transfer

AOR

CPPEPM01

CWPISI05

Business
partners

DataPower
XI50z

z/OSzBX

Transfer
TransferBatch
PostingInquiry
272 CICS and SOA: Architecture and Integration Choices

To set response time goals for web services, specific requests are associated
with transaction identifiers using URIMAP resource definitions. These
transactions are then classified by MVS WLM and assigned to a service class
with a defined performance goal. This allows the response times for the CICS
Web services to be monitored (Figure 9-7).

Figure 9-7 CICS Web service monitoring

9.4 Solution summary

CICS Web services provides the flexible integration and loose-coupling required
by the bank. DataPower XI50z complements the use of CICS Web services by
providing ESB capabilities that are easily configurable and the ability to offload
specific CPU-intensive operations.

Service
throughput

Service
response times
 Chapter 9. CICS Web services scenario 273

274 CICS and SOA: Architecture and Integration Choices

Chapter 10. CICS TG for z/OS scenario

This chapter looks at a CICS integration architecture based on the CICS
Transaction Gateway (CICS TG) for z/OS. We review how the implementation of
CICS TG for z/OS addresses the requirements of TCP/IP-based access to CICS
with high availability, while continuing to provide transactional integrity with CICS
and DB2.

10
© Copyright IBM Corp. 1999, 2012. All rights reserved. 275

10.1 Objectives

Many customers have migrated their SNA networking infrastructures to TCP/IP,
with the result that applications that depend on APPC programming interfaces
have become obsolete. As such, modern IP-based alternatives are required that
provide equivalent capabilities for SNA qualities of service, such as two-phase
commit, high availability, and security. The architecture described in this chapter
addresses the requirements in Table 10-1.

Table 10-1 Project requirements

Requirement Solution

Migration from SNA to TCP/IP � CICS TG support for TCP/IP client
connectivity

No single point of failure � TCP/IP Port Sharing and Sysplex Distributor
with cloned Gateway daemons

� CICS TG dynamic server selection
� CICSPlex SM dynamic routing

High availability and scalability � Cloning of Gateway daemons
� Dynamic server selection
� CICSPlex SM workload management

Ability to invoke a CICS transaction
and update DB2 within the scope of
a distributed unit of work

� XA support provided by the WebSphere
Application Server EJB container and CICS
TG

Integration with existing CICSPlex
TOR to AOR routing configuration

� UOW affinity support for CICSPlex SM
dynamic routing of DPL requests

Minimizing change to CICS
applications

� Removing access to COMMAREA or
channel-based CICS programs using the
CICS TG External Call Interface (ECI)

Optimized performance � CICS TG providing a highly scalable
integration technology using binary
formatted messages with optimized data
transmissions and syncpointing
276 CICS and SOA: Architecture and Integration Choices

10.2 Architecture

The CICS Transaction Gateway can be installed on a wide variety of platforms
and can be operated as a Gateway daemon in its own address space (remote
mode), or it can be co-located within the application server (local mode). The
solution described uses the CICS TG for z/OS running as a standalone Gateway
daemon. This configuration has several advantages:

� Two-phase commit XA support is provided for any release of CICS TS for
z/OS, allowing transactional updates to be coordinated across multiple
resource managers, including multiple CICS regions and other enterprise
information systems (EIS) such as DB2.

� High-availability configurations are simple to create and support is integrated
with the CICS TG XA support.

� Secure SSL connections can be made directly into the Gateway daemon
running on z/OS using the SSL support provided by the JSSE component of
the IBM SDK for z/OS.

� Asserted identity configurations are supported, simplifying end-to-end
security architectures.

Figure 10-1 shows the high-level architecture of the solution.

Figure 10-1 CICS TG scenario architecture

CICS
CICS

Java EE
Application

Server

z/OS

Relational
Database

CICS
Program

AORs
Gateway owning

regions

CICSPlex

CICS TG

IP Network
 Chapter 10. CICS TG for z/OS scenario 277

10.3 Implementation

The configuration consists a set of cloned Gateway daemons spread across
multiple LPARs in a Parallel Sysplex, providing both scalability and availability.
The Gateway daemons are able to process two-phase commit XA requests,
enabling JDBC updates to be coordinated in the same distributed unit of work as
calls to CICS programs (Figure 10-2).

Figure 10-2 CICS TG z/OS high-availability configuration

The configuration used in Figure 10-2 consists of the following components:

� EJB components in WebSphere Application Server use the XA version of the
CICS ECI resource adapter to make calls to CICS applications and JDBC
calls to a third-party relational database in the same global transaction.

� Cloned Gateway daemons are part of a highly available Gateway group and
listen on a shared port in each LPAR. Each LPAR has a dynamic VIPA used
by the cloned Gateway daemons, to which incoming TCP/IP connections are
distributed by Sysplex Distributor, providing TCP/IP connection balancing

Listener
Region

CICS ECI RAR

EJB

Sysplex
Distributor

JDBC

Port sharing

Gateway
daemon

Sysplex

XA global
transactions

WebSphere Application
Server

Gateway
daemon

AORs

Port sharing

Gateway
daemon

Gateway
daemon

AORs

CICSPlex

LPAR LPAR

Listener
Region

Listener
Region

Listener
Region

1

2

3

5

DB2DB2

4

3rd party relational
database

RRS
278 CICS and SOA: Architecture and Integration Choices

across the LPARs. The number of cloned Gateway daemons can be
increased to meet increasing system load, providing horizontal scalability.

� CICS TG dynamic server selection is used to control routing of ECI requests
to CICS listener regions, and the CICS TG ensures that even in the event of
failure all scenario requests in the same global transaction are routed to the
same listener CICS region.

� Two CICS listener regions are configured per LPAR to provide high
availability and to enable routing across a set of available AORs, allowing
integration with existing CICSPlex SM workload management.

� CICSPlex SM UOW affinity support is used to ensure that all requests in the
same distributed unit of work are routed by the listener CICS regions to the
same AOR. This prevents any deadlock situations when the CICS AORs
access the shared DB2 relational database.

10.4 Solution summary

The CICS TG for z/OS provides an easy-to-use and highly scalable
TCP/IP-based connector technology for accessing CICS applications. This
combined with the ability to coordinate transactions in CICS with updates to other
XA capable resource managers, such as DB2, provides a simple way of re-using
existing CICS assets and integrating them in a broader SOA framework.
 Chapter 10. CICS TG for z/OS scenario 279

280 CICS and SOA: Architecture and Integration Choices

Chapter 11. Messaging scenario

This chapter looks at a CICS integration scenario based on a messaging
infrastructure using WebSphere MQ. We review how the implementation of
shared message queues creates a highly responsive and robust solution for
credit card processing.

11
© Copyright IBM Corp. 1999, 2012. All rights reserved. 281

11.1 Objectives

Many banks have CICS-based credit card processing services, such as credit
authorizations, that require real-time, near-instant decisions. This often poses
challenges of scalability and throughput, especially during peak holiday season.

WebSphere MQ can be used to provide access to such programs using a
request-reply pattern. The use of shared message queues enables this type of
credit card processing solution to be highly available and scalable.

Solution requirements
Table 11-1 shows how the use of WebSphere MQ with a queue sharing group
(QSG) meets the major requirements of the project.

Table 11-1 Project requirements

Requirement Solution

Ability to invoke CICS transactions from
multiple channels including Web and ATM

WebSphere MQ provides a simple API
that makes it easy for programs running
on different platforms to put and get
messages from queues.

High availability Because applications can connect to any
queue manager in a QSG, and as all
queue managers in a QSG can access
shared queues, client applications are not
dependent on the availability of a specific
queue manager.

High scalability The use of a QSG enables a scalable
solution that takes advantage of the
resources across the parallel sysplex.
New instances of CICS regions or queue
managers can be easily introduced into
the QSG as business growth dictates.

Workload balancing The QSG automatically enables full
workload balancing.
282 CICS and SOA: Architecture and Integration Choices

11.2 Architecture

The key feature of shared queues is their availability across the sysplex. This
enables CICS transactions to run in multiple AORs and access the same queue.
Figure 11-1 illustrates the high-level architecture for this project.

Figure 11-1 Messaging scenario architecture

In Figure 11-1 we can see how multiple instances of the credit card processing
application can be running in AORs across the sysplex, all processing messages
from the same shared-request queue to maximize throughput.

Furthermore, although applications running outside the sysplex on different
servers (that is, Windows, AIX, and Linux) cannot retrieve messages directly
from the shared queues (because GET operations can access only those
queues that are local to the connected queue manager), they can use PUT
operations to write messages to a shared queue.

Typically, one queue manager is configured for each LPAR in the sysplex.
However, it is also possible for multiple queue managers to be configured on a
single LPAR (QMG1 and QMG3, for example).

QMGR
Windows

QMGR
AIX

QMGR
zLinux

Network

AOR AOR

TOR
CIC1

DBx

QMG1 (QSG1)

QMG3 (QSG1)

AOR AOR

TOR
CIC2

DBy

QMG2 (QSG1)

LPAR 1 LPAR 2

Shared
Queue

REQUEST_Q
(OSG1)
 Chapter 11. Messaging scenario 283

11.3 Implementation

The configuration consists of a set of cloned CICS regions spread across
two LPARs in a parallel sysplex. The CICS regions share access to a request
queue that is held in the coupling facility. Figure 11-2 shows the bank’s
chosen implementation.

Figure 11-2 Messaging high-availability configuration

The configuration used in Figure 11-2 consists of the following components:

1. The client application connects to the queue manager QMGA running on a
distributed system and puts a request message to a queue named
QUERY.REQUEST. QMGR is part of a WebSphere MQ cluster.

2. Configure Sysplex distributor (SD) to enable a shared channel. It needs
two configurations:

– Shared port definition in all the three queue managers. All group listeners
in the queue-sharing group are defined to be listening on the same port.
Define shared port in all three queue mangers (Example 11-1).

Example 11-1 CSQ4INPX member definition

In the CSQ4INPX member for the queue manager, define the
following:
START LISTENER TRPTYPE(TCP) PORT(31414) INDISP(GROUP)

QSG1

QUERYREQ

CIC1

S
y
s
p
l
e
x

D
i
s
t
r
i
b
u

ter

QMG2

GenP

ShrP

ShrP

ShrP

QMGA(AIX) QMG3QMG1

QUERY.
REQUEST

QMGA
(xmitq)

QUERY.
REQUEST

QUERY.
REQUEST

QUERYRESP

CIC2

CIC1
Client

QUERY.REQUEST

QUERY.RESPONSE
284 CICS and SOA: Architecture and Integration Choices

– Sysplex distributor configuration in TCPIP parms. Create a profile
(Example 11-2).

Example 11-2 Sysplex distributor configuration

VIPADEFINE 255.255.255.224 aa.xx.yy.xx
VIPADISTRIBUTE DISTM ROUNDROBIN aa.xx.yy.zz PORT 31414 DESTIP ALL

Figure 11-3 shows how the Sysplex distributor is configured.

Figure 11-3 Sysplex distributor configuration

3. QMGA connects to a generic port (31414), and a shared channel is started to
send the request message to the queue sharing group (QSG1). Sysplex
distributor routes the connection request to one of the queue managers (in
this example, the connection is established with QMG1).

4. The distributed queue manager then sends a message, which is placed on
the shared queue. The queue QUERY.REQUEST is defined as an alias
queue (using group definitions so that each queue manager in the QSG has
the same definition), which points to QUERYREQ. As this is a local (shared)
queue, the request message is placed onto this queue.

5. A trigger is defined for the queue QUERYREQ so that a single CICS trigger
monitor transaction is triggered for the message (in this example, CKTI runs
on CIC2, which is connected to queue manager QMG2).

6. The CICS application retrieves the trigger message and gets the name of the
queue that started the trigger. The started transaction retrieves the request
message, and puts the reply message. The ReplyToQ and ReplyToQmgr
fields in the request message are specified as QUERY.RESPONSE and
QMGA, respectively.

QMGA SD

QMG1

QMG2

QMG3

aa.xx.yy.zz:31414

IP for SD

Distribute

31414

31414

31414
 Chapter 11. Messaging scenario 285

7. The channel for QMGA is a shared channel, so it can be started on any
queue manager in the QSG.

8. The response message arrives on QMGA, where the alias queue
QUERY.RESPONSE is resolved to QUERYRESP.

11.4 Solution summary

The use of WebSphere MQ with a queue sharing group provides a scalable
solution for credit card processing and ensures maximum availability for planned
and unplanned queue-manager outages.
286 CICS and SOA: Architecture and Integration Choices

Part 4 Appendix

Part 4
© Copyright IBM Corp. 1999, 2012. All rights reserved. 287

288 CICS and SOA: Architecture and Integration Choices

Appendix A. Product capabilities

This appendix details which in-service versions of CICS TS and associated
products first introduced significant capabilities for each of the integration
technologies discussed throughout this book.

Use this information to establish which versions are required for your
SOA solution.

A

© Copyright IBM Corp. 1999, 2012. All rights reserved. 289

Product capabilities

Table A-1 lists the CICS Web services capabilities.

Table A-1 CICS Web services capabilities

* Conditionally complies or has restrictions. See the “External standards” topic in
the CICS TS information center for further details.

Table A-2 lists the CICS TG for z/OS capabilities.

Table A-2 CICS TG for z/OS capabilities

Product Capability

CICS TS V3.1 � SOAP 1.1 and 1.2
� Web Services Description Language Version 1.1*
� Web Services Atomic Transaction Version 1.0
� WS-I Basic Profile 1.1*
� CICS Web services asistants
� SOAP Message Security
� Web Services Security: UsernameToken Profile 1.0*
� Web Services Security: X.509 Certificate Token Profile 1.0*

CICS TS V3.2 � Web Services Description Language Version 2.0*
� SOAP 1.1 Binding for MTOM 1.0
� Simple SOAP Binding Profile 1.0
� Web Services Trust Language specification in WS-Security*
� WSDL 1.1 Binding Extension for SOAP 1.2

CICS TS V4.1 � Web Services Addressing 1.0*
� WSDL publishing to, and reading from, WebSphere Service Registry and

Repository
� Identity Propagation
� Basic authentication for outbound connections
� IPv6

CICS TS V4.2 � Axis2 Java-based SOAP engine, including zAAP offload
� Password phrase support

Product Capability

CICS TG for z/OS
V7.1

� Channel interface support for Java clients
� XA two-phase commit directly into CICS TS via IPIC
� SSL support directly into CICS TS via IPIC

CICS TG for z/OS
V7.2

� Server name remapping
� Gateway groups support peer recovery of XA transactions across sysplex
290 CICS and SOA: Architecture and Integration Choices

Table A-3 lists WOLA capabilities.

Table A-3 WOLA capabilities

Table A-4 lists CICS web support features.

Table A-4 CICS web support features

CICS TG for z/OS
V8.0

� Identity propagation with CICS TS V4.2
� Sysplex-wide highly available Gateway groups
� Channel interface support for the External Call Interface (ECI) v2 clients

CICS TG for z/OS
V8.1

� Policy-based dynamic server selection
� ESI over IPIC connections
� ESI for .NET and ECI v2 clients
� Password phrase support
� JCA 1.6
� Cloud deployment with IBM Workload Deployer
� 64-bit and 32-bit .NET application support
� Channels and containers for .NET and ECI v2 C applications

Product Capability

Product Capability

WebSphere Application
Server for z/OS V7.0.0.4

� Inbound and outbound from CICS TS; inbound to CICS TS limited to
one-phase commit

� Thread identity support

WebSphere Application
Server for z/OS V7.0.0.12

� Two-phase commit support inbound to CICS TS

WebSphere Application
Server for z/OS V8.0.0.1

� JCA connection factory failover
� Round robin request distribution

Product Capability

pre-CICS TS V3.1 � HTTP/1.0
� WEB API
� Basic authentication
� Secure Sockets Layer

CICS TS V3.1 � HTTP/1.1 including inbound persistent connections, pipelining, chunking*
� Outbound HTTP
� Static content delivery
� Transport Layer Security 1.0
� Cipher suites and certificate revocation lists

CICS TS V3.2 � WEB APIs enhanced to accept containers
� IP Interconnectivity (IPIC)
 Appendix A. Product capabilities 291

*Conditionally complies or has restrictions. See the “External standards” topic in
the CICS TS information center for further details.

Table A-5 lists the WebSphere MQ for z/OS capabilities.

Table A-5 WebSphere MQ for z/OS capabilities

Table A-6 lists the CICS sockets capabilities.

Table A-6 CICS sockets capabilities

CICS TS V4.1 � Atom Syndication Format
� Atom Publishing Protocol
� Outbound basic authentication
� IPv6

CICS TS V4.2 � HTTP/1.1 pooling of outbound connections
� Limiting the maximum number of persistent HTTP inbound connections
� Atom feeds simplified deployment and administration

Product Capability

Product Capability

CICS TS V3.2 � CICS-WebSphere MQ attachment integrated with CICS TS
� Threadsafe CICS-WebSphere MQ attachment

CICS TS V4.1 � WebSphere MQ group attach for shared queues

CICS TS V4.2 � Unit of work recovery for shared queues

WebSphere MQ V7.0.0 � Publish and subscribe messaging

Product Capability

Communication Server for z/OS V1R7 � CICS OTE support
� SSL support

Communication Server for z/OS V1R9 � PLT support for CICS immediate shutdown
� Configureable language translation between ASCII and

EBCDIC
� Netstat application data support
� Improved error handling and recovery
292 CICS and SOA: Architecture and Integration Choices

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about
the topic in this document. Note that some publications referenced in this list
might be available in softcopy only.

� CICS Transaction Server from Start to Finish, SG24-7952

� CICS Web Services Workload Management and Availability, SG24-7144

� Implementing CICS Web Services, SG24-7657

� Application Development for CICS Web Services, SG24-7126

� Considerations for CICS Web Services Performance, SG24-7687

� Securing CICS Web Services, SG24-7658

� High Availability in WebSphere Messaging Solutions, SG24-7839

� Smarter Banking with CICS Transaction Server, SG24-7815

� Simplifying Integration with IBM WebSphere DataPower Integration
Appliance XI50 for zEnterprise, REDP-4783

You can search for, view, download or order these documents and other
Redbooks, Redpapers, Web Docs, draft and additional materials, at the
following website:

ibm.com/redbooks

Other publications

This publication is also relevant as a further information source:

� IBM Techdoc WebSphere z/OS Optimized Local Adapters, WP101490
© Copyright IBM Corp. 1999, 2012. All rights reserved. 293

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Online resources

These websites are also relevant as further information sources:

� A useful definition of SOA is provided by the OSASIS group:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

� For further details on Cloud computing refer to the following website:

http://www.nist.gov/itl/csd/cloud-020111.cfm

� To read more about CICS TG local mode of operation, refer to this site:

http://www.redbooks.ibm.com/abstracts/sg247161.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
294 CICS and SOA: Architecture and Integration Choices

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.nist.gov/itl/csd/cloud-020111.cfm

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

CICS and SOA: Architecture and Integration Choices

CICS and SOA: Architecture and
Integration Choices

CICS and SOA: Architecture
and Integration Choices

CICS and SOA: Architecture and Integration Choices

CICS and SOA:
Architecture and
Integration Choices

CICS and SOA:
Architecture and
Integration Choices

®

SG24-5466-06 ISBN 0738436739

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

CICS and SOA
Architecture and
Integration Choices

Covers web services,
JCA, web support,
messaging, and CICS
sockets

Is based on CICS
Transaction Server
V4.2

Includes example
integration
scenarios

The service-oriented architecture (SOA) style of integration
involves breaking an application down into common,
repeatable services that can be used by other applications
(both internal and external) in an organization, independent
of the computing platforms on which the business and its
partners rely.

In recent years CICS has added a variety of support for SOA
and now provides near seamless connectivity with other IT
environments. This IBM Redbooks publication helps IT
architects to select, plan, and design solutions that integrate
CICS applications as service providers and requesters.

First, we provide an introduction to CICS service enablement
and introduce the architectural choices and technologies on
which a CICS SOA solution can be based.

We continue with an in-depth analysis of how to meet
functional and non-functional requirements in the areas of
application interface, security, transactional scope, high
availability, and scalability.

Finally, we document three integration scenarios to illustrate
how these technologies have been used by customers to
build robust CICS integration solutions.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	Seventh Edition, March 2012
	Sixth Edition, October 2006
	Fifth Edition, February 2005
	Fourth Edition, October 2002
	Third Edition, July 2001
	Second Edition, March 2001

	Part 1 Architecture and technologies
	Chapter 1. Introduction to Service Enablement for CICS
	1.1 SOA: An architectural approach
	1.1.1 Basic components of an SOA
	1.1.2 Defining a service

	1.2 Web services
	1.3 CICS as a platform for service enablement
	1.3.1 Connector model
	1.3.2 Direct model

	1.4 CICS TS as a platform in the cloud
	1.5 The modern CICS management experience

	Chapter 2. Architectural choices
	2.1 CICS application architecture
	2.2 Access method architecture
	2.3 Application integration requirements
	2.3.1 Application interface
	2.3.2 Client-to-server coupling
	2.3.3 Synchronous or asynchronous invocation
	2.3.4 Security
	2.3.5 Transactional scope
	2.3.6 High availability and scalability

	2.4 Integration options
	2.4.1 Web services
	2.4.2 JCA via CICS Transaction Gateway and WOLA
	2.4.3 HTTP and Atom feeds
	2.4.4 Messaging
	2.4.5 TCP/IP sockets

	2.5 Conclusion

	Chapter 3. Technology overview
	3.1 CICS Web services
	3.1.1 Components for CICS Web service
	3.1.2 CICS resource relationships
	3.1.3 CICS as a service provider application
	3.1.4 CICS as a service requester application
	3.1.5 Web services using WebSphere MQ as transport
	3.1.6 Support for MTOM
	3.1.7 Java web services using Axis2
	3.1.8 Java web service topology using Axis2

	3.2 CICS Transaction Gateway
	3.2.1 CICS TG products
	3.2.2 CICS TG for Multiplatforms
	3.2.3 CICS TG Desktop Edition
	3.2.4 CICS TG for z/OS
	3.2.5 CICS TG for z/OS modes of operation
	3.2.6 CICS TG application programming interfaces
	3.2.7 CICS TG and the JCA
	3.2.8 Using the CICS ECI resource adapter with different topologies

	3.3 WOLA
	3.3.1 What is WOLA
	3.3.2 The benefit of WOLA
	3.3.3 CICS and WOLA
	3.3.4 How calls to CICS work with WOLA
	3.3.5 How calls from CICS work with WOLA

	3.4 CICS web support
	3.4.1 CICS as an HTTP server
	3.4.2 CICS as an HTTP client
	3.4.3 Components for CICS web support
	3.4.4 ATOM feeds
	3.4.5 ATOM feeds in CICS
	3.4.6 CICS ATOM support

	3.5 WebSphere MQ
	3.5.1 CICS-WebSphere MQ adapter
	3.5.2 CICS integration with MQ

	3.6 CICS sockets

	Chapter 4. Reusing CICS applications with a 3270 presentation layer
	4.1 Terminal-orientated CICS applications
	4.2 Technology options
	4.2.1 CICS Front End Programming Interface
	4.2.2 IBM Rational Host Access Transformation Services (HATS)
	4.2.3 CICS Link3270 bridge

	4.3 Tooling

	Part 2 Qualities of service
	Chapter 5. Application interfaces
	5.1 Application interface issues
	5.1.1 CICS program interfaces
	5.1.2 EBCDIC message conversion
	5.1.3 Service interfaces

	5.2 CICS inbound access architecture
	5.3 CICS outbound request architecture
	5.4 Adapters
	5.4.1 Message serialization adapters
	5.4.2 Adapter and technology

	5.5 CICS Web services
	5.5.1 Transport and protocol adapters
	5.5.2 Operation identification
	5.5.3 Message adapters
	5.5.4 XML validation
	5.5.5 Binary or invalid XML messages
	5.5.6 Message exchange pattern
	5.5.7 Data conversion
	5.5.8 Coupling considerations

	5.6 CICS TG for z/OS
	5.6.1 CCI programming model
	5.6.2 Transport and protocol adapters
	5.6.3 Operation identification
	5.6.4 Message adapters
	5.6.5 Message exchange pattern
	5.6.6 External Call Interface (ECI)
	5.6.7 EBCDIC data conversion
	5.6.8 Coupling considerations

	5.7 WOLA
	5.7.1 Transport and protocol adapters
	5.7.2 Operation identification
	5.7.3 Message adapters
	5.7.4 Message exchange patterns
	5.7.5 EBCDIC data conversion
	5.7.6 Coupling considerations

	5.8 CICS web support
	5.8.1 Transport and protocol adapters
	5.8.2 Operation identification
	5.8.3 Message adapters
	5.8.4 Message exchange pattern
	5.8.5 EBCDIC data conversion
	5.8.6 Coupling considerations
	5.8.7 REST and dynamic scripting

	5.9 WebSphere MQ
	5.9.1 Transport and protocol adapters
	5.9.2 Operation identification
	5.9.3 Message adapters
	5.9.4 Message exchange pattern
	5.9.5 The MQ DPL bridge client interface
	5.9.6 EBCDIC data conversion
	5.9.7 Coupling

	5.10 CICS sockets
	5.10.1 Transport and protocol adapters
	5.10.2 Operation identification
	5.10.3 Message adapters
	5.10.4 Message exchange patterns
	5.10.5 EBCDIC data conversion
	5.10.6 Coupling considerations

	Chapter 6. Security
	6.1 Security objectives
	6.1.1 Measures required to secure the infrastructure
	6.1.2 Barriers to implementation

	6.2 Traditional CICS security
	6.3 Cryptography
	6.3.1 Transport Layer Security (TLS) 1.0 protocol
	6.3.2 ICSF
	6.3.3 Cryptographic hardware

	6.4 z/OS Communications Server security
	6.5 Technology comparison table
	6.6 CICS Web services
	6.6.1 Transport security
	6.6.2 SOAP message security
	6.6.3 Java-based SOAP pipeline
	6.6.4 Using an SOA appliance to secure CICS Web services
	6.6.5 Security considerations for CICS Web services

	6.7 CICS TG for z/OS
	6.7.1 JCA and security
	6.7.2 CICS TG for z/OS security
	6.7.3 ECI Version 2 and security
	6.7.4 External Security Interface (ESI)
	6.7.5 Security considerations for CICS TG

	6.8 WOLA
	6.8.1 Thread identity support
	6.8.2 Security considerations for WOLA

	6.9 CICS web support
	6.10 WebSphere MQ
	6.11 CICS sockets
	6.11.1 Using AT-TLS
	6.11.2 Listener security exit
	6.11.3 Security considerations for CICS sockets

	Chapter 7. Transactional scope
	7.1 Transactional objectives
	7.2 Transactional building blocks
	7.2.1 Traditional CICS units of work
	7.2.2 Extended logical units of work
	7.2.3 Distributed units of work
	7.2.4 Asynchronous messaging transactional model
	7.2.5 Compensating transactions
	7.2.6 Idempotent requests

	7.3 Technology comparison table
	7.4 CICS Web services
	7.4.1 Supported building blocks for CICS Web services
	7.4.2 Transactional considerations for CICS Web services

	7.5 CICS TG for z/OS
	7.5.1 JCA
	7.5.2 ECI v2
	7.5.3 Supported building blocks for CICS TG
	7.5.4 Transactional considerations for CICS TG

	7.6 WOLA
	7.6.1 Supported building blocks for WOLA
	7.6.2 Transactional considerations for WOLA

	7.7 CICS web support
	7.7.1 Supported building blocks for CICS web support
	7.7.2 Transactional considerations for CICS web support

	7.8 WebSphere MQ
	7.8.1 Supported building blocks for WebSphere MQ
	7.8.2 Transactional considerations for WebSphere MQ

	7.9 CICS sockets
	7.9.1 Supported building blocks for CICS sockets
	7.9.2 Transactional considerations for CICS sockets

	Chapter 8. High availability and scalability
	8.1 High-availability objectives
	8.1.1 IP connection balancing
	8.1.2 CICSPlex SM workload manager

	8.2 Scaling
	8.3 CICS Web services
	8.3.1 Creating an HA infrastructure
	8.3.2 Scaling
	8.3.3 High-availability considerations for CICS Web services

	8.4 CICS TG for z/OS
	8.4.1 Creating an HA infrastructure
	8.4.2 Scaling
	8.4.3 High-availability considerations for CICS TG

	8.5 WOLA
	8.5.1 Creating an HA infrastructure
	8.5.2 Scaling
	8.5.3 High-availability considerations for WOLA

	8.6 CICS web support
	8.6.1 Creating an HA infrastructure
	8.6.2 Scaling
	8.6.3 High-availability considerations for CICS web support

	8.7 WebSphere MQ
	8.7.1 Creating an HA infrastructure
	8.7.2 Scaling
	8.7.3 High-availability considerations for WebSphere MQ

	8.8 CICS sockets
	8.8.1 Creating an HA infrastructure
	8.8.2 Scaling
	8.8.3 High-availability considerations for CICS sockets

	Part 3 Integration scenarios
	Chapter 9. CICS Web services scenario
	9.1 Objectives
	9.2 Architecture
	9.3 Implementation
	9.3.1 Minimizing risks
	9.3.2 Optimized performance and scalability
	9.3.3 Simplifying configuration and infrastructure management
	9.3.4 Real-time monitoring

	9.4 Solution summary

	Chapter 10. CICS TG for z/OS scenario
	10.1 Objectives
	10.2 Architecture
	10.3 Implementation
	10.4 Solution summary

	Chapter 11. Messaging scenario
	11.1 Objectives
	11.2 Architecture
	11.3 Implementation
	11.4 Solution summary

	Part 4 Appendix
	Appendix A. Product capabilities
	Product capabilities

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

