
International Technical Support Organization

UNIX C Applications Porting to AS/400

December 1995

SG24-4438-00

International Technical Support Organization

UNIX C Applications Porting to AS/400

December 1995

SG24-4438-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xv.

First Edition (December 1995)

This edition applies to V3R6 of OS/400, Program Number 5716-SS1.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 977 Building 663-3
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

This document is unique in its detailed coverage of openness features of the
AS/400 system in terms of writing UNIX C style applications. It focuses on
portability issues of AS/400 programming with UNIX applications.

The AS/400 system provides many functions and features to facilitate the
porting of UNIX C applications. In spite of its rich functional offerings, there
are some occasions where the transparent porting is not available due to
fundamental differences between UNIX and the AS/400 system. This book
provides valuable information such as tips and techniques, along with
examples, on how to get around if you encounter these cases in addition to
the native ways of more straightforward porting cases.

This document is written to help customers, business partners, and IBM
specialists in writing or porting UNIX C style applications for the AS/400
system. Some knowledge of application development, UNIX C, and ILE C/400
is assumed.

(296 pages)

 Copyright IBM Corp. 1995 iii

iv UNIX C Applications Porting to AS/400

Contents

Abstract . i i i

Figures . ix

Tables . xii i

Special Notices . xv

Preface . xvii
How This Document is Organized . xvii
Related Publications . xviii
International Technical Support Organization Publications xviii
ITSO Redbooks on the World Wide Web (WWW) xix
Acknowledgments . xix
Standard Conventions . xx

Chapter 1. Introduction . 1
1.1 AS/400 System: Open System . 1

1.1.1 What Is Open System for UNIX C Developers? 2
1.1.2 How Open Is AS/400 System for UNIX C Developers? 4
1.1.3 Why This Can Be So Easy on the AS/400 System? 9

1.2 Evaluation of Porting Cost . 11
1.2.1 Major UNIX-AS/400 Differences . 12
1.2.2 What IS Easy and What IS Difficult? 14

1.3 What Is This Book All About? . 15

Chapter 2. Architecture of the AS/400 System 17
2.1 Architecture of AS/400 System . 17

2.1.1 Object Oriented Architecture . 18
2.1.2 Addressing/Storage Management 19
2.1.3 Library and Address Resolution 21
2.1.4 User Profile and Authority Management 21
2.1.5 Character Sets and Terminal I/O 22

2.2 Architectural Summary . 23

Chapter 3. File System - AS/400 Integrated File System 25
3.1 AS/400 Integrated File System Introduction 25
3.2 How to Work with Integrated File System 27

3.2.1 UNIX Commands Equivalents on AS/400 System 27

 Copyright IBM Corp. 1995 v

3.3 Integrated File System and Porting . 37
3.3.1 File Descriptor Management . 37
3.3.2 File Pointer and File Descriptor . 38
3.3.3 Data Conversion . 38
3.3.4 Code Pages . 39
3.3.5 What Level of Portability Do I Have? 39

3.4 Example Programs for Integrated File System 40

Chapter 4. Process Management . 41
4.1 Introduction . 41
4.2 Processes . 42

4.2.1 Processes in UNIX . 42
4.2.2 Processes on the AS/400 System 42

4.3 Threads . 43
4.3.1 Threads in UNIX . 43
4.3.2 Threads in the AS/400 System . 44

4.4 Process Groups and Job Control . 46
4.4.1 Process Groups and Job Control in UNIX 46
4.4.2 Process Groups and Job Control on AS/400 System 49

4.5 Signals . 55
4.5.1 Signals in UNIX . 55
4.5.2 Signals in POSIX . 57
4.5.3 Signals on the AS/400 System . 57

4.6 Starting and Stopping Processes/Threads 65
4.6.1 Arguments and Environment Variables 65
4.6.2 Threads and Spawning New Jobs 72
4.6.3 Threads . 73
4.6.4 Jobs . 74
4.6.5 Process Authorization . 85

Chapter 5. Networking . 97
5.1 TCP/IP in General . 99

5.1.1 TCP/IP on the AS/400 System . 100
5.2 Open Blueprint . 101
5.3 Server Models . 103

5.3.1 Passing of Descriptors . 104
5.3.2 Standard Descriptors . 109
5.3.3 Traditional TCP/IP Server Designs 109
5.3.4 Spawning a New Program . 114
5.3.5 Inherited Socket Descriptors . 119
5.3.6 Descriptor Arrays . 129
5.3.7 Inetd (The Super Daemon) . 134

vi UNIX C Applications Porting to AS/400

5.3.8 Passing Descriptor Access Permissions 139
5.4 General Tips When Porting Network Applications to OS/400 151

Chapter 6. Development Environment on AS/400 System 157
6.1 Editors and Programs Location . 157
6.2 ILE C/400 Compiler . 158

6.2.1 Packed Qualifier . 158
6.2.2 Special Type . 159
6.2.3 Macros Defined Only by ILE/C Compiler 159
6.2.4 Include Directive . 160
6.2.5 ILE C/400 Specific #pragma Preprocessing Directives 160

6.3 Shell Scripts versus CLP . 162
6.3.1 CL Programming . 163
6.3.2 Creating a CL Program . 164
6.3.3 CL Programs for Shell Scripts Examples 165

6.4 Makefile . 167
6.4.1 How to Create Make Utility TMKMAKE 167
6.4.2 Make Utility Example . 168

Appendix A. Integrated File System Tutorial 171
A.1 Get into the Integrated File System . 172
A.2 Current Directory and Home Directory 178
A.3 Create and Remove a Directory . 187
A.4 Display and Change Current Directory 194
A.5 Add, Display and Remove Object Links 202
A.6 Copy, Move, and Rename Objects . 211
A.7 Other Tips . 222

Appendix B. Integrated File System Example Programs 227
B.1 Client/Server Application for Stream File I/O 227
B.2 Display Stream File . 247
B.3 Listing Directory . 249
B.4 Open on a Directory . 251
B.5 Link on a Directory . 253
B.6 Access of Global Variable sys_errlist, nsyserr 254

Appendix C. Development Cycle of ILE C/400 Applications 259
C.1 Source Editing . 261
C.2 Module Creation . 269
C.3 Creating/Binding an ILE Program . 271

C.3.1 Creating an ILE Program from One or More Modules 271
C.3.2 Service Program . 272

Contents vii

C.4 Debugging an ILE Program . 273
C.5 Tour of Development Cycle with Real Examples 274

C.5.1 List of Source Codes . 274
C.5.2 Source Codes . 275
C.5.3 Creating Modules . 284
C.5.4 Creating Service Programs . 284
C.5.5 Creating Programs . 284
C.5.6 Executing Programs . 285
C.5.7 Debugging Programs . 286
C.5.8 Fixing Errors . 291

List of Abbreviations . 293

Index . 295

viii UNIX C Applications Porting to AS/400

Figures

 1. AS/400 Advanced Application Architecture 10
 2. AS/400 Advanced Application Architecture Supports Nondisruptive

Change . 11
 3. Mapping UNIX Permissions to AS/400 Security 22
 4. AS/400 Main Menu with CRTPGM Command Specified 29
 5. Create Program Prompt Text . 30
 6. Help of Create Program Prompt Text 31
 7. Create Program Prompt Text . 32
 8. Specify Value for Parameter MODULE 33
 9. Disconnecting from Terminal . 48
10. RTVJOBA . 50
11. Figuring Out Job Type . 51
12. Functions to Process Enable a Program 59
13. Signal.h . 64
14. Signal Number Mapping in AIX . 65
15. ADDVAR . 70
16. DSPVAR . 71
17. ENV . 72
18. System() Emulation . 78
19. Program to Use Altered System() . 80
20. Standard Header . 111
21. Read Loop and Stream Socket Server Initialization 113
22. Spawning a New Process on UNIX . 116
23. Spawning a Process on OS/400 Using System() 118
24. WRKACTJOB SBS(QBATCH) . 119
25. Inherited Descriptors in UNIX . 120
26. Inherited Descriptors and Exec() . 121
27. Program Inheriting Open Descriptor 122
28. Descriptor Inheritance in OS/400 using Threads 125
29. Descriptor Inheritance in OS/400 using Spawn() 127
30. Descriptor Array Server Logic . 129
31. Descriptor Array on UNIX . 132
32. High_val.c . 133
33. Srv3.c for OS/400 . 134
34. Inetd for UNIX . 136
35. Inetd for OS/400 . 138
36. Read_des.c . 139
37. Passing Descriptor Access on UNIX 142
38. Passing Descriptor Access on UNIX Part II 146

 Copyright IBM Corp. 1995 ix

39. Passing Descriptor Access on OS/400 147
40. Passing Descriptor Access on OS/400 part II 149
41. Unix Domain File Entry . 151
42. Sockaddr_un . 155
43. Storage Alignment . 159
44. Makefile . 170
45. AS/400 Main Menu with Go Data Command Specified 172
46. Files, Libraries, and Folders Menu with Option 5 Specified 173
47. Integrated File System Menu with Option 2 Specified 174
48. Object Commands Menu with Option 1 Specified 175
49. Work with Object Links Prompt Text 176
50. Work with Object Links Menu . 177
51. Work with Object Links Menu with WRKLNK Command Specified . 178
52. AS/400 Main Menu with DSPUSRPRF Command Specified 179
53. Display User Profile . 180
54. AS/400 Main Menu with WRKLNK Command Specified 181
55. Work with Object Link Menu . 182
56. Work with Object Link Menu with CD Command Specified 183
57. Work with Object Link Menu with MD Command Specified 184
58. AS/400 Main Menu with WRKLNK Command Specified 185
59. Work with Object Links Menu . 186
60. Create a Directory . 187
60. Work with Object Menu with MD Command Specified 187
61. Work with Object Menu with Directory Created Message 188
62. Work with Object Menu with Refreshed List 189
63. Work with Object Menu with Option 4 Specified 190
64. Work with Object Menu with Rejection Message 191
65. Work with Object Menu with Directory Removed Message 192
66. Work with Object Menu with RD Command Specified 193
67. Work with Object Menu with DSPCURDIR Command Specified . . . 194
68. Display Current Working Directory . 195
69. Work with Object Menu with Option 5 Specified 196
70. Work with Object Menu with Next Level 197
71. Work with Object Menu with Option 11 Specified 198
72. Work with Object Menu with Current Directory Changed Message 199
73. Work with Object Menu with CD Command Specified 200
74. Work with Object Menu with Current Directory Changed Message 201
75. Work with Object Menu with ADDLNK Command Specified 202
76. Add Link Prompt Text . 203
77. Work with Object Menu with Link Added Message 204
78. AS/400 Main Menu with DSPLNK Command Specified 205
79. Display Object Links Menu . 206

x UNIX C Applications Porting to AS/400

80. Work with Object Menu with Option 4 Specified 207
81. Confirm Remove of Object Links Menu 208
82. Work with Object Menu with Link Removed Message 209
83. Work with Object Menu with DEL Command Specified 210
84. Work with Object Menu with Option 3 Specified 211
85. Work with Object Menu with Object Copied Message 212
86. Work with Object Menu with Next Level 213
87. Work with Object Menu with Copy Command Specified 214
88. Work with Object Menu with Option 2 Specified 215
89. Work with Object Menu with Object Moved Message 216
90. Work with Object Menu with Next Level 217
91. Work with Object Menu with Move Command Specified 218
92. Work with Object Menu with Option 7 Specified 219
93. Rename Object Prompt Text . 220
94. Work with Object Menu with Object Renamed Message 221
95. Work with Object Menu with REN Command Specified 222
96. Work with Object Menu with Copy Command Specified 223
97. Work with Object Menu with Success Message 224
98. Work with Object Menu with Move Command Specified 225
99. Flow Chart of Example 1 Program . 228
100. Stages in C Application Development 260
101. AS/400 Main Menu with STRPDM Command Specified 261
102. AS/400 Programming Development Manager (PDM) Menu with

Option 2 Specified . 262
103. Specify Objects to Work With Window 263
104. Work with Objects Using PDM . 264
105. Work with Objects Using PDM . 265
106. Work with Objects Using PDM Menu with Option 12 Specified . . . 266
107. Work with Members using PDM . 267
108. Source Entry Utility (SEU) . 268
109. Exit Confirmation . 269
110. ccomm.h . 275
111. cproto.h . 275
112. cmain.c - 1 of 2 . 276
113. cmain.c - 2 of 2 . 277
114. cinput.c . 278
115. ctable.c . 279
116. ccat.c . 280
117. cls.c - 1 of 2 . 281
118. cls.c - 2 of 2 . 282
119. cpwd.c . 283
120. ccd.c . 283

Figures xi

121. Run ILE Program CPROG . 285
122. Display Module Source for CMAIN Module 286
123. Work with Module List for CPROG Program 287
124. Work with Module List . 288
125. Debug Module List . 289
126. Display Module Source . 290

xii UNIX C Applications Porting to AS/400

Tables

 1. AS/400 System′s Directories Features Summary 4
 2. AS/400 System′s File and I/O Features Summary 4
 3. AS/400 System′s Process Features Summary 5
 4. AS/400 System′s Shells/Utilities Features Summary 5
 5. AS/400 System′s Real Time Support Features Summary 5
 6. AS/400 System′s C Interface Features Summary 6
 7. AS/400 System′s Networking Features Summary 6
 8. Standards Supported by the AS/400 System 6
 9. AS/400 and UNIX Storage Management Differences 20
10. File Systems in the Integrated File System 26
11. Mapping of Standard I/O Descriptors and Pointers in UNIX 38
12. Behavior of the System() Function . 75
13. Adopted Authority Inheritance . 91
14. Summary of What OS/400 Supports in Regard to Authorization

Subroutines . 92
15. Search Paths for #include Directive Used by ILE C/400 160
16. #pragma Preprocessor Directives . 161
17. Parts of a CL Procedure . 163
18. CL Program Creation Commands . 164
19. Related CL Command to Create C Module (CRTCMOD) 270
20. Related CL Command to Create Program (CRTPGM) 272
21. Advantages and Disadvantages of using the Service Program . . . 273
22. Related CL Command to Create Service Program (CRTSRVPGM) . 273
23. Related CL Command to Start Debug (STRDBG) 274

 Copyright IBM Corp. 1995 xiii

xiv UNIX C Applications Porting to AS/400

Special Notices

This publication is intended to help customers, business partners, and IBM
specialists in writing or porting UNIX C style applications for the AS/400
system. The information in this publication is not intended as the
specification of any programming interfaces that are provided by OS/400,
5716-SS1, and Common Programming APIs. See the PUBLICATIONS section
of the IBM Programming Announcement for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

 Copyright IBM Corp. 1995 xv

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other trademarks are trademarks of their respective companies.

IBM

xvi UNIX C Applications Porting to AS/400

Preface

This document is intended to help the customers, business partners, and IBM
specialists in writing or porting UNIX C style applications for the AS/400
system.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Introduction”

This chapter describes the general purpose of this book. It describes
why the AS/400 platform is open and why it can give you the benefits in
writing or porting UNIX C style applications for the AS/400 system.

• Chapter 2, “Architecture of the AS/400 System”

This provides the general concepts of the AS/400 system. If you are not
yet familiar with the AS/400 system, this chapter gives you a good
overview of the system that is beneficial when going on to the following
chapters.

• Chapter 3, “File System - AS/400 Integrated File System”

This chapter describes the file systems available on the AS/400 system
focusing on the integrated file system.

• Chapter 4, “Process Management”

This chapter describes the issues related with processes such as jobs,
threads, spawns, and so on. It also describes how to start and stop the
processes.

• Chapter 5, “Networking”

This provides the networking features of the AS/400 system: its TCP/IP
support, sockets, and so on.

• Chapter 6, “Development Environment on AS/400 System”

This chapter describes the topics of the applications development
environment on the AS/400 system from the viewpoint of UNIX C
applications porting.

Appendixes of this document include:

 Copyright IBM Corp. 1995 xvii

• Appendix A, “Integrated File System Tutorial”

This is the tutorial of the AS/400 integrated file system for the first time
users.

• Appendix B, “Integrated File System Example Programs”

This is the collection of the sample programs related to the AS/400
integrated file system

• Appendix C, “Development Cycle of ILE C/400 Applications”

This is the tutorial of the AS/400 applications development environment
and the ILE C/400 for the first time users.

Related Publications
The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this document.

• Integrated File System Introduction, SC41-4711-00

• System API Reference, SC41-4801-00

• Common Programming APIs Toolkit/400, SC41-4802-00

• ILE Concepts, SC41-3606

• ILE C/400 Programmer′s Guide, SC09-1820

• ILE C/400 Programmer′s Reference, SC09-1821

• ILE C/400 Reference Summary, SX09-1288

• AS/400 Work Management, SC41-3306-00

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on
MKTTOOLS as ITSOPUB LISTALLX. This package is updated monthly.

xviii UNIX C Applications Porting to AS/400

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755
or by faxing 1-800-445-9269. Almost all major credit cards are accepted.
Outside the USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide
Web home page. To access the ITSO Web pages, point your Web browser
(such as WebExplorer from the OS/2 3.0 Warp BonusPak) to the following:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Acknowledgments
This project was designed and managed by:

Yessong Johng
International Technical Support Organization, Rochester Center

The authors of this document are:

Johan Helstrom
IBM Sweden

Yoon Se Yeon
IBM Korea

Park Deok Jin
IBM Korea

Preface xix

Charlie Quigg
IBM Rochester

This publication is the result of a residency conducted at the International
Technical Support Organization, Rochester Center.

Thanks to the following people for the invaluable advice and guidance
provided in the production of this document:

Mike Mundy
Terry O′Brien
Fred Kulack
Scott Forstie
Scott Moore
Jeff Parker
Ray Bills
Tom McBride
Kay Tate

Standard Conventions
Several conventions appear in this redbook to make it easier for you to use.

• Boldface

Choices made from the actual screen or to emphasize the character
strings or values on the actual screen.

• Italics

For emphasizing single words.

• Monospace

What a user would type on the terminal or function calls (APIs).

• UPPERCASE

Commands, parameters, device names, file names.

This redbook also adopts the following general conventions.

MB Mega bytes

Mb Mega bits

Mbps Mega bits per second

Kbps Kilo bits per second

xx UNIX C Applications Porting to AS/400

Chapter 1. Introduction

AS/400 System Is An Open System

You can port many UNIX applications to the AS/400 system very easily.
You can write your new AS/400 applications or modernize your existing
AS/400 applications and do this in UNIX style.

The AS/400 system supports many industry de facto and de jure open
standards. This helps you write UNIX style applications on the AS/400
system or port many of them to the AS/400 system easily. Don′ t get me
wrong. I am not saying the AS/400 system is an open system because it
supports many UNIX features but it supports many open standards which,
coincidentally, are supported by many UNIX platforms. Right or wrong, why
would you care? As program developers, IT managers, or heads of
companies, you want to minimize the porting efforts of your existing
applications to another platform and the AS/400 system gives you ability if
you use it as your porting target system.

Let′s face it. Worldwide installations of the AS/400 system exceed 350,000.
This must be the largest number of installation set among business
application servers and the number is growing rapidly. If you are
applications vendors, this means one successful application product on this
particular platform guarantees the success of your business. If you sell your
product to 10% of the AS/400 customers, it means over 35,000 licenses are
sold.

1.1 AS/400 System: Open System
No Marketing Brochure

Of course, this book is not a marketing brochure but it gives you solid
and very helpful tips and techniques for when you actually do port your
UNIX C applications to the AS/400 system.

Nevertheless, it won′ t hurt you too much just to briefly review why we say
the AS/400 is an open system and how we should interpret that in the context
of porting UNIX C applications.

 Copyright IBM Corp. 1995 1

1.1.1 What Is Open System for UNIX C Developers?
We expect you, the readers of this book, are either UNIX C application
developers or have the experience. Your applications do not have to be
coded in C to qualify as porting objects but this book concentrates on those
applications written in C. After all, that is the most common language in the
UNIX world. So, as UNIX C application developers, what is an open system
anyway?

We expect that you have worked with UNIX for many years and that you have
seen several UNIX manuals. Therefore, we are not going to give you the
common introductory information that is in almost every UNIX manual, its
history, its architecture, and so on. Well, after all this is not a UNIX manual.
Rather, we list the characteristics of the UNIX system from the perspective of
the application developers using C language.

• Directory Perspective

− Hierarchical structure

− Current and home directory

− Search path

− Hard and symbolic links

− Authorizations for user, group, and other

• File and I/O Perspective

− File descriptors

− Unformatted streams

− Terminal (TTY) raw mode and line mode

− Pipes

• Process Perspective

− The fork() and exec()

− Signals

− Session groups and process groups

− Environment variables

− Per-process address space

• Shells/Utilities Perspective

− The sh, ls, awk, grep, and so on

2 UNIX C Applications Porting to AS/400

− File redirection

− Job control

• Real Time Support Perspective

− Threads

− Mutexes

− Semaphores

− Shared memory

− IPC message queues

• C Interface Perspective

− ANSI C compliant

− POSIX.1 compliant

• Networking Perspective

− TCP/IP

− Sockets

− NFS

Would you agree that the AS/400 system is open enough and qualified to be
a server of choice if the AS/400 system supports all of these? To rephrase
the question, would you be interested in porting your current UNIX C
applications to the AS/400 system if we support all of these? Or do you want
to modernize your current AS/400 applications and do it in the UNIX way?

We wish we could simply say ″Yes!″ to these questions but it is not that
simple. Well, if the answer is a simple yes, then you do not need the help of
this book at all. But what is important is the answer could be 80% yes in
general as of V3R6 of the OS/400 and it can be even much higher in a
practical sense. Remember, we are positioning the AS/400 system as a
Server-of-Choice in a commercial applications environment. The more your
UNIX C applications are for server functions and the more your application
type is for commercial use, this ratio of compatibility can be very close to
100%.

Chapter 1. Introduction 3

1.1.2 How Open Is AS/400 System for UNIX C Developers?
We provide the answers to this question in two ways. First, we map the
AS/400 features to the topics of section 1.1.1, “What Is Open System for UNIX
C Developers?” on page 2. Then, we summarize the open standards
supported by the AS/400 system.

1.1.2.1 AS/400 Implementations of UNIX Features
The AS/400 implementations of UNIX features follow the three major open
standards:

• Single UNIX Specification, formerly Spec1170

• POSIX.1

• OFS/1 for UNIX style file system implementation

Table 1. AS/400 System ′s Directories Features Summary

UNIX Feature AS/400 Implementation

Hierarchical structure Yes - in IFS*

Current and home directory Yes - in IFS*

Search path Yes - in IFS*

Hard and symbolic links Yes - in IFS*

Authorizations for user, group, and other Yes - in IFS*

Table 2 AS/400 System′s File and I/O Features Summary

Table 2. AS/400 System ′s File and I/O Features Summary

UNIX Feature AS/400 Implementation

File descriptors Yes - in IFS*

Unformatted streams Yes - in IFS*

Terminal (TTY) raw mode and line mode No

Pipes Yes - in OS/400

Table 3 on page 5 AS/400 System′s Process Features Summary

4 UNIX C Applications Porting to AS/400

Table 3. AS/400 System ′s Process Features Summary

UNIX Feature AS/400 Implementation

fork() and exec() No direct support but the alternatives are
spawn(), SBMJOB, and threads

Signals Yes (synchronous signals are in ILE C/400
and asynchronous signals are in CPA
ToolKit)

Session groups and process groups Yes

Environment variables Yes

Per-process address space Yes

Table 4 AS/400 System′s Shells/Utilities Features Summary

Table 4. AS/400 System ′s Shells/Util it ies Features Summary

UNIX Feature AS/400 Implementation

sh, ls, awk, grep, and so on No (alternatives can be CL, CLP, and
REXX)

File redirection No (alternatives can be CL, CLP, and
OVRDBF)

Job control Yes (partial support)

Table 5 AS/400 System′s Real Time Support Features Summary

Table 5. AS/400 System ′s Real Time Support Features Summary

UNIX Feature AS/400 Implementation

Threads Yes (in CPA ToolKit)

Mutexes Yes (in OS/400)

Semaphores Yes (in CPA ToolKit)

Shared memory Yes (in CPA ToolKit)

IPC message queues Yes (in OS/400)

Table 6 on page 6 AS/400 System′s C Interface Features Summary

Chapter 1. Introduction 5

Table 6. AS/400 System ′s C Interface Features Summary

UNIX Feature AS/400 Implementation

ANSI C compliant 100% (in ILE C/400)

POSIX.1 compliant 75% (in IFS)

Table 7 AS/400 System′s Networking Features Summary

Table 7. AS/400 System ′s Networking Features Summary

UNIX Feature AS/400 Implementation

TCP/IP Yes (in OS/400)

sockets Yes (in OS/400)

NFS Yes and No (in FSS/400)

I expect that you have noticed that some of the features are not supported
but most of them are. I expect that you have noticed that those not
supported yet are more for the client′s code rather than the server′s side. I
also expect that you are encouraged to port your UNIX applications to the
AS/400 system with those important features supported. Finally, I expect that
you have strong interests to understand more details of IFS, CPA ToolKit,
and ILE C/400. Good. This book is here for you.

1.1.2.2 Open Standards Supported by the AS/400 System
The AS/400 heritage is based on integration. That is, emphasis has been on
providing an integrated solution including database, security, integrity, and
systems management. In the last few years, we have broadened our focus
to ensure that the AS/400 system is also an open system. This means that
the AS/400 system conforms to industry standards, facilitates application
portability, and interoperates with hardware from other vendors. Table 8
shows AS/400 support for standards in all of the categories.

Table 8 (Page 1 of 3). Standards Supported by the AS/400 System
Category Standards
Data Access ANSI/ISO SQL2 1992

DAL (Apple)
DRDA L2
ODBC L2 (Microsoft)
OSI-FS FTAM - ISO 8571
SQL FIPS 127-2 (subset)

6 UNIX C Applications Porting to AS/400

Table 8 (Page 2 of 3). Standards Supported by the AS/400 System
Category Standards
Data Interchange EDI - ANSI X.12, ISO EDIFACT

Directory DCE Directory (Call)
SNA APPN

Distribution
Services

DCA (IBM)
DIA
OSI-MS X.400 - ISO 10021 (1984)
SMTP
SNADA/ODF

File Serving LAN Server
NetWare
NFS Server

Language
Portabil ity

C - ANSI X3.159, X3J11/90-013
C + +
COBOL - ANSI/ISO X3.23
FIPS 151-2 (subset)
Pascal - ANSI 770X3.97
PL/1 ISO
POSIX 1003.1 ISO/IEC 9945-1 (subset)
POSIX 1003.2 (SOD)
POSIX 1003.4a (subset)
POSIX 1003.4b draft 7 for process control (spawn)
REXX (IBM)
RPG (IBM)
Single UNIX Specification (subset)
Smalltalk (client)
SOM/DSOM - CORBA
SVR4 IPC (subset)
XPG4 Base (subset)

Mail Serving MAPI
MIME
VIM

Chapter 1. Introduction 7

Table 8 (Page 3 of 3). Standards Supported by the AS/400 System
Category Standards
Networks NetWare IPX/SPX

OSI-CS ACSE - X.227/ISO 8650
OSI-CS Transport - ISO 8073
OSI-CS Presentation Kernel - X.226/ISO 8823
OSI-CS Presentation ASN.1 - X.208/209, ISO 8824/8825
OSI-CS Session - V1/2, X.225/ISO 8327
OSI-CS Network CLNS - ISO 8473
OSI-CS Network CONS - X.223/ISO 8878
SNA APPC (SNA LU6.2)
TCP/IP FTP
TCP/IP LPR/LPD
TCP/IP TCP, UDP, IP, ICMP, ARP
TCP/IP TELNET
3270 Passthru (IBM)
5250 (IBM)

Program-to-Program BSD 4.3 Sockets
CPI-C
DCE RPC
MQI

Security C2 Certif ication
DCE Kerberos
DES Cryptography
RSA Cryptography

Subnetworks Apple Localtalk
Asynchronous
ATM (SOD)
Ethernet - V2, ANSI/ISO 8802.3, IEEE 802.3
FDDI/SDDI - ISO 9314.2 ANSI X3T9.5
Frame Relay - ANSI T1.618, ITU 2.922
ISDN - ITU Q.931/Q.922/Q.921, National ISDN 1/ISDN 2

Euro ISDN (ETSI)
NetBIOS (FSIOP)
SDLC
Token Ring - ANSI/ISO 8802.5, IEEE 802.5
Wireless LAN - IEEE 802.11
Wireless WAN
X.25 - ITU X.25/X.31/X.32, ISO 8208, ISO 7776

System
Management

NetView (IBM)
SNMP Agent

Time DCE Time

Transaction
Management

CICS
Tuxedo (announced)

8 UNIX C Applications Porting to AS/400

The AS/400 strategy for implementing UNIX function has been to provide
APIs and system interfaces that are most valuable to most vendors. This
portability support covers APIs in these categories:

• File system
• Process control
• Interprocess communication (IPC)
• Threads
• Sockets
• TCP/IP

1.1.3 Why This Can Be So Easy on the AS/400 System?
Maybe we can better rephrase the section title as:

 1. How come the AS/400 system adopts so many features that sound totally
different from its original architecture?

 2. If this kind of diversity promises even more success for the AS/400
system, how come the competitors don′ t do the same?

The answer to both questions is the same: it is because of a unique
architecture on the AS/400 system. What′s so unique about the architecture?

On the AS/400 system, the major components can be changed without
redesigning the whole system. The heart of the AS/400 system′s ability to
change without disrupting the customer and their applications is the
Technology-Independent Machine Interface (see Figure 1 on page 10).

The AS/400 Advanced Application Architecture is unique in the industry. The
AS/400 system is the only system that insulates the hardware from the
software running on it. The insulating layer is the Technology-Independent
Machine Interface.

This means that when changes are made to AS/400 hardware, the operating
system and your application are not affected; you do not have to rewrite or
even recompile your code to migrate to the new hardware. This lets you
make technology advances while protecting your customer′s investments in
competitive applications.

This is the secret behind the ease with which the AS/400 system keeps in
step with massive leaps in storage, memory, and processor technology. This
machine interface is behind the ease of the transition to a 64-bit, Power
PC-based central processor. The transition to a 64-bit processor was not a

Chapter 1. Introduction 9

complete rewrite of the operating system—far from it; the transition was with
the ease of a normal release.

┌───AS/400─────────────────────┐
│ ┌───────────────────────────┐│
│ │ OS/400 Applications ││
│ │ PC Applications ││
│ │ UNIX Applications ││
│ │ Object Oriented ││
│ │ Applications ││
│ │ ││
│ └───────────────────────────┘│

┌─┴──────────────────────────────┴─┐
│ Open Application Environment │
└─┬──────────────────────────────┬─┘
┌─┴──────────────────────────────┴─┐
│ Integrated Midware Services │
└─┬──────────────────────────────┬─┘

┌────┴──────────────────────────────┴────┐
│Technology-Independent Machine Interface│
└────┬──────────────────────────────┬────┘

┌─┴──────────────────────────────┴─┐
│ Licensed Internal Code │
└─┬──────────────────────────────┬─┘
┌─┴──────────────────────────────┴─┐
│ Hardware │
└─┬──────────────────────────────┬─┘
└──────────────────────────────┘

Figure 1. AS/400 Advanced Application Architecture

Figure 2 on page 11 shows how the Technology Independent Machine
Interface sets the AS/400 system apart from its competitors and how your
applications are insulated from the usual effects of evolving change.

And, most importantly, this philosophy is behind the move to a leadership
position in client/server computing. Your benefit is the savings in research
and development, education, and support versus having to learn and relearn
with every technological advancement.

10 UNIX C Applications Porting to AS/400

AS/400 DEC HP Microsoft
Advanced Alpha Precision NT
Application Architecture Architecture Architecture
Architecture
┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│Applications│ │Applications│ │Applications│ │Applications│
└────────────┘ └────────────┘ └────────────┘ └────────────┘

│ 	 	 	
│ │ │ │

┌───┴────┐ ┌───┴────┐ ┌───┴────┐ ┌───┴────┐
│Exploits│ │ Impacts│ │ Impacts│ │ Impacts│
└───┬────┘ └───┬────┘ └───┬────┘ └───┬────┘

│ │ │ │
│ │ │ │
│ │ │ │
� │ │ ┌─────┴──────┐

 ┌────────────┐ │ │ │32 bit APIs │
 │Technology- │ │ │ └─────┬──────┘
 │Independent │ │ │ ┌─────┴──────┐
 │ Machine │ │ │ │Accommodates│
 │ Interface │ │ │ └─────┬──────┘
└────────────┘ │ │ │
┌────────────┐ ┌─────┴──────┐ │ │
│ 64 │ │ Alpha │ ┌─────┴──────┐ �
 │ bit │ │ 64 bit │ │ PA - RISC │ ┌────────────┐
│ Hardware │ │ Hardware │ │32 bit Hdwr │ │ Hardware │
└────────────┘ └────────────┘ └────────────┘ └────────────┘
┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
 │Application │ │ Processor │ │ Processor │ │ API │
│ Centric │ │ Centric │ │ Centric │ │ Centric │
└────────────┘ └────────────┘ └────────────┘ └────────────┘

Figure 2. AS/400 Advanced Application Architecture Supports Nondisruptive Change

1.2 Evaluation of Porting Cost
Evaluating and estimating an application for porting to the AS/400 system is
a complex exercise. To know what causes the most effort in doing the port,
it takes both:

• Original UNIX C applications developers - who know the applications.

• An AS/400 specialist - who knows the AS/400 system.

Chapter 1. Introduction 11

Some ports are easy. Some applications cannot be ported. These
applications require a redesign and rewrite. Many factors are involved in
evaluating the port. These include:

• What is the user interface? A graphical user interface (GUI) naturally
poses more problems than a simple green-screen interface. A GUI
possibly poses the biggest porting challenge.

• Does application database usage include stored procedures or triggers?
In some databases (Oracle, Sybase, Informix), these are written in
proprietary SQL languages. They must be rewritten for DB/2 for OS/400.

• Are the application′s SQL calls ANSI/SQL compliant? DB/2 for OS/400 is
fully compliant with the ANSI standard. Non-standard calls must be
rewritten.

• Is the application′s current platform dependence high or low? A basic
truth applies here as with any port. Dependency on a specific platform
increases the complexity of the port.

• Is this a client/server application? Which client/server model should be
used? What midware should be used?

• Does the application require database? Is it compatible with the
integrated DB2 for OS/400 relational database?

• What connectivity does the application demand?

• What standards does the application comply with?

• How do the AS/400 facilities map to the application needs? The AS/400
operating system has the most-used UNIX system application program
interfaces (APIs). An application that contains seldom used, obscure, or
obsolete APIs has greater differences. Do you use the APIs we do not
yet support?

1.2.1 Major UNIX-AS/400 Differences
There are some operating system areas that are different enough that you
may have to recode application sections that rely on such areas. This
section briefly describes areas that might affect your porting effort.

• Character encoding

− UNIX - ASCII

− AS/400 - EBCDIC. Applications that use character encoding rather
than the actual character give unexpected results. For example,
′x4E′ is an N in ASCII but a + (plus sign) in EBCDIC.

12 UNIX C Applications Porting to AS/400

• Pointer usage

− UNIX - Address pointers are four bytes long. An address can be
assigned to an integer and an integer to a pointer. Such
assignments are simple copy operations and require no conversion.

− AS/400 - Address pointers are 16 bytes long. AS/400 pointers are
controlled by the hardware. Pointer arithmetic, assignment
operations, casting, compares, and so forth work as expected as long
as the system knows that variables are address pointers.
Programming habits such as manipulating pointers as integers does
not work.

• Standard stream

− UNIX - stdin, stdout, and stderr. Some UNIX applications code a
dependency on 0, 1, and 2 as respectively as file descriptors for the
standard stream files.

− AS/400 - The AS/400 stdin, stdout, and stderr are file pointers, not file
descriptors. The standard stream pointers do not reserve the file
identifiers, nor are they implicitly open at process initiation.

• Shell

− UNIX - Shell programs and utilities.

− AS/400 - Does not provide a shell. Shell programs can be written in
the AS/400 Control Language (CL) or any of the languages that
provide efficient functional equivalence.

• Display form handling

− UNIX - Curses package.

− AS/400 - Dynamic Screen Manager (DSM) APIs provide the means of
handling application displays. Translating from curses to DSM is
more than a simple port.

• Buffered versus unbuffered I/O

− UNIX - Typically use unbuffered (character-by-character) I/O.

− AS/400 - AS/400 buffers the I/O to external devices. I/O is handled by
I/O processors that deal with blocks of data. Only certain I/O signals
(for example, enter, escape, system request key strokes) send an
interrupt to the AS/400 CPU.

• Default environment variables

− UNIX - Available through the shell.

Chapter 1. Introduction 13

− AS/400 - Not directly available. One technique is to write an
application to set the required environment variables and then set
the initial logon program to invoke this application.

• Process control

− UNIX - fork() and exec().

− AS/400 - AS/400 system provides spawn() and wait() APIs that can
handle most fork and exec processing.

• Asynchronous signals

− UNIX - Supported.

− AS/400 - A prototype is available in V3R1. Asynchronous signals are
integrated into V3R6. However, the AS/400 implementation has some
differences from the signals model on some UNIX systems.

• Interactive jobs

− UNIX - When programs spawned from the shell end, all open
descriptors are implicitly closed.

− AS/400 - The application must take care to explicitly close
descriptors.

1.2.2 What IS Easy and What IS Difficult?
The following applications port easily to the AS/400 system:

• Client/server types of applications that use the AS/400 system for either
application or data server. User interface (terminal I/O) is handled on
the client side.

• Applications that do not have a user interface

• Applications that utilize AS/400 supplied UNIX-type APIs for process
control (including signals, and parent-child spawn relationships),
interprocess communications, sockets, and threads all port reasonably
well.

Applications that do not port well are host-centric UNIX applications that rely
on raw mode terminal I/O model with ASCII attached devices. In many
cases, these require a rewrite.

14 UNIX C Applications Porting to AS/400

1.3 What Is This Book All About?
It is very important to understand the intention of this book correctly. I think
there are two important things you have to understand in porting your UNIX
C applications to the AS/400 system:

• What is supported on the AS/400 system in a rather native way.

• What is not supported.

For what is not supported, you might want to have a certain guideline in
place to determine if you want to whether to find a way to work around what
is not supported or re-write the code.

This book is more for the second point. For what is supported, you can find
the information in the regular AS/400 manuals. We do our best to direct you
to the relevant source of the information for what is supported.

We hope you are not discouraged if what is covered in this book sounds
complicated. That is the purpose, in a way, of this book. Most of the part of
your porting work is handled by the AS/400 system; almost automatically.

Chapter 1. Introduction 15

16 UNIX C Applications Porting to AS/400

Chapter 2. Architecture of the AS/400 System

This chapter discusses certain architectural characteristics of the AS/400
system. Aspects considered are those of interest to a UNIX C application
developer. Further, this chapter discusses characteristics of a UNIX
operating system as related to the computer architecture.

2.1 Architecture of AS/400 System
The term computer architecture has a somewhat different meaning for the
AS/400 system compared to how the term is traditionally used in computer
science. AS/400 system architecture is defined by a fairly high-level machine
interface (MI).

Note: In Version 3 Release 6, the MI is sometimes referred to as a
Technology Independent Machine Interface (TIMI). The ″Technology
Independence″ refers to the change from a CISC-based processor to a
RISC-based processor. The MI layer is a boundary (actually a set of
instructions) that separates the hardware and Licensed Internal Code from
the operating system (OS/400). This permits the machine instructions to be
rather generic and machine (hardware) independent. Dependencies have
been absorbed by internal microcode (Licensed Internal Code, or LIC).

This section discusses the following architectural aspects of the AS/400
system:

• Object oriented architecture

• Addressing/storage management

• Contexts (libraries) and address resolution

• User profiles and authority management

• Character sets and terminal I/O

The particular emphasis is on distinctions from what one might expect of an
architecture supporting a UNIX operating system.

 Copyright IBM Corp. 1995 17

2.1.1 Object Oriented Architecture
Objects are the means through which information is stored and retrieved on
the AS/400 system. This concept is different from the typical byte-string
manipulation of many systems. Object orientation is part of the architecture
and affects both operating system implementation and high level language
interaction with the system. The motivation for the Open Blueprint design is
improved system integrity, reliability, and authorization as is discussed.
Further, the implication for high level language users is discussed.

As previously mentioned, the MI is a boundary (set of instructions) that
separates the hardware and Licensed Internal Code (LIC) from the operating
system. For Version 3 Release 1 and earlier releases, the hardware and LIC
implement a lower level instruction set called the Internal MicroProgrammed
Interface (IMPI). LIC was implemented using IMPI instructions and contained
the traditional kernel-type functions such as storage management, resource
management, authority checking, and so on. For V3R6, the Licensed Internal
Code was rewri t ten using C++. Because of the MI boundary, the LIC
rewrite had little effect on the operating system and high level language.

Objects have operational characteristics and have a defined set of operations
that can be performed on them. Objects are addressed through 16-byte
pointers (8 bytes are used for an MI address; the other 8 bytes are used for
information about the object pointed to, and for reserved space). In addition
to providing addressability to the object, pointers provide access to the
associated storage, data integrity, and security. Above the MI, the contents
of the pointer are encapsulated.

Below the MI, the licensed internal code provides a tag bit for each
quadword (16 bytes which must be aligned on a 16-byte boundary) within
main storage. This bit is not addressable by the normal LIC instructions
used to address storage. The bit identifies quadwords in storage containing
MI pointers. Programs above the MI have no direct access to the tag bit.
The tag bit is turned on by the LIC when a pointer is set and turned off by the
hardware anytime the quadword is modified (except through a controlled set
of LIC pointer manipulation instructions). This procedure allows the system
to detect invalid pointers and prevent illegal use of a pointer. An attempt to
subsequently use this data as a pointer results in an exception; the
instruction is not completed. It is not possible to counterfeit a pointer or to
modify a pointer in an invalid way.

18 UNIX C Applications Porting to AS/400

The tag bit implementation allows the validation of pointers in an extremely
efficient way and is the basis for system and data integrity since pointers can
contain authorization information as well as addresses.

Implications for High Level Language: Pointer arithmetic, assignment
operations, casting, compares, and so on all work as expected as long as the
system is aware that variables are address pointers. A pointer in the ILE
C/400 is 16 bytes long. Programming habits such as manipulating pointers
as integers do not work.

On a UNIX system, integers and pointers are both typically 4 bytes long. An
integer can be assigned to a pointer address. An address of an object of
one data type can be assigned to a pointer of another data type without
proper pointer casting. On the AS/400 system, such assignment operations
produce exceptions. Another important implication for high level language
as previously mentioned, is that pointers must be aligned on a 16-byte
boundary.

2.1.2 Addressing/Storage Management
AS/400 storage management uses the idea of single level storage. With
single level storage there is a single, large, uniformly addressable address
space for all memory (both main storage and secondary storage). Storage is
addressed by a 48-bit (6-byte) address. This large virtual address equates to
281 000GB of addressable storage.

Note: With the move to a 64-bit processor for the RISC models, the virtual
address was increased to 64 bits.

There is a single page table (sometimes referred to as a page directory) that
maps all virtual addresses to corresponding physical addresses. Addresses
are unique across the system, not duplicated across processes. The same
address in a different process points to the same storage location. This
concept is different from UNIX (where there is one address space per
process), and has implications for how storage is managed, and how
processes are created and managed.

The UNIX System V kernel divides the virtual address space of a process into
logical regions. A region is a contiguous area of the virtual address space
that can be treated as a distinct space to be shared (with other processes) or
protected. UNIX address spaces are per process. The same address in
different processes can point to different spaces. Since the AS/400 address
space is per system, the same address in different processes always points

Chapter 2. Architecture of the AS/400 System 19

to the same space. Consequently, the way addresses are translated and the
way memory is managed is fundamentally different between AS/400
architecture from that which is typically associated with UNIX systems.

These differences are summarized in Table 9.

Table 9. AS/400 and UNIX Storage Management Differences

AS/400 System UNIX

Single level storage Process address storage

Persistent addresses Relative addresses

Single process (job) Multiple processes

Full job structure Lightweight process

Job/Process Structure: An example of a UNIX system call that cannot be
implemented on the AS/400 system is fork(), which is how a process is
created on a UNIX system. The UNIX kernel does (among other things) the
following operations for fork():

• Allocates a slot in the process table for the new process.

• Assigns a unique ID number for the child process.

• Makes a logical copy of the parent process.

The notion of copying storage (which contains pointers) of the parent process
is inconsistent with the AS/400 architecture. On UNIX systems, pointers are
relative to the process. On the AS/400 system, pointers are absolute
because of the single address space for entire system. Consequently,
fork()--in UNIX terms--cannot be implemented on the AS/400 system.

Don′ t worry about a false alarm, though. We do not support fork() and
exec() but a combination of fork() and exec() semantics has been
implemented on the AS/400 system with spawn() and related APIs. We
discuss spawn() in more details later. Further, the AS/400 dynamic call
allows an ease-of-use call for multiple ″main″ programs while remaining in
the same process. This provides single-thread dynamic execution not
available in UNIX.

20 UNIX C Applications Porting to AS/400

2.1.3 Library and Address Resolution
At the time an AS/400 object is created, the operating system places the
object name in (another) machine object called a context. Contexts are
presented to the user as libraries (not to be confused with UNIX libraries).
The context object maps (resolves) the symbolic identification (type and
name) of an object to its virtual addresses. A user-specified (and modifiable)
list of libraries is associated with each job on the system, and objects can be
referenced by the user explicitly qualified to a specific library. If not explicitly
qualified to a library, the library list of the job resolves the references by
searching each library in the list in order until a matching entry is found.

On UNIX systems, everything is treated as a file and addressed through
hierarchical directories. The AS/400 system has objects addressed through
contexts (AS/400 libraries). This notion contrasts to the concept of symbolic
name resolution as used with directories and file systems on UNIX systems.
UNIX only searches paths for executable files, not arbitrary files.

With V3R1 and beyond, the AS/400 system does have a similarity with UNIX
by supporting a hierarchical, case-sensitive, POSIX-compliant name space
(called QOpenSys). Byte stream files stored in QOpenSys are addressed
through directories. The integrated file system (IFS), including QOpenSys, is
discussed more later.

2.1.4 User Profile and Authority Management
System authorization management is based on user profiles that are also
objects. All objects created on the system are owned by a specific user.
Each operation or access to an object must be verified by the system to
ensure the user′s authority. The owner or appropriately authorized user
profiles may delegate to other user profiles various types of authorities to
operate on an object. Authority checking is provided uniformly to all types of
objects.

The object authorization mechanism provides various levels of control. A
user ′s authority may be limited to exactly what is needed. Files stored in
QOpenSys are authorized in the same manner as UNIX files. Figure 3 on
page 22 shows the relationship between UNIX permissions and security used
on AS/400 database files.

Chapter 2. Architecture of the AS/400 System 21

Option Control
──────── ───────────────────────────
*EXCLUDE No access to object
*OBJOPR Use object (outlined below)

┌────────┬──────────────────────────────┐
│ │ Data Authority │
│*OBJOPR ├──────────────────────────────┤
│ │*READ *ADD *UPD *DLT *XEQ │
├────────┴──────────────────────────────┤

r (read) │ X X │
w (write) │ X X X X │
X (execute) │ X X │

└───────────────────────────────────────┘

Figure 3. Mapping UNIX Permissions to AS/400 Security

2.1.5 Character Sets and Terminal I/O
This section describes the differences between two architectures such as
character sets and terminal I/O.

2.1.5.1 EBCDIC versus ASCII
Most UNIX systems run on hardware that uses ASCII character encoding.
The AS/400 system uses EBCDIC encoding. This architectural difference is
not a problem, assuming high level language applications do not have a
dependency on (or make an assumption about) the character set. Problems
arise if, for example, applications are coded with dependencies on a
hexadecimal representation of character. The hex representation varies
between ASCII and EBCDIC. Similarly, the collating sequence (that is,
ordering of characters) also differs.

2.1.5.2 Buffered versus Unbuffered I/O
Input and output from and to external devices is buffered on the AS/400
system. I/O is handled by I/O processors that deal with blocks of data.
Conversely, UNIX systems typically operate with character-by-character
(unbuffered) I/O. On the AS/400 system, only certain I/O signals (for
example, enter, function keys, and system request) send an interrupt to the
CPU.

22 UNIX C Applications Porting to AS/400

2.1.5.3 I/O Controllers versus Device Drivers
It may not be common, but it is possible on most UNIX systems (as well as
most personal computers) to write applications to device drivers. That is, it
is possible to write applications utilizing a serial port that controls an I/O
device. On the AS/400 system, I/O is handled by system I/O managers
(IOMs) that communicate with device controllers to handle I/O requests.
Since IOMs are part of the AS/400 architecture, it is not possible to write
applications directly to a particular device.

2.2 Architectural Summary
This chapter has discussed AS/400 architectural distinctions from UNIX.
These differences should not affect or impede source code portability of
applications to the AS/400 system (assuming that the code is written in an
otherwise portable manner). Significant architectural features that uniquely
identify the AS/400 system include high-level machine interface (which really
defines the architecture), object-orientation, and single-level storage. The
high-level machine interface permits the underlying implementation of the
hardware to change without affecting users above the MI (including the
operating system and end user applications). Further, these architectural
features inherently provide a high degree of data and system integrity,
authorization, and reliability. These features--if they exist on a UNIX
system--typically must be provided by higher-level functions of the operating
system or by the application.

Chapter 2. Architecture of the AS/400 System 23

24 UNIX C Applications Porting to AS/400

Chapter 3. File System - AS/400 Integrated File System

This chapter explains how the UNIX style file system is implemented on the
AS/400 system You will know how we do this when you are done with this
chapter but if you want the answer now, it is the AS/400 system′s integrated
file system. Integrated file system is new concept on the AS/400 system for
V3R1 of OS/400. We want to position the AS/400 system as a server of
choice serving the major clients: PC clients, UNIX clients, and the AS/400
clients themselves. For this, one of the first things to be done is
implementing each client′s file system on the AS/400 system as native as
possible.

You have two choices to store your data on the AS/400 system: in its native
(and traditional pre V3R1 of OS/400), DB, or in a UNIX style file system (/
″root″ file system or /QOpenSys file system which are two of seven file
systems of integrated file system).

3.1 AS/400 Integrated File System Introduction
The AS/400 integrated file system was introduced for V3R1 of OS/400 and
enhanced for V3R6. The integrated file system is a part of OS/400 that
supports stream input/output and storage management similar to the UNIX
operating system, while providing an integrating structure over all of the
information stored on the AS/400 system.

As we mentioned earlier, the AS/400 system supports the major clients in
their close-to native mode as a server of choice. It also gives additional
benefits on top of having ″my own″ native file system: comprehensive and
integrated management facilities over all of the data under its realm; thus, a
name such as integrated file system. For the particular purpose of this book,
we do not cover other sides of the integrated file system. We focus on the
UNIX file system related features of the integrated file system. For the
general information of the integrated file system, refer to AS/400 Integrated
File System Introduction, SC41-4711-00.

Integrated file system features include:

• Hierarchical Directory Structure

− Directory support

− Current directory and home directory

 Copyright IBM Corp. 1995 25

− Absolute and relative path name

− Hard link and symbolic link

• Stream files

• POSIX.1 APIs that perform operations on integrated file system
directories and stream files

• UNIX style permissions support for security

• Local sockets support

• Extended attributes support

• Data conversion support

• Save and restore support

As we mentioned earlier, there are seven file systems in the integrated file
system. Table 10 describes each of seven file systems of the integrated file
system.

Table 10 (Page 1 of 2). File Systems in the Integrated File System

File System Description

Root The root (/) file system. This file system is designed to
take full advantage of the stream file support and
hierarchical directory structure of the integrated file
system. It has the characteristics of the DOS and OS/2
file system. In this file system, the file names are not
case sensitive.

QOpenSys The open systems file system. This file system is
designed to be compatible with UNIX-based open system
standards, such as POSIX and XPG. Similar to the /
″root″ file system, it takes advantage of the stream file
and directory support provided by the integrated file
system. In addition, it supports case-sensitive object
names.

QSYS.LIB The library file system. This file system supports the
AS/400 library structure and provides access to database
files and all of the other AS/400 system object types that
are managed by the library support.

26 UNIX C Applications Porting to AS/400

Table 10 (Page 2 of 2). File Systems in the Integrated File System

File System Description

QDLS The document library services file system. This file
system supports the folders structure and provides
access to documents and folders.

QLANSrv The LAN Server/400 file system. This file system
provides access to the same directories and files that
are accessed through the LAN Server/400 licensed
program. It allows users of the OS/400 file server and
AS/400 applications to use the same data as LAN
Server/400 clients.

QOPT The optical file system. This file system provides access
to stream data stored on optical media.

QFileSvr.400 The OS/400 file server file system. This file system
provides access to other file systems that reside on
remote AS/400 systems. The integrated file system of
another AS/400 system can be accessed as
/QFileSvr.400/RemoteSystem/...

3.2 How to Work with Integrated File System
This section explains the interface through the integrated file system. If you
are already familiar with the user interface of the integrated file system, you
may skip this section and go to section 3.3, “Integrated File System and
Porting” on page 37. A tutorial has been provided for the first time users of
the AS/400 integrated file system as the appendix Appendix A, “Integrated
File System Tutorial” on page 171.

3.2.1 UNIX Commands Equivalents on AS/400 System
The AS/400 system has three types of user interfaces: commands (CL for
Command Language is the name we use), menus, and displays. You are
probably most familiar with the commands interface. First we cover UNIX
command equivalents on the AS/400 system. Then we take a tour of the
integrated file system.

Chapter 3. File System - AS/400 Integrated File System 27

3.2.1.1 Bonus Section for Real Beginners on the AS/400 System
This section is only for real beginners on the AS/400 system. If you are
already working on the system, skip to section 3.2.1.2, “UNIX Commands
Equivalents for Integrated File System Commands” on page 34.

Commands on the AS/400 system have naming conventions unlike UNIX
commands. We take a word and abbreviate it to three characters in most
cases. For example, DSPLIB is used to ″Display (DSP) Library (LIB)″, and
WRKCFGSTS is used to ″Work (WRK) with Configuration (CFG) Status (STS)″.
Sometimes we just take one character from a word instead of three. For
example, DLTF is used to ″Delete (DLT) File (F)″.

Thanks to this generous usage of the number of characters in a single
command, the AS/400 commands are very easy to guess what they do. Take
the following exercise and see what I mean. What do you think the following
AS/400 commands do?

CRTPGM
WRKSYSSTS
WRKLNK
DSPCURDIR
CHGOWN

I don′ t think you even need the answers but they mean Create Program,
Work with System Status, Work with Link, Display Current Directory, and
Change Owner.

Likewise, if you do not know the command for the function you are looking
for, guessing it on the AS/400 system is equally easy. What command would
you execute to delete a program? Yes, you guessed it right. It is DLTPGM.

On top of this, the AS/400 system provides the display for prompting the
parameters you need for each command.

28 UNIX C Applications Porting to AS/400

For example, let′s go to the Prompt Text display of CRTPGM command.
Enter CRTPGM on the command line and press <F4> key on any display.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> CRTPGM

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu
 (C) COPYRIGHT IBM CORP. 1980, 1994.

� �
Figure 4. AS/400 Main Menu with CRTPGM Command Specified

Chapter 3. File System - AS/400 Integrated File System 29

Then the Create Program Prompt Text window is displayed. Let′s check this
display. The highlighted field is a mandatory field and others are optional
fields. And this display provides cursor sensitive online help and question
mark (?) service for value search.

Now, the cursor must be on the first field. Press the <F1> key.

� �
Create Program (CRTPGM)

 Type choices, press Enter.

 Program Name
Library *CURLIB Name, *CURLIB

 Module *PGM Name, generic*, *PGM, *ALL
Library Name, *LIBL, *CURLIB...

+ for more values

 Text ′ description′ *ENTMODTXT

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

� �
Figure 5. Create Program Prompt Text

30 UNIX C Applications Porting to AS/400

You can see the help window for the field on which the cursor is positioned.
When the cursor is not positioned on the field, then you can get the help for
this entire window.

� �
Create Program (CRTPGM)

 Type choices, press Enter.

 Program Name
Library . ..

 Module . . . : Program (PGM) - Help :
Library . : :

: Specifies the qualified name of the program object :
: created. :

 Text ′ descrip : :
: This is a required parameter. :
: :
: The possible values are: :
: :
: The program name can be qualified by one of the :
: following library values: :
: :
: *CURLIB :
: More... :
: F2=Extended help F10=Move to top F11=InfoSeeker :

 F3=Exit F4= : F12=Cancel F20=Enlarge F24=More keys :
 F13=How to us : :

:..:

� �
Figure 6. Help of Create Program Prompt Text

Chapter 3. File System - AS/400 Integrated File System 31

And if you want to know which value is suitable for particular field, then just
type ″?″ on that field and press Enter.

� �
Create Program (CRTPGM)

 Type choices, press Enter.

 Program Name
Library *CURLIB Name, *CURLIB

 Module *PGM Name, generic*, *PGM, *ALL
Library ? Name, *LIBL, *CURLIB...

+ for more values

 Text ′ description′ *ENTMODTXT

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

� �
Figure 7. Create Program Prompt Text

32 UNIX C Applications Porting to AS/400

Then you can see the candidate values for that field. And you can choose
one value from among these values.

� �
Specify Value for Parameter MODULE

 Type choice, press Enter.

 Type : NAME
 Library *LIBL

*LIBL
*CURLIB
*USRLIBL

F3=Exit F5=Refresh F12=Cancel F13=How to use this display F24=More keys

� �
Figure 8. Specify Value for Parameter MODULE

To make it even easier (you might say even more annoyed, but remember
those first days of your UNIX experiences: are you sure those days were
necessary evil? Wouldn′ t you be glad if you could do without it?), all of the
commands are provided by menu. These menus can be grouped by
subjects, verbs, objects, and so on. If you are familiar with SMIT on AIX, you
know the productivity difference between menu support and simple command
line support. Consider that all of the AS/400 commands come up with a
SMIT like interface: and even better. You cannot possibly get lost on the
AS/400 system.

Enough said about that, we list the UNIX commands equivalents of the
AS/400 commands first.

Chapter 3. File System - AS/400 Integrated File System 33

3.2.1.2 UNIX Commands Equivalents for Integrated File System
Commands
You can use this subsection as a quick reference to find the AS/400
integrated file system commands for the function (UNIX commands
equivalents on the AS/400 system, so to speak). Some integrated file system
commands have an alias to help the users with a UNIX background. For
example, the Changing Current Directory command is CHGCURDIR on the
AS/400 system. Its alias is cd. Typing either CHGCURDIR or cd on the
command line has the same effect: they both change the current directory.

Note: The AS/400 command interpreter is not case-sensitive. We just used
lower case for the UNIX commands and upper case for the AS/400
commands. It is just because of the documentation convention; in most, if
not all, AS/400 documentation, the commands are in upper case. Typing
either cd, CD, CHGCURDIR, chgcurdir, chdir, CHDIR, or even ChGcUrDiR, changes
the current directory.

cd

Change Current Directory. This changes the directory to be used as the
current directory. The AS/400 integrated file system command for this is
CHGCURDIR. It has an alias such as cd or CHDIR.

chgrp

Change Primary Group. This changes the primary group from one user to
another. The AS/400 integrated file system command for this is CHGPGP.

chmod

Change Authority Value. This turns authority on or off for an object. The
AS/400 integrated file system command for this is CHGAUT.

chown

Change Owner. This transfers object ownership from one user to another.
The AS/400 integrated file system command for this is CHGOWN.

cp

Copy. This copies a single object or a group of objects. The AS/400
integrated file system command for this is CPY.

ln

34 UNIX C Applications Porting to AS/400

Add Link. This adds a link between a directory and an object. The AS/400
integrated file system command for this is ADDLNK.

ls

Display Object Link. This shows a list of objects in a directory and provides
options to display information about the objects. The AS/400 integrated file
system command for this is DSPLNK.

ls -l

Display Authority. This shows a list of authorized users of an object and
their authorities for the object. The AS/400 integrated file system command
for this is DSPAUT.

mkdir

Create Directory. This adds a new directory to the system. The AS/400
integrated file system command for this is CRTDIR, MD, or MKDIR.

mv

Move or Rename. This moves an object to a different directory or changes
the name of an object in a directory. The AS/400 integrated file system
command for this is MOV, MOVE, RNM, or REN.

pwd

Display Current Directory. This shows the name of the current directory.
The AS/400 integrated file system command for this is DSPCURDIR.

rm

Remove Link. This removes the link to an object. The AS/400 integrated file
system command for this is RMVLNK, DEL, or ERASE.

rmdir

Remove Directory. This removes a directory from the system. The AS/400
integrated file system command for this is RMVDIR, RD, or RMDIR.

tar/cpio

Chapter 3. File System - AS/400 Integrated File System 35

Restore or Save. This copies an object or group of objects from a backup
device to the system or from the system to a backup device. The AS/400
integrated file system command for this is RST, or SAV.

var=pwd

Retrieve Current Directory. This retrieves the name of current directory and
puts it into a specified variable (used in CL program). The AS/400 integrated
file system command for this is RTVCURDIR.

3.2.1.3 Integrated File System Unique Commands
The AS/400 integrated file system also has its unique commands. They are:

CHGAUT

Change Authority Value. This change a user′s authority for the object.

CHKIN

Check In. This checks in an object that was previously checked out.

CHKOUT

Checks Out. This checks out an object, which prevents other users from
changing, renaming,or removing it.

CPYFRMSTMF

Copy From Stream File. This copies data from a stream file to a database
file member.

CPYTOSTMF

Copy To Stream File. This copies data from a database file member to a
stream file.

WRKAUT

Work With Authority. This shows a list of users and their authorities, and
provides options for adding a user, changing a user authority, or removing a
user.

WRKLNK

36 UNIX C Applications Porting to AS/400

Work With Object Links. This shows a list of objects in a directory and
provides options for performing actions on the objects.

WRKOBJOWN

Work With Objects by Owner. This shows a list of objects owned by a user
profile and provides options for performing actions on the objects.

WRKOBJPGP

Work With Objects by Primary Group. This shows a list of objects controlled
by a primary group and provides options for performing actions on the
objects.

3.3 Integrated File System and Porting
This section discusses various topics related to UNIX C applications porting
to the AS/400 system in terms of a file system: that is, the topics related to
the integrated file system.

3.3.1 File Descriptor Management
File descriptors are non-negative integers that the integrated file system
uses to identify the files being accessed by a particular process. Whenever
the integrated file system opens an existing file, or creates a new file, it
returns a file descriptor that we use when we want to read or write the file.
Each file descriptor refers to an open file description, which contains
information such as a file offset, status of the file, and access modes for the
file.

On a UNIX system, when a process starts, three file descriptors are already
opened, numbered 0 through 2 representing standard input, standard output,
and standard error. It is defined as STDIN_FILENO, STDOUT_FILENO, and
STDERR_FILENO. Unfortunately, there are no such file descriptors in the
integrated file system. If a file is opened the first time in the job, the file
descriptor may begin with 0, which is the standard input descriptor on a UNIX
system.

Note: The file descriptors 0, 1, and 2 associated with STDIN_FILENO,
STDOUT_FILENO, and STDERR_FILENO are not features of kernel. This is a
convention employed by the UNIX shells and many UNIX applications.
OS/400 does not support UNIX shells.

Chapter 3. File System - AS/400 Integrated File System 37

3.3.2 File Pointer and File Descriptor
File pointers are the implementations for input/output in C and their
structures are defined in the headfi le <stdio.h>. File pointers are used in C
when a file is created or opened for reading or writing. Information about the
file I/O is stored in this file pointer structure, such as the buffer pointer, some
flags, counters and the file descriptor. Because the standard file I/O
functions use the system functions, such as open(), create(), read(), and so
on, the file pointers are mapped to the file descriptors. Table 11 shows the
mapping of file pointers and file descriptors on the UNIX system.

ILE C/400 file pointers do not use file descriptors. However, ILE C/400
supports standard I/O file pointers, such as stdin, stdout, and stderr. They
are simulated as files by the ILE C/400 library routines.

Therefore, the standard file I/O functions do not access stream files of the
integrated file system directly. This is supported, though; that is, your
applications with standard file I/O functions can access stream files of the
integrated file system with the PTF SF20204 for OS/400 V3R1 which provides
a new runtime for the integrated file system interface.

Table 11. Mapping of Standard I/O Descriptors and Pointers in UNIX

File Descriptor File Pointer

0 stdin

1 stdout

2 stderr

Non-negative integer File pointer

3.3.3 Data Conversion
When you access files through the integrated file system interface, data in
the files may or may not be converted, depending on the conversion type
requested when the file is opened. The file can be opened or transferred
either in binary modes or in text modes. When the data is read or
transferred from the file in binary modes, it is not converted. However, when
the data is read or transferred in text modes, it is converted.

For true stream files, the national language support-specific characters, any
line-formatting characters, such as carriage return, tab and end-of-file
characters, are just converted from one code page to another.

38 UNIX C Applications Porting to AS/400

When reading from record files that are being used as stream files,
end-of-line characters (carriage return and line feed) are appended to the
end of the data in each record. When writing to record files:

• End-of-line characters are removed.

• Tab characters are replaced by the appropriate number of blanks to the
next tab position.

• Lines are padded with either blanks (for a source physical file member)
or nulls (for a data physical file member) to the end of the record.

FTP: When a file is transferred in text modes using FTP, the data is
converted as follows.

From the AS/400 system
The data is converted to ASCII code if the ASCII code is used on
the other system. The data is converted from the national
language support code page of OS/400.

To the AS/400 system
The data is converted to EBCDIC code if the ASCII code is used
on the other system. The data is converted to the national
language support code page of OS/400.

3.3.4 Code Pages
When the data is read from the file, it is converted from the code page of the
file to the code page of the application, job, or system receiving the data.
When the data is written to the file, it is converted from the code page of the
application, job, or system to the code page of the file.

3.3.5 What Level of Portability Do I Have?
Most UNIX C applications should fall into one or a mixed combination of the
following categories:

• ANSI C compliant

• POSIX.1 compliant

• POSIX.2 compliant

• Character I/O based

• XWindows based

• Others

Chapter 3. File System - AS/400 Integrated File System 39

Not all of these are supported on the AS/400 system. Remember we position
the AS/400 system as a server-of-choice in the client/server paradigm. Our
main interests are in:

• Modernizing the existing AS/400 applications and do it in UNIX way.

• Porting a relatively modernized version (that is, client/server based UNIX
C applications) of its server portion to the AS/400 system.

Given that point, those applications with heavy use of either POSIX.2
compliant, character I/O based, or XWindows based can be quite costly in
porting to the AS/400 system. Or they can wait until we further enhance the
openness of the AS/400 system. They can be either old type applications
where the data serving server portion and the display serving client portion
of the code exists in the same module or basically the client side application.

On the positive side, for those compliant with ANSI C, porting them to the
AS/400 system should experience only a few problems if any. Our ILE C/400
is fully ANSI C compliant and we have had that for a long time.

As you might have guessed, with OS/400 V3R1 and its new integrated file
system, we entertain the second category group: those that are POSIX.1
compliant. We want to invite two groups here, basically. They are:

• Application developers who directly use POSIX file I/O APIs

• DB middleware vendors

These two groups who might have regarded the AS/400 system as an
impractical choice for their platform for porting cost and performance of file
I/O, now will find it more attractive with the new features of the integrated file
system. The issue of the second group is discussed in the DB chapter.
Suffice it to say here that they will now find the AS/400 enough to attempt
porting their middleware to run on the AS/400 platform. We expect it will
come and the rest is quite transparent from user′s and application
developers/administrators ′ standpoint.

3.4 Example Programs for Integrated File System
Appendix Appendix B, “Integrated File System Example Programs” on
page 227 provides some example programs that might be helpful to
understand or work with the integrated file system.

40 UNIX C Applications Porting to AS/400

Chapter 4. Process Management

4.1 Introduction
Process Management is one of the areas where the differences between
UNIX systems and the AS/400 operating system are most apparent. This
chapter does not go into detail about what the major differences are, it just
brings up the key concepts that are relevant for a programmer, and that
plays an important part when porting software.

To reflect the efforts being done to follow existing open standards, a number
of new process related concepts have been added to V3R1 of OS/400.
Traditionally it has only been concerned about the concept of jobs. However,
there are also a lot of things the UNIX implementations and OS/400
implementation have in common, both on an operating system level and on a
language level.

It is important to remember that most of the functions mentioned in this
chapter use header (include) files from the library QSYSINC, which is
optionally installable. Make sure this library is installed on your system
before using any of the functions. This can be done by using the command:

CHKOBJ OBJ(QSYSINC) OBJTYPE(*LIB)

Additionally if spawn(), wait(), waitpid(), or pipe() is to be used, the
optionally installable library QCPA must exist on the system, even though
threads are not used. This chapter provides information about:

General process/job/thread information

Signals

Authority considerations

 Copyright IBM Corp. 1995 41

4.2 Processes

4.2.1 Processes in UNIX
In UNIX, every process has a unique non-negative process identifier. Since it
is guaranteed to be unique at every point in time, that is, two processes
cannot execute in parallel with the same identifier, it is often used by
programs, together with other identifiers, to provide means for uniqueness.
Some examples are message IDs in SMTP (Simple Mail Transfer Protocol)
and newsgroup article IDs, but also the tmpnam() function uses the process
identifier when generating a path name.

4.2.2 Processes on the AS/400 System
In the AS/400 operating system, a process does not correspond directly to
the same concept in UNIX. The traditional OS/400 equivalent of a process
has been the concept of a job, however with the addition of threads into the
operating systems, the traditional way to look at that relationship has been
slightly altered.

An AS/400 job has a unique qualified job name. The qualified job name
consists of three parts: the job name (or simple job name), the user name
and the job number. For interactive jobs, the job name is the same as the
name of the workstation you signed on to. For batch jobs, it is usually
possible to specify a customized job name. Note that this only applies to
when the batch job is started using the SBMJOB (Submit Job) command.
More information is available in 4.6, “Starting and Stopping
Processes/Threads” on page 65. The job name can be up to 10 characters
long.

The user name is the name of the user profile under which the job is started.
The same concept is used in UNIX related operating systems. For interactive
jobs, the OS/400 user name is the name entered on the sign-on display, and
for batch jobs, it is usually possible to specify the user profile under which
the job is to run provided one has sufficient authority.

The job number is a unique number assigned by the system. It is used to
identify jobs, that have identical user names and job names associated with
them. The job number consists of six numeric digits. The job number is
what most closely resembles the UNIX concept of a process ID.

42 UNIX C Applications Porting to AS/400

4.3 Threads
Threads is relatively a new concept. This book does not cover porting
aspects of threaded applications, since it currently is a little bit too early to
do so. There are not enough threaded applications on the market today to
be discussed here. However, basic information about the threads
implementation of OS/400 are covered, since it can be used as a means for
porting process related functionality, which exists in most UNIX and POSIX
compliant operating systems, but so far does not exist on the AS/400 system.

4.3.1 Threads in UNIX
Some UNIX operating systems or products are implementing threads.
Threads are sometimes referred to as lightweight processes and provide a
technique for concurrent programming by allowing multiple flows of
processing within a process. Each thread in a process is a separate
processing flow, using fewer system resources than a traditional process and
are created with less system overhead. The same as traditional processes,
threads can be run independently by the system.

Different threads within a process typically run the same code and are able
to share the same data, including global storage, heap, and open files. In
AIX 3.2, it was introduced with the DCE (Distributed Computing Environment)
implementation, since OSF (Open Software Foundation) designed DCE to
make use of a thread implementation known as .pthreads. If the operating
system did not supply thread support, the DCE implementation itself had to
provide it.

Pthreads are covered in the POSIX.1c standard. The POSIX.4 WG (Portable
Operating System Interface.4 Work Group) has four major projects:

• POSIX.1c (was called POSIX.4a and deals with pthreads)

• POSIX.1d (renumbered from POSIX.4b)

• POSIX.1i

• POSIX.1j (renumbered from POSIX.4d)

Both the AIX 3.2 implementation provided with DCE and the OS/400
implementation are based upon a draft of the preceding standard. There are
also other threads packages, such as Sun′s LWPs and Mach′s C-threads.

Chapter 4. Process Management 43

4.3.2 Threads in the AS/400 System
Threads in OS/400 are provided with a free, but separately orderable feature
called CPA (Common Programming APIs). Aside from threads, CPA also
supports the following:

• Thread synchronization features and wrappers to ensure a thread-safe
and thread-enabled C runtime environment (with some exceptions, where
the functions are using static variables, such as ctime()).

• Thread-enabled file I/O model, based on the POSIX standard 1003.1.

• Thread-enabled socket API, based on OS/400 sockets and BSD4.3
functionality.

Additionally, certain process control functions are provided with CPA, even
though they are not thread-enabled. See 4.6, “Starting and Stopping
Processes/Threads” on page 65 for details.

Basically, some UNIX systems such as AIX support thread-safe versions of
these functions:

int asctime_r(const struct tm *, char *, int);
int ctime_r(const time_t *, char *, int);
int gmtime_r(const time_t *, struct tm *);
int localtime_r(const time_t *, struct tm *);

In AIX, you have to link to the thread-safe library (libc_r.a) to make use of
these. The main difference is that you provide a pointer to allocated memory
in the call.

In AIX, you must also define the _THREAD_SAFE symbol in order for the
preprocessor to find the prototypes. In Sun Solaris, the equivalent symbol is
_REENTRANT. On HP_UX 9.0.3, there are no thread-safe versions of gtime()
and localtime(), however, there are two versions of ctime() and asctime()
depending on the number of arguments used. These are:

char *nl_asctime(struct tm *, char *, int);
char *nl_ctime(long *, char *, int);
char *nl_ascxtime(struct tm *, char *);
char *nl_cxtime(long *, char *);

On HP_UX, use #define _INCLUDE_HPUX_SOURCE to make use of these functions.
We could not find any equivalent function on SunOS.

In the OS/400 standard <time.h> include file, the four -r functions can be used
without having to define any symbol. However, the ctime_r() and asctime_r()

44 UNIX C Applications Porting to AS/400

calls have a different number of arguments compared to Sun Solaris and AIX.
It appears that the ″length″ argument has been omitted, which makes them
very similar to the HP_UX nl_ascxtime() and nl_cxtime() calls.

In the CPA threads implementation, multiple OS/400 jobs share the same
program storage, or ILE activation group (see Chapter 6, “Development
Environment on AS/400 System” on page 157 for information about ILE). In
other words, a thread in OS/400 is an OS/400 job with its own job identifier.
All threads sharing an ILE activation group are considered to form a process.
The main differences between a threaded job and a regular job are:

• The sharing of static storage with other threads.

• The way the job is started as well as the job type.

There are three kinds of identifiers involved in this scenario:

Job Identifier Qualified Job Name. Every separately-executable
piece of processing in OS/400 always has a job
identifier that is generated by the operating system.
This includes a separate non-threaded job as well as
the executable components of a process (that is,
each thread in a threaded program).

Process Identifier In V3R1 of OS/400, this is the job identifier of the
main thread. If the process is non-threaded, it is
identical to the job identifier. In V3R6 of OS/400, it is
a separate identifier, totally independent of any
externally available piece of job information.

All jobs within a process share the same process
identifier.

Thread Identifier The job number of that thread + 1.000.000 for each
time the tread is reused from the standby pool.

Further information about OS/400 threads, linking as
well as discussions about thread-safe and
thread-enabled functionality and other thread related
details is found in the CPA Extensions for OS/400
Reference (SC41-3820) manual.

Chapter 4. Process Management 45

4.4 Process Groups and Job Control
This section describes some considerations related to process groups and
job control.

4.4.1 Process Groups and Job Control in UNIX
In addition to having a process ID, each process in a UNIX operating system
that supports what is commonly known as job control, belongs to a process
group. A process group is a collection of one or more processes. Each
process group has a unique process group ID. The function getpgrp()
returns the process group ID of the process issuing the call. The most
important attribute of a process group is that it is possible to send a signal to
every process in the group by just sending the signal to the process group
leader. Each time one of the standard UNIX shells that supports job control
creates a process to run an application, the process is placed into a new
process group. When the application spawns new processes, these are
members of the same process group as the parent.

Note here that not all UNIX operating systems supports the concept of job
control and even if the operating system supported it, it is not certain that the
shell used to start a job would support it.

Job control is a feature added by Berkely around 1980 and it allows the
capability of determining which jobs can access the terminal and which jobs
are to run in the background. POSIX.1 specifies that if the symbol
_POSIX_JOB_CONTROL is defined in <unistd.h>, job control is supported.

OS/400 does not support job control as defined in POSIX.1. First, it does not
have a controlling terminal in the traditional sense. Regardless of what is
entered on the keyboard, no SIGINT, SIGTSTP, SIGCONT, or SIGQUIT is sent to
the foreground process group. More information about signals is found in
4.5, “Signals” on page 55. Second, only one process can have access to the
display and the keyboard and this cannot be altered using tcsetpgrp(), the
UNIX way of specifying if a process group is to be placed in the foreground.
Actually, neither tcsetpgrp() nor tgetpgrp are implemented into OS/400.

However, OS/400 allows the use of certain job control related functions, such
as getpgrp() and in V3R6 of OS/400, setpgrp(). The latter function is usually
used either by a parent process to set the process group of a child or by the
child to set its own process group to ensure that it is different from the
parent process. At the time of writing this redbook, setpgrp() is not

46 UNIX C Applications Porting to AS/400

supported in V3R1 of OS/400. However it is possible to specify the process
group of a new spawn()ed process by using the SPAWN_SETGROUP option.

By default, when you start an OS/400 job, it implicitly has a process group ID
identical to the job number. In V3R1 of OS/400, this identifier is also identical
to the process ID, whereas in V3R6 of OS/400, it has no relation to the
process ID whatsoever. The OS/400 resources representing the process
group are, however, not explicitly created until the process has expressed
some kind of interest in creating one. This way of implementation facilitates
for traditionally developed software to run unaffected by process groups or
job control.

The indicator causing the job to actually form a process group with itself as
process group leader, can be a call to any of the process related APIs, such
as getpid(), spawn(), wait(), and sigaction(). The full set of APIs that
enable a process to:

• Create a process group, if it does not already exist.

• Add itself as an entry in the process table.

• Enable the process to receive signals (4.5, “Signals” on page 55).

are found in Figure 12 on page 59.

If the job uses spawn() to create a child process, the child inherits the
process group ID from the parent unless the SPAWN_NEWPGROUP flag is
specified in the call. This causes a new process group to be created for the
child. The SPAWN_SETGROUP flag also allows the possibility of setting the
process group ID of the child process to a specific value. If the process
group number is not valid, an error occurs.

Most UNIX related operating systems also incorporate the concept of a
session. This is a collection of process groups. Each process group is a
member of a session. A newly-created process joins the session of its
creator. The setsid() function is used to create a new session and the most
common use of setsid() is to effectively disconnect from the controlling
terminal. This is especially relevant when dealing with daemon processes or
processes that do not require stdin input.

The setsid() function demands that the process it is called from must not be
a process group leader. This means, that in order to ensure that the
disconnect from the terminal is successful, the process must fork(), exit, and
let the child do the setsid(). Another way is to make this within an if
statement, where the process verifies that it is not a process group leader by

Chapter 4. Process Management 47

comparing its process ID with its process group ID. This prevents a
sometimes unnecessary fork().

/* fork first child */
if((childpid = fork()) < 0) { �1�
/* exit with non-zero return code */
exit(1);

}
else if(childpid > 0) {
/* parent exits */
exit(0); /* we are the parent */ �2�

}
/* else the child process continues */

/*
* Set up as a server. Disconnect from terminal.
*/
setsid(); �3�

Figure 9. Disconnecting from Terminal. This is how UNIX processes usually
disconnect from a controll ing terminal.

Notes:

�1� The job fork()s to let the shell think the command is done. The
child inherits the process group ID of the parent, but gets a new
process ID. This means the child is not a process group leader and
that makes it possible to perform the setsid() in �3�.

�2� The parent process exits. If the fork() fails (return -1), the reason
could be that the maximum number of processes in the system or for
the current user has been reached. It exits with return code 1,
otherwise it returns with code 0, indicating that the child process is
now active.

�3� We are now certain that setsid() should succeed, since the child
is not a process group leader.

It is also possible to use getppid() (Get Parent Process ID) to see if the
parent is init, in other words, the pid is 1. This means one of two things:
Either the parent process has exited and let the init process take care of the
child, or the program (if a Daemon) was started from an entry in the inittab
file. In the latter case, there is no reason to call setsid(), since init is

48 UNIX C Applications Porting to AS/400

already disconnected from the controlling terminal and this is inherited by
any child process created.

4.4.2 Process Groups and Job Control on AS/400 System
In OS/400, most of these steps are irrelevant. As mentioned earlier, the
need for disconnecting from the terminal is not as accentuated as in UNIX,
since there is no way the interactive process can receive any signals, other
than explicitly sending them or by using alarm().

Note: This is only true for ILE C runtime signals. OS/400 signals can be
asynchronous. For details, refer to 4.5, “Signals” on page 55.) However, it
could be worthwhile to examine it if the current process is an interactive
process or a batch process and maybe even to some extent, simulate
setsid() by making the interactive job a batch job.

There is no init process in OS/400, but the getppid() call (Get Parent Process
ID) returns 1 anyway if no parent process exists. The concept of a parent
process in OS/400 is further explained in 4.6, “Starting and Stopping
Processes/Threads” on page 65, but suffice to say here, that there is only
one way for a process to be considered a child or a parent and that is the
use of the spawn() call.

As a direct effect of this, the getppid() call in OS/400 is return 1, regardless if
it is an interactive (foreground) job, or if it has been started using the
traditional method of starting a batch job in OS/400, the SBMJOB (Submit
Job) command. This means, that if a UNIX program is using the getppid()
call to see if init is the parent as previously described, and, if it is, refrain
from making the job a background job. The code would not work properly on
the AS/400 system.

Another way to look at this issue is to see what the program really is
supposed to do. If the purpose of the code sample in Figure 9 on page 48 is
only to verify that the job really runs in the background, OS/400 must use
some other method of determining if the if the current process is an
interactive process or a batch process. On the AS/400 operating system,
there are basically three ways of accomplishing this:

Command Definition On the the AS/400 system, it is possible to create a
command, that is able to call the actual program that
can call a CPP (Command Processing Program).
Besides the capabilities of letting developers supply
help texts and parameter validation programs
verifying that the parameters are sent in a proper

Chapter 4. Process Management 49

sequence to the CPP, it also allows the developer to
specify the environment the process is to run in. In
other words, it is possible to specify that this
program should be run interactively, or as a batch
job.

Of course it is possible for a user to change this
command attribute, which means a major
inconvenience both for the developer and for the
user if the CPP expected to run in another kind of
environment.

RTVJOBA One of the most common methods to verify if a job is
running in a batch environment or interactive
environment is to use the CL (Control Language)
command RTVJOBA (Retrieve Job Attributes). From
V3R1 of OS/400, it is possible to create ILE versions
of CL programs, which means that it is perfectly valid
to link such a program module to the main program.
An example of such an attempt is shown in the
following figure:

PGM PARM(&JTYPE)
 DCL VAR(&JTYPE) TYPE(*CHAR) LEN(1)
 RTVJOBA TYPE(&JTYPE)
 ENDPGM

Figure 10. RTVJOBA. A CL program is used to find out if the job is an interactive job
or a batch job.

This program is called with one parameter, a pointer
to a character. It returns 0 if the job is a batch job,
or 1 if the job is interactive. The C program used to
call it could have the following layout:

50 UNIX C Applications Porting to AS/400

#include <stdio.h>

void TJOB2(char *a);

void main()
{
char a;

TJOB2(&a);

if(a == ′ 1 ′)
printf(″This is an interactive job.″) ;

else
printf(″This is a batch job.″) ;

return;
}

Figure 11. Figuring Out Job Type. This program inquires from the program in
Figure 10 about the type of the job.

APIs The two previous examples have been a little bit
limited in regard to functionality. The command
method only sees to it that a program executes in its
proper environment and the RTVJOBA method can only
find out if the job is interactive or a batch job. The
latter method supports the UNIX way quite well and
would definitely do as a substitute for the getppid()
call, but we can actually find out even more about
the current job type by using operating system APIs
such as QUSRJOBI (Retrieve Job Information) and
QWCRJBST (Retrieve Job Status).

In OS/400, the batch job could have originated from
different sources. The most common batch job types
include:

• BCH (Batch) - batch jobs started with SBMJOB
(Submit Job).

• BCI (Batch Immediate) - batch jobs started as
threads or spawn()ed.

• EVK (Evoke) - SNA (Systems Networking
Architecture) TP (Transaction Programs) that are
evoked.

There are also some other batch statuses, but they
are mostly related to the System/36 environment.

Chapter 4. Process Management 51

After we have performed the first steps in Figure 9 on page 48, the behavior
of the UNIX program has to be translated to OS/400 concepts. If the job is
interactive, the UNIX program fork()s a new copy of itself before it
disconnects from the terminal. We can apply one of the job creation
methods described in 4.6, “Starting and Stopping Processes/Threads” on
page 65 and restart the current program in batch mode. In other words, it is
not possible to change the type of the job from interactive to batch while it is
running. The disconnect from the terminal is automatically done for a batch
job and the only way it can communicate is by reading and writing from
sources other than the terminal. If stdin/stdout is used in the program, such
as a UNIX filter or something similar, these files are overridden before
program invocation.

For example, if a job is to read stdin and write to stdout, but is submitted to
batch, you can override these files to operating system database files by
using the OVRDBF command. An example is OVRDBF FILE(STDIN)
TOFILE(INFILE). Note that stream files or files in file systems other than
/QSYS.LIB file system are not allowed.

If any stdin, stdout, or stderr has not been overridden, the output is sent to
the printer file QPRINT and the input is read from a file called QINLINE, which
should exist in the library list. More information about these files is found in
the ILE C/400 Programmers Guide, SC09-2069.

This method of restarting the program assumes, of course, that steps
performed before the second program invocation can be repeated without
causing unwanted effects.

To summarize: applications that make use of process group and session
related calls discover that OS/400 differs to some extent in how it handles
sessions and how a process detects if it is interactive or running in batch
mode. Sessions are not supported and until session support is available on
OS/400, the restriction that the process group assigned in the setpgrp() call
must be within the session of the calling process will not be enforced.

There are some job control calls that are not supported on OS/400, or where
OS/400 behavior is slightly different than suggested by POSIX.1. These are:

setsid() If the purpose of the setsid() call is to make a
process disconnect from the controlling terminal, it is
redundant, since OS/400 does not have a controlling
terminal in its strict sense. However, it is useful to
find out if a job is interactive and if it is, make it a

52 UNIX C Applications Porting to AS/400

batch job, and thereby loose all contact with the
terminal. None of the standard I/O streams cause
output to be read from or written from the terminal.
A technique to perform this is described in this
chapter.

Terminals and ttys Since OS/400 does not support the /dev file system,
functionality referring to direct access to the terminal
is usually not supported. These calls include:

• ctermid(), used to obtain the terminal pathname -
usually in UNIX systems /dev/tty.

• tcgetattr() and tcsetattr(), used to save and
set terminal attributes. Usually in System V
environments, calls to ioctl() are made instead.
The OS/400 ioctl() function does not support
these requests.

• isatty(), used to verify that a file descriptor
represents a terminal device.

• ttyname(), which returns the pathname of the
terminal device that is open on a file descriptor.

getppid() Usually this call returns the parent process ID of the
current process. In UNIX, if it returns 1, init is the
parent process, which usually means that the child is
not connected to a terminal, either because the
parent has died, that it has perform a setid(), that
the parent has disconnected from the terminal, or in
some operating systems, that it has been started as
a part of the inittab processing. In OS/400, it just
means, that spawn() has not been used to create the
job or that the parent has exited.

In additional to standard SVID and POSIX interfaces, OS/400 offers some
extra job control support by introducing the following APIs:

Qp0wChkPgrp() This function provides an AS/400 system a specific
way to obtain the process table information for the
members of a process group. Remember, that a
certain process is not assigned to a process group
or a position in the process table until it has
indicated its interest in receiving some kind of signal
or some other process related function. Information

Chapter 4. Process Management 53

in the process table specifies information about
current pid, the parent pid, and the process group of
each of the processes as well as the current status
of the process.

This status indicates if the process has ended, and if
it has been stopped by a SIGSTOP signal. Note that
even though the effect of the HLDJOB command is very
similar, it is not reflected in the job status. The
status also indicates if the process is waiting for one
or more child processes (wait() and waitpid()), or if
a process has requested that the SIGCHLD signal
should be generated for the process when one of its
child processes is stopped by a signal.

Qp0wChkPid() Qp0wChkPid() performs the same function as
Qp0wChkPgrp(), with the exception that it is called with
a pid instead of a process group ID and only returns
process table information for the specified pid.

Qp0wGetPgrp() Returns the process group ID of the calling process.
It is equivalent to the getpgrp() call.

Qp0wGetPid() Returns the process ID of the calling process. It is
equivalent to the getpid() call.

Qp0wGetPidNoInit() This function is identical to the getpid() and
Qp0wGetPid() calls except that it does not enable the
process to receive signals. Functionally it is
identical to the getpid(); Qp0sDisableSignals();
combination of functions.

Qp0wGetPPid() The Qp0wGetPPid() function returns the process ID for
the parent process of the calling process. It is
functionally identical to getppid().

54 UNIX C Applications Porting to AS/400

4.5 Signals

4.5.1 Signals in UNIX
A signal is a way of handling asynchronous events. In other words, a
program does not have to process any particular part of the program in
order to receive a generated signal. Most of the time support for signals is
implemented in the operating system, but at times it is also the runtime part
of a language implementation. This is the case for most C and C++
implementations.

Signals have been provided since the early versions of UNIX, but the
reliability has not always been astonishing and sometimes it is hard to turn
off the selected signals when you are processing a critical region of the
code. Additionally, the issue of compatibility between Berkely and AT&T
implementations (especially when you consider the reliability extensions),
was an open issue.

Signals are an integral part of multi-tasking in the UNIX/POSIX environment.
They are usually used for a number of reasons, depending on the purpose of
the programs that uses them. Examples of different areas where signal
functions can come in handy are:

Maintenance Purposes Most UNIX systems send a signal to the process in
the event of invalid pointers, or other indications of a
bug in the program. Depending on how the signal
handling is set up, this can cause a core dump to be
generated and used for debugging purposes by the
developers. Some developers consider the
generation of a core dump as something that tells
the users when something is wrong with the program
and maybe gives the program a bad reputation. If
this is the case, the signal (for example SIGSEGV or
SIGFPE) is ignored.

Communication Events When two programs are communicating with each
other over a descriptor, it could be a networking (IP)
program, a pipe or something else, and the recipient
side of the conversation terminates (normally or
abnormally), the sending party receives a SIGPIPE
event.

Chapter 4. Process Management 55

This can help developers find problems in the logic
of the code and can, of course, also be ignored by
the developer. Other network communication related
signals are SIGIO and SIGPOLL that indicate an
asynchronous I/O event.

Timer Functionality Either the alarm() function, or the timer related
families setitimer(), or the POSIX.4 recommended
timer_create() causes the signal SIGALRM to be
generated.

User/tty Interrupts Usually the interactive user can cause a signal to be
generated by using certain key sequences. Typical
examples are Ctrl-C, that generate SIGINT and, in
most cases, Ctrl- \, which cause SIGQUIT. Other
examples are Ctrl-Z, which cause the SIGTSTP
signal to be sent to the process and, sometimes the
non POSIX signal SIGINFO when using Ctrl-T.

IPC A designer can let programs interact with one
another by using signals as an IPC (Inter Process
Communication) mechanism. In most cases,
SIGUSR1 and SIGUSR2 are used for this purpose.

Process Tracking A parent is notified when a child process has
terminated by waiting for SIGCHLD.

There are numerous other things signals can help us with and these are only
some of the most commonly used. Each process has an action to be taken
in response to each signal defined by the system. During the time between
the generation of a signal and the delivery of a signal (when the actual action
is performed), the signal is said to be pending. In most cases, this state is
determined by using the sigpending() function. It is also perfectly valid for
the process to block it. If a signal that is blocked is generated for a process
and the action for that signal is either the default action or to catch the
signal, the signal remains pending for the process until the process either
unblocks the signal or changes the action to ignore the signal.

Blocking is very useful if the program is in a critical section of the code. A
signal can be specified to be blocked either in the sigaction() call (which is
the POSIX way of implementing the Ansi C signal() call, and should,
therefore, be preferred when coding a program), or in the sigprocmask() and
sigsuspend() functions. Each process has a signal mask that defines the set
of signals currently blocked from delivery and that is inherited by a child
from its parent.

56 UNIX C Applications Porting to AS/400

4.5.2 Signals in POSIX
POSIX defined in its 1003.1-1990 standard (also known as POSIX.1), 13
required signals. Six more were optional, but had to be implemented if the
operating system defined the symbol _POSIX_JOB_CONTROL. If
_POSIX_REALTIME_SIGNALS is specified in unistd.h, it means that the POSIX.4
additions to the POSIX.1 signals model have been implemented.

POSIX.1 relies to a great extent upon the Berkely signal standard with some
improvements. The Berkely standard is, of course, a considerable
improvement to the ANSI C signal standard, but is POSIX.1 really the
ultimate goal?

POSIX.4 addresses some of the items considered as shortcomings of
POSIX.1. Examples are:

• Lack of signals for application use. Basically, only SIGUSR1 and
SIGUSR2 can be used.

• Lack of signal queuing.

• No signal delivery order.

• Poor information content. The recipient process knows little more than
what signal has been delivered. Additional information must be provided
using some other kind of (IPC) method.

4.5.3 Signals on the AS/400 System
Now that we have been dealing with signals in a couple of the sections in
general, let us reach the key issue. To what extent does OS/400 support
signals? We look at what ILE C/400 provides us with and add the extensions
provided in V3R1 of OS/400.

4.5.3.1 ILE C/400
Well, we can go the easy way first and talk about ANSI C signals. These are
defined as SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM. Standard
C does not require that any of these signals are generated. An illegal
memory reference may, or may not, generate a SIGSEGV. ILE C/400 supports
all of these with the additions of :

SIGIO Originally used for record file error condition, but
with V3R1 of OS/400, the use of the fcntl()
command F_SETOWN or the ioctl() request of
FIOSETOWN is also possible to use with descriptors.

Chapter 4. Process Management 57

SIGOTHER All *ESCAPE and *STATUS messages that do not map to
any other signals.

SIGUSR1, SIGUSR2

Additionally, SIGALL is an ILE C/400 extension, which allows users to register
their own default handling function for all signals whose action handler is
SIG_DFL.

ANSI C also specifies signal() to be used for specifying signal handlers and
this function is supported by ILE C/400. Note, however, that support for
sigaction() is included in V3R1 of OS/400 and V3R6 of OS/400. AS/400
system exceptions are mapped to C signals by the ILE C/400 runtime. You
cannot register a signal handler in an activation group that is different from
the one you want to invoke it from. The concept of activation groups is
further explained in Chapter 6, “Development Environment on AS/400
System” on page 157. If a signal handler is in a different activation group
from the occurrence of the signal it is handling, the behavior is undefined.

Signals can be raised implicitly or explicitly. To explicitly raise a signal, the
raise() function can be used. Signals are implicit ly raised when an
exception occurs. Note that this only applies to the use of ILE C/400 signals,
that is, the signal() function. See 4.5.3.2, “ANSI C, POSIX Integration” on
page 60 for details. The signal.h header file contains a number of function
prototypes associated with signal handling. In order to ensure that your
program has access to all signal functionality, verify that your include
statements mention #include <sys/signal.h>. If this is done, the compiler
finds QSYSINC/SYS.SIGNAL, which in turn includes the ILE C/400 QCLE/H.SIGNAL,
which only contains the C functionality. Note that the functions included in
OS/400 POSIX signal functionality requires QSYSINC/SYS.SIGNAL to exist on the
system. However, QSYSINC is optionally installable. Make sure QSYSINC is
installed on your system before using any of the functions.

As mentioned in 4.4, “Process Groups and Job Control” on page 46, it is not
possible to generate any of the commonly accepted interactive signals
(SIGINT, SIGTSTP, SIGQUIT , or SIGINFO) from the keyboard. SIGTSTP is not
even supported. Instead, the only way of causing one of these signals to be
generated is to use either the raise() function provided in ILE C/400, or the
kill() function provided in OS/400 V3R1. In fact, the only way to cause a
signal to be generated that does not include any of these calls or an
exception from the operating system, is to use the alarm().

58 UNIX C Applications Porting to AS/400

In OS/400, a process is by default not eligible to receive signals from other
processes or the operating system. The Qp0sEnableSignals() function allows
the calling process to receive signals from other processes or the system
without having to call other signal functions that enables the process for
signals.

The activities of explicitly creating a process group, adding a process to the
process table, and enabling a process to receive signals are very closely
related and usually performed in one step. In other words, if the process is
enabled for signals, it is automatically added to the process table. In
addition to the Qp0sEnableSignals() call, this kind of process enabling is
acquired if:

 1. The job is a child process, that is, it was created using spawn().

 2. The process is a parent process, that is, it is using spawn().

 3. Any of the following functions are called:

• alarm()

• getpgrp()

• getpid()

• pause()

• Qp0wGetPgrp()

• Qp0wGetPid()

• sigaction()

• sigprocmask()

• sigsuspend()

• sleep()

Figure 12. Functions to Process Enable a Program. Any of these functions can cause
a process group to be explicitly formed with the current process as the process group
leader, add the process to the process table, and enable the process to receive
signals.

If none of these conditions are met, the process is not enabled to receive
signals. If another process tries to generate a signal to the process anyway,
an error condition occurs.

Chapter 4. Process Management 59

The process to receive the signal is identified by a process ID. The process
ID is used to indicate whether the signal should be sent to an individual
process or to a group of processes (known as a process group; see 4.4,
“Process Groups and Job Control” on page 46 for more details). The
process sending a signal must have the appropriate authority to the
receiving process. The parent process is allowed to send a signal to a child
process (see 4.6, “Starting and Stopping Processes/Threads” on page 65 for
details). A child process is allowed to send a signal to its parent. A process
can send a signal to another process if the sending process has *JOBCTL
authority defined for the current process user profile or in an adopted user
profile. Otherwise, the real or effective user ID of the sending process must
match the real or effective user ID of the receiving process. An error
condition results if the process does not have authority to send the signal to
a receiving process. We discuss authority issues later in 4.6.5, “Process
Authorization” on page 85.

There are some additional differences between how signal functionality can
be used in OS/400 and the standard UNIX (POSIX, X/OPEN) model.

4.5.3.2 ANSI C, POSIX Integration
In most UNIX systems, the standard C signal functions, signal() and raise()
can be used interchangeably with the POSIX calls sigaction(), and kill().
If one process indicates its interest in receiving, for example, SIGUSR1 by
using signal(SIGUSR1, handler), it is perfectly valid for another process to
send that signal to the first process using kill(<pid>, SIGUSR1). In a similar
fashion, it is possible to use the following flow of events:

struct sigaction sig_parms;

sig_parms.sa_handler = handler;
sigemptyset(&sig_parms.sa_mask);
sig_parms.sa_flags = 0;
sigaction(SIGUSR1, &sig_parms, NULL);

raise(SIGUSR1);

This is not possible in OS/400, however. Generally it can be expressed as
functionality belonging to two different families. The ILE C/400 runtime
supports the signal() and raise() functions, whereas the operating systems
supports sigaction() and kill(), and they cannot be used together. Either
you are using the ILE C/400 flow of events or the functionality of the
operating system.

60 UNIX C Applications Porting to AS/400

4.5.3.3 Scope of Signal Information
On most UNIX systems, a process consists of a single flow of control. When
the program in control needs to perform a task that is contained in another
program, the program uses fork() and exec() to start a child process that is
used to start the other program. The signal controls for the child process are
inherited from the parent process. Changes to the signal controls in either
the parent or the child process are isolated to the process in which the
change is made.

In OS/400, when a program needs to perform a task that is contained in
another program, there are a number of ways to accomplish this. If the other
program is to run concurrently with the current program, it is possible to use
SBMJOB or spawn(). When you use SBMJOB, nothing is inherited, not the current
signal mask nor the signal actions. When you use spawn(), it is possible to
specify if the signal mask of the parent is to be inherited, or if it is going to
be set in the call. Additionally it is possible to specify if you want the child to
inherit the parents ignore (SIG_IGN) or default (SIG_DFL) actions.

If the called program is not going to run concurrently, but instead have the
functionality of a UNIX fork(); wait(), that is how the ANSI C system() call is
usually implemented, the target program is run using the same process
structure. As a result of this call and return mechanism, if a called program
changes the process signal controls and does not restore the original signal
controls when returning to its caller, the changed process signal controls
remain in effect. The called program inherits the signal controls of its call,
however:

 1. The set of pending signals is not cleared.

 2. Alarms are not reset.

 3. Signals set to be caught are not reset to the default action.

Programs that use signals and change the signal controls of the process
should restore the old actions or signal blocking mask (or both) when they
return to their callers. Programs using signals should explicitly enable the
process for signals when the programs begin. If the process was not
enabled for signals when the program was called, the program should also
disable signals when it returns to the process. In other words, if the first
program is not enabled to receive signals, but it is a part of the program it
calls, the target program should use Qp0sDisableSignals() before returning to
the caller.

Chapter 4. Process Management 61

4.5.3.4 Error Handling in a Signal Handler
On UNIX systems, an unhandled error condition in a signal handler usually
results in the interrupt of the process. In OS/400, however, unhandled error
conditions in the signal handler are implicitly handled. The signal handler is
ended and the receiving program resumes running at the point at which it
was interrupted. The error condition may be logged in the job log. Aside
from the job log entry for the error, no further error notification takes place.

4.5.3.5 Termination Action
The OS/400 offers two types of termination actions. The termination action
applied to most signals is to end the most recent request. This usually
results in ending the current program, which is expected by most UNIX
programmers. The second termination action is to end the process, which is
more severe. The only signal with this action is SIGKILL.

4.5.3.6 Default Actions
In OS/400, some default actions for signals are different than on typical UNIX
systems. For example, the OS/400 default action for the SIGPIPE signal is to
ignore the signal.

4.5.3.7 Supported Signals and Signal Numbers
OS/400 does not implement all POSIX required signals; SIGHUP has been left
out. A number of programs, however, are designed to install a signal
handler for SIGHUP, which typically lets the programs reread their
configuration files and reinitialize according to the (new) information.

This does not necessarily have to impose a problem, since, even though the
signal is not sent, (OS/400 does not support the full concept of a controlling
terminal) it is still possible to send the signal using raise() or kill().

The excerpt from <sys/signal.sys> in the following example indicates which
signals are supported and those that are not in addition to their
corresponding signal numbers:

/*--*/
/* ANSI-C Required Signals */
/*--*/
/*
 * #define SIGABRT 1 * Abnormal termination *
 * #define SIGFPE 2 * Erroneous arithmetic operation *
 * #define SIGILL 3 * Invalid hardware instruction *
 * #define SIGINT 4 * Interactive attention signal *
 * #define SIGSEGV 5 * Invalid memory reference *
 * #define SIGTERM 6 * Termination signal *
 */

62 UNIX C Applications Porting to AS/400

/*--*/
/* SAA or Extended Signals */
/*--*/

#define SIGUSR1 7 /* Application defined signal 1 */
#define SIGUSR2 8 /* Application defined signal 2 */
#define SIGIO 9 /* I/O possible, or completed */
/*
 * #define SIGALL 10
 * #define SIGOTHER 11
 */

/*--*/
/* Additional POSIX Required Signals */
/*--*/

#define SIGALRM 14 /* Timeout signal */
#define SIGKILL 12 /* Termination signal (cannot be
caught,ignored) */
#define SIGPIPE 13 /* Write on a pipe with no readers */
#define SIGQUIT 16 /* Interactive termination signal */

/*--*/
/* Additional POSIX Required Signals */
/*--*/
/* NOTE: These signals are provided as an aid to application */
/* porting. These signals are not generated by 0S/400. */
/*--*/

#define SIGHUP 15 /* Hangup detected on controlling terminal
*/

/*--*/
/* Job Control Signals */
/*--*/

#define SIGCHLD 20 /* Child process terminated or stopped */
#define SIGCONT 19 /* Continue if stopped */
#define SIGSTOP 17 /* Stop signal (cannot be caught or
ignored) */

/*--*/
/* Job Control Signals */
/*--*/
/* NOTE: These signals are provided as an aid to application */
/* porting. These signals are not generated by 0S/400. */
/*--*/

#define SIGTSTP 18 /* Interactive stop signal */
#define SIGTTIN 21 /* Background read from controlling
terminal */

Chapter 4. Process Management 63

#define SIGTTOU 22 /* Background write to controlling
terminal */

/*--*/
/* Additional X/Open 1170 Signals */
/*--*/

#define SIGURG 23 /* High bandwidth data is available at a
socket */
#define SIGPOLL 24 /* Pollable event */

/*--*/
/* Additional X/Open 1170 Signals */
/*--*/
/* NOTE: These signals are provided as an aid to application */
/* porting. These signals are not generated by 0S/400. */
/*--*/

#define SIGBUS 32 /* Bus error (specification exception) */
#define SIGDANGER 33 /* system crash imminent */
#define SIGPRE 34 /* programming exception */
#define SIGSYS 35 /* Bad system call */
#define SIGTRAP 36 /* Trace/Breakpoint trap */
#define SIGPROF 37 /* Profiling timer expired */
#define SIGVTALRM 38 /* Virtual timer expired */
#define SIGXCPU 39 /* CPU time limit exceeded */
#define SIGXFSZ 40 /* File size limit exceeded*/

/*--*/
/* Signal names supplied for compatibility */
/*--*/

#define SIGIOINT SIGURG /* printer to backend error signal */
#define SIGAIO SIGIO /* base lan i/o */
#define SIGPTY SIGIO /* pty i/o */
#define SIGIOT SIGABRT /* abort (terminate) process */
#define SIGCLD SIGCHLD /* old death of child signal */
#define SIGLOST SIGABRT /* old BSD signal */

Figure 13. Signal.h. Supported and unsupported signals in OS/400.

The marked signal #defines are functions that are implemented in ILE C/400.
These are documented in <signal.h>, which is included in the header file in
Figure 13.

What can be noted is that the signal numbers are not identical to most UNIX
systems. For example, it is easy to grow accustomed to the fact that SIGHUP
is 1 and that kil l -1 <inetd-pid> should refresh the inetd daemon. I also
think that one of the things most UNIX students learn very quickly is to end
jobs that do not exit normally using kil l -9 <pid>. Suddenly, when you kill

64 UNIX C Applications Porting to AS/400

-1, you send a SIGABRT, which is percolated to the next exception handler
and when you send -9, suddenly the process receives SIGIO, which can cause
it to take incorrect actions. The best way to prevent this is to use signal
names instead of just numbers whenever possible. This could also facilitate
porting to other platforms with different kinds of signal handling.

In order to be able to easily compare the AS/400 operating system signal
numbers with the UNIX equivalents, the following figure shows the
signal-number mapping in AIX:

 1) HUP 14) ALRM 27) MSG
 2) INT 15) TERM 28) WINCH
 3) QUIT 16) URG 29) PWR
 4) ILL 17) STOP 30) USR1
 5) TRAP 18) TSTP 31) USR2
 6) LOST 19) CONT 32) PROF
 7) EMT 20) CHLD 33) DANGER
 8) FPE 21) TTIN 34) VTALRM
 9) KILL 22) TTOU 35) MIGRATE
10) BUS 23) IO 36) PRE
11) SEGV 24) XCPU
12) SYS 25) XFSZ
13) PIPE

Figure 14. Signal Number Mapping in AIX

4.6 Starting and Stopping Processes/Threads
This section describes the topics related to starting and stopping of the
processes and threads.

4.6.1 Arguments and Environment Variables
The reason we are talking about environment variables and argument lists
when we are supposed to analyze different ways of starting, stopping, and
verifying processing units of code, is, of course, that they play a major part
when invoking applications. When coding a C program, one of the first
things to learn is that the argument counter and argument vector is passed
to the main() function when the program is started. Additionally, many UNIX
programs (also DOS, OS/2, and VMS... programs) are depending heavily on
environment variables and some have even based their entire configuration
procedure on the existence of these.

Chapter 4. Process Management 65

4.6.1.1 Argument Lists on the AS/400 System
Argument lists work very much the same as in a UNIX environment. The
main difference is that the calls to the programs are not performed in the
same way from the command line. Either your program can have a parsing
command, which takes care of oddities in regard to parameter parsing, or
you can call your program directly using the syntax:

CALL PGM(foo) parm(bar ′ baz′ 124 ′32′)

Note that:

• String literals are passed with a null character.

• Numeric constants are passed as packed decimal digits. This means
that the preceding argument 124 is not passed in as a null terminated
string. Instead, it is passed as a packed decimal. If the UNIX
environment is to be emulated, the number must be passed in quoted
notation, such as in ′32′ in the preceding example.

• Characters not enclosed in single quotation marks are folded to
uppercase. In the preceding example, bar is passed as BAR. However,
baz is passed in its proper (lower) case.

In the C program, however, arguments are handled the same way as they
are in most C implementations.

4.6.1.2 Environment Variables in UNIX
OS/400 implements environment variables and passes the proper argument
counter and vector as a part of invoking a program. However, some
differences compared to System V, BSD, and POSIX standards can be noted
and that is what we are going to mention in this chapter.

Environment variables are character strings of the form “name=value” that
are usually stored in an environment space outside of the program. Each
program is passed an environment list. Similar to the argument list, the
environment list is an array of character pointers with each pointer
containing the address of a null-terminated string. The address of the array
of pointers is contained in the global variable environ.

Historically, most UNIX systems have provided a third argument to the main()
function, which provides the address of the environment list. However, ANSI
C specifies that the main() function is to be written using only the argument
counter and the argument vector. POSIX.1 specifies that the external
variable environ should be used instead of the third argument. POSIX.1 also
specifies that to access an environment variable, either the getenv() function

66 UNIX C Applications Porting to AS/400

or the environ variable is to be used, depending on how the environment is
to be accessed. The POSIX.1 supplement also proposed the adding of the
putenv() and clearenv() functions to add or change an environment variable
or to clear the whole environment space. None of these functions suggest an
easy way to remove one single variable. However, that is the purpose of the
BSD 4.3 function unsetenv(), which is not mentioned in either XPG3, POSIX,
or ANSI C. Additionally, BSD 4.3 suggests the use of setenv(), which works
similar to putenv(), but makes it possible to separate the name of the
variable and the value. In addition, it makes it possible to specify what is to
happen if the environment variable is already set.

There are a number of pitfalls that applications using the proposed version of
putenv() must take into consideration. In UNIX systems, one usually has to
declare static storage with the name=value string and then pass the pointer to
the static storage to putenv(). One common mistake is usually to allocate
automatic storage before calling putenv() with potentially devastating results
when the program later tries to reference a memory area that does no
longer exist. One way of being able to handle this situation usually is to call
the strdup() function to allocate the memory needed. Both putenv() and
clearenv() are free to change the value of environ, which means that if a
user initially makes a copy of the value, it might not be valid after a call to
one of these functions.

The Rational in the POSIX.1 standard states that the two latter calls are being
considered for an amendment to POSIX.1.

4.6.1.3 Environment Variables on the AS/400 System
So....how does OS/400 handle environment variables? Basically, the strings
are stored in a temporary space associated with the job. If OS/400 V3R6 is
used, users additionally have access to a number of commands that offer the
possibility to manipulate environment variables from CL programs and that
can be used from the command line. These commands do not exist in V3R1
of the operating system and at the time of writing this redbook, there were
no plans to supply them as a PTF. The commands concerned are :

ADDENVVAR Add Environment Variable - this command can be used
to set an environment variable for a job. It is similar to
the csh setenv function or the ksh, bsh export call.

CHGENVVAR Change Environment Variable.

WRKENVVAR Work with Environment Variables - this command
allows the user to display or change environment
variables for a job.

Chapter 4. Process Management 67

Even though V3R1 does not support these commands, it supports the
functionality to create them by using the environment management functions
mentioned initially. We investigated how this can be done, but first some
information about differences in functionality in regard to most UNIX
implementations.

If a shell script in a UNIX environment is to set environment variables, the
call to it must usually look like . ./envscript. The reason for the initial dot
(.) is that otherwise a subshell is invoked and the variable added.
Unfortunately though, it is not accessible from the shell making the request,
since it was allocated in the environment space of another process.

The AS/400 system, though, does not care very much about subshells. If a
program, which essentially only makes a putenv(), is created, the variable is
fully recognized from any program within the job. This also applies to
processes, since OS/400 threads inherits the environment of the main thread.

There is a limitation of the number of environment variables allowed. The
V3R6 limit is 1024 per process. After environment variables are set, they
exist for the duration of the job. There is no way to remove an environment
variable. However, the value can be set to NULL by using a subsequent call
to putenv() specifying a value of NULL.

There is no default set of environment variables provided when a job starts.
This also applies to the POSIX defined variables HOME, LANG, LOGNAME, PATH,
and TERM as well as to TZ and the LC... variables used for locale information.
Initially, when a job is started on OS/400, the environ variable is set to NULL,
that is, it is not initialized and it will not be initialized regardless if an
environment has been added previously in the program. On the AS/400
system, environ is initialized by a call to the functions such as Qp0zInitEnv(),
putenv(), getenv(), Qp0zGetEnv(), or Qp0zPutEnv().

4.6.1.4 Inheritance
On a UNIX system, the fork() function creates a new process and extends
the environment variables of the original process to the new process.
Although OS/400 has no fork() function, environment variables are extended
to a new job created when using the Submit Job (SBMJOB) command,
provided any environment variables existed in the first job (this is available
in V3R6 of OS/400 only). Additionally, it is possible to explicitly inherit
environment variables using spawn() to create a new process, either by
providing the environment variable in the call or by simply emulating the
concept of a pointer to an array of character pointers (char **) and sending it

68 UNIX C Applications Porting to AS/400

into the spawn() call. Both spawn() and SBMJOB allows for the passing of
arguments.

4.6.1.5 OS/400 Specifics
In addition to getenv() and putenv(), the AS/400 system also offers some
extra environment related calls that perform basically the same function, but
with the extra attribute of a CCSID (coded character set identifier) field. This
allows the user to associate a CCSID with the environment variable other
than what is currently used in the job. The functions are Qp0zGetEnv(), Get
Value of Environment Variable (Extended), and Qp0zPutEnv(). These, in
addition to Qp0ZInitEnv() referred to earlier, provide some OS/400 specifics
in regard to environment variable handling.

4.6.1.6 V3R1 Environment Access
As mentioned previously, V3R1 of OS/400 does not allow for the use of the
environment variable related commands. However, it is relatively easy for a
user to implement such a concept. There are basically only three things that
can seem a little different in comparison to most UNIX systems:

Qp0zInitEnv() As mentioned previously, this call initializes the
environ pointer. Note that it is only necessary to use it
when this pointer has to be used explicitly. It is not
necessary if access is only to be performed using
getenv().

putenv() You do not have to allocate static storage using the
static identifier, malloc(), calloc(), or strdup(). The
value is copied to the process related persistent data
area and can be accessed from any program (or even
outside a user program) as soon as a value has been
assigned.

Header Files In most UNIX implementations, the putenv() function
prototype can be found in <stdlib.h>. This is also the
case in V3R6 of OS/400, however in V3R1 of OS/400, it
is necessary to include the AS/400 specific include file
<qp0z1170.h>. This is also necessary if any of the
OS/400 specific environment handling functions are to
be used.

Additionally, even though it is possible to create a
program only using getenv(), using only <stdlib.h>,
and without using the service program QP0ZCPA, this
implementation of getenv() does not work with the

Chapter 4. Process Management 69

OS/400.. implementation of environment variables,
since the vanilla version really is a part of ILE C/400
runtime. In other words, when using environment
variable APIs in V3R1 of OS/400, use the <qp0z1170.h>
header file.

#include <qp0z1170.h>
#include <stdio.h>

void main(int argc, char **argv)
{
if (argc != 2)
{
fprintf(stderr, ″%s: Error in syntax.\n″ , argv[0]);
return;

}

if (putenv(argv[1]) < 0)
{
fprintf(stderr, ″%s: Putenv failed.\n″ , argv[0]);
return;

}

return;
}

Figure 15. ADDVAR. This is a small example of how ADDENVVAR can be implemented
in V3R1 of OS/400. It is to be called using CALL ADDVAR PARM(′ name=value′) .

70 UNIX C Applications Porting to AS/400

#include <qp0z1170.h>
#include <stdio.h>

void main(int argc, char **argv)
{
char *a;

if (argc != 2)
{
fprintf(stderr, ″%s: Error in syntax.\n″ , argv[0]);
return;

}

if (!(a = getenv(argv[1])))
fprintf(stderr, ″%s: Getenv failed.\n″ , argv[0]);

else
printf(″%s=%s\n″ , argv[1], a);

return;
}

Figure 16. DSPVAR. This small sample shows how it is possible to examine a value
of an environment variable. It is to be called using CALL DSPVAR PARM(′ name′) .

Chapter 4. Process Management 71

#include <qp0z1170.h>
#include <stdio.h>
#include <string.h>

void main(int argc, char **argv)
{
extern char **environ;
int a = 0;

if (argc != 1)
{
fprintf(stderr, ″%s: Error in syntax.\n″ , argv[0]);
return;

}

if (Qp0zInitEnv() < 0)
{
perror(″Qp0ZInitEnv″) ;
fprintf(stderr, ″%s: Initenv failed.\n″ , argv[0]);

}
else
for (a=0; environ[a]; a++)
printf(″%s\n″ , environ[a]);

return;
}

Figure 17. ENV. This program performs something similar to the UNIX env or
DOS/OS/2 set. It displays all environment variables by traversing the external
environ variable after first initializing it.

4.6.2 Threads and Spawning New Jobs
The following sections are going to bring up the concept of threads and
spawning new jobs using spawn(). Both of these concepts involve initiating
separate flows of control and both provide different methods of
accomplishing tasks such as I/O and inheritance.

But the two methods also have some things in common. New jobs that are
created are, for example, of the type BCI (Batch Immediate) using both
interfaces. This particular job type is not taken into consideration by the
subsystem the jobs are running in regard to the job queue entry specifying
how many active jobs can be active from a certain job queue at a given time.

72 UNIX C Applications Porting to AS/400

This means, that if you, for example, submit a threaded job using the job
queue QBATCH in the QBATCH subsystem, the job queue takes this job entry
into consideration. However, it does not recognize any thread created by the
program in any way. Threads does not use the job queue of the job, and for
this reason, it is possible to see hundreds of jobs being active in QBATCH,
even though the subsystem has been carefully tailored not to allow more
than a dozen.

The same concept applies to spawn() jobs. These are not threads, but
regular OS/400 jobs. However, they do have the same job type, BCI, and an
arbitrary number of these jobs can run in a subsystem.

4.6.3 Threads
This chapter is not going to consider porting between a UNIX threaded
environment, such as the AIX implementation of pthreads or the POSIX.1c
(previously POSIX.4a) standard. Instead, it focuses on the feasibility of using
threads as a means of compensating the AS/400 system′s lack of fork()ing
ability. This issue has been ventilated thoroughly in this book, not the least
of its practical impact in a networking environment. What we mention here is
just basic issues about what you have to keep in mind when considering a
thread-based implementation as a part of the porting work.

Two concepts are very important when dealing with threads are:

Thread-safe This is a program or function that does not affect
another thread, for example, by using the same static
storage, creating IPC resources using a hard coded
IPC key, or any other shared resource. Functions such
as ctime() are not considered thread-safe.

Thread-enabled This means essentially, that a resource can be shared
among threads as if the access was performed in a
single flow of control environment. One example is
different threads reading from a file. When thread
number 1 has read from the file, thread number 2 can
continue and read from where the file pointer is
located. In this case, however, the file is considered a
resource and the access might have to be serialized
depending on the circumstances. A thread-enabled
program or function must also be thread-safe. It must
provide extra logic to allow the program′s functions
and resources to be addressed and shared across
multiple threads in a consistent manner.

Chapter 4. Process Management 73

Threads are part of a product called CPA - Common Programming APIs
Toolkit/400. CPA is an optional, separately orderable, but free of charge part
of the operating system, which means that no external prerequisites, such as
some kind of runtimes, are needed if a threaded program is shipped to a
customer. However, CPA must be installed both on the development system
and on the system where the program is to run. Additionally the CPA library,
QCPA, must be in the library list both when compiling (because of header files
supplied in QCPA) as well as when linking and running the program because
of service programs (*SRVPGM) that are supplied in the library.

In its current implementation, CPA can best be described as an early version
of a finished product. It is not fully integrated into OS/400; that is, it does not
have some of the usability characteristics IBM intends for the final version.

As the POSIX.1c (previously 1003.4a) draft standard for threads is approved,
IBM will change CPA to be consistent with the standard. These changes may
be incompatible with the current release and can require changes to
programs using CPA functions in the future. As a CPA program developer, it
is essential to be aware that the code might not work the same way (or at
all) in future releases of CPA.

4.6.4 Jobs
The scope of this section is to bring up what methods there are, and the
rules for:

• Calling other programs.

• Creating separate flows of control.

4.6.4.1 System()
In C, the traditional way of invoking a secondary program, wait for it until it
has terminated, and resume processing has been to use system(). system()
is required by standard ANSI C. It is not a part of the POSIX.1 standard,
because it is not an interface to the operating system, but really an interface
to a shell or a command interpreter. Instead, the POSIX.2 standard provides
several hundred pages of documentation on the arguments to system.

Even though system() by itself usually is portable between ANSI C
environments, its argument (the command string) is not. The string is
heavily dependent on the interpreter, which in turn can be dependent on the
operating system. This means that a C program in a UNIX environment,
which makes the call system(″date > file″) , has to be changed in an OS/400
environment. Other interesting porting issues when dealing with system() is

74 UNIX C Applications Porting to AS/400

its exit status. In most UNIX flavors, the only way to cause a new process to
start is to internally use fork(), exec(), and waitpid(). Actually, this is
sometimes the only alternative. As a result of this, the UNIX system()
implementation is also built on these three functions. The direct effect is
how the return codes are handled. Under UNIX:

• If either the fork() or waitpid() returns an error other than EINTR
(interrupted system call), system() returns -1 with errno set to indicate
the error.

• If the exec() fails, which usually means that something is wrong with the
command or permissions, the return value is 127.

• If all three calls succeed, the return value from system() is the
termination status of the shell in the format specified for waitpid().

An interesting issue here is the waitpid() return format. waitpid() can be
passed a pointer to an integer, where it returns the termination status of the
process. POSIX.1 specifies that this status is to be looked at using various
macros def ined in <sys/wait .h>. The three main mutually exclusive macros
are WIFEXITED, which is true if the child has terminated normally; WIFSIGNALED,
which is true if the child has terminated abnormally (usually by a signal); or
WIFSTOPPED, which is true if the child is currently stopped (through SIGSTOP or
SIGTSTP). Since this status information is used by system(), there are
programs that rely upon the return code from system() to derive the reason
why the process ended and determine if the process ended successfully.

This procedure does not work under OS/400 since neither fork(), exec() or
waitpid() are used. Instead, the returned value, when invoked with a proper
command string is 1 if system() fails and 0 if it succeeds. Additionally, it
returns -1 if passed a NULL pointer as the command string and no attempt is
done to invoke a command.

The differences in regard to return values between UNIX and ILE C/400 are
shown in the following table:

Table 12 (Page 1 of 2). Behavior of the System() Function

Input Result UNIX rc ILE C/400 rc

NULL N/A 1 -1

Command could not
be run

N/A 127 1

Valid command OK 0 0

Chapter 4. Process Management 75

Table 12 (Page 2 of 2). Behavior of the System() Function

Input Result UNIX rc ILE C/400 rc

Valid command fork() fails -1 N/A

Valid command waitpid() fails -1 N/A

Valid command Signal del ivered A value that macros
can use to determine
if a signal ended the
job and from which
macro the signal
number can be
derived.

If a program is not
enabled to use
signals, nothing
happens. Otherwise,
it depends on the
program signal
handler and the
default action of the
signal.

In order to facilitate porting. OS/400 has implemented two additional APIs
that can be used directly from the program and offer different kinds of
diagnostic details depending on the need. These APIs are QCMDEXC, which
basically is only passed the command string and the command length, and
QCPACMD, where it is possible to prompt the user for a command, to validate
the command, and to invoke it. QCPACMD also has considerable support for
returning diagnostic data. Of course OS/400 also supports the wait() WIF...
macros, but only as a part of the regular wait() management handling.

It should be remembered that all of these methods only are to be used when
a new program is to be called from the current program. No new process is
created, no parent-child relationship is valid, and the main program pauses
until the called program has returned. Special care has to be taken
regarding signal control (blocking masks and signal handlers) when either or
both of the two involved programs are using this functionality. More
information about how to deal with signals in this kind of environment is
found in 4.5.3.3, “Scope of Signal Information” on page 61.

Environment variables are inherited between the program invocations.

If a program was heavily dependent on the UNIX implementation of the
system() call, it is very much possible to try to emulate it. Maybe not entirely
but to some extent, since it would also mean some kind of emulation of
fork(). Here is an example of how it can be done:

76 UNIX C Applications Porting to AS/400

#include <stdio.h>
#include <string.h>
#include <stdlib.h> /* malloc, free */
#include <sys/types.h>
#include <errno.h>
#include <unistd.h>
#include <spawn.h>
#include <sys/wait.h>
#include <qp0z1170.h> /* Environment */

#define ARGNUM 15 �1�

int mysys(const char *cmdstring);

int mysys(const char *cmdstring)
{
extern char **environ;

pid_t pid;
int status;
struct inheritance inherit;
char *spw_argv[ARGNUM];

 int numarg = 0;
 char *command;

 if (!cmdstring) �2�
return 1;

if(!(command = calloc(1, strlen(cmdstring))))
{
perror(″malloc″) ; �3�
return 1;

}

if (Qp0zInitEnv() < 0)
{
perror(″Qp0ZInitEnv″) ; �4�
return 1;

}

strcpy(command, cmdstring);

for(spw_argv[numarg++] = strtok(command, ″ ″) ; �5�
((spw_argv[numarg++] = strtok(NULL, ″ ″)) &&
(numarg <= ARGNUM)););

memset(&inherit, ′ \0′ , sizeof inherit);

if ((pid = spawnp(spw_argv[0], 0, NULL, &inherit,
spw_argv, environ)) < 0)

{
perror(″spawn″) ;
free(command);
return 127; �6�

}

while(waitpid(pid, &status, 0) < 0)
if (errno != EINTR)

Chapter 4. Process Management 77

{
status = -1; �7�
break;

}

free(command);
return status; �8�

}

Figure 18. System() Emulation. This program emulates UNIX system() to a certain extent by starting
a new (child) job to run the program.

This function spawns a child process, which is added to the same process
group as the parent. Additionally, it is eligible to receive signals. These
signals, however, must adhere to the OS/400 signal model, that is, raise()
does not work.

Additionally, the process environment is inherited by the child since the
function resolves the environ variable and forwards it. If the program has
any open file descriptors, they are also inherited by the child. If that is the
case, in order to be able to use them, they are passed as arguments to the
program or in the environment.

Notes:

�1� Maximum number of arguments that can be sent by the calling
program. Any more arguments are discarded.

�2� If NULL is passed, 1 is returned to indicate that a shell is
available, if we can allow ourselves to consider the OS/400 command
interpreter as a shell.

�3� Since strtok() is rude enough to destroy the received command
string, we take the liberty of copying it into a dynamically-created
memory area to be free()d later.

�4� The environ external environment pointer is resolved.

�5� The arguments passed to the program must be separated into a
vector in order for spawn() to properly take care of them. strtok() is
used, because it disregards multiple spaces between arguments, and
separates tokens into C strings by ″\0″ terminating them.

�6� This is an interesting choice since spawn() emulates the
combination of fork() and exec(). Remember that in UNIX, if fork()

78 UNIX C Applications Porting to AS/400

fails, -1 is returned and if exec() fails, 127 is returned. If somebody
disagrees, they are free to adapt the source themselves.

�7� If waitpid has failed, return -1, unless it was interrupted (typically
by a signal).

�8� Return the status received from waitpid(). This value can be
used in any of the macros specified in <sys/wait.h>. Of course, it is
really of little value to see if the child process was stopped. Since this
implementation does not make use of the WUNTRACED option, which is
neither implemented in the standard UNIX system() function nor in
OS/400, the mysys() call is not returned if the child process was
stopped (using SIGSTOP or HLDJOB).

The major difference between mysys() and the system() calls in UNIX and
OS/400 is that this function wants the name of an OS/400 program, not an
OS/400 command. If you want to modify it to accept commands instead, you
have to use either one of the APIs referred to on page 76, or interestingly
enough, the ILE C/400 system() function inside of mysys(). Of course, that is
not always the optimal solution, since it causes an extra layer of programs to
be added between the current job and the program to run and sometimes
this leads to unwanted side effects in terms of return values and diagnostics
if one of the middle layer programs fails.

The following example shows how a program can call this slightly altered
system():

Chapter 4. Process Management 79

#include <stdio.h>
#include <stdlib.h>
#include <qp0z1170.h>
#include <sys/types.h>
#include <sys/wait.h>

#define system mysys

int mysys(const char *cmdstring);

void main(int argc, char **argv)
{
char *pathvar = ″PATH=%LIBL%″ ; �1�

 int status;

if (argc != 2)
{
fprintf(stderr, ″%s: Invalid number of arguments.″ ,

argv[0]);
return;

}

if (putenv(pathvar) < 0) �2�
{
perror(″Putenv″) ;
return;

}

status = system(argv[1]);

if (WIFEXITED(status))
printf(″Normal termination: %d.\n″ , WEXITSTATUS(status));

else
if (WIFSIGNALED(status))
printf(″Abnormal termination. Signal %d.\n″ ,

WTERMSIG(status));
else
if (WIFSTOPPED(status))
printf(″Child Stopped. Signal %d.\n″ ,

WSTOPSIG(status));
return;

}

Figure 19. Program to Use Altered System(). In this sample, WIFSTOPPED() is used,
even though it is never called. The reason is, of course, to illustrate how the wait()
related macros are used.

The ENV program shown in Figure 17 on page 72 is called by using CALL
<program> PARM(env.pgm). The program DSPVAR (Figure 16 on page 71) is
called using CALL <program> PARM(′ DSPVAR.PGM name′) , where name is an
environment variable for which a value has been defined.

Notes:

80 UNIX C Applications Porting to AS/400

�1� We set the PATH to the current value of the library list. Since
spawnp() is used, it allows the system to find the program as long as
the correct library is added to the library list.

�2� The PATH is added to (or replaced in) the environment.

Usually it is quite sufficient to use the system() provided with ILE C/400. Not
only is it faster and requires less system resources, but it is provided with
the C runtime and does not require additional code to be written. The
preceding examples were not only introduced to allow applications
dependent on system() return status information a somewhat easier way of
porting their OS/400 code, they were also provided as a means for
programmers to understand the process flow, inheritance, environment
variables, and other components related to how OS/400 handles relations
between processes.

4.6.4.2 SBMJOB (Submit Job)
SBMJOB is the traditional OS/400 method to create a batch job. It allows the
user to specify what command to run, which job description to use, and a
substantial amount of job related attributes. Jobs submitted by SBMJOB are
not considered to be children of the process from which they were submitted.
As a result, it is not possible to wait() for the submitted process or inherit
file descriptors. Even though SBMJOB creates a completely new process,
environment variables are inherited in V3R6 of OS/400. However, that is not
the case in V3R1.

However, SBMJOB does give you the flexibility of being able to change job
attributes such as output queues, job queue priorities, and a lot of very
useful options. Additionally, it also, by default, submits jobs to the QBATCH
subsystem. Using spawn(), the child job is run in the same subsystem as the
parent, which causes batch jobs to run in the QINTER subsystem. This might
not always be a good idea from a system resource point of view. Even
without using SBMJOB, it is possible for a process to change its own
attributes by issuing one of the CHGJOB (Change Job), RRTJOB (Reroute
Job), or TFRJOB (Transfer Job) commands. Since this book primarily is
about application porting, work management in OS/400 is not addressed. A
recommended source of information is the AS/400 Work Management Guide.
SC41-3306.

Chapter 4. Process Management 81

4.6.4.3 Spawn()
Spawn() is the way OS/400 implements a parent-child relationship. It is
mentioned in the POSIX.1d draft, previously known as POSIX.4b. The
following is a short section of spawn(), which has been extracted from Joe
Gwinns (<GWINN@SUD2.ED.RAY.COM>) report on the April 24-28, 1995
meeting in Irvine, Ca.:

″...POSIX.1d, around 130 pages in length, contains a number of realtime
interfaces and options that arrived too late to be included in 1003.1b- 1993
(which itself consists of POSIX.1 and POSIX.4 combined). The major new
interfaces and options are: spawn(), a functional merger of fork() and exec(),
needed both for efficiency and to allow use on platforms lacking memory
management hardware;...″

In OS/400 V3R1, spawn() is the only way of inheriting descriptors such as
environment variables, signal masks, and signal vectors from one process to
another. It is also the only way of causing the SIGCHILD signal to be sent to
the parent process group when the child process terminates. V3R6 allows,
as mentioned in 4.6.4.2, “SBMJOB (Submit Job)” on page 81, environment
variables to be inherited but nothing else.

The spawn() family is similar to the fork() and exec() combination. It
requires some setup by the programmer in terms of setting up child
argument parameters in a vector, somewhat similar to execv.() calls or more
specifically, execve() if spawn() is used. The spawn() family also includes
spawnp(), which essentially works the same way with the exception that it
uses the PATH to find the program it is to start. In the execv.() family, there
is really no equivalent of the spawnp() functionality of:

 1. Passing the argument format in an array.

 2. Passing the environment manually.

 3. Searching the PATH.

Regarding some details and examples of how spawnp() can be set up to use
the OS/400 library path, see page 80, page 128, and 5.3.5.3, “OS/400 using
Spawn()” on page 126.

Spawned child processes are batch jobs. They cannot call interactive
commands on the terminal or use system() (see 4.6.4.1, “System()” on
page 74 for more information). This is the opposite of what happens if
threads were used. By using the concept of CPA service threads, multiple
jobs within the process are allowed to communicative interactively. The

82 UNIX C Applications Porting to AS/400

child job has the same user profile, library list, and run attributes as the
parent job. This includes the use of the same subsystem, which implies that
if the parent is an interactive job in QINTER, the children can, in effect,
become batch jobs running in QINTER, which can cause a negative
performance impact on a system.

As mentioned earlier, the child process must be passed the environment
variables manually, that is, they are not inherited by default. If the child is to
inherit all of the parent′s environment variables, the environ external
variable can be used as the value for envp[] when spawn() is called. An
example of this is found in the program listed in Figure 19 on page 80. If a
specific set of environment variables is required in the child, the user must
build the array with the “name=value” strings. This causes spawn() to
perform the equivalent of putenv() on each element of the envp[] array.

The program that is to run in the child process must be either a program
object in the QSYS.LIB file system (a *PGM object), or a shell script.

The only way to execute the equivalent of a UNIX shell script in OS/400 is to
use spawn(). It is important to realize that OS/400.. currently does not
implement shells or shell interpreters. If a shell script is specified to run in
the child process, the user must provide such an interpreter as a part of the
functionality. The shell script must be a text file and contain a #!<path)
<options> in the first line of the file. This allows the program specified as
path to be called.

The syntax provided to spawn() must be the proper syntax for the file system
in which the program or shell script resides. For example, if the program ENV
(Figure 17 on page 72) in library JOHANLIB residing in the QSYS.LIB file
system is to be called, the name of the file parameter is
/QSYS.LIB/JOHANLIB.LIB/ENV.PGM. Note that this specification does not assume
the use of the PATH. The result of the call is, therefore, exactly the same,
regardless if spawn() or spawnp() is used. As soon as spawnp() notes that
there is a “/” (slash) in the filename, it does not consider or evaluate the
PATH variable. Instead, it functions identically to spawn() and considers the
parameter a valid path to the program or shell script.

As previously mentioned, spawn() allows for the inheritance of file descriptors
and socket descriptors. However, it also allows for some flexibility regarding
how these are inherited. Basically two methods can be used:

Chapter 4. Process Management 83

Simple Inheritance This method is closest to the UNIX equivalent of
inheriting descriptors. Basically all open descriptors
are inherited from the parent to the child. This is
accomplished by specifying NULL in the fd_map
parameter. The number of the descriptor in the
parent process (for example, number 2) might denote
an open file and have the same function and
mapping in the child process. Of course, the
information has to be passed one way or another.
Usually the environment or the child arguments are
the most commonly used alternatives.

Mapped Inheritance Mapped Inheritance is a little more complicated. It
allows the user to let the child only inherit a subset
of the open descriptors, as well as map them
explicitly to certain child process descriptor
numbers. Mapped inheritance also allows for
multiple child descriptors to refer to the same parent
descriptor resource.

The way this is performed is (as is the case for
arguments and environment) to build a mapping
array. The following example is shown:

fd_map[0] = SPAWN_FDCLOSED;
fd_map[1] = 0;
fd_map[2] = fd;
fd_map[3] = SPAWN_FDCLOSED;
fd_map[4] = fd;

This example causes the child descriptors 0 and 3 to
be closed. The parent descriptor 0 is mapped to the
child descriptor 1 and the resource specified by the
parent descriptor fd is accessed using the child
descriptors 2 and 4. Remember that if a file
descriptor refers to an open instance in a file system
that does not support file descriptors in two different
processes pointing to the same open instance of a
file, the descriptor is closed in the child process.

Additionally, the following applies when spawn() is used:

• Only programs that expect arguments as NULL-terminated strings are
spawned.

84 UNIX C Applications Porting to AS/400

• The child process is enabled for signals. See 4.5, “Signals” on page 55
for details. A side effect of this function is that the parent process is also
enabled for signals if it was not enabled for signals before this function
was called.

• If this function is called from a program running in user state and it
specifies a system-domain program as the executable program for the
child process, the call fails.

• The spawned process is run in the activation group of the program that is
the target of the spawn(). It may be the same named activation group,
but it is not shared in any way with the parent′s.

• The new process is added automatically to the parent′s process group.
See 4.4, “Process Groups and Job Control” on page 46 for more details
about process groups.

Just the same as fork() in UNIX, the OS/400 implementation of wait() and
waitpid() can be used with spawn(). An example of how this can be
performed is found in Figure 19 on page 80. It is important to remember
that, just the same as in UNIX, it is important to take proper action of what is
to happen when the child process terminates. The most common method is
to specify SIG_IGN as action for the SIGCHILD signal, but the use of wait() is
appropriate if the parent wants to be asynchronously notified when the child
has ended.

4.6.5 Process Authorization
Traditionally, there have been some differences between UNIX and OS/400 in
regard to how process authorization, user accounts, group accounts, and
adopted authority have been managed. This chapter does not go into detail
about file permissions, since it is mostly outside the scope of how process
authorization is performed, even though, admittedly, the reason why this
concept exists in the first place is to eventually be able to access a resource
such as a file and IPC mechanism or some other kind of resource.
Additionally in POSIX.1 and most UNIX systems, the authorization of the
current process is usually intertwined with the file permission of the
executable program.

In a sense, several IDs are associated with a process. These are:

Real uid

Real gid Authorization based on what we have logged on as
and our primary group. The primary group can usually
be determined by entering the command groups on the

Chapter 4. Process Management 85

command line. The first group displayed is the
primary. The remaining groups are supplementary.

Effective uid

Effective gid

Supplementary gids Used for file and IPC access permission.

Saved set-uid

Saved set-gid Saved by exec() function.

An ID (uid or gid) is basically only a number (in C programs an integer)
representing a user or a group of users. Traditionally, the uid 0 (zero)
means “root” access or “super user” authority. It is, however, perfectly
legal to give any user uid 0 and thereby provide other users with the same
authority.

A user name is an alphanumeric representation of the uid. When a user logs
on, a mapping is performed between the user name and a real uid/primary
gid. If multiple entries are found for the user, the most common procedure is
that only the first entry is used and the following is disregarded. The real uid
identifies the user who initiated the current program; usually it represents
the uid associated with the login name, but the real uid can be changed
during a session using the setuid() call.

A group is basically a number of users. Different operating systems have
different limits of the number of groups a user can be a member of. There is
always one primary group for a user, which usually is referred to as the real
gid (group ID) when initiating the process. Similar to the real uid, the gid is
eligible to change dynamically using the setgid() call.

An optional feature of POSIX.1 is the possibility to have supplementary group
IDs. The value _SC_NGROUP_MAX in unistd.h should refer to, if such is the
case, the appropriate number of groups allowed per user. If it is not
supported, the value of zero (0) should be specified. Before this feature
existed, it was necessary to change groups explicitly using different
commands such as newgrp.

The effective uid usually reflects a temporary state, where the functionality of
a program demands that a certain uid is performing the operation, usually
depending on file permissions if a file has to be updated or an IPC
mechanism, such as shared memory, has to be updated by a user, who
normally is not authorized to do that certain kind of operation. However, it

86 UNIX C Applications Porting to AS/400

also has this effect when a file or IPC object is created. It is usually up to the
designer/programmer to specify exactly during what parts of the program the
effective uid is really needed. Sometimes it can mean some less-wanted
side effects to have an effective uid of root. In some UNIX operating
systems, it is not possible (for example, by default), to let root or a superuser
on one machine write to an NFS directory mounted on another, while it is
perfectly valid for a regular user to perform the same operation.

Consider the example where two or three processes are putting trace
messages in a shared memory area. If the shared memory area does not
exist, the program creates it. The designer of the program did not want
anybody not properly authorized to tamper with the shared memory outside
of the program. For this reason, when the shared memory area is created,
the owner of the area should be user name opc. Additionally, make certain
that the permission to the area is 600; that is, the owner can read and write,
but nobody else can do anything. However, everyone on the system should
have access to the program and use it to update the shared memory.

So how can this be performed...?

A simple way to handle this problem is to:

 1. Change the owner of the program to opc by issuing the command chown
opc <program>.

 2. Set the set-user-ID bit of the program by issuing chmod u+s <program>.
This makes the permission bits look similar to:

$ls -l pgrp
-rwsr-xr-x 1 opc tracker 12307 Jun 17 15:57 pgrp

The permission gives the user initiating the program the effective user ID
of the owner of the shared memory area.

 3. However, the designer does not want the effective user ID to be that of
opc during the whole processing. It is enough to change the euid just
before accessing the shared memory segment and then reset it back to
the real uid.

The first thing to do in the code is to save the effective uid by calling:

int save_uid = geteuid();

 4. When this has been performed, the effective user ID is set back to the
real uid. This can be done by using setuid(getuid()). When it is time to
perform the critical operation, it is a good idea to switch back to the
effective uid by issuing setuid(save_uid) again.

Chapter 4. Process Management 87

 5. The operation on the shared memory segment is now performed. There
is no need to have an effective uid other than the real uid, so the
effective uid is once again reset as described in Step 4.

Now, here are some things to bear in mind. The scenario described in Step
4 on page 87 does only work on systems with the _POSIX_SAVED_IDS symbol
set to true. This symbol indicate the existence of the saved set-user-ID
functionality. It is possible to perceive it as an extra copy of the effective uid,
which can be used as previously described by making it possible to change
back to the original effective user ID. If this functionality is not available, we
have to wait until we can reset the effective uid after the shared memory
operation is done. The chain of events then look similar to:

 1. Start program. Real uid is the user ID; effective uid is the one for opc.

 2. Perform shared memory operation.

 3. Call setuid(getuid()), which resets the effective uid to the real
equivalent.

This method also has been the only one applicable if the opc user has a uid
of 0, which makes him a superuser. The reason is simply, that if a superuser
performs the setuid() function, not only the effective uid, but also the saved
set-uid is changed. The result is that the process does not have the proper
permission to change the effective uid back to opc when it is time to update
the shared memory.

Most or all of the preceding reasoning also applies to gids (group IDs). It is
possible to set an effective group ID on a file by issuing the command chmod
g+s <filename>, and real and effective group IDs are manipulated in the same
manner as if they were user IDs. They do, however, differ slightly in how
they might be handled, since we are talking about both the primary gid and
supplementary gids. When, in the preceding example, you start the program,
you automatically get the effective uid of opc, but the gid does not change.
In order to perform this, either the set-gid bit should be set or the setgid()
call can be performed. But what happens to the supplementary groups? If
the effective uid is changed and the effective gid is changed, will not all the
supplementary gids somehow follow in their steps? Unfortunately not. To
initialize or set supplementary gids, you either have to use setgroups() or
initgroups(), which in turn uses setgroups(). In order to perform this,
however, the effective users must be superusers; that is, they have to have
uid zero (0).

88 UNIX C Applications Porting to AS/400

4.6.5.1 The Way of AS/400 Operating System
OS/400 has usually been considered as a very capable operating system in
regard to authorization. However, the price paid is that sometimes it is hard
to overlook if a certain approach works in an IS environment. The OS/400
Security - Reference V3R1 manual, SC41-3301, has been kind enough to
supply flowcharts that explain exactly how authorization checking is
performed. Unfortunately, the number of flowcharts is currently nine (9),
which makes it impossible to provide them in this book as well. We do not
go into detail about what levels of security are provided. Instead, we
concentrate on what is needed to port applications implementing the UNIX
behavior previously described.

Before V3R1 of OS/400, a user profile (an object, that roughly corresponds to
a uid (user name set of attributes)) could be a member of only one group.
However, V3R1 of OS/400 now supports one primary group and 15
supplementary groups. This is verified by examining the NGROUPS_MAX
entry in <limits.h>, or by calling sysconf() with the _SC_NGROUPS_MAX
parameter. The programmer should be aware that the compile time macro
_POSIX_NGROUPS_MAX does not reflect the actual number of available groups,
but is to be considered a minimum.

A group is commonly known as a group profile. A group profile is just a user
profile, such as any other user profile and by default, anyone who knows the
password is eligible to logon using that account. The recommended
approach, however, is to set the password of the group profile to *NONE,
which prevents any user from logging on.

Similar to most UNIX systems, V3R1 also provides a primary group concept
on an object level. In other words, it is possible to define the group DEPT142
as primary group for a file. Just as it is possible to do chgrp <newgrp> <file>
in UNIX, it is possible to give the command CHGOBJPGP (Change Object
Primary Group) on the OS/400 command line.

Assigning a primary group to an object is not mandatory, but can provide a
performance advantage compared to having private group authority when the
operating system verifies the access level to the object.

Now we are closing in on the interesting things, as seen from a porting
point-of-view. OS/400.. does not support the set-uid-bit or the set-gid-bit
when assigning permissions to an object. The chmod() function, which is
supported, does not accept the S_ISUID or S_ISGID bits used for implementing
the support for manipulating the effective uid and effective gid support.
Actually OS/400 does not support the concept of effective uids and gids at all,

Chapter 4. Process Management 89

but from a cosmetic point-of- view which I will come back to later. The
setuid(), seteuid(), setgid(), and setegid() do not exist at all.

Does that mean that programs heavily relying on the capability of effective
ids are not able to run on OS/400? Fortunately, the answer is no. There are
really at least two alternate paths to use. One of them is the concept of
adopted authority.

When the authority to an object is checked, five main steps (and a lot of
intermediate steps) are performed. If any of them proves successful,
authority is granted. These steps are:

 1. Check object authority.

 2. Check user ′s authority to object.

 3. Check group authority to object.

 4. Verify public authority.

 5. Verify adopted authority.

We are currently only interested in Step 5. For information about any of the
other steps, please refer to the OS/400 Security - Reference V3R1 manual,
SC41-3302.

When a program is created using one of the CRTxxxPGM commands or when
changing a program (CHGPGM - Change Program), there is a parameter with the
keyword USRPRF. It allows one of two values, either *USER or *OWNER. This
parameter determines whether the program uses the authority of the owner
of the program in addition to the authority of the user running the program.

We can take a small example: User YESSONG does not have any authority to
the file CUSTMAST and no *PUBLIC authority is set. This means, that
YESSONG cannot display the contents of the file. Nor can user YESSONG do
anything else with it. However, the program CUR001 operates on
CUSTMAST. It lets the user read records and update them. If CUR001 has
the USRPRF value of *USER, it means that it was running using the authority of
the user profile that invoked it. If YESSONG uses this program, it sends an
escape message indicating insufficient privileges. But the author of the
program has instead let the user profile CUSTMASTER be the owner of the
program and set USRPRF to *OWNER. CUSTMASTER is authorized to operate
on the file and any user using the CUR001 program has the same
authorization as CUSTMASTER as long as the program is running.

90 UNIX C Applications Porting to AS/400

Now..., CUR001 is calling CUR002 to retrieve some data from a data area
with the same permission as the CUSTMAST file. CUR002 has the USRPRF
value of *USER. This means that YESSONG cannot call CUR002 from the
operating system command line. However, since CUR002 is called from
CUR001, it means that CUR001 is higher up on the program stack, and by
default, this means that the adopted authority has been inherited by CUR002.

Sometimes this is desirable. Especially if the OPM (Original Program Model,
see Chapter 6, “Development Environment on AS/400 System” on page 157
for more details) is used and the design of the program involves a lot of calls
to other modules. However, sometimes this inheritance might not be what
the designer desires. To change the behavior, it is possible to change the
program attribute (CHGPGM) USEADPAUT from *YES to *NO. This can also be
specified when the program is created. The object types that can be used
for adopted authority are *PGM (Program), *SRVPGM (Service Program), and
*SQLPKG (SQL Package).

This approach simulates to some extent, the set-uid-bit behavior of UNIX. It
sets what can be considered as the effective uid to the owner of the program,
even though OS/400 itself does not support the effective uid concept.
However, it does not support the capability of changing the effective uid
immediately, as with the setuid() call, with less than changing the owner of
the program dynamically while the program runs. This, in turn, causes
considerable problems for other invocations, since such a change is
system-wide, instead of process-wide. For this purpose, another method can
be used. If the user has sufficient authority, it is possible to use the SBMJOB
(Submit Job) command and specify an alternative user profile as a part of
this procedure. The disadvantage is, of course, that:

• One has to call a new program instead of performing setuid() inline.

• The new job runs in batch.

There is no way of emulating the gid-related euid calls in OS/400.

Table 13. Adopted Authority Inheritance

Program Stack before CALL: Program Stack after CALL:

QCMD
.
.
CUR001

QCMD
.
.
CUR001
CUR002

Chapter 4. Process Management 91

Table 14 (Page 1 of 4). Summary of What OS/400 Supports in Regard to Authorization
Subroutines

UNIX Function OS/400 Implementation Comment

getuid() Supported Returns the user ID of the
calling process.

geteuid() Supported, but always
returns the real user ID,
since OS/400 does not
support effective user IDs.

Returns the effective user ID
or the calling process.

getgid() Supported Returns the real group ID
(gid) of the calling process.

getegid() Supported, but always
returns the real gid.

Returns the effective group
ID of the calling process.

getgrgid() Supported, but remember to
test if the result of the
operation is NULL. This is the
case if you use
getgrgid(getgid()) and the
current user profile does not
have any associated groups.
Additionally, if this routine is
used in a threaded program,
proper consideration must be
taken to the fact that it
operates using a static
memory area.

Looks up the supplied group
ID and returns a pointer to a
struct group.

getgrnam() Supported. However, see
getgrgid() for advice if used
in a threaded environment.

Looks up the supplied group
name and returns a pointer
to a struct group.

getgroups() Supported Fills an array with the
supplementary group IDs of
the calling process. If the
parameter indicating the size
of the array is zero, only the
number of elements is
returned.

getpwnam() Supported. The OS/400
implementation is based on
POSIX.1 and does not include
the pw_comment, pw_quota,
and pw_gecos members of the
struct passwd structure.

Looks up the supplied user
name and returns a pointer
to a struct passwd. If this
routine is used in a threaded
program, remember that it is
using a static memory area.

92 UNIX C Applications Porting to AS/400

Table 14 (Page 2 of 4). Summary of What OS/400 Supports in Regard to Authorization
Subroutines

UNIX Function OS/400 Implementation Comment

getpwuid() Supported. See getpwnam()
for additional comments.

Looks up the supplied uid
and returns a pointer to a
struct passwd.

setpwent() Not supported

getpwent() Not supported

endpwent() Not supported The previous three functions
can be used when the
programmer has to traverse
the entire password file.
They can be considered as a
wrapper, since you cannot
always rely on the fact that
the /etc/passwd file is used.
The setpwent() is used for
rewinding or initializing the
information needed,
getpwent() is used for
receiving each entry into a
struct passwd structure,
whereas endpwent() is used
for the purpose of cleaning
up.

None of these functions are
part of POSIX.1. Nor are they
implemented in OS/400.

setgrent() Not supported

endgrent() Not supported

Chapter 4. Process Management 93

Table 14 (Page 3 of 4). Summary of What OS/400 Supports in Regard to Authorization
Subroutines

UNIX Function OS/400 Implementation Comment

getgrent() Not supported The same as getgrgid() and
getgrnam(), these functions
operate on the struct group
structure. They retrieve
information from the fi le
traditionally known as
/etc/group. They allow a
wrapper, which allows the
actual implementation of this
file to be arbitrary. The
functionality of these calls is
similar to the ..pwent() calls.

None of these functions are
part of POSIX.1. Nor are they
implemented in OS/400.

setgroups() Not supported Sets supplementary gids for
the process. Must be called
with superuser authority. Not
included in POSIX.1.

initgroups() Not supported Usually used with
setgroups(). Traverses the
group file usually using the
..grent() routines mentioned
earlier and creates an array
with the supplementary gids
for a certain user name. This
array is used in the call to
setgroups(). Not included in
POSIX.1.

setuid() Not supported If called with non-superuser
authority, it changes the
effective uid to the real uid
or saved-set-uid (provided
the _POSIX_SAVED_IDS symbol
is defined in <unistd.h>).

If called with any other ID, it
fails. If called with superuser
authority, it changes the real
uid, the effective uid, and the
saved- set-uid to the new
value.

94 UNIX C Applications Porting to AS/400

Table 14 (Page 4 of 4). Summary of What OS/400 Supports in Regard to Authorization
Subroutines

UNIX Function OS/400 Implementation Comment

setgid() Not supported If the process has
appropriate privileges, the
real, effective, and saved
set-gid are set to the gid
supplied.

If the process does not have
appropriate privileges, the
symbol _POSIX_SAVED_IDS is
defined in <unistd.h>, and
the gid is equal to the real
gid or the saved set-gid, the
effective gid is set to the
supplied value. The real gid
and the saved set-gid are
unchanged. If the symbol is
not defined, the effective gid
can only be changed to the
real gid.

setreuid() Not supported Swaps the real uid and the
effective uid of the process.
Not defined in POSIX.1.

setregid() Not supported Swaps the real gid and the
effective gid of the process.
Not defined in POSIX.1.

seteuid() Not supported Sets the effective uid.

setegid() Not supported Sets the effective gid.

getlogin() Not supported, but can be
rather easily implemented by
using the RTVJOBA as shown
in Figure 10 on page 50 and
retrieve the user profile.
This method works even
though the USRPRF parameter
has a value of *OWNER
(adopted authority).

Returns a pointer to the
user ′s login name.

Chapter 4. Process Management 95

96 UNIX C Applications Porting to AS/400

Chapter 5. Networking

The open system concept has traditionally been considered to support
considerable distributed network capabilities, both from an architectural point
of view as well as from a hardware and available software point of view.
However, this was not the case to start with. A number of years passed from
the early implementation stages of UNIX in the early 1970s until the first
network applications were developed around 1976. At that point in time,
UUCP (Unix-to-Unix copy program) was developed and its first major release
outside AT&T was with Version 7 UNIX in 1978. The typical transport medium
was ordinary telephone lines and its typical use was for distributing software
and electronic mail. It also played a very important role when transferring
USENET news (news feeds) between different systems.

In the early 1980s, a new family of protocols was specified as the standard
for the ARPANET, a network including military, university, and research sites
sponsored by the Advanced Research Projects Agency project of the
Department of Defence. The accurate name for this family of protocols is the
“DARPA Internet protocol suite,” but it is commonly referred to as the TCP/IP
(Transmission Control Protocol/Internet protocol) protocol suite.

As communication hardware (adapters, connections, routers, hubs, and so
on...) became cheaper, the earlier serial connections (often using rather slow
links, about 9600 bps), were replaced with faster LAN (Local Area Network)
connections. The dominant link protocol used was the CSMA/CD protocol
over an Ethernet. Later, the IBM token passing link protocol used over a
token-ring physical interface became a major contender of the installed LAN
base.

As the popularity of distributed systems increased, people added more and
more functionality and even protocols. The most popular protocols as well
as other related information are published by the IETF (Internet Engineering
Task Force). Some widely used application level protocols are FTP (File
Transfer Protocol), TELNET, SMTP (Simple Mail Transfer Protocol), SNMP
(Simple Network Management protocol) and many more. Protocols for
handling security authentication (Kerberos, IP news feeds, and NNTP
(Network News Transfer Protocol)) can also be added to the list.

At about the same point in time to the development of the IP based protocol
suite, additional communication protocol suites have been created and
implemented. Examples are ISO (International Standards Organization) who

 Copyright IBM Corp. 1995 97

created the OSI (Open Systems Interconnection) suite, IBM′s SNA (Systems
Network Architecture), NetBIOS (Network Basic Input Output System) and
NetBEUI (Extended NetBIOS User Interface), and Novell′s IPX/SPX
(Internetwork Packet eXchange/Sequenced Packet eXchange).

The different protocol suites offer different advantages and disadvantages.
The TCP/UDP/IP/ICMP stack is very popular and widely spread in the open
systems area; SNA is the dominant protocol in IBM based networks.
Traditionally, SNA was represented by hierarchical host-based networks
based on VTAM and with very limited routing capability. This has, however,
been improved by the APPN (Advanced Peer-to-Peer Networking)
architecture, which allows for dynamic SNA routing. NetBIOS is the most
popular suite in LAN operating systems such as Microsoft LAN Manager or
IBM LAN Server, but also in, for example, Banyan Vines. IPX/SPX is the
protocol used by Novell in their Novell NetWare environment, which is the
most widely spread LAN operating system on the market today.

This variety of protocols with different pros and cons resulted in that users
purchased what they needed at different points in time. This resulted in a
very heterogeneous environment on most sites. Depending on their
advantages and disadvantages, different types of equipment were used in a
number of different ways, such as technical calculations and administrative
tasks, as well as word processors and host-based transaction based
systems.

Very few of these machines could originally interact with each other without
a variety of complications. UNIX machines used TCP/IP or maybe UUCP, the
AS/400 system was shipped in 1988 with native SNA support. IBM
compatible personal computers usually were not shipped with any network
support at all. If they were to be connected to a LAN however, IPX/SPX or
NetBIOS would be the most probable alternatives. The MacIntosh preferred
its own protocol - Appletalk. Soon a new market emerged; suppliers saw it
as an opportunity to provide their customers with solutions, basically by
providing interoperability between the different platforms. This kind of
interoperability was sometimes hard to accomplish. Key issues had to be
addressed at very low levels, such as the problem of how to share an
adapter resource if the system allows many processes to access different
kinds of network adapters concurrently. Other issues that had to be
addressed emerged when different suppliers provided different kind of
solutions; some might write adapter specific code, some might use packet
drivers (a standard for interacting with network adapters), some might use

98 UNIX C Applications Porting to AS/400

NDIS (the 3Com/Microsoft LAN Manager Network Driver Interface
Specification), and some would use ODI, the Novell specification.

Eventually most of these problems were resolved. The reason was entirely
based on hard financial facts. It is not possible to sell software that is only
capable of using a very small subset of adapters and it is not good business
to create drivers for every possible network card. Manufacturers had to
make sure that their software and hardware could interact with what
customers had installed; otherwise, their market would have been too
limited.

But as soon as the situation had stabilized on the platform the products
primarily were aimed at, software manufacturers (who had written software
for one operating system and maybe sold a great deal of licences) became
aware that it might be possible to sell even more licenses if their software
could execute in other environments.

This chapter is to address the topic of how to port IP applications (primarily
TCP based) from the UNIX environment to OS/400. Most UNIX client/server
applications are heavily depending on TCP/IP, not only by tradition, but also
because TCP/IP is included for free in most UNIX operating systems. AS/400
client/server applications have for a long time depended on SNA LU6.2, that
is, APPC (ICF) and CPI-C, mainly because it was shipped with the operating
system. The TCP/IP programming support of the AS/400 system has been
improved dramatically since it was originally released. In the early releases,
the calls had to be done using Pascal and the demand for a standard socket
interface, callable from C, has been considerable.

5.1 TCP/IP in General
TCP/IP (Transmission Control Protocol/Internet Protocol) is a term which is
generally used to refer to a specific set of protocols that allow computers to
share resources in a network. The name itself, however, can lead to
confusion because even though TCP and IP are two of the protocols in the
set (usually referred to as a suite), there are other protocols on the same
network layer. This means that the term usually is used both for denoting
the combination of the TCP and IP protocol (TCP is used to provide some
means of reliability to IP) as well as referring to the whole suite of protocols.
This is regrettable, but never the less a reality and since these concepts are
generally used, we use the same notation in this chapter.

Chapter 5. Networking 99

5.1.1 TCP/IP on the AS/400 System
The original TCP/IP Connectivity Utilities/400 product has seen many
improvements over the years since its introduction in V1R2 of OS/400 back in
1989. Historically, it had a very modest beginning, but customer demand and
a small group of developers kept making enhancements to the product over
the years. But, the original code was a port from VM (Virtual Machine, an
operating system implemented on IBM′s 370 and 390 architecture machines),
where the implementation was based on Pascal. The effect was that all calls
to perform the actual communication had to be done using the Pascal/400
product. Pascal/400 was based on the EPM programming model, see
Chapter 6, “Development Environment on AS/400 System” on page 157 for
details, which meant that it was possible to use the C/400 product to interact
with the communications interfaces by linking with the Pascal code, but the
actual communications calls had to be done from Pascal. This made it very
hard to port existing IP based applications. They had to have a very clear
interface between the communication and the logic, and this was not always
the case.

Besides the Pascal API limitation, there were numerous other limitations,
such as less than optimal performance, a maximum of 80 IP sessions, a
16MB file transfer limit and the lack of adherence to widely used RFCs
(Request for comments). With V3R1 of the operating system, however, the IP
functionality has been more tightly integrated with the operating system with
additional performance gain as the result. The base has been completely
rewritten, the 80 session limit has been removed, and support has been
introduced to enable SNMP (Simple Network Management Protocol) Agent
and Manager implementations. Numerous other improvements have also
made their way into the TCP/IP suite of OS/400, but the most important items
from a programmers perspective are:

• The TCP/IP support is now incorporated into the operating system and
not a separate product. This means, that software manufacturers no
longer have to prerequisite any products for their IP based applications
other than the operating system itself.

• OS/400 also provides support for the 4.3BSD socket interface to allow
developers to (as painlessly as possible) migrate their current
socket-based code to the AS/400 system.

This chapter takes a closer look at methods and techniques from a
programmers viewpoint, to port their IP applications from a UNIX platform to
OS/400.

100 UNIX C Applications Porting to AS/400

5.2 Open Blueprint
The Open Blueprint is the structure that IBM is using to allow the network of
systems to function as a unit, as a network operating system. A network
operating system is made up of multiple systems that are separated from
each other and are connected by a communication network. In the network
operating system enabled by the Open Blueprint, each individual logically
contains the services described in the following figure. However, it is not
necessary for each individual system to physically contain all of the services
included in the Open Blueprint. Just as an operating system provides the
management of resources on a single system, a network operating system
provides for the management across the network of the same type of
resources: files, databases, printers, transactions, software packages,
documents, jobs and so on. The equivalent facilities or services in each
individual system work together to provide support for distributed and
client/server applications.

Chapter 5. Networking 101

IBM Open Blueprint

The Open Blueprint addresses the challenges of the open environment by
viewing a system as part of a distributed network and viewing the network as
if it were a single system.

102 UNIX C Applications Porting to AS/400

A goal of the Open Blueprint is to provide consistency among IBM products
and related products such that they work together to achieve a high level of
systemic value. Users usually do not want to be dependent on propriety
solutions, since its limits the number of alternatives and choices available for
their purposes. This means that there is a huge demand on the market
today for openness and product/vendor independence and heterogeneity.
The Open Blueprint addresses a combination of existing and emerging
industry standards, such as OSF (Open Software Foundation) DCE
(Distributed Computing Environment) and Object Management Group
Common Object Request Broker Architecture (OMG CORBA).

5.3 Server Models
In many distributed environments, it is common to make use of a
Client/Server based way of communicating between different components.
Using this model, the task of the server is usually to wait for different kinds of
connections, perform some kind of operation, and eventually disconnect. The
aim of the client component is usually, at some part during its processing, to
connect to the server, ask for or provide certain information, and, at some
point in time, to disconnect.

The behavior of a server is also dependent on the transport protocol it uses.
The default behavior for LU 6.2 server programs is that they start when an
FMH5 (invocation) message is sent. Usually some kind of attach manager
runs on the server machine and when a start request arrives, the program is
loaded from virtual storage and activated. On the AS/400 system, these
kinds of jobs are defined as prestart jobs, which starts them in advance and
activates them when the FMH5 request arrives. It is similar to the 4.3BSD
rsh, with the exception that security is really a part of the session layer. The
behavior of a protocol suite is thus an important factor when designing how a
server program is to behave.

The server program start up behavior is, however, slightly different using IP
and, for example, NetBIOS. In both cases, a program has to be running and
be prepared for receiving connections. In the NetBIOS case, it issues a
netname, whereas in the IP case the program waits for a specific port . In the
TCP case, the server process must accept the client initialization call
(connect()) before messages can be exchanged between the client process
and the server process. In the UDP case, however, the information
exchanged is connectionless. This essentially means that after the initial
socket setup routines, socket(), possibly setsockopt(), and bind(), anything
that arrives on that specific port is received. The messages can be sent from

Chapter 5. Networking 103

any number of client processes, and by using the From structure parameter
in the recvfrom() call, it is possible to receive information about the message
originator.

There are a number of methods for a server process to handle client
requests. The kind of implementation chosen can depend on general
program design, coding guidelines, how it fits into the operating system, or
general skill of the designers and developers. UNIX based operating
systems are usually very flexible and allow the designer a number of
choices. Some methods have become more popular than others and might
even have made it into reusable server libraries for future recommended
use.

Of course there exists a number of variations on these schemes, but
essentially they are based on a few methods. Some of them are presented
in this chapter, both how they look in a UNIX environment, and also some
workable approaches of how to port these implementations to OS/400.
Before going into detail on each of them, it is however important to
understand how OS/400 handles some fundamental concepts that are
commonly used in UNIX applications.

5.3.1 Passing of Descriptors

5.3.1.1 UNIX Way
OS/400 handles file and socket descriptors very similar to most UNIX
systems. Using the integrated file system functions (see Chapter 3, “File
System - AS/400 Integrated File System” on page 25 for details) open() and
create(), a file descriptor pointing to the specific file related resource is
derived. In a similar manner, the socket() call initializes a socket descriptor
for use within an IP application. In UNIX, the most commonly used way of
passing open files between processes is to fork() (and possibly exec()) a
child process, where all open descriptors are inherited. The child usually
closes the open descriptors it does not intend to use and takes advantage of
the descriptor or descriptors it does use for further file or socket
communication.

OS/400 does not support fork() or exec() but it supports spawn(). It is also
possible to use CPA pthreads to emulate a single fork(), (see Chapter 4,
“Process Management” on page 41 for details), but it′s better to use the
spawn() function to emulate the fork(), exec() combination. The spawn()
function tries to emulate the UNIX function as much as possible by passing
the open parent descriptors to the child.

104 UNIX C Applications Porting to AS/400

Normally, there is no way for one process to pass an open descriptor to
some other unrelated process, or for a child to pass an open descriptor to its
parent. But 4.3BSD and System V Release 3 both provide a mechanism to
do this. The way this is accomplished is presented in detail in other
material, such as UNIX Networking by Richard Stevens. It is also very
closely related to process handling and IPC. Suffice to say, the idea is to
pass access right permissions to a certain descriptor using supported IPC
mechanisms such as UNIX domain sockets (AF_UNIX).

After this has been done, the sendmsg() and recvmsg() are used for passing
access rights between the processes. OS/400 supports the sendmsg() and
recvmsg() calls, including the struct msghdr structure, the MSG_OOB,
MSG_PEEK (recvmsg()), and MSG_DONTROUTE (sendmsg()) flags. However,
the passing of access rights is not supported. If the msg_accrightslen field is
not zero and the socket has an address family of AF_UNIX, the function fails
with [EOPNOTSUPP]. If the address family is anything but AF_UNIX, that is,
AF_INET or AF_NS, the msg_accrightslen and msg_accrights fields are
ignored.

5.3.1.2 AS/400 Way
But does this mean that the AS/400 system is entirely incapable of being
able to pass descriptor information between jobs and processes?
Fortunately no. There are currently three methods that should do the trick.
Not every one of them is always applicable and in the following examples,
some general guidelines, indicating when a certain method is preferable, are
given. So, in what way can OS/400 assist in passing descriptors?

Method Implementation

CPA threads This is the closest emulation of socket descriptors from
a design point of view if the program does not fork()
and exec() immediately after one another. This option
allows some logic to be performed in the child process
instead of, or before exec()ing a new program. Of
course there are some drawbacks. When you are in
&unx, you. can call regular C runtime functions or OS
subroutines; in the the AS/400 system, you must call a
thread function. This can alter the flow of your
program, which, most of the time, is not recommended.
If you find that this is not desirable, investigate any of
the other options. Instead of fork(), use
pthread_create() to start the new thread. However,
also be aware that it is advisable to call

Chapter 5. Networking 105

pthread_detach to avoid zombie threads. For more
information, see Chapter 4, “Process Management” on
page 41.

CPA is an optional, but free of charge part of the
operating system, which means that no external
prerequisites are needed. Take a look at Chapter 4,
“Process Management” on page 41 for more details.
Socket I/O is thread-enabled. This means that the
system takes care of resource serialization and access.
If thread 1 reads byte number one from a socket and
another thread reads from the same socket, the byte
accessed is byte number two.

However some functions, such as the functions
operating on the struct servant and struct hostent
structures, that is, getservbyname(), gethostbyname(),
and gethostbyaddr() use static memory to perform their
operations. This means that they are not thread-safe.
It is up to the programmer to make sure that access to
these routines is properly serialized if performed from
different threads. Additionally, the socket error
number h_errno is not thread-safe.

By using this method, it is possible to spawn off a new
thread each time a connection is established. If the
standby job pool is properly configured (see Chapter 4,
“Process Management” on page 41 for more details),
a substantial performance gain can be achieved using
this method compared to spawning a new process. It
is important to remember, that in order for a descriptor
to be shared between the different threads, it must be
static and have global scope.

Also take into consideration if the main thread has any
further use of the descriptor passed to the thread or
not. If the main thread does an accept() and passes
the descriptor to the child, it is very likely that the main
thread calls accept() again with the same descriptor to
be able to service new clients. An example of this
behavior is found in 5.3.5.1, “The UNIX Way” on
page 119. Usually the child in these cases wants to
dup() the descriptor and not have to depend on the
descriptor passed by the main thread. Now the matter

106 UNIX C Applications Porting to AS/400

of serialization is important. The program must ensure
that the child thread has time to perform the dup()
before the main thread closes the descriptor in order
to be able to use the same variable in the next
accept() call.

This kind of serialization can be accomplished using
pthread mutexes, pthread conditions together with
mutexes, static variables, and semaphores.

Spawn() spawn() is a function that very much resembles the
fork() function in the sense that descriptors and signal
attributes, such as signal mask and signal vector as
well as environment variables, are inherited by the
child process. The major differences are that:

 1. The fork()ed child processes are recognized by
what the fork() routine returns; if it is 0, the
process is a child and if it is a positive number, the
process is the parent and the number is the
process number of the child. The spawn() can only
return -1 for a failure, or a positive number, which
(similar to fork()), reflects the child process ID.

 2. When using fork(), both processes continue
processing on the statement directly following the
call. Using spawn, the user must supply the name
of a program that is to be executed in the child
process.

 3. The call semantic is different. The spawn()
demands substantially more parameters in order to
be successful.

More information about fork(), spawn(), and other
process related functions is found in Chapter 4,
“Process Management” on page 41. The important
thing to remember, though, is that an open descriptor
is inherited by the child, which means that in existing
logic where the parent usually closes its descriptor and
reuses it, the child is using the ″still open″ file.

Give/Take descriptor The givedescriptor() and takedescriptor() calls
provide a way for unrelated processes to pass open
file descriptors. This might also be used if a child
process has created a descriptor it wants to pass to its

Chapter 5. Networking 107

parent. Its prime target, however, is to compensate for
the lack of access right permissions in the sendmsg()
and recvmsg() calls. As mentioned previously, these
calls required an AF_UNIX socket (stream or datagram
based), where the access information and descriptor
address were passed. The givedescriptor() and
takedescriptor() are not that picky. The process that
is to provide the recipient with the open descriptor
must explicitly specify the internal job identifier in the
givedescriptor() call. This information has to be
passed, but any arbitrary method can be used. Data
queues are recommended, but there is nothing that
prevents you from using, for example, shared memory,
message queues, or other IPC mechanisms.

The internal job identifier can currently only be
acquired using a work management API, such as
QUSRJOBI. It does not have relation to the process ID
or job number of the job. If the target job in its
takedescriptor() call specifies NULL as source job
identifier, it accepts the descriptor from any arbitrary
outstanding givedescriptor() request if there are
multiple source jobs. If there is no such outstanding
request, takedescriptor() blocks.

There are, however, some authority concerns that have
to be met. The source job giving the descriptor must
have the proper authority to give the descriptor to the
target job. This allows for impressive flexibility in
regard to:

• The current user profile (real uid).

• The group profile, which is not an effective uid, but
instead an authority that takes affect if the current
user profile does not have sufficient privileges.

• The effective uid, which is represented by the
USRPRF keyword when creating or changing a
program. This is very much the same as when the
set-4 user-ID bit is used in UNIX file permission
settings.

108 UNIX C Applications Porting to AS/400

Any of these three levels in the source program must
match any of the levels in the target program in order
for givedescriptor() to work.

If both the source job or the target job end before the
descriptor has properly been delivered, the system
reclaims the resources the descriptor represents.

5.3.2 Standard Descriptors
Usually UNIX developers are accustomed to the fact that three file
descriptors are setup for their use in advance. These are STDIN_FILENO,
STDOUT_FILENO, and STDERR_FILENO (0, 1, and 2). These are by default
set to the FILEs stdin (by default keyboard), stdout (terminal), and stderr
(terminal). For example, the call write(STDOUT_FILENO, buf, strlen(buf))
causes the contents of buf to be written to the connected terminal. Likewise,
the call fputs(buf, .stdout) results in the same output.

In OS/400 however, these default descriptors are not connected to anything
in particular. This can be verified by allocating a descriptor through a call
such as open(), creat(), pipe(), socket(), or anything similar. It is possible
(and even plausible) that the descriptor returned is in the range 0 to 2.
Additionally, the #defines STD.._FILENO, which usually reside in unistd.h, do
not exist in OS/400, which for some programs makes it necessary to create
these as a part of the porting effort.

The direct implications are that it substantially limits the porting possibility
for applications heavily dependent on this kind of association. For file
related programs that might want to dup2() input or output to their own
routines, more information is found in Chapter 3, “File System - AS/400
Integrated File System” on page 25. From a communication point of view,
this has a specific impact when using the inetd daemon. More information
about this is found in 5.3.7, “Inetd (The Super Daemon)” on page 134.

5.3.3 Traditional TCP/IP Server Designs
Based on the behavior described in 5.3.1, “Passing of Descriptors” on
page 104 and in 5.3.2, “Standard Descriptors,” special considerations must
be taken when porting functions that make use of this kind of support.
Sometimes it might be very easy just casting a variable, but it can just as
well mean #ifdefing large pieces of code out and adding new functionality.

For this reason, a good development strategy is to isolate networking calls
as much as possible. The ideal method is to have most communication code

Chapter 5. Networking 109

in one, or a few modules, since this reduces the number of concerns you
must take into consideration. What follows is some of the most commonly
used server processing mechanisms in UNIX and how they are implemented
in OS/400.

The methods covered are:

Method Description

Spawning a new program
When a client request is received, the program
starts a new copy of itself, which performs again
all communication related initialization activates
and starts listening for new client connections.
The parent process continues servicing the
request it received. Details are found in program
srv1, 5.3.4, “Spawning a New Program” on
page 114.

Inherited descriptors When a client request is received, the program
lets its child inherit the open service descriptor
and service the client. The parent continues to
listen for new requests. Details are implemented
in program srv2, which is found in 5.3.5, “Inherited
Socket Descriptors” on page 119.

Descriptor arrays Only one process listens for clients, performs
services for existing clients, and cleans up system
resources when the connection has ended. Details
are implemented in program srv3 in 5.3.6,
“Descriptor Arrays” on page 129.

Inetd The server program makes use of the Inetd
daemon and does not implement any socket calls.
Details are found in program srv5 in 5.3.7, “Inetd
(The Super Daemon)” on page 134.

Passing descriptor access
An open descriptor is passed between two
unrelated processes, or between child and parent.
No inheritance is involved. Details are found in
programs srv4a and srv4b in 5.3.8, “Passing
Descriptor Access Permissions” on page 139.

The common behavior of all code examples is that the program is to wait for
a client connection on the PORTNUM port. When a connection has been

110 UNIX C Applications Porting to AS/400

made, they all use different means of handling the current request and still
are ready to accept new client connections. The only application logic is to
accept an input line and echo it back. If TELNET is used as a client, take
care of verifying that it is working in line mode, otherwise each character is
echoed back.

Note that the code in the examples is not necessarily to be considered
recommended or even good. The only purpose of it is to demonstrate
different server program algorithms. The programs were initially compiled
and run on an AIX 3.2.5 system.

There is some standard routines that these examples use. The purpose of
them is to set up an AF_INET stream socket connection and to do basic read
and write as a part of the program logic. These functions look similar to:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h> /* close, read, write */
#include <sys/socket.h> /* AF_INET, SOCK_DGRAM...*/
#include <netinet/in.h> /* sockaddr_in */
#include <string.h> /* strstr */

rcode srv_ini(int *sd, char *buf);
rcode read_des(int des, char *buf);

#define BUFLEN 25
#define PORTNUM 8889
#define HOLDNUM 5
const char QUIT[] = ″\x51\x55\x49\x54″ ;

#define EXIT_RC(a, b, c) {perror(a); close(b); return c;}
�1�

typedef enum rc
{
RC_OK, RC_SOCKET, RC_BIND,
RC_LISTEN, RC_ACCEPT, RC_CLOSE, �2�
RC_EXEC, RC_READ, RC_WRITE,
RC_FORK, RC_SEND, RC_RECV, RC_UNIX

} rcode;

Figure 20. Standard Header. The information in this header is used by many of the
code samples.

Notes:

Chapter 5. Networking 111

�1� This is a macro used for issuing an error message if it is called
after an I/O operation. Additionally, it closes the provided descriptor
and returns with the provided reason code.

�2� The return codes of the program.

/**/
/* Reads information from socket and echos it back.
 * If input has the #define QUIT in it, return.
 */

rcode read_des(int des, char *buf)
{
int numbyte;

while(!strstr(buf, QUIT)) �1�
{
if ((numbyte = read(des, buf, BUFLEN)) < 0)
EXIT_RC(″Read″ , des, RC_READ)

if (write(des, buf, numbyte) < 0)
EXIT_RC(″Write″ , des, RC_WRITE)

}

close(des);
return RC_OK;

}

/**/
/* Initializes server socket and clears buffer
 */

rcode srv_ini(int *sd, char *buf)
{
static struct sockaddr_in server;
int sock_opt=1;

if ((*sd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
EXIT_RC(″Socket″ , *sd, RC_SOCKET)

setsockopt(*sd, SOL_SOCKET, SO_REUSEADDR, �2�
(char *)&sock_opt, sizeof(sock_opt));

memset((void *) &server, ′ \0′ , sizeof(struct sockaddr_in));
�3�

112 UNIX C Applications Porting to AS/400

memset(buf, ′ \0′ , BUFLEN);

server.sin_family = AF_INET;
server.sin_port = htons(PORTNUM); �4�
server.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(*sd, (struct sockaddr *) &server,
sizeof(struct sockaddr_in)) < 0)

EXIT_RC(″Bind″ , *sd, RC_BIND)

if (listen(*sd, HOLDNUM) < 0)
EXIT_RC(″Listen″ , *sd, RC_LISTEN)

return RC_OK;
}

Figure 21. Read Loop and Stream Socket Server Initialization

These functions, sometimes with slight modifications in the calls, are used by
the samples in this chapter.

Notes:

�1� This is the main read() and write() logic. It is of little interest,
but is mentioned here in order to refer to it later. Notice that in socket
programming, all read()s and write()s should be loops, since there is
no guaranteed that all of the information is read in one read() or
written using one write(). The example does not take this into
consideration, since it has little to do with what the example
illustrates.

Note, however, that the constant QUIT is represented in hexadecimal
form instead of as a character array. The reason is, of course, that
the server program is to work on OS/400 as well and compiling the
string ″QUIT″ on the AS/400 system causes the EBCDIC representation
to be generated. This means that it is very hard to end the read(),
write() loop from an ASCII client (such as TELNET).

�2� This is usually used to let the local process portion of a
connection association be reused by the bind() call. For example, in
the case of FTP, to let the client open a connection server, using the
ephemeral port numbers provided by the system for the client control
connection. In this particular case, it is used because the TCP
behavior usually lets an address exist for twice the maximum lifetime

Chapter 5. Networking 113

of a packet in the network. In reality, this means that even though a
proper close() call is used, it takes one or two minutes before the
program can be started anew.

�3� Use the SYSV libc function memset(). The ILE C/400 runtime does
not use the BSD related bzero(). Note that it is very important to
clear the sockaddr_in structure, especially on the AS/400 system. If it
is not properly cleared, strange errors might appear such as errno
EINVAL. The same rule applies to the BSD function bcopy(). Instead,
the ANSI compliant function memcpy() should be used.

�4� Never forget to filter the integer representation of the port number
through htons() in order to convert from host byte order to network
byte order. If this is not done, problems can occur when porting to
systems where the byte order between local host byte order and
standard network order is different.

Fortunately, it does not have a very big impact on the AS/400 system
if this is omitted, since the OS/400 byte order implementation does not
differ between the two different representations.

5.3.4 Spawning a New Program
A simple way of designing a server process is to let one program wait for a
connection call from a client. When the connection has been done, the
program spawns a new copy of itself (using fork() and exec()) in order to be
able to handle new connection requests while the previous (parent) process
continues and handles the communication logic.

This method is very straight forward. No descriptors have to be passed
between processes, since every process contains all of the communication
logic and is a separate stand-alone program. There is no interaction what so
ever between parent and child besides the unwanted side effect of a
SIGCHILD in UNIX. This was also the way IP processes (such as FTP) were
implemented in OS/400 releases prior to V3R1. When an FTP client was
connected, the program quickly submitted a new job that started to wait on
the predesignated port, whereas the main process continued to serve the
client.

It is usually rather straight forward to port servers implemented this way in
OS/400 since very few operating system-specific constructs have to be used.
However, most designs are optimized for performance, application flexibility,
and maybe legacy code. The process of forking is not very trivial to UNIX

114 UNIX C Applications Porting to AS/400

based operating systems, but it takes even more resources for OS/400 to
create a new job and allocate the associated resources. Additionally, the
obvious disadvantage is that in the time span between spawning the new
process and until the new process has started to accept() new calls, no client
can connect.

5.3.4.1 The UNIX Way
.
#include <stddef.h> �1�
#include <sys/signal.h>
.
int main(int argc, char **argv)
{
int rc;
int sd, ld;
char buf[BUFLEN];
struct sigaction sig_parms; �1�

if ((rc = srv_ini(&ld, buf)) != RC_OK)
return rc;

if ((sd = accept(ld, 0, 0)) < 0)
EXIT_RC(″Accept″ , sd, RC_ACCEPT)

close(ld); �2�

sig_parms.sa_handler = SIG_IGN; �1�
sigemptyset(&sig_parms.sa_mask);
sig_parms.sa_flags = 0;
sigaction(SIGCHLD, &sig_parms, NULL);

switch(fork())
{
case -1:
EXIT_RC(″Fork″ , sd, RC_FORK)

case 0:
close(sd); �3�
execlp(argv[0], argv[0], 0);
EXIT_RC(″Exec″ , sd, RC_EXEC)

default:
if((rc = read_des(sd, buf)) != RC_OK)
return rc;

}

Chapter 5. Networking 115

return RC_OK;
}

Figure 22. Spawning a New Process on UNIX. The program closes al l available
descriptors before fork()ing to prevent them from being inherited by the child. A l l
communication setups must be performed once again for each new job.

Notes:

�1� Since the main program spawns a child process and does not
use any of the wait() family calls, we must prevent the creation of
zombie processes. It should be said that sigaction() is the POSIX
way and is likely to be more portable than signal().

�2� This close() call is very important for this server approach. If the
listening descriptor is not closed, it is not possible to spawn the
program again, since it causes two processes to wait for
INADDR_ANY on the same port. When the program is exec()ed, the
descriptor opens again.

�3� In the child process, we close the service descriptor, since it is
otherwise going to be inherited and this is not what we want for the
simple reason that we have no use for it, in addition to giving the
system back the resources it represents.

We do not have to do very much in order to make this program work on the
the AS/400 system. As specified in 5.3.1, “Passing of Descriptors” on
page 104, OS/400 does not support exec() or fork(). This means that these
constructs must be #ifdefed out. It is usually very tempting during porting to
look for the constructs you want to keep and try to place the #ifdefs so the
surrounding logic is removed, but the few lines you want to keep are still
available.

This reasoning can be applied to the fork() statement in the source. We do
not want to keep this piece of logic, but it is very tempting to use the call to
read_des(). To do this, however, you also have to comment out the curly
bracket connected to the fork() statement, which causes an impact on the
logic. It is probably rather harmless in this small example, but remember
that if the code is more complex and many curly brackets have to be #ifdefed
out, the code eventually is very hard to maintain. Instead, it is recommended
to #ifdef blocks of code with a matching number of curly brackets.

116 UNIX C Applications Porting to AS/400

So, what options are available to port this source to OS/400? There are
really two ways this can be achieved: using system() or using spawn(). The
differences are:

 1. When using system(), there is no need for any signal handler, since the
new process does not generate a SIGCHILD when it is terminated. The
signal handler is still needed using spawn().

 2. Using system(), there is no need to close the service descriptor (derived
from accept()) before starting the new OS/400 job, since it is not
inherited from the parent process. The descriptor still has to be closed
using spawn().

5.3.4.2 The Way of OS/400 Using System()
.
.
#ifndef __ILEC400__
#include <stddef.h>
#include <sys/signal.h> �1�
#else
#include <stdlib.h> /* system() */
#define EXECLEN 100
#endif
 .
 .
#ifndef __ILEC400__
struct sigaction sig_parms;

#else �2�
char executable[EXECLEN];

#endif
 .
 .
#ifndef __ILEC400__
sig_parms.sa_handler = SIG_IGN; �3�
sigemptyset(&sig_parms.sa_mask);

EXIT_RC(″Exec″ , ld, RC_EXEC)
 .
 .

default:
if((rc = read_des(sd, buf)) != RC_OK)
return rc;

}
#else
sprintf(executable, ″SBMJOB CMD(CALL PGM(%s)) JOB(%s)″ ,

argv[0], strchr(argv[0], ′ / ′) + sizeof(char));

Chapter 5. Networking 117

system(executable); �4�

if((rc = read_des(sd, buf)) != RC_OK)
return rc;

#endif

return RC_OK;
}

Figure 23. Spawning a Process on OS/400 Using System(). An example of what is
needed to port the creation of a new job (UNIX process) to OS/400 without descriptor
inheritance.

Notes:

�1� We are removing the include files needed for signal handling and
adding the ones used for system(). Since the SBMJOB (Submit Job)
command does not cause any child processes (in the UNIX sense) to
be generated, such as the spawn() function, there is no need to
capture SIGCHILD, since it is never sent. Additionally, a constant
used for specifying the length of the command used to create a new
job is added.

�2� The struct sigaction structure is removed and space is allocated
to store the command to be invoked.

�3� We remove the whole fork() construct together with the signal
support.

�4� Since we removed �3�, it is necessary to start the new job some
other way. Here we use the system() call, but the QCMDEXC API
could also have been used. The SBMJOB command is placed in the
character array, which is passed to the system() call. When this has
been done, the parent process continues to service the previously
established connection.

118 UNIX C Applications Porting to AS/400

� �
Work with Active Jobs XXXX

06/06/95 16:45:51
 CPU %: 18.0 Elapsed time: 00:01:49 Active jobs: 296

 Type options, press Enter.
 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message

8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QBATCH QSYS SBS .0 DEQW
SRV1 UX1 BCH .3 PGM-SRV1 TIMW
SRV1 UX1 BCH .9 PGM-SRV1 TIMW

Bottom
 Parameters or command
 ===>
 F3=Exit F5=Refresh F10=Restart statistics F11=Display elapsed data
 F12=Cancel F23=More options F24=More keys� �

Figure 24. WRKACTJOB SBS(QBATCH). This is how the srv1 program looks as one
job is connected to an AIX client. At the time of connection, it spawned a copy of
itself, ready to serve the next client.

5.3.5 Inherited Socket Descriptors
One of the most commonly used methods for a server to receive client
connections in UNIX is for the server to maintain its listening descriptor and
when an incoming request is received, spawn a child process and let it
inherit the service descriptor (derived from accept()). The parent process
continues by closing its copy of the service descriptor and resumes its
waiting for new connections. The structure of the program is similar to the
one in Figure 22 on page 116 with the following main difference:

5.3.5.1 The UNIX Way
.

 . /* This code is following the call to srv_init() in
. * srv1.c */
.
while (1)
{
if ((sd = accept(ld, 0, 0)) < 0)
EXIT_RC(″Accept″ , ld, RC_ACCEPT) �1�

switch(fork())
{

Chapter 5. Networking 119

case -1:
EXIT_RC(″Fork″ , sd, RC_FORK)

case 0: /* Child Process */
close(ld); �2�
if ((rc = read_des(sd, buf)) != RC_OK)
exit(rc);

else
exit(RC_OK);

default: /* Parent process */
close(sd); �3�

} /* switch */
} /* while */

return RC_OK; �4�
}

Figure 25. Inherited Descriptors in UNIX. This example represents the traditional
approach where the new child inherits the service descriptor. The parent closes it
after creating the child and continues to listen to new requests.

After the connection has been established (�1�), the process fork()s a copy
of itself, thereby letting the child process inherit the open file descriptor. The
main process could very well close its file descriptor (�3�) and start
accepting new connections, whereas the child process continues to talk to
the client (�2�).

In addition to Figure 25, sometimes, instead of just fork()ing, the program
starts a child program, similar to the one in Figure 22 on page 116. The
main difference is that, in this case, we want the service descriptor to be
inherited by the child process to let it continue the conversation with the
client program. In UNIX, the changes in the server program are similar to:

.
{
.
char fd[2];
.
switch(fork())
{
case -1:
EXIT_RC(″Fork″ , ld, RC_FORK)

case 0:
close(ld);
sprintf(fd, ″%d″ , sd); �1�
execlp(″srv2c″, ″srv2c″ , fd, 0);

120 UNIX C Applications Porting to AS/400

exit(RC_EXEC);

default:
close(sd);

} /* switch */
.

Figure 26. Inherited Descriptors and Exec(). Instead of handling the conversation in
the current program, we start a new program (srv2c), which inherits the sd descriptor.
Note that the ld descriptor is closed, which means that it is not inherited.

As shown in �1� we call the child program with the descriptor number
supplied on the command line. It is also possible to use the putenv()
function to set an environment variable, which also is inherited. The child
program picks up the descriptor as argv[1], and continues the processing:

.
static rcode read_des(int des);
 .
int main(int argc, char **argv)
{
if (argc != 2)
{
printf(″%s: Invalid number of arguments. Exiting.\n″ ,

argv[0]);
return 1;

}
else
return read_des(atoi(argv[1]));

}

static rcode read_des(int des)
{
int numbyte;
char buf[BUFLEN];

while(!strstr(buf, QUIT))
{
if ((numbyte = read(des, buf, BUFLEN)) < 0)
EXIT_RC(″Read″ , des, RC_READ)

if (write(des, buf, numbyte) < 0)
EXIT_RC(″Write″ , des, RC_WRITE)

}

Chapter 5. Networking 121

close(des);
return RC_OK;

}

Figure 27. Program Inherit ing Open Descriptor. This program is called by the
program in Figure 26 on page 121. It receives the descriptor on the argument line
and uses it for reading and writing.

As described in 5.3.1, “Passing of Descriptors” on page 104, neither of these
attempts work in OS/400. In this case, there are other alternatives to choose
from:

To illustrate how this is accomplished, an example is presented:

5.3.5.2 OS/400 using Threads
The threaded method is usually preferable from a performance point of view.
Since all threads (including the main or primary thread) share the same
global static storage and heap, there is no need to copy the environment in
the way fork() does it since the data is available anyway. This implies some
other considerations as well... When the program in Figure 26 on page 121
is closing the service descriptor (sd) in the main process after the child has
been created, the operating system only closes one instance of the socket
resource. The child program had a copy of the same resource and it is not
affected by the close().

In Figure 28 on page 125, the thread does not access a copy of the resource;
it actually accesses the resource itself. If the main thread closed the service
descriptor after creating the thread, the descriptor is also closed for the
thread. This is also the case if the thread dup()ed the descriptor, since it
does not really copy the resource, but merely provides a pointer.

Additionally, one of the major advantages of using threads, in comparison to
other methods of creating concurrently running units of execution in OS/400,
is that all of the code can be in one executable module instead of having to
create multiple programs (*PGM).

#ifdef __ILEC400__
#include <pthread.h> �1�
void *process(char *buf);
#endif

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h> /* close, read, write */

122 UNIX C Applications Porting to AS/400

#include <sys/socket.h> /* AF_INET, SOCK_DGRAM.. */
#include <netinet/in.h> /* sockaddr_in */
#include <string.h> /* strstr() */
#include <stdlib.h> /* exit() */

#include <stddef.h>
#include <sys/signal.h>

static int read_des(int des, char *buf);

#define BUFLEN 25
#define PORTNUM 8889
#define HOLDNUM 5
const char QUIT[] =
″\x51\x55\x49\x54″ ;

#define EXIT_RC(a, b, c) {perror(a); close(b); return c;}

typedef enum rc
{
RC_OK, RC_SOCKET, RC_BIND,
RC_LISTEN, RC_ACCEPT, RC_CLOSE,
RC_EXEC, RC_READ, RC_WRITE,
RC_FORK

} rcode;

int main(int argc, char **argv)
{
int rc;
int sd, ld;
struct sockaddr_in server;

#ifdef __ILEC400__
char *buf;
pthread_t thrno;

#else
char buf[BUFLEN];
struct sigaction sig_parms;

#endif
int sock_opt=1;

if ((ld = socket(AF_INET, SOCK_STREAM, 0)) < 0)
EXIT_RC(″Socket″ , ld, RC_SOCKET)

setsockopt(ld, SOL_SOCKET, SO_REUSEADDR,
(char *)&sock_opt, sizeof(sock_opt));

memset((void *)&server, ′ \0′ , sizeof(struct sockaddr_in));

server.sin_family = AF_INET;
server.sin_port = htons(PORTNUM);
server.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(ld, (struct sockaddr *) &server,
sizeof(server)) < 0)

EXIT_RC(″Bind″ , ld, RC_BIND)

if (listen(ld, HOLDNUM) < 0)
EXIT_RC(″Listen″ , ld, RC_LISTEN)

Chapter 5. Networking 123

#ifndef __ILEC400__
memset(buf, ′ \0′ , sizeof(buf));
sig_parms.sa_handler = SIG_IGN;
sigemptyset(&sig_parms.sa_mask);
sig_parms.sa_flags = 0;
sigaction(SIGCHLD, &sig_parms, NULL);

#endif

while (1)
{
if ((sd = accept(ld, 0, 0)) < 0) �2�
EXIT_RC(″Accept″ , sd, RC_ACCEPT)

#ifndef __ILEC400__
switch(fork())
{
case -1:
EXIT_RC(″Fork″ , ld, RC_FORK)

case 0:
close(ld);
if ((rc = read_des(sd, buf)) != RC_OK)
exit(rc);

else
exit(RC_OK);

default:
close(sd);

} /* switch */
#else

buf = calloc(1, BUFLEN); �3�
memcpy(buf, &sd, sizeof(sd));
pthread_create(&thrno, pthread_attr_default,

(pthread_startroutine_t) process,
buf);

pthread_detach(&thrno); �4�
#endif
} /* while */

return RC_OK;
}

/**/
#ifdef __ILEC400__
void *process(char *buf)
{
int myfd;

memcpy(&myfd, buf, sizeof(myfd));

if (read_des(myfd, buf) != RC_OK)
printf(″read_des failed.\n″) ;

free(buf);
pthread_exit((void*) NULL); �5�

124 UNIX C Applications Porting to AS/400

return;
}
#endif

Figure 28. Descriptor Inheritance in OS/400 using Threads. The threads support
allows the program to respond faster to new connections as well as having the ability
to use only one program instead of two, as when using spawn() which uses at least
two.

Notes:

�1� All programs using the CPA pthreads must include <pthreads.h>
first in the source file, since it includes wrapper functionality needed
to enable existing functions to perform in a threaded environment.

�2� The program blocks on the accept() call. When a connection is
established, it wakes up. Note that all UNIX related fork() logic has
been removed.

�3� Remember now, that we can have multiple connections. If each
one of them uses the same area of memory to read from and write to,
this leads to unpredictable results. What we are doing instead, is
allocating a buffer for each thread. The calloc() is used instead of
malloc(), since it clears the allocated space for us (fills it with ′ \0′s).

The alternative is to use two allocate bufs in the thread (process()).
However, this adaptation of the program uses buf to pass the socket
descriptor to the thread. So, why do we have to pass the descriptor..?
Why can′ t we just use a global descriptor and copy it to the threads
automatic storage? This is basically a way out of solving a resource
problem. If sd was a global variable and process() copied it to
automatic storage as soon as the thread was spawned and active, we
have a time slot between the moment of pthread_create() and the
moment of copying the variable.

During this time slot, a new client might connect, which means that sd
was overwritten before it was copied.

�4� The pthread_detach() causes the threads control blocks and
resources to be deleted after the thread ends. If this is not done, and
a pthread_join() is not performed, zombie threads come in to
existance.

Chapter 5. Networking 125

�5� This call makes sure that the system considers the current thread
as a candidate for the standby pool, which causes subsequent thread
creations by the process to be performed significantly faster. See
4.6.3, “Threads” on page 73 for more details about threads, zombie
threads, and the standby pool.

5.3.5.3 OS/400 using Spawn()
Whereas 5.3.5.2, “OS/400 using Threads” on page 122 more closely
resembles the pure fork() based logic in Figure 25 on page 120, the
following example is build upon the OS/400 equivalence of exec(), (Figure 26
on page 121). It is built upon the use of the spawn(), which initializes a new
program with options to inherit environment, signal masks as well as
descriptors. More information is found in Chapter 4, “Process Management”
on page 41. The spawn() can supply descriptor inheritance in two ways:

Simple inheritance All open descriptors are automatically inherited.
Simple inheritance is the method that most resembles
its UNIX equivalence and we are going to use it for the
following sample (Figure 29 on page 127). By using
simple inheritance, the descriptors receive the same
descriptor number for a descriptor resource (file or
socket) in the child process as they had in the parent
process.

Mapped inheritance The programmer explicitly specifies which descriptors
are to be inherited. It is also possible to specify how
the descriptor numbers in the parent should map
against the numbers in the child.

.
#ifdef __ILEC400__
#include <qp0z1170.h> �1�
#endif

#ifdef __ILEC400__
#include <spawn.h>
#define CHILD ″YSRV2C.PGM″ �2�
#define ARGNUM 3
#define ENVNUM 1
#endif

int main(int argc, char **argv)
{
 .

126 UNIX C Applications Porting to AS/400

char fd[4];
#ifdef __ILEC400__
struct inheritance inherit;
char *spw_argv[ARGNUM]; �3�
char *spw_envp[ENVNUM];
char *pathvar = ″PATH=%LIBL%″ ;
memset(&inherit, ′ \0′ , sizeof inherit);

#endif
 .

if ((ld = accept(sd, 0, 0)) < 0)
EXIT_RC(″Accept″ , sd, RC_ACCEPT)

#ifdef __ILEC400__
if (putenv(pathvar) < 0) �4�
{
close(ld);
EXIT_RC(″putenv″ , sd, RC_EXEC)

}
sprintf(fd, ″%d″ , ld);
spw_argv[0] = CHILD;
spw_argv[1] = fd; �5�
spw_argv[2] = (char *) NULL;
inherit.pgroup = 0;
spw_envp[0] = (char *) NULL;
if ((rc = spawnp(CHILD, 0, NULL, &inherit,

spw_argv, spw_envp)) < 0)
{
printf(″rc is %d.\n″ , rc);
close(ld);
EXIT_RC(″spawn″ , sd, RC_FORK)

}
#else

switch(fork())
{

 .
} /* switch */

#endif
close(ld);

} /* while */

return RC_OK;
}

Figure 29. Descriptor Inheritance in OS/400 using Spawn(). The traditional fork(),
exec() flow has been altered to allow for what is needed for spawn().

Chapter 5. Networking 127

As is shown, the entire fork() clause has been #ifdefed out. But the sources
have many similarities, for example, the procedure of passing information
about the open descriptor to the child through the command line. The
immediate advantage is that the source in Figure 27 on page 122 does not
have to be changed at all between the UNIX environment and OS/400. Since
it is a very simple program and does not do anything except read from and
write to a descriptor, it is possible to port without performing any changes
whatsoever.

Notes:

�1� In V3R1 of OS/400, the function prototype to putenv() is not to be
found in stdlib.h, as usually is the case. No plans for providing this
support in a PTF exist at the time of writing this book. See 4.6,
“Starting and Stopping Processes/Threads” on page 65 for details
about environment variable handling in OS/400.

�2� The name of the program to start. Note that even though the
name of the program is YSRV2C, a .PGM has to be appended.

�3� Initialization of variables used for inheritance, command line
parameters, and the environment. Additionally pathvar is set to
%LIBL%. This is an interesting piece of mixing the two worlds. UNIX
machines by tradition are using a PATH. The AS/400 system is using
a library list. The library list is a little bit more functional in the sense
that it is used not only to find executables, but also to find database
files and other operating system objects. Since spawnp() is using the
PATH to find the executable and we know that it is found using the
library list, we set the PATH environment variable to the value of the
library list.

This is done at �4�. Note, that it is perfectly valid to remove both of
these lines and instead use the operating system command
ADDENVVAR (Add Environment Variable) before running the program.

�5� We initialize argv[] and envp[] arguments before supplying them
to the spawnp() call. The spawnp() was chosen instead of spawn()
since it is functionally more similar to execlp() used in Figure 26 on
page 121.

128 UNIX C Applications Porting to AS/400

5.3.6 Descriptor Arrays
There are other ways to design server applications than just the regular
fork(), exec() behavior described in the previous examples. Just imagine an
application that does not invoke any child process, but still is able to
maintain a connection for multiple clients. There are obvious disadvantages,
such as “Is the program going to be able to perform some logic while it is
maintaining the communication?.” The answer is, of course, “it depends.” It
is not responsible to let this kind of program handle hundreds of requests
and still be able to answer all of these requests with good response times on
other hardware than very high scale processors. However, with a
reasonable (and preferably configurable) number of supported connections,
the server program can do more than just listen to the port, perform an
action, and return to its silent waiting. Chapter 4, “Process Management”
on page 41 specifies how the alarm() call can generate a SIGALRM signal,
which interrupts a select() wait and perhaps lets the program perform some
internal maintenance jobs. Additionally, the select() call itself allows a
maximum wait time to be passed in the struct timeval parameter passed to
it.

This approach makes the following program structure possible:

Start
|

Initialize program
|

Wait for new clients, existing clients requests or timeout
| | |
| | |

< New client > Accept question Do service work
| | |

Verify authority Find out answer Return to select()
| |

Add to current socket set Respond
| |

Reply affirmative Return to select()
|

 Return to select()

Figure 30. Descriptor Array Server Logic. Of course, it is possible in the middle path
to receive information about disconnected clients. If this is the case, the number of
bytes read is usually zero. The “Respond” action is then to remove the disconnected
descriptor from the maintained array.

Chapter 5. Networking 129

The absolutely major advantage of this approach is that it does not involve
any process related functionality at all. Only one process is involved. This,
in turn, means that it is much easier to port this kind of program to OS/400
as we discover in 5.3.6.2, “Descriptor Array for OS/400” on page 133.

5.3.6.1 Descriptor Array for UNIX
.
#include <sys/select.h> �1�
.
#define MAXCONN 5 �2�
 .
int main(int argc, char **argv)
{
int rc, numbyte;
int sd, ld;
char buf[BUFLEN];
int conn[MAXCONN]; �3�
int cnum = 0;
fd_set source, ready;
int i, sel_event, fdp1;

if ((rc = srv_ini(&ld, buf)) != RC_OK) �4�
return rc;

FD_ZERO(&source); �5�
FD_SET(ld, &source);

while(1)
{
�6�
fdp1 = high_val(cnum, ld, conn) + 1; /* Find the highest fd */

/* Copy the contents of the master (source) fd_set
* to the working (ready) fd_set.
*/
memset((char *)&ready, (int) NULL, sizeof(ready));
memcpy((char *)&ready, (char *)&source, sizeof(ready));

/* Wait for message */
sel_event = select(fdp1, /* Size of bit array */

&ready, /* Sockets to listen to */
(void*) 0, /* No Sockets writing */
(void*) 0, /* No Error handling */
NULL); �7� /* Time out period */

/*
* sel_event == 0 for time out, -1 for interrupt or Error
* ready now has the socket(s) that have recv′ d data
*/

130 UNIX C Applications Porting to AS/400

if (sel_event < 0)
{
perror(″Interrupt″) ;
continue;

}

/* If any new process has connected, register it. */
if (FD_ISSET(ld, &ready))
{
if (cnum == sizeof conn)
{
printf(″Maximum number of connections reached.\n″) ;
continue;

}

if ((sd = accept(ld, 0, 0)) < 0)
EXIT_RC(″Accept″ , sd, RC_ACCEPT)

printf(″New connection - number %d - has been
established.\n″ , cnum + 1);

FD_SET(sd, &source);
conn[cnum++] = sd;

}

for (i=0; i < cnum ; i++) �8�
if (FD_ISSET(conn[i], &ready))
{
if (((numbyte = read(conn[i], buf, �9�

sizeof(buf))) <=0) || (strstr(buf, QUIT)))
{
printf(″Connection has ended for client number %d.\n″ ,
i + 1);

/* break the communication: Error or shutdown */
FD_CLR(conn[i], &source); �10�
close(conn[i]);

/* move the last socket to the current place */
conn[i] = conn[--cnum];

}
else
if (write(conn[i], buf, numbyte) < 0)
perror(″Could not write data.″) ;

} /* if */
} /* while */

return RC_OK;
}

Chapter 5. Networking 131

Figure 31. Descriptor Array on UNIX. This is an example of a server that does not
fork but, instead, maintains the descriptors in an array. This approach also makes it
possible to store information about the clients if the array consists of structures
containing relevant information for the application instead of descriptor integers.

Notes:

�1� The sys/select.h is used by AIX, Solaris and Sun-OS, whereas
OS/400 and HP-UX have the FD_ macros and the function prototype
specified in time.h.

�2� Maximum number of clients to accept.

�3� Array of socket descriptors.

�4� Initiate communication.

�5� The source is the main fd_set. When a descriptor is added or
removed from the array, it is removed in source. Before the select()
call, the contents is copied to the ready fd_set. The reason is, of
course, that the result of select() sets and removes the bits
corresponding to each of the available descriptors. This leaves the
fd_set unusable if select() is called with it the next time. However, by
using a master fd_set and copying the contents each time, we can be
certain that ready is properly initialized.

�6� The select() function wants to be informed about which number
is the highest descriptor it should take into consideration. It is, of
course, possible to just enter FD_SETSIZE, which specifies the
maximum number of descriptors, but for performance reasons, we
lend the kernel a helping hand.

The high_val calculates the maximum descriptor value by traversing
the descriptor array and takes the listening descriptor into
consideration as well.

�7� No timeout. The select() waits forever.

�8� If a message arrives from any of the connected clients, it must be
handled.

�9� If the read() fails or the client is terminated, we remove it from
the socket descriptor array and clear the master fd_set (�10�).

132 UNIX C Applications Porting to AS/400

In �6�, we explained how the highest used socket descriptor is calculated.
The source from high_val is shown in the following figure.

/**/
/* Calculate the highest used file descriptor in order
 * to use the correct mask in the select statement.
 */

static int high_val(int cnum, int sd, int *conn)
{
int hval, i;

if (!cnum)
return sd;

else
{
hval = sd;

for (i=0; i < cnum; i++)
if (conn[i] > hval)
hval = conn[i];

}

return hval;
}

Figure 32. High_val.c. This program aids in determining the highest used descriptor
number. This value incremented by one specifies the range of descriptors the
select() call is watching.

5.3.6.2 Descriptor Array for OS/400
As mentioned earlier, this approach does not involve UNIX specific process
handling routines such as fork() and exec(). The following example
specifies the changes in the code that needed to be implemented in order to
port from AIX to the OS/400 environment.

Chapter 5. Networking 133

.
#ifndef __ILEC400__
#include < s y s / s e l e c t . h >
#else
#include < t i m e . h >
#endif
.
.

Figure 33. Srv3.c for OS/400. The changes needed to make the example shown in
5.3.6.1, “Descriptor Array for UNIX” on page 130 work properly under OS/400. The
differences in where select() is defined is described in �1� in 5.3.6.1, “Descriptor
Array for UNIX” on page 130.

5.3.7 Inetd (The Super Daemon)
As we have seen by now, there are a lot repetitive steps that an IP server
has to perform each time it must establish a connection. These steps involve
creating sockets, binding sockets, listening on a descriptor, accepting the
client call, and usually also to fork() (and sometimes to exec()) when the
client request enters the system. Additionally, proper error handling
routines must be written to check for failures for each step and take some
proper action, which could be closing sockets, sending a message to the
SYSLOG, and so on.

However, in most UNIX systems, there is a simpler way to manage this kind
of server processing, since they usually provide an Internet (meaning the
AF_INET family) superserver (inetd). This daemon mainly provides two
features:

• It allows one process to listen on multiple ports, thereby making it
unnecessary for programs using this functionality to do all the dirty work
themselves. It also spares the system (usually quite considerably) since
there is only one process running instead of multiple servers, each
waiting on a port of their own.

• It takes care of the usual daemon initialization routines, which includes
disconnecting from the terminal and forking an additional copy of itself if
this has not been done already.

The price you have to pay is that for each client request, inetd will not only
fork() but also exec() the actual user supplied server program. We do not
describe in detail how to configure inetd, since it is very well documented
elsewhere. Suffice to say, the inetd daemon is configured to start the user
service program when a client request is issued to a particular port. The

134 UNIX C Applications Porting to AS/400

inetd, which is waiting in a select() statement, accepts the call and fork()s
itself. While the parent program resumes the select() call, the child closes
all open descriptors except the one used for the current socket. This
descriptor is dup2()d to descriptors STDIN_FILENO, STDOUT_FILENO, and
STDERR_FILENO (see 5.3.2, “Standard Descriptors” on page 109) before it is
closed.

After this has been performed, the server program specified for the particular
service is executed. This means that for the UNIX environment, everything
read from stdin or written to stdout/stderr as well as everything read from
descriptor STDIN_FILENO (0), written to STDOUT_FILENO (1), or
STDERR_FILENO (2) is read or written to the actual original socket. All the
user program has to do is to include the usual include files (<stdio.h>, ...)
and treat the incoming and outgoing requests as if they were coming from or
directed to the terminal.

A typical program, performing the same function as srv1.c and srv2.c, is
similar to:

Chapter 5. Networking 135

5.3.7.1 Inetd for UNIX

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h> /* close, read, write... */
#include <string.h> /* strstr, memset... */

#define BUFLEN 25
#define EXIT_RC(a, c) {perror(a); return c;}

const char QUIT•“ = ″\x51\x55\x49\x54″ ;

typedef enum rc
{
RC_OK, RC_READ, RC_WRITE

} rcode;

int main(int argc, char **argv)
{
int numbyte;
char buf[BUFLEN];

memset(buf, ′ \0′ , sizeof(buf));

while(!strstr(buf, QUIT))
{
if ((numbyte = read(STDIN_FILENO, buf, sizeof(buf))) < 0)
EXIT_RC(″Read″ , RC_READ)

buf[numbyte] = ′ \0′ ;

if (write(STDOUT_FILENO, buf, strlen(buf)) < 0)
EXIT_RC(″Write″ , RC_WRITE)

}

return RC_OK;
}

Figure 34. Inetd for UNIX. Note that no socket calls whatsoever are used and that
the I/O is performed against stdin and stdout.

So, how is it possible to port this kind of program to OS/400? One problem is
that inetd is not a part of the operating system. However, this does not mean
it is impossible to perform the same functionality. An example of how this
can be done is displayed later in this chapter. A more serious problem is
described in 5.3.2, “Standard Descriptors” on page 109. If you emulate the
inetd functionality using the same procedure as inetd itself, that is, wait on a
port, and dup2() the socket descriptor to the 0, 1 and 2 descriptors, it is
relatively easy. However, only programs written directly to these descriptors
work properly. Programs using any of the standard ILE C runtime stdio
functionality such as gets(), puts(), printf(), and scanf() do not work.

136 UNIX C Applications Porting to AS/400

The following example does not emulate the daemon functionality of inetd.
All it does is to provide some sample means of being able to use code
previously written against any of the standard UNIX descriptors. The deal is
that the server program itself calls a function to initialize the 0, 1, and 2
descriptors at the time of initialization. It also cleans up after itself by calling
the function with another parameter. Using this method, it is not very hard to
write a real inetd daemon with the same functionality.

5.3.7.2 Inetd for OS/400
Include files and #defines of BUFLEN, PORTNUM, and HOLDNUM, as well as
the definition of the return codes (rcode) are found in Figure 20 on page 111.

 . /* Include files and return codes */
typedef enum fcn
{
FCN_INIT, FCN_CLOSE

} fcn;

rcode ovrfd(fcn func);
#ifdef MAIN
static rcode read_des(void);
#endif

/* &numsigndefine of BUFLEN, PORTNUM and HOLDNUM */

const char QUIT[] =
″\x51\x55\x49\x54″ ;

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

#define EXIT_RC(a, b, c) {perror(a); close(b); return c;}

rcode ovrfd(fcn func)
{
int ld, loop;
int sock_opt=1;
static int sd;
static struct sockaddr_in server;

if (func == FCN_CLOSE)
{
for (loop = STDIN_FILENO; loop <= STDERR_FILENO; loop++)
close(loop);

close(sd);
return RC_OK;

}

Chapter 5. Networking 137

if ((ld = socket(AF_INET, SOCK_STREAM, 0)) < 0)
EXIT_RC(″Socket″ , ld, RC_SOCKET)

.

setsockopt(), memset() server.sin_ assignments, bind() and listen() as
shown in the srv_ini function of Figure 21 on page 113.

.
if ((sd = accept(ld, 0, 0)) < 0)
EXIT_RC(″Accept″ , ld, RC_ACCEPT)

close(ld);

for (loop = STDIN_FILENO; loop <= STDERR_FILENO; loop++)
if (sd != loop)
if (dup2(sd, loop) < 0)
{
perror(″dup2()″) ;
EXIT_RC(″dup″ , sd, RC_ACCEPT)

}

return RC_OK;
}

#ifdef MAIN
int main(int argc, char **argv)
{
rcode rc;

ovrfd(FCN_INIT);
rc = read_des();
ovrfd(FCN_CLOSE);

return rc;
}

Figure 35. Inetd for OS/400. A simple example of how the inetd behavior, to some
extent, can be emulated under OS/400.

The read_des() code is slightly changed from the one in Figure 21 on
page 113 in the sense that nothing is passed to it. It works exactly as if it
was used in a non-socket environment.

138 UNIX C Applications Porting to AS/400

static rcode read_des(void)
{
int numbyte;
char buf[BUFLEN];

while(!strstr(buf, QUIT))
{
if ((numbyte = read(0, buf, BUFLEN)) < 0)
EXIT_RC(″Read″, 0, RC_READ)

if (write(1, buf, numbyte) < 0)
EXIT_RC(″Write″, 1, RC_WRITE)

if (write(2, buf, numbyte) < 0)
EXIT_RC(″Write″, 2, RC_WRITE)

}

return RC_OK;
}
#endif

Figure 36. Read_des.c. Rread_des() reads from STDIN_FILENO and writes to
STDOUT_FILENO and STDERR_FILENO. The explicit use of 0, 1, and 2 used in the
read() and write() are only there to demonstrate that these are the descriptor
numbers actually used.

5.3.8 Passing Descriptor Access Permissions
In 5.3.1.1, “UNIX Way” on page 104, we mentioned the possibility of passing
open descriptors between potentially unrelated processes. It allows for one
process to be waiting for socket connections from a client and when a
connection has been performed, pass the open descriptor to another process
that receives client messages, carries out commands, and sends the
response backs. This implies that the first process is a front end process
since it only takes care of the communication connections. This approach
also saves system resources compared to, for example, 5.3.5.1, “The UNIX
Way” on page 119, since no process has to fork. It also differs from 5.3.6.1,
“Descriptor Array for UNIX” on page 130 in the sense that the process that
receives the descriptor does not have to perform any socket initialization
whatsoever.

Basically, there are two ways of performing this function. The SVR4 way is
to create a stream pipe() and pass the descriptor information using the
I_SENDFD and I_RECVFD commands to the ioctl() functions. In 4.3BSD, this
information is forwarded using an AF_UNIX connection based or datagram
socket and the sendmsg() and recvmsg() functions.

Chapter 5. Networking 139

OS/400 does not support either the STREAMS interface or the passing of
open file descriptors through sendmsg() or recvmsg(). The two latter functions
are included in the operating system, but their only purpose is to pass data
between processes.

This means, essentially, that if a UNIX program uses sendmsg() and recvmsg()
for passing data, it still works unmodified. However, if they are used for
passing access rights to descriptors, other alternatives must be considered.
These alternatives are either:

 1. Redesigning the program in such a way that this kind of procedure is not
necessary.

 2. Use the OS/400 functions givedescriptor() and takedescriptor(). An
example is shown in 5.3.8.3, “ Passing Descriptor Access on OS/400” on
page 146.

We assume that the program consists of two processes. Both of them act
like daemons in the sense that neither has a user interface, both are
disconnected from the terminal, and both are IP servers.

Program srv4a is waiting for connections from a client. When a connection
has been established, process srv4b is notified. Program srv4a passes the
access permissions to program srv4b, which handles the rest of the
communication session and program srv4a resumes its waiting on the port.

Program A is similar to:

5.3.8.1 Passing Descriptors Access on UNIX
 . /* Heading from Figure 20 on page 111. */
#include <sys/un.h> /* UNIX domain */
#include <sys/uio.h> /* IO Services */
 .
#include <sys/select.h>
 .
#define NOFD -1 �1�
 .
#define UNDOMNM ″ / tmp/pipename″ �2�
#define EXIT_RC(a, b, c) {return cleanup(a, b, c);}

typedef struct fds
{
int sd;
int ld;
int ud;

} fds;

140 UNIX C Applications Porting to AS/400

static rcode cleanup(fds *desc, char *msg, rcode ret); �3�

int main(int argc, char **argv)
{
char proto = ′ \0′ ;
fds desc;
rcode rc;
fd_set source;
int fdp1, sel_event;
struct iovec iov[1];
struct msghdr msg;
struct sockaddr_un client;

desc.ud = desc.sd = desc.ld = NOFD; �1�

memset((void *)&client, ′ \0′ , sizeof(struct sockaddr_un));

client.sun_family = AF_UNIX;
strcpy(client.sun_path, UNDOMNM); �4�
client.sun_path[strlen(UNDOMNM)] = ′ \0′ ;

if ((desc.ud = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
return cleanup(&desc, ″UNIX Socket″ , RC_SOCKET);

if (connect(desc.ud, (struct sockaddr *) &client, �5�
(int) SUN_LEN(&client)) < 0)

return cleanup(&desc, ″UNIX Connect″ , RC_CONNECT);

if ((rc = srv_ini(&desc)) != RC_OK)
return rc;

FD_ZERO(&source);
FD_SET(desc.ld, &source);

while(1)
{
fdp1 = desc.ld + 1; /* Find the highest fd */

/* Wait for message */
sel_event = select(fdp1, /* Size of bit array */

&source, /* Sockets to listen to */
(void*) 0, /* No Sockets writing */
(void*) 0, /* No Error handling */
NULL); /* Time out period */

/*
* sel_event == 0 for time out, -1 for interrupt or Error
* ready now has the socket(s) that have recv′ d data
*/

if (sel_event < 0)

Chapter 5. Networking 141

{
perror(″Interrupt″) ;
continue;

}

/* If any new process has connected, register it. */
if (FD_ISSET(desc.ld, &source))
{
if ((desc.sd = accept(desc.ld, 0, 0)) < 0)
return cleanup(&desc, ″Accept″ , RC_ACCEPT);

printf(″New connection has been established.\n″) ;
iov[0].iov_base = &proto; �6�
iov[0].iov_len = sizeof proto;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = (caddr_t) 0;
msg.msg_accrights = (caddr_t) &(desc.sd);
msg.msg_accrightslen = sizeof desc.sd;

if(sendmsg(desc.ud, &msg, 0) < 0) �7�
return cleanup(&desc, ″Sendmsg″ , RC_SEND);

close(desc.sd);
}

}

return RC_OK;
}

Figure 37. Passing Descriptor Access on UNIX. This sample connects to a AF_UNIX
named socket, receives requests from AF_INET clients, and passes the open
descriptor derived from the client connection to the server (Figure 38 on page 146).

Notes:

�1� Constant used for un-initialized descriptors.

�2� Since the processes are unrelated, the AF_UNIX connection must
be named. The means for descriptor passing is the file /tmp/pipename.

�3� This routine closes all open descriptors. It has nothing to do with
the logic of the program and is not listed.

�4� Initialization of the sockaddr_un structure used to connect to the
AF_UNIX socket.

�5� Connect to the AF_UNIX socket.

142 UNIX C Applications Porting to AS/400

�6� The only thing we want to do now is to send over the descriptor.
This is easily arranged by not sending any data whatsoever and only
initialize the access fields. However, on the recipient side, the
recvmsg() receives zero bytes. That means, it could mean
complications, since some programs usually look to see if the return
from recv...() functions is zero or negative. In this case, zero is
perfectly normal. However, if this program is terminated one way or
another, a zero is also received on the recipient side.

Additionally, most programs implement some kind of protocol to
specify exactly what is sent, in this case, we specify that if ′0′ is sent
in the data field, access rights are being transferred.

�7� The protocol information and access rights are sent.

Before this program is submitted, the AF_UNIX socket server program srv4b
must be started.

5.3.8.2 Passing Descriptor Access on UNIX Part II
.
#include <errno.h>
.
.
static int high_val(int cnum, int sd, int *conn);
static int cleanup(int a, int b, char *msg, int rc);
extern int errno;
 .
#define NOFD -1
 .
#define QUIT ″QUIT″
 .
 .
int main(int argc, char **argv)
{
char proto = ′ \0′ ;
int numbyte;
int ud, ld, sd;
char buf[BUFLEN];
int conn[MAXCONN];
int cnum = 0;
fd_set source, ready;
int i, sel_event, fdp1;
struct iovec iov[1];
struct msghdr msg;
struct sockaddr_un server;

unlink(UNDOMNM);

Chapter 5. Networking 143

memset((void *)&server, ′ \0′ , sizeof(struct sockaddr_un));

if ((ud = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
return cleanup(NOFD, NOFD, ″UNIX Socket″ , RC_SOCKET);

server.sun_family = AF_UNIX;
strcpy(server.sun_path, UNDOMNM);
server.sun_path[strlen(UNDOMNM)] = ′ \0′ ;

if (bind(ud, (struct sockaddr *) &server,
(int) SUN_LEN(&server)) < 0)

return cleanup(ud, NOFD, ″UNIX Bind″ , RC_BIND);

if (listen(ud, HOLDNUM) < 0)
return cleanup(ud, NOFD, ″UNIX Listen″ , RC_LISTEN);

if ((ld = accept(ud, 0, 0)) < 0)
return cleanup(ud, NOFD, ″UNIX accept″ , RC_ACCEPT);

printf(″Connection from UNIX socket client performed.\n″) ;
iov[0].iov_base = &proto;

 iov[0].iov_len = sizeof(proto);
 msg.msg_iov = iov;
 msg.msg_iovlen = 1;
msg.msg_name = (caddr_t) 0;
msg.msg_accrights = (caddr_t) &sd;
msg.msg_accrightslen = sizeof sd;

FD_ZERO(&source);
FD_SET(ld, &source);

while(1)
{
fdp1 = high_val(cnum, ld, conn) + 1; /* Find the highest fd */

/* Copy the contents of the master (source) fd_set
* to the working (ready) fd_set.
*/
memset((char *)&ready, (int) NULL, sizeof(ready));
memcpy((char *)&ready, (char *)&source, sizeof(ready));

/* Wait for message */
sel_event = select(fdp1, /* Size of bit array */

&ready, /* Sockets to listen to */
(void*) 0, /* No Sockets writing */
(void*) 0, /* No Error handling */
NULL); /* Time out period */

/*

144 UNIX C Applications Porting to AS/400

* sel_event == 0 for time out, -1 for interrupt or Error
* ready now has the socket(s) that have recv′ d data
*/

if (sel_event < 0)
{
perror(″Interrupt″) ;
continue;

}

/* If any new process has connected, register it. */
if (FD_ISSET(ld, &ready))
{
if (cnum == sizeof conn)
{
printf(″Maximum number of connections reached.\n″) ;
continue;

}
�1�

if((recvmsg(ld, &msg, 0) <= 0) || (errno == EBADF))
{
i = cleanup(ud, sd, ″Recvmsg″ , RC_RECV);
close(ld);
return i;

}

printf(″New connection - number %d - has been established.\n″ ,
cnum + 1);

FD_SET(sd, &source);
conn[cnum++] = sd;

}

for (i=0; i < cnum ; i++)
if (FD_ISSET(conn[i], &ready))
{
if (((numbyte = read(conn[i], buf, sizeof(buf))) <= 0)

||
(strstr(buf, QUIT)))

{
printf(″Connection has ended for client number %d.\n″ ,

i + 1);

/* break the communication: Error or shutdown */
FD_CLR(conn[i], &source);
close(conn[i]);

/* move the last socket to the current place */
conn[i] = conn[--cnum];

}
else
{

Chapter 5. Networking 145

buf[numbyte] = ′ \0′ ;
if (write(conn[i], buf, strlen(buf)) < 0)
perror(″Could not write data.″) ;

}
} /* if */

} /* while */

return RC_OK;
}

Figure 38. Passing Descriptor Access on UNIX Part II. This program acts as a
AF_UNIX socket server and receives the open file descriptor from the client
(Figure 37 on page 142). The layout of the program is very similar to Figure 31 on
page 132. For additional details about the logic, see 5.3.6, “Descriptor Arrays” on
page 129.

Notes:

�1� The file descriptor is received.

5.3.8.3 Passing Descriptor Access on OS/400
Now we have an interesting challenge ahead of us. The scheme used in the
UNIX implementation has to be altered entirely, and yet we must try not to
impact the logic of the program more than absolutely necessary.

One of the biggest obstacles is that the server program (srv4b) is waiting on
a select() clause. If sendmsg() is used, the select() reacts properly and
returns control to the program, but givedescriptor() does not affect select()
at all. So how can this be solved? Basically, it does not need to be very
complicated. It is true, that we have replaced the access right passing, but
we still have the protocol character to send. In this program, it is absolutely
not necessary for the logic, since the identifier is never used. However, as
mentioned in �6� of Figure 37 on page 142, it meets a need from a reliability
point of view. In the port to OS/400, this protocol character plays another
important role. The sendmsg() that transmits the character is not removed
from the application logic, instead it triggers the select() of the server
program and notifies it when it is free to call takedescriptor(). If the client
had not issued givedescriptor(), the takedescriptor() call blocks and
prevents the server from listening to any of the existing clients.

146 UNIX C Applications Porting to AS/400

.
#ifndef __ILEC400__
#include <sys/select.h>
#else
#include <sys/time.h>
#endif
.

#define EXIT_RC(a, b, c) {return cleanup(a, b, c);}

#ifdef __ILEC400__
#define JOBID_LEN 16
#endif
 .

struct sockaddr_un client;
 int datalen;
#ifdef __ILEC400__
 char job_ident[JOBID_LEN]; �1�
#endif
.

return cleanup(&desc, ″UNIX Connect″ , RC_CONNECT);

#ifdef __ILEC400__ �2�
if ((rc = read(desc.ud, job_ident, sizeof job_ident))

< sizeof job_ident)
return cleanup(&desc, ″UNIX Read″ , RC_READ);

datalen = 0; �3�
#else

datalen = sizeof desc.sd;
#endif

.
msg.msg_name = (caddr_t) 0;
msg.msg_accrights = (caddr_t) &(desc.sd);
msg.msg_accrightslen = datalen;

#ifdef __ILEC400__
if(givedescriptor(desc.sd, job_ident) < 0) �4�

return cleanup(&desc, ″Givedescriptor″ , RC_SEND);
#endif

if(sendmsg(desc.ud, &msg, 0) < 0) �5�
return cleanup(&desc, ″Sendmsg″ , RC_SEND);

 .

Figure 39. Passing Descriptor Access on OS/400. The figure represents changes that
were done in order to port the mechanism of distributing descriptors between
unrelated processes. A single period (.) on a line means that the code is identical to
Figure 37 on page 142. The changed lines are usually preceded with one or two
lines from the original UNIX code to put it into perspective.

Notes:

�1� This is the internal job ID, which is transferred from the program,
that is to receive the descriptor. Note that we here have added an
extra piece of information to be sent between the processes. The
process, which opens the descriptor and uses givedescriptor() to
pass it, must be aware of this internal identifier, which makes it
necessary to pass it over. Since we already have means for

Chapter 5. Networking 147

accomplishing this (the AF_UNIX socket), this demands little more
than a regular send/receive operation.

�2� The internal job identifier is received.

�3� We no longer pass any access rights using sendmsg(). However,
this call is still performed to transfer the protocol information as
explained initially in this chapter. Since OS/400 implementation
generates a -1 return code if the msg_accrightslen member is
something else except zero, it is necessary to provide a variable,
which has different values depending on the environment.

�4� The givedescriptor() call is non-blocking. After it has been
performed, the sendmsg() wakes the server process from its select()
and makes it accept the new descriptor.

5.3.8.4 Descriptor Access on OS/400 Part II
The program that supplies internal job identifiers and uses the handed
descriptors is similar to:

.
#include <errno.h>

#ifndef __ILEC400__
#include <sys/select.h>
#else
#include <sys/time.h>
#include <qusrjobi.h> �1�
#endif
.
#define UNDOMNM ″ /tmp/pipename″
const char QUIT[] = �2�
″\x51\x55\x49\x54″ ;
 .

struct sockaddr_un server;
#ifdef __ILEC400__
struct { char jobname[10];

char usrname[10]; �3�
char jobnum[6];

} qjobname;

 Qwc_JOBI0100_t jobinfo; �4�
#endif
.
.
printf(″Connection from UNIX socket client performed.\n″) ;

#ifdef __ILEC400__
memset(&qjobname, ′ ′ , sizeof qjobname);
qjobname.jobname[0] = ′ *′ ; �5�

148 UNIX C Applications Porting to AS/400

QUSRJOBI(&jobinfo, sizeof(jobinfo), ″JOBI0100″ ,
&qjobname, &(qjobname.usrname));

if((i = write(ld, jobinfo.Int_Job_ID, �6�
sizeof jobinfo.Int_Job_ID)) <

sizeof(jobinfo.Int_Job_ID))
return cleanup(ud, ld, ″Cc_xwrite″ , RC_WRITE);

i = 0;
#else
i = sizeof sd; �7�

#endif
 .
msg.msg_name = (caddr_t) 0;
msg.msg_accrights = (caddr_t) &sd;
msg.msg_accrightslen = i;

 .
if((recvmsg(ld, &msg, 0) <= 0) || (errno == EBADF))
{
i = cleanup(ud, sd, ″Recvmsg″ , RC_RECV);
close(ld); �8�
return i;

}

#ifdef __ILEC400__
if ((sd = takedescriptor((char *) NULL)) < 0)
{ �9�
i = cleanup(ud, sd, ″Takedescriptor″ , RC_RECV);
close(ld);
return i;

}
#endif

printf(″New connection - number %d - has been established.\n″ ,
cnum + 1);

 .

Figure 40. Passing Descriptor Access on OS/400 part II

Notes:

�1� Since the QUSRJOBI Application Program Interface (API) is used
to derive the internal job identifier, a function prototype must be
included.

�2� And of course QUIT entered from an ASCII terminal does not have
the slightest resemblance to the EBCDIC equivalent.

�3� The input parameters to the QUSRJOBI API must be
instanciated....

�4� ... as well as the structure to hold the result.

Chapter 5. Networking 149

�5� Now we have to initialize the API input parameters. By specifying
an asterisk (*) in the Job name field, we specify that we want
information about the current job. Setting this value also means that
the rest of the members in the structure have to be blank. The last
argument to the API is really supposed to be the Internal job identifier
if it going to identify the job, but since we use Job name for this
purpose, it too must be blank. Instead of declaring a separate
variable for this, a character array of the same length and contents is
used.

�6� The derived job identifier is now sent over the process that is
going to send us the open descriptor.

�7� See �1� in Figure 39 on page 147 for details.

�8� The protocol token has now been received; it means that if the
recvmsg() call succeeds, there should now be a descriptor available.

�9� The descriptor is received and a new client session has been
established.

150 UNIX C Applications Porting to AS/400

� �
Display Object Links

 Directory : /tmp

 Type options, press Enter.
5=Next level 8=Display attributes 9=Display authority

 Opt Object link Type Attribute Text
pipename SOCKET
test.file STMF

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F17=Position to
 F22=Display entire field

� �
Figure 41. Unix Domain File Entry. The preceding pipename is created by the
program for UNIX domain communication. Notice that even though it is listed in the
directory, it is not a file (STMF). If stat or fstat is used, the result shows an file
system entry of the type S_IFSOCK.

5.4 General Tips When Porting Network Applications to OS/400
This chapter is a short summary of what to think about when porting network
(IP) applications from UNIX to the AS/400 system. Some items are not
limited to just networking related topics, but can have an impact on all types
of applications.

Item What to Think About

STREAMS OS/400 does not support the STREAMS interface.
In other words, there is no support for the
following ioctl() commands:

• I_FLUSH

• I_SETSIG

• I_GETSIG

Chapter 5. Networking 151

• I_LOOK

• I_FIND

• I_PEEK

• I_SRDOPT

• I_GRDOPT

• I_NREAD

• I_STR

• I_SENDFD

• I_RECVFD

• I_LINK

• I_UNLINK

Descriptor Access OS/400 does not support the passing of open
descriptors using sendmsg() and recvmsg(). The
functions are there, but can only be used to pass
data. Additionally, as pointed out in and in , the
I_SENDFD and I_RECVFD functions cannot be
used to pass open file descriptor information as
introduced in SVR4.

However, other methods might be used for this
kind of open descriptor passing between
unrelated processes. See 5.3.1, “Passing of
Descriptors” on page 104 for details.

TLI OS/400 does not support the TLI (Transport Level
Interface) programming model for network
transport layer independence primarily used for
the TCP/IP and UDP/IP protocol suite and for the
OSI equivalent.

Header File Location This is usually a problem also when porting
between UNIX environments. An example is the
<sys/errno.h> f i le, which does not exist on
OS/400. It can only be found as <errno.h>.
Addit ionally, for example, <signal.h> must be
speci f ied as <sys/s ignal .h>. Most UNIX
systems have a symbolic link from /usr/include to
/usr/include/sys for some header files.

152 UNIX C Applications Porting to AS/400

RPC OS/400 supports neither Sun′s Remote Procedure
Calls nor Apollo′s NCS (Network Computing
System). However, DCE/400 allows for DCE
(Distributed Computing Environment) RPC
functionality on the AS/400 system.

Contents of header files In AIX, Solaris and SunOS for example, the
<sys/select.h> is needed for the select()
function prototype and the FD_ macros. On
OS/400 and HP-UX, it is enough to include
<sys / t ypes .h> and <sys / t ime .h> .

Variable initialization Particularly important for structures such as
sockaddr_in and sockaddr_un. They should be
cleared (memset()) before they are used in any
subroutine or API call.

Source file record length The default record length using the CRTSRCPF
(Create Source Physical File) on the AS/400
system is 80 bytes + 12 bytes for date and
sequence information. It is generally a good idea
to use at least 132 bytes (+ 12) to make certain
that the file is able to contain the source lines
without truncating them.

Compiler defines The ILE C/400 compiler automatically defines the
__ILEC400__ symbol, which can be used in #ifdef
constructs.

sys_errlist [] No sys_errlist exists on OS/400. The information
can be retrieved by writing a function, though. If
this method is used, sys_errlist must be defined
as a macro.

fork(), exec() There is no fork() and exec() in OS/400.
Methods of circumventing this problem are found
in 5.3.1, “Passing of Descriptors” on page 104.

STDXXX_FILENO There is no automatic connection between file
descriptors 0, 1, and 2 and the FILE structures
stdin, stdout, and stderr. Depending on how the
application is using this relationship, different
methods of circumventing the problem can be
used. See 5.3.7, “Inetd (The Super Daemon)” on
page 134 for an example.

Chapter 5. Networking 153

NLS OS/400 does not support the XPG3 catopen(),
catclose(), and catgets() calls. They can be
created using regular operating system message
files, though.

setuid() There are some authority process related
functions that are not implemented in OS/400
Examples are setuid(), setgid(), the set-uid bit
on files, and initgroups() as well as certain pid
related functions (see Chapter 4, “Process
Management” on page 41 for details).

bzero(), bcopy(), bcmp() Use the SYSV libc function memset(). The ILE
C/400 runtime does not use the BSD related
bzero(). Note that it is very important to clear the
sockaddr_in structure, especially on the AS/400
system. If it is not properly cleared, strange
errors might appear of which errno EINVAL is
only one. The same rule applies to the BSD
functions bcopy() and bcmp. Instead, the ANSI
compliant functions memcpy() and memcmp() should
be used.

htons() Do not forget to filter the integer representation of
the port number through htons() in order to
convert from host byte order to network byte
order. If this is not done, problems can occur
when porting to systems where the byte order
between local host byte order and standard
network order is different. This is, however, not
the case in OS/400.

sockaddr_in, sockaddr_un On some UNIX operating systems, the sockaddr_un
and sockaddr_in structures have an extra length
field. For example, compare sockaddr_un of
Solaris to the one on AIX:

154 UNIX C Applications Porting to AS/400

/*
 * Definitions for UNIX IPC domain.
 */
struct sockaddr_un {

u_char sun_len; /* sockaddr len including null */
u_char sun_family; /* AF_UNIX */
char sun_path[108]; /* path name (gag) */

};

/*
 * Definitions for UNIX IPC domain.
 */
struct sockaddr_un {

short sun_family; /* AF_UNIX */
char sun_path[108] /* path name (gag) */

};

Figure 42. Sockaddr_un. The first structure is from AIX and the second from Solaris
(SunOS 5.3).

Vanilla UNIX is without the sun_len member,
which was included as a part of 4.3BSD Reno and
later. OS/400 is using the vanilla version.

Chapter 5. Networking 155

156 UNIX C Applications Porting to AS/400

Chapter 6. Development Environment on AS/400 System

This chapter includes the topics of the applications development environment
of the AS/400 system from the viewpoint of UNIX C applications porting. We
expect you are already familiar with the general description of the AS/400
system ′s applications development environment, especially for C applications
such as ADT/400 and ILE C/400. For those who need basic understandings of
it, refer to the Appendix C, “Development Cycle of ILE C/400 Applications”
on page 259.

6.1 Editors and Programs Location
Probably the first thing we need to remind you of is the location of editors
and created objects (programs, if you will) on the AS/400 system. If you have
read Chapter 3, “File System - AS/400 Integrated File System” on page 25,
you know that the AS/400 system has a file system with the characteristics of
UNIX file systems: they are /QOpenSys file system and / ″root″ file system.
Unfortunately, the system editor, SEU, does not work on those file systems.
In fact, SEU only works on DB files (that is, the native, traditional AS/400 file
system: /QSYS.LIB file system).

This means you cannot edit stream files stored in either / ″root″ file system
or /QOpenSys file system. This also means, therefore, you have to port your
source files into /QSYS.LIB file system as members in the source physical
files in your library. One reminder here is that there are only three levels of
directory structure (well, four levels if you include QSYS.LIB itself) in the
/QSYS.LIB file system. All of your source files should be in three level
relationship of Library/SourcePhysicalFile/Member. Depending on the
complexity of your applications structure, this could be a major concern.

Another point of consideration is that when you create modules, objects, or
programs on the AS/400 system, their target locations should always be as
modules (*MOD) or programs (*PGM) in the libraries. Again, the maximum
level of directory structure here is limited to two (Library/Object) and you
cannot store and execute them in file systems other than the /QSYS.LIB file
system, (such as / ″root″ file system or /QOpenSys file system).

One possible solution is having a cross-compiler generally available where
you develop the sources in UNIX platforms, such as AIX, and then create the

 Copyright IBM Corp. 1995 157

objects on the AS/400 system. At the moment of writing this book, there is
no such things generally available.

Of course another solution, which is more fundamental, is having the system
editor work on any files on any file system of the AS/400 system and having
an executables interpreter on the AS/400 system, but it sounds like a long
shut at this moment.

6.2 ILE C/400 Compiler
The ILE C/400 Compiler is a full standard ANSI C compiler for the AS/400
system. It provides the System Application Architecture (SAA) C level 2
interfaces in addition to the ANSI C standards. This section introduces ILE/C
400 compiler specifics only because its language element is compliant to
ANSI C.

6.2.1 Packed Qualifier
The _Packed Qualifier removes padding between members of structures and
unions. However, the storage saved using packed structures and unions
may come at the expense of runtime performance. Most machines access
data more efficiently if it is aligned on appropriate boundaries. With packed
structures and unions, members are generally not aligned on natural
boundaries, and the member assessing operations (dot (&dot). and ->
operator) are slower.

But pointers are always aligned on their natural boundaries, 16 bytes, even
in _Packed structures and unions.

The Figure 43 on page 159 shows the differences between the normal
structure and the packed structure.

158 UNIX C Applications Porting to AS/400

struct a { _Packed struct b {
char ch; char ch;
double d; double d;
void *p; void *p;

}; };

struct a _Packed struct b
Adress: 0 : ch Adress: 0 : ch

1-7 : - 1-8 : d
8-15 : d 9-15 : -
16-31 : p 16-31 : p

Figure 43. Storage Al ignment

6.2.2 Special Type
The ILE/C compiler provides the type of decimal, Packed Decimal , besides
the standard types, such as char, int, double, and so on. To declare this data
type, the header file <dec imal .h> must be included in the source code. Its
usage is:

decimal(n,p) varid;

where n is number of digits and p is decimal points. The n and p have
ranges of p • n, 1 • n • 31, and 0 • p. The size of packed decimal is
(n+1) /2 .

6.2.3 Macros Defined Only by ILE/C Compiler
The C language provides some predefined macros, such as __FILE__,
__LINE__, __DATE__, __STDC__, and so on. Besides these, the ILE/C
compiler provides more macros, which are dependent on ILE environment.
The predefined macros only by ILE/C compiler are:

__ILEC400__
You can use this macro in your source code that is compiled for
several platforms to block off code that is to be compiled only
for the the AS/400 platform with #ifdef __ILEC400__ or #if
defined (__ILEC400__) preprocessor directives.

__TIMESTAMP__
A character string literal containing the date and time when the
source file was last modified. The date and time is in the form:

Chapter 6. Development Environment on AS/400 System 159

″Day Mmm dd hh:mm:ss yyyy″ :

.

_IS_QSYSINC_INSTALLED
This macro is defined when the QSYSINC library is successfully
added to the product portion of the library list.

6.2.4 Include Directive
A preprocessor include directive causes the preprocessor to replace the
directive with the contents of the specified file. Because the file structure of
AS/400 system is different from other systems, the search path and the
format of the include file is different from the UNIX system.

The Table 15 shows the search path and the format of include files.

Table 15. Search Paths for #include Directive Used by ILE C/400

Include Type Search Path

< m e m b e r > QCSRC

″member ″ The SRCFILE of the root source member.

<f i le /member> Searches the current library list (*LIBL).

″file/member ″ 1. Check the library containing the root source member.

 2. Searches the user portion of the library list.

 3. Searches the library list.

<l ib/ f i le /member> Searches for lib/file/member only.

″lib/file/member ″ 1. Searches for l ib/f i le/member only

 2. Searches the user portion of the library list.

6.2.5 ILE C/400 Specific #pragma Preprocessing Directives
The table Table 16 on page 161 shows the ILE C/400 specific #pragma
preprocessing directives. For the syntax and usage, refer to the ILE C/400
reference manual.

160 UNIX C Applications Porting to AS/400

Table 16 (Page 1 of 2). #pragma Preprocessor Directives

Directive Description

Argument Specifies the argument-passing mechanism to be used for the
procedure or typedef named as the first parameter.

Cancel_handler Specifies that the function named is to be enabled as a
user-defined ILE cancel handler at the point in the code where
the #pragma cancel_ handler directive is located.

Checkout Specifies whether or not the compiler should give informational
message indicating possible programming errors when a
CHECKOUT option other than *NONE is specified on the
CRTCMOD or CRTBNDC command.

Convert Specifies Code Character Set Identifier (CCSID) to use for
converting the string literals from that point onward in a source
file during compilation.

Disable_handler Specifies the handler most recently enabled by either the
exception_handler or cancel_handler pragma.

Exception_handler Enables a user defined ILE exception handler at the point in the
code where the #pragma exception_handler is located.

Inline Specifies that function_name is to be inlined.

Linkage Specifies that the external program is called using OS/400
calling conventions.

mapinc Indicates that external AS/400 file descriptions are to be
included in an ILE C/400 module.

Margins Specifies the left and right margins to be used as the first and
last column respectively, when scanning the records of the
source member where the # pragma directive occurs.

Noinline Specifies that a function will not be inlined.

Nomargins Specifies that the entire input record is to be scanned for input.

Nosequence Specifies that the input record does not contain sequence
numbers.

Nosigtrunc Specifies that no exception is generated at runtime when
overflow occurs with packed decimals in arithmetic operation,
casting, initialization, or function calls.

Chapter 6. Development Environment on AS/400 System 161

Table 16 (Page 2 of 2). #pragma Preprocessor Directives

Directive Description

Descriptor The #pragma descriptor directive is used to identify functions
whose arguments have operational descriptors. It is useful
when passing arguments to functions written in other languages
that may have a different definition on the data types of the
arguments.

Pointer Allows the use of the AS/400 pointer types, such as space
pointer, system pointer, invocation pointer, label pointer,
suspend pointer, and open pointer.

Sequence Specifies the columns of the input record that are to contain
sequence numbers.

6.3 Shell Scripts versus CLP
In the UNIX system, there is a command interpreter, sh , which gets the input
from the keyboard, parses the input, and finally executes.

A shell script is a file that contains sequences of shell commands just as you
type them from the keyboard. Shell scripts enable you to customize your
environment by adding your own commands. Shell provides also the
language element with which the user can branch, or executes in a loop and
so on. Even the output of one command can be redirected to the input of
another command. For the UNIX system developer, the shell programming is
a very powerful and flexible development tool and its script is a part of an
application.

On the the AS/400 system there is a control language (CL) , which is the
primary interface to the operating system. A single control language
statement is called a command . For all commands, the operating system
provides prompting support, default values for parameters, and validity
checking. A command includes:

• Command name

• Command processing program (CPP)

• Parameters and values that are valid for the command

• Validity checking information

162 UNIX C Applications Porting to AS/400

• Prompt text

• Online help information

Similar to the shell script in the UNIX system, a sequence of commands can
be written in a source member. But to execute this file, it should be
successfully compiled.

6.3.1 CL Programming
A CL procedure is a group of CL commands that tells the system where to
get input, how to process it, and where to place the result. When you enter
CL commands individually (from the Command Entry display or command
line), each command is separately processed. When you enter CL
commands as source statements for a CL procedure, this can be compiled
into a program to be run. The source can be compiled into a module. To
create a CL program, the following steps are required.

 1. Source creation: CL procedures consist of CL commands. In most
cases, source statements are entered into a database file in the logical
sequence determined by your application design.

 2. Module creation: Using the Create Control Language Module
(CRTCLMOD) command, this source is used to create a system object.
The created CL module can be bound into programs. A CL module
consists one CL procedure. Other HLL languages may contain multiple
procedures for each module.

 3. Program creation: Using the Create Program (CRTPGM) command, this
module is used to create a program.

Notes:

If you want to create a program consisting of only one CL module, you
can use the Create Bound CL Program (CRTBNDCL) command, which
combines steps 2 and 3.

The following Table 17 shows the parts of CL procedures.

Table 17 (Page 1 of 2). Parts of a CL Procedure

Command Keyword Description

PGM PGM PARM (&A) Optional PGM command beginning the
procedure and identifying any parameters
received.

Chapter 6. Development Environment on AS/400 System 163

Table 17 (Page 2 of 2). Parts of a CL Procedure

Command Keyword Description

Declare DCL, DCLF Mandatory declaration of procedure
variables when variables are used. The
declare commands must precede all
other commands except the PGM
command.

CL processing CHGVAR,
SNDPGMMSG,
OVRDBF, DLTF,...

CL commands used as source statements
to manipulate constants or variables (this
is a partial list).

Logic control IF, THEN, ELSE,
DO, ENDDO, GOTO

Commands used to control processing
within the CL procedure.

Functions %SBUSTR(%SST),
%SWITCH,
%BINARY(%BIN)

Built-in functions and operators used in
arithmetic, relational, or logical
expressions.

Program control CALL,RETURN CL commands used to pass control to
other programs.

Procedure control CALLPRC,RETURN CL commands used to pass control to
other procedures.

ENDPGM ENDPGM Optional End Program command.

6.3.2 Creating a CL Program
If a CL source code editing is finished with the command STRSEU, it can be
compiled into module or direct into a program.

Note: The editor provides the user with a CL command prompt for the
syntax help, online help for the command, and validity checking for command
parameters.

The related CL program creation commands are listed in Table 18.

Table 18 (Page 1 of 2). CL Program Creation Commands

Command Description

CRTCLMOD Creates a CL module.

164 UNIX C Applications Porting to AS/400

Note:

The command CRTCLPGM creates an OPM program.

Table 18 (Page 2 of 2). CL Program Creation Commands

Command Description

DLTMOD Deletes a module.

DLTPGM Deletes a program.

CRTBNDCL Create a bound CL program.

CRTPGM Creates a program.

CRTSRVPGM Creates a service program.

CRTCLPGM (*) Creates a CL program.

6.3.3 CL Programs for Shell Scripts Examples
This section provides some CL programs examples for certain shell scripts.

create a object with debug information
source file name must be passed without extension.

cc -c -o $1 -g $dollar.c

If the preceding shell script is translated into the CL source program, it is
shown as follows.

/* This program creates a module from the source member, which */
/* will be passed as parameter. It is assumed the creation */
/* library is the current library, which will be set with the */
/* command CHGCURLIB libname. */

PGM PARM(&MBRNAME)
DCL VAR(&MBRNAME) TYPE(*CHAR) LEN(10)
CRTCMOD MODULE(&MBRNAME) SRCFILE(*CURLIB/QCSRC) +

OUTPUT(*PRINT) DBGVIEW(*ALL)
ENDPGM

If modules are successfully compiled, they should be linked into a program.
In the unix shell, script is shown as follows.

Chapter 6. Development Environment on AS/400 System 165

This script binds objects to the program cprog.

ld -o cprog cmain.o ctable.o cinput.o cpwd.o cls.o ccd.o ccat.o

The translated CL source is shown as follows.

/* This CL program binds C modules to the program cprog. */
/* The default library is *CURLIB */

PGM
CRTPGM PGM(CPROG) MODULE(CMAIN CINPUT CTABLE CCD CPWD CCAT CLS)
ENDPGM

or

/* This CL program binds C modules and service programs */
/* to the program cprog. */
/* The default library is *CURLIB */

PGM
CRTPGM PGM(CPROG) MODULE(CMAIN CINPUT CTABLE) +

BNDSRVPGM(CCD CPWD CCAT CLS)
ENDPGM

Another example is an utility program, which reads the symbol names from
the service program or programs. It is useful if you want to know where the
symbol is defined or to find the symbols.

PGM PARM(&PROG &LIB)
DCL VAR(&PROG) TYPE(*CHAR) LEN(10)
DCL VAR(&LIB) TYPE(*CHAR) LEN(10)
DCLF FILE(QSYS/QADSPOBJ)

CHGJOB LOG(*SAME *SAME *MSG)
CLRPFM FILE(MYLIB/EXPINFO)
MONMSG MSGID(CPF3142) EXEC(CRTPF +

FILE(MYLIB/EXPINFO) RCDLEN(132))
/* */

DSPOBJD OBJ(&LIB/&PROG) OBJTYPE(*SRVPGM) +
OUTPUT(*OUTFILE) OUTFILE(QTEMP/TEMPFIL)

OVRDBF FILE(QADSPOBJ) TOFILE(QTEMP/TEMPFIL)
 LOOP: RCVF

MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(END))
DSPSRVPGM SRVPGM(&ODLBNM/&ODOBNM) OUTPUT(*PRINT) +

DETAIL(*PROCEXP)
SNDPGMMSG MSG(′ Processing file′ *bcat &ODLBNM *cat +

166 UNIX C Applications Porting to AS/400

′ / ′ *cat &ODOBNM *cat ′ . ′)
CPYSPLF FILE(QSYSPRT) TOFILE(MYLIB/EXPINFO) +

SPLNBR(*ONLY) MBROPT(*ADD)
MONMSG MSGID(CPF3303) EXEC(GOTO CMDLBL(END))
DLTSPLF FILE(QSYSPRT) SPLNBR(*ONLY)

/* */
GOTO CMDLBL(LOOP)

/* */
 END: ENDPGM

If shell scripts are part of an application, they should be rewritten in CL but
just as a reminder, CL programs have the following benefits:

• Very fast
• Bindable
• Can be called as an external function
• Good interface with other programs

6.4 Makefile
The ILE C/400 provides also a make utility TMKMAKE . But the usage of it is
a little different from one on the UNIX system. If you want use the make
utility, you must first create it. This is done by creating a CL program that
builds the objects you need. The complete source codes of TMKMAKE are
available for the user and are in the QATTSYSC file in the QUSRTOOL
library.

6.4.1 How to Create Make Utility TMKMAKE
You must consider first where you want to create the utility. If you want it in
the MYLIB library, for example, enter the following command.

CRTCLPGM PGM(MYLIB/TMKINST) SRCFILE(QUSRTOOL/QATTCL)

The library MYLIB must already exist.

Now you can run the install program you have just created in the library
MYLIB. If you enter the following command, the TMKMAKE tool is installed.

CALL MYLIB/TMKINST MYLIB

The library name can be different from the library in which you have created
the install program TMKINST .

Chapter 6. Development Environment on AS/400 System 167

6.4.2 Make Utility Example
To create the target program CPROG, enter the following command:.

TMKMAKE SRCFILE(SEY/QCSRC) SRCMBR(MAKEFILE)

The name of library, source file, and source member are used here, for
example.

This makefile is used to create CPROG

#
The silent command instructs TMKMAKE not to echo the statements
#

.SILENT:

#
define macros for the commands and options to be used
#

CCOPTS=OUTPUT(*PRINT) DBGVIEW(*ALL) REPLACE(*YES)
CC=CRTCMOD
LD=CRTPGM
AR=CRTSRVPGM
LIB=SEY

#
define macros which describe the nesting within the includes
#

commh = ccomm.h
protoh = crpoto.h
allhs = $(commh) $(protoh)

#
describe the rule the create the *PGM CPROG
#

CPROG<PGM>:CMAIN<MODULE> CINPUT<MODULE> CTABLE<MODULE> MYSRVPGM<SRVPGM>
$(LD) PGM($(LIB)/CPROG) \

MODULE($(LIB)/CMAIN $(LIB)/CINPUT $(LIB)/CTAB
LE) \

BNDSRVPGM(MYSRVPGM)

168 UNIX C Applications Porting to AS/400

#
describe the rules to create the *SRVPGM objects
#

MYSRVPGM<SRVPGM>:CCD<MODULE> CPWD<MODULE> CCAT<MODULE> CLS<MODULE>
$(AR) SRVPGM($(LIB)/MYSRVPGM) \

MODULE($(LIB)/CCD $(LIB)/CPWD $(LIB)/CCAT &do
llar.(LIB)/CLS) \

EXPORT(*ALL)

#
describe the rules to create the *MODULE objects
#

CMAIN<MODULE>: CMAIN.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CMAIN) SRCFILE($(LIB)/QCSRC) &d

ollar.(CCOPTS)

CINPUT<MODULE>: CINPUT.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CINPUT) SRCFILE($(LIB)/QCSRC) &

dollar.(CCOPTS)

CTABLE<MODULE>: CTABLE.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CTABLE) SRCFILE($(LIB)/QCSRC) &

dollar.(CCOPTS)

CCD<MODULE>: CCD.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CCD) SRCFILE($(LIB)/QCSRC) &dol

lar.(CCOPTS)

CPWD<MODULE>: CPWD.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CPWD) SRCFILE($(LIB)/QCSRC) &do

llar.(CCOPTS)

CCAT<MODULE>: CCAT.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CCAT) SRCFILE($(LIB)/QCSRC) &do

llar.(CCOPTS)

CLS<MODULE>: CLS.QCSRC<FILE> $(ALLHS)
$(CC) MODULE($(LIB)/CLS) SRCFILE($(LIB)/QCSRC) &dol

lar.(CCOPTS)

Chapter 6. Development Environment on AS/400 System 169

Figure 44. Makefile

For more information about TMKMAKE, see QATTINFO(TMKINFO) in the
QATTSYSC library.

170 UNIX C Applications Porting to AS/400

Appendix A. Integrated File System Tutorial

This appendix provides a tutorial for a short tour on the integrated file
system. On the integrated file system menu, you can do the following
operations by selecting options or command.

• Create and remove a directory.

• Display and change the name of the current directory.

• Add, display, and remove object links.

• Copy, move, and rename objects.

• Check out and check in objects.

• Save (back up) and restore objects.

• Display and change object owners and user authorities.

• Copy data between stream files and database file members.

 Copyright IBM Corp. 1995 171

A.1 Get into the Integrated File System
On any command line, enter go data as is shown on the following display.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> go data

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu
 (C) COPYRIGHT IBM CORP. 1980, 1994.

� �
Figure 45. AS/400 Main Menu with Go Data Command Specified

172 UNIX C Applications Porting to AS/400

The Files, Libraries, and Folders menu is displayed.

� �
 DATA Files, Libraries, and Folders

System: XXXX
 Select one of the following:

1. Files
2. Libraries
3. Folders
4. Client Access tasks
5. Integrated File System

 Selection or command
 ===> 5

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F16=AS/400 Main menu
 (C) COPYRIGHT IBM CORP. 1980, 1994.� �

Figure 46. Files, Libraries, and Folders Menu with Option 5 Specified

Select 5 option and press Enter; then the integrated file system menu is
displayed.

Appendix A. Integrated File System Tutorial 173

� �
 FILESYS Integrated File System

System: XXXX
 Select one of the following:

1. Directory commands
2. Object commands
3. Security commands

 Selection or command
 ===> 2

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F16=AS/400 Main menu
 (C) COPYRIGHT IBM CORP. 1980, 1994.� �

Figure 47. Integrated File System Menu with Option 2 Specified

In this section, Directory commands and Object commands are explained on
the Work with Object Links menu.

Let′s go to the Work with Object Links menu. Select the Object commands
on the integrated file system menu.

174 UNIX C Applications Porting to AS/400

Select Work with object links option on Object Commands menu.

� �
FSOBJ Object Commands

System: XXXX
 Select one of the following:

1. Work with object links
2. Display object links
3. Copy object
4. Rename object
5. Move object
6. Add link
7. Remove link
8. Check out object
9. Check in object
10. Copy to stream file
11. Copy from stream file
12. Save object
13. Restore object

 Selection or command
 ===> 1

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F16=AS/400 Main menu
 (C) COPYRIGHT IBM CORP. 1980, 1994.� �

Figure 48. Object Commands Menu with Option 1 Specified

Appendix A. Integrated File System Tutorial 175

Press Enter on Work with Object Links Prompt text display.

� �
Work with Object Links (WRKLNK)

 Type choices, press Enter.

 Object ′ *′

 Object type *ALL *ALL, *ALLDIR, *ALRTBL...
 Detail *PRV *PRV, *NAME, *BASIC...
 Display option *PRV *PRV, *USER, *ALL

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �
Figure 49. Work with Object Links Prompt Text

176 UNIX C Applications Porting to AS/400

Then Work with Object Links menu is displayed.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
testdj.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 50. Work with Object Links Menu

Appendix A. Integrated File System Tutorial 177

When you enter the WRKLNK command on the command line of any display,
the Work with Object Link Menu is displayed also.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> wrklnk

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu

� �
Figure 51. Work with Object Links Menu with WRKLNK Command Specified

A.2 Current Directory and Home Directory
When a user requests an operation on an object such as a file, the system
looks for the object in the user′s current directory unless the user specifies a
different directory path. The current directory is similar to the idea of the
current library. It is also called the current working directory or just working
directory .

The home directory is used as the current directory for a user when the user
signs on the system. The name of the home directory is specified in the user
profile for a user. When a job is started for a user, the system looks in the
user profile for the name of the user′s home directory. If a directory by that
name does not exist on the system, the current directory is set to ′root ′(/)
directory.

178 UNIX C Applications Porting to AS/400

Typically, the system administrator who creates the user profile for a user
also creates the user′s home directory. There is a subdirectory called home
under the root directory that contains the home directory for each user. The
system default is to use the name of the user profile for each user to identify
the home directory for that user.

Let′s see a home directory by using the DSPUSRPRF command.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> dspusrprf userid

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu

� �
Figure 52. AS/400 Main Menu with DSPUSRPRF Command Specified

Appendix A. Integrated File System Tutorial 179

Press Enter; then the Display User Profile display is shown. This display
shows you information about user profiles. You can reach the bottom of this
information with the Page Down key and see the name of home directory on
this display.

� �
Display User Profile - Basic

 User profile : userid

 Home directory : /home/userid

Bottom
 Press Enter to continue.

 F3=Exit F12=Cancel

� �
Figure 53. Display User Profi le

Notes:

This does not mean that the ′ /home/userid ′ directory is automatically
created by the system when you sign on a system such as a UNIX
system. This directory should be created manually.

So, let′s make the ″home″ directory. If your ″home″ directory is already
created in your system, skip this procedure.

180 UNIX C Applications Porting to AS/400

Enter WRKLNK on the command line of the MAIN menu.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> wrklnk

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu

� �
Figure 54. AS/400 Main Menu with WRKLNK Command Specified

Appendix A. Integrated File System Tutorial 181

The ″/home/userid″ directory does not exist, so the ″root(/)″ directory is set
to the current directory. Let′s get into the ″/home″ directory by typing 5 in
the Opt column.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
file1.wrt STMF

5 home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 55. Work with Object Link Menu

You can confirm that ′ /home/userid ′ directory does not exist here.

182 UNIX C Applications Porting to AS/400

Let′s make a ″userid″ directory in the ″/home″ directory. To do this, we have
to change the current directory to ″/home″ directory. You can change the
current directory by using the ″CD″ command.

� �
Work with Object Links

 Directory : /home

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
seyeon DIR
test.file STMF
ux2 DIR
ux5 DIR

Bottom
 Parameters or command
 ===> cd home
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 56. Work with Object Link Menu with CD Command Specified

Appendix A. Integrated File System Tutorial 183

And then, you can make a ″userid″ directory by using the MD command.
Type ′md userid ′ and press Enter, you can see the ″Directory created″
message.

And you can get the refreshed list by pressing the <F5> key.

� �
Work with Object Links

 Directory : /home

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
seyeon DIR
test.file STMF
ux2 DIR
ux5 DIR

Bottom
 Parameters or command
 ===> md userid
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 57. Work with Object Link Menu with MD Command Specified

184 UNIX C Applications Porting to AS/400

Now, sign off the system and sign on again to check the current directory.
Enter WRKLNK on the command line of the MAIN menu.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> wrklnk

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu

� �
Figure 58. AS/400 Main Menu with WRKLNK Command Specified

Appendix A. Integrated File System Tutorial 185

Press Enter; then the Work with Object Links menu for ″/home/userid″ is
displayed. In the previous section, the Work with Object Links menu for the
″root″ directory was displayed because the ″/home/userid″ directory did not
exist.

� �
Work with Object Links

 Directory : /home/userid

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
myfile.file STMF

Bottom
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 59. Work with Object Links Menu

186 UNIX C Applications Porting to AS/400

A.3 Create and Remove a Directory
Create a Directory: To create a directory, you can use the MD, the MKDIR ,
or the CRTDIR command.

When you want to create a ″mydir″ directory, enter MD mydir on command
line and press Enter.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===> md mydir
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 60. Work with Object Menu with MD Command Specified

Appendix A. Integrated File System Tutorial 187

Then the Directory created message is displayed but there is no change on
the list.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Directory created.� �

Figure 61. Work with Object Menu with Directory Created Message

188 UNIX C Applications Porting to AS/400

When you press the F5 key, the list is updated.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 62. Work with Object Menu with Refreshed List

MKDIR and CRTDIR commands also do the same work. So ″MKDIR mydir″
or ″CRTDIR mydir″ gives the same results as ″MD mydir″.

Appendix A. Integrated File System Tutorial 189

Remove a Directory: To remove a directory, you can use option 4 or theRD,
the RMDIR, or the RMVDIR command.

When you want to remove ″mydir″ directory, enter 2 in the Opt column or
enter the RD mydir command on a command line and press Enter.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR

4 mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 63. Work with Object Menu with Option 4 Specified

190 UNIX C Applications Porting to AS/400

If ″mydir″ directory contains objects, then it cannot be erased.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR

 4 mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
The request cannot be completed. Directory contains objects.� �

Figure 64. Work with Object Menu with Rejection Message

Appendix A. Integrated File System Tutorial 191

Or if ″mydir″ directory contains no objects, then it is erased through the
confirmation window.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Directory removed.� �

Figure 65. Work with Object Menu with Directory Removed Message

192 UNIX C Applications Porting to AS/400

Or, use the RD mydir command to remove a directory.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===> rd mydir
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 66. Work with Object Menu with RD Command Specified

Appendix A. Integrated File System Tutorial 193

RMDIR and RMVDIR commands also do the same work. So ″RMDIR mydir″
or ″RMVDIR mydir″ have the same results as ″RD mydir″.

A.4 Display and Change Current Directory
Display the Name of the Current Directory: When you want to know the
name of current directory, type DSPCURDIR on a command line and press
Enter.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
testdj.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===> dspcurdir
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 67. Work with Object Menu with DSPCURDIR Command Specified

194 UNIX C Applications Porting to AS/400

Then the Display Current Working Directory is displayed.

� �
Display Current Working Directory

 Directory : /

 Press Enter to continue.

 F3=Exit F12=Cancel

� �
Figure 68. Display Current Working Directory

Appendix A. Integrated File System Tutorial 195

Work with next level: When you want to work with objects in ″mydir″
directory, then type 5 in the Opt column for ″mydir″ and press Enter.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR

5 mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 69. Work with Object Menu with Option 5 Specified

196 UNIX C Applications Porting to AS/400

Then Work with Object Links for ″/mydir″ is displayed.

� �
Work with Object Links

 Directory : /mydir

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
myfile.file STMF
myfile1.file STMF
myfile2.file STMF

Bottom
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 70. Work with Object Menu with Next Level

You can use this option to work with object links in a directory. You can use
this option only on an object that is handled as a directory; for example, an
object whose type is DIR(directory), DDIR(distributed directory), LIB(library),
or FLR(folder).

In the UNIX system, if you change the directory with the command cd mydir ,
″mydir″ is the current working directory. However, in the integrated file
system, although you work in the directory ″/mydir″ in the preceding display,
this is not the current working directory. This is just the same as the
command ls /mydir in UNIX Because the current working directory is not set
yet, the current working directory is still the ″root″ directory or home
directory. So, if you copy (or move) an object in ″mydir″, this object is
copied (or moved) to the root directory or home directory unless you specify
another directory.

The following chapter shows you about changing the current directory.

Appendix A. Integrated File System Tutorial 197

Change Current Directory: To change the current directory, you can use
Option 11, the CD, or the CHGCURDIR command.

When you want to change the current directory to ″mydir″, then type 11 in the
Opt column for the ″mydir″ object, or enter cd mydir on a command line.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR

11 mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 71. Work with Object Menu with Option 11 Specified

198 UNIX C Applications Porting to AS/400

Press Enter; then the Current directory changed message is displayed.

You can use option 11 only an object that is handled as a directory; for
example, an object whose type is DIR(directory), DDIR(distributed directory),
LIB(library), or FLR(folder).

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Current directory changed.� �

Figure 72. Work with Object Menu with Current Directory Changed Message

Appendix A. Integrated File System Tutorial 199

Or, use the CD command to change current directory. Enter cd mydir on the
command line.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
testdj.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===> cd mydir
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 73. Work with Object Menu with CD Command Specified

200 UNIX C Applications Porting to AS/400

Press Enter; then the Current directory changed message is displayed.

The ″CHGCURDIR″ command does the same work.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
testdj.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Current directory changed.� �

Figure 74. Work with Object Menu with Current Directory Changed Message

Appendix A. Integrated File System Tutorial 201

A.5 Add, Display and Remove Object Links
Add Object Links: When you want to add a link between a directory and an
object, enter ADDLNK on the command line.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===> addlnk
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 75. Work with Object Menu with ADDLNK Command Specified

202 UNIX C Applications Porting to AS/400

Let′s assume the current directory is the ″root″ directory.

Enter ADDLNK on the command line and press F4; then the Add Link prompt
text display is shown.

� �
Add Link (ADDLNK)

 Type choices, press Enter.

 Object > myfile.file

 New link > mynewfile.file

 Link type *SYMBOLIC *SYMBOLIC, *HARD

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �
Figure 76. Add Link Prompt Text

Appendix A. Integrated File System Tutorial 203

Enter the input and press Enter; then the Link added message is displayed on
the Work with Object Links display. You can get refreshed list by pressing
the F5 key.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Link added.� �

Figure 77. Work with Object Menu with Link Added Message

Since the syntax of each command in the integrated file system is somewhat
different from the UNIX command, the command prompt (F4 key) is very
useful to use command.

204 UNIX C Applications Porting to AS/400

Display object links: When you want to see the object links, enter DSPLNK
on the command line and press Enter.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> dsplnk

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu

� �
Figure 78. AS/400 Main Menu with DSPLNK Command Specified

Appendix A. Integrated File System Tutorial 205

Then the Display Object Links menu shows a list of objects in a current
directory and provides options to display information about the objects.

In this case, the list for ″root″ directory is displayed because root directory is
the current directory.

� �
Display Object Links

 Directory : /

 Type options, press Enter.
5=Next level 8=Display attributes 9=Display authority

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
mynewfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF
NRMB.MR0 STMF

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F17=Position to
 F22=Display entire field

� �
Figure 79. Display Object Links Menu

206 UNIX C Applications Porting to AS/400

Remove Object Links: To remove the link to an object, you can use option 4
or use the del and ERASE commands.

When you want to remove the link to an object, then enter 4 in the Opt
column for the object or enter del on command line.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF

4 mynewfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 80. Work with Object Menu with Option 4 Specified

Appendix A. Integrated File System Tutorial 207

Enter 4 in the Opt column for ″mynewfile.file″ and press Enter; then the
Confirm Remove of Object Links display is shown.

� �
Confirm Remove of Object Links

 Directory : /

 Press Enter to confirm your choices for 4=Remove.
 Press F12 to return to change your choices.

 Opt Object link Type Attribute Text
 4 mynewfile.file STMF

Bottom
 F12=Cancel

� �
Figure 81. Confirm Remove of Object Links Menu

208 UNIX C Applications Porting to AS/400

And press Enter again; then ″mynewfile.file″ disappears and the Link
removed message is displayed. You can get a refreshed list by pressing the
F5 key.

Note: The object is also deleted if there are no other hard links to it and it is
not in use.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Link removed.� �

Figure 82. Work with Object Menu with Link Removed Message

Appendix A. Integrated File System Tutorial 209

Let′s use the del command on the command line to remove the link of
″mynewfile.file″.

The ERASE command does the same work.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
mynewfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF

More...
 Parameters or command
 ===> del mynewfile.file
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 83. Work with Object Menu with DEL Command Specified

210 UNIX C Applications Porting to AS/400

A.6 Copy, Move, and Rename Objects
Copy Objects: To copy a single object or a group of objects, you can use
option 3 or the copy and CPY commands.

When you want to copy a single object or a group of objects, then enter 3 in
the Opt column for the object or enter copy on the command line.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR

3 myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 84. Work with Object Menu with Option 3 Specified

Appendix A. Integrated File System Tutorial 211

If current directory is ″mydir″ directory and you enter 3 on ″myfile.file″ and
press Enter, then the Object copied message is displayed.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Object copied� �

Figure 85. Work with Object Menu with Object Copied Message

212 UNIX C Applications Porting to AS/400

And you can see ″myfile.file″ is copyed in ″mydir″ directory.

� �
Work with Object Links

 Directory : /mydir

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
myfile.file STMF
myfile1.file STMF
myfile2.file STMF

Bottom
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 86. Work with Object Menu with Next Level

Appendix A. Integrated File System Tutorial 213

Let′s use the copy command on the command line to copy ″myfile.file″ to
″mydir″ directory. You can see ″myfile.file″ is copied in ″mydir″ directory
also.

The CPY command does the same work.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===> copy ′ / myfile.file′
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 87. Work with Object Menu with Copy Command Specified

214 UNIX C Applications Porting to AS/400

Move Objects: To move a single object or a group of objects, you can use
option 2 or the move and MOV commands.

When you want to move a single object or a group of objects, then enter 2 in
the Opt column for the object or enter move on the command line. The F23
key shows 2 option is move.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR

2 myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 88. Work with Object Menu with Option 2 Specified

Appendix A. Integrated File System Tutorial 215

If the current directory is ″mydir″ directory and you enter 2 on ″myfile.file″
and press Enter, then ″myfile.file″ disappears and the Object moved message
is displayed.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
Object moved� �

Figure 89. Work with Object Menu with Object Moved Message

216 UNIX C Applications Porting to AS/400

You can see ″myfile.file″ is moved in ″mydir″ directory.

� �
Work with Object Links

 Directory : /mydir

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
myfile.file STMF
myfile1.file STMF
myfile2.file STMF

Bottom
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 90. Work with Object Menu with Next Level

Appendix A. Integrated File System Tutorial 217

Let′s use the move command on the command line to move ″myfile.file″ to
″mydir″ directory. You can see ″myfile.file″ is moved in ′mydir ′ directory
also.

MOV command does the same work.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===> move ′ / myfile.file′
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 91. Work with Object Menu with Move Command Specified

218 UNIX C Applications Porting to AS/400

Rename Objects: To change the name of an object, you can use option 7 or
the ren and RNM commands.

When you want to change the name of an object, then enter 7 in the Opt
column for the object or enter ren on the command line.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR

7 myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 92. Work with Object Menu with Option 7 Specified

Enter 7 on ″myfile.file″ and press Enter.

Appendix A. Integrated File System Tutorial 219

Then Rename Object display is shown and you can type a new name on the
New Object field.

� �
Rename Object (RNM)

 Type choices, press Enter.

 Object > ′ / myfile.file′
 New object mynewfile.file

...

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �
Figure 93. Rename Object Prompt Text

220 UNIX C Applications Porting to AS/400

Press Enter; then ′myfile.file′ disappears and the Object renamed message is
displayed. You can get a refreshed list by pressing the F5 key.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF
NRFPCSLB.MR0 STMF

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
 Object renamed.� �

Figure 94. Work with Object Menu with Object Renamed Message

Appendix A. Integrated File System Tutorial 221

Let′s use the ren command on the command line to change ″myfile.file″ to
another name.

The RNM command does the same work.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes

11=Change current directory ...

 Opt Object link Type Attribute Text
home DIR
mydir DIR
myfile.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR
CFGFLR.MR0 STMF
CFGVPRT.MR0 STMF
NRFIL.MR0 STMF

More...
 Parameters or command
 ===> ren ′ / myfile.file′ ′ mynewfile.file′
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 95. Work with Object Menu with REN Command Specified

A.7 Other Tips
Wild Card Support: In some commands, an asterisk (*) or a question mark
(?) can be used in the last component of a path name to search for patterns
of names. The * tells the system to search for names that have any number
of characters in the position of the * character. The ? tells the system to
search for names that have a single character in the position of the ?
character. The following example searches for all objects whose names
begin with d and end with txt:

′ /Dir1/Dir2/Dir3/d*txt′

The following example searches for objects whose names begin with d
followed by any single character and end with txt:

222 UNIX C Applications Porting to AS/400

′ /Dir1/Dir2/Dir3/d?txt′

Let′s try to use the wild card with the COPY command. Let′s assume that
the current directory is ″ydir″ and you want to copy two files starting with
″my″ in the ″root″ directory to ″mydir″ directory. Type copy ′ / my*.file′ on
the command line and press Enter.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 2=Move 9=Work with authority 12=Work with links

13=Change directory attributes ...

 Opt Object link Type Attribute Text
. DIR
.. DIR
home DIR
mydir DIR
myfile1.file STMF
myfile2.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR

More...
 Parameters or command
 ===> copy ′ / my*.file′
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 96. Work with Object Menu with Copy Command Specified

Appendix A. Integrated File System Tutorial 223

Then you can get the success message if you have the authority for the two
files.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 2=Move 9=Work with authority 12=Work with links

13=Change directory attributes ...

 Opt Object link Type Attribute Text
. DIR
.. DIR
home DIR
mydir DIR
myfile1.file STMF
myfile2.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR

More...
 Parameters or command
 ===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options
 2 objects copied. 0 objects failed.� �

Figure 97. Work with Object Menu with Success Message

224 UNIX C Applications Porting to AS/400

Or, test ′?′ with the MOVE command. ′?′ means a single wild character.

� �
Work with Object Links

 Directory : /

 Type options, press Enter.
 2=Move 9=Work with authority 12=Work with links

13=Change directory attributes ...

 Opt Object link Type Attribute Text
. DIR
.. DIR
home DIR
mydir DIR
myfile1.file STMF
myfile2.file STMF
tmp DIR
APPXX DIR
CADIRXX DIR

More...
 Parameters or command
 ===> move ′ / myfile?.file′
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F17=Position to
 F22=Display entire field F23=More options

� �
Figure 98. Work with Object Menu with Move Command Specified

Appendix A. Integrated File System Tutorial 225

226 UNIX C Applications Porting to AS/400

Appendix B. Integrated File System Example Programs

We provide some example programs that might help you to understand the
AS/400 integrated file system features better.

B.1 Client/Server Application for Stream File I/O
This example is a client/server application for maintaining customer lists.
Server functions maintain a table for customer lists and can support the
requests from multiple clients.

The server program contains five functions shown in the following list:

• Query
• Add
• Update
• Delete
• List

The client has the following display.

1. Query a Record
2. Add a Record
3. Update a Record
4. Delete a Record
5. Print all Record

6. Exit

Enter the number

Each client makes a request to a server and the server returns the results
with a return code. Figure 99 on page 228 shows the flow chart briefly.

 Copyright IBM Corp. 1995 227

� �

┌───────────┐ ┌───────────┐
│┌─────────┐│ │┌─────────┐│
││ Server ││ ││ Client ││
│└─────────┘│ │└─────────┘│
└─────┬─────┘ └─────┬─────┘

│ │
┌────────────>│ │<────────────┐
│ │ V │
│ │ ┌───────────┐ │
│ │<──────────────────────┤ Request │ │
│ │ └─────┬─────┘ │
│ V │ │
│ No ┌───────────┐ │ │
├───────┤ Request ? │ │ │

 │ └─────┬─────┘ │ │
 │ │ Yes │ │
 │ │ │ │
 │ V │ │
 │ ┌───────────┐ │ │
 │ │ Data Req. ├──────────────────────>│ │
 │ └───────────┘ │ │
 │ │ V │
 │ │ Data ┌───────────┐ │

│ │<──────────────────────┤ Input │ │
│ │ └───────────┘ │
│ │ │ │
│ V │ │

 │ ┌───────────┐ Return Code │ │
 │ │ Action ├──────────────────────>│ │
 │ └─────┬─────┘ │ │
 │ │ V │
 │ │ ┌───────────┐ Yes │

│ │ │ Continue? ├───────┘
└─────────────┘ └─────┬─────┘

│ No
│
V

┌───────┐
│┌─────┐│
││ End ││
│└─────┘│
└───────┘

� �
Figure 99. Flow Chart of Example 1 Program

228 UNIX C Applications Porting to AS/400

The SERVER PGM consists of four MODULEs and The CLIENT PGM consists
of two MODULEs. The module descriptions are as follows:

• SERVER PGM

− SERVER MODULE - server main function.

− DB MODULE - table maintenance function.

− HASH MODULE - hash function.

− MYRDWR MODULE - read, write function.

• CLIENT PGM

− CLIENT MODULE - client main function.

− MYRDWR MODULE - read, write function.

Marked lines with �1�, �2�, and �3� show what should be changed to run on
the AS/400 system.

cs.h

 #define BUFLEN 25
 #define HOLDNUM 5
 #define MAXCONN 5
 #define QUIT ″QUIT″
 #define UNDOMNM ″ /tmp/unixpipe″
 #define NOFD -1

 #define EXIT_RC(a, b, c) {perror(a); close(b); return c;}

 typedef enum rc
 {

RC_OK = 0, RC_SOCKET, RC_BIND,
RC_LISTEN, RC_ACCEPT, RC_CLOSE,
RC_EXEC, RC_READ, RC_WRITE,
RC_CONNECT,
RC_DBOPEN, RC_IDXOPEN

 } rcode;

 typedef struct fds
 {

int sd;
int ld;
int ud;

Appendix B. Integrated File System Example Programs 229

 } fds;

 typedef enum _cmd
 {

DB_QRY = 0, DB_ADD, DB_UPD, DB_DEL, DB_ALL, DB_EXIT
 } db_command;

 typedef enum _key
 {

KEY_NO = 0, KEY_NAME
 } db_key;

 #define MAXNAMLEN 12
 typedef struct _db {

short empno;
 char name??(MAXNAMLEN??);
 short age;
 char sex;
 char reserved;
 } DBRECORD;

#define NAMEOFFSET (sizeof(short))

 #define RECORDSIZE sizeof(DBRECORD)

 typedef struct _no_idx {
short empno;
int index;
short flag;

 } NOINDEX;

 typedef struct _name_idx {
 char name??(MAXNAMLEN??);
 int index;
 short flag;
 } NAMEINDEX;

 #define DELETED 1
 typedef struct _hash {

struct _hash *next;
char *name;

230 UNIX C Applications Porting to AS/400

int index;
short flag;

 } HASH;

 #define HASHSIZE 101

 #define DBFILE ″ /tmp/testdb″
 #define DBIDXFILE ″ /tmp/testidx″

 typedef struct _msg_cli {
db_command cmd;
db_key key;

 } CLIMSG;

 typedef enum _ans {
ANS_OK, ANS_EOF, ANS_READ, ANS_WRITE, ANS_UPDATE, ANS_DELETE,
ANS_NOTFOUND, ANS_OTHER

 } srv_rc;

 /*
 * prototypes
 */

 /* hash.c */
 HASH *lookup (char *name);
 HASH *insert (char *name, int index, short flag);

 /* db.c */
 rcode db_init(int *des);
 srv_rc db_rec_command (db_command cmd, DBRECORD *rec);
 srv_rc db_set_all ();
 srv_rc db_key_command (db_command cmd, char *name, DBRECORD *rec);

 /* myrdwr.c */
 #ifdef __ILEC400__ �1�

int readn (int fd, void *ptr, int nbytes);
int writen (int fd, void *ptr, int nbytes);

 #else
int readn (int fd, char *ptr, int nbytes);
int writen (int fd, char *ptr, int nbytes);

 #endif

Notes:

Appendix B. Integrated File System Example Programs 231

�1� In this example, char pointers are used in UNIX and void pointers
are used on the AS/400 system according to the difference in the
default compiler option. Pointer type checking on the AS/400 system
is stronger than UNIX.

server.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h> /* close, read, write */
#include <sys/socket.h> /* AF_INET, SOC_DGRAM... */
#include <netinet/in.h> /* sockaddr_in */
#include <string.h> /* strstr() */
#include <stdlib.h> /* exit() */

#ifdef __ILEC400__ �2�
#include <time.h>

#else
#include <sys/select.h>

#endif
#include <sys/un.h>

#include ″cs.h″

static int high_val(int cnum, int sd, int *conn);
static rcode srv_ini(int *sd, char *buf);

static db_command get_message(int fd, char *name, DBRECORD *rec)
{
 CLIMSG msg;
 int numbytes;
 srv_rc rc;

if ((numbytes = readn (fd, &msg, sizeof(CLIMSG))) != sizeof(CLIMSG))
return -1;

switch (msg.cmd) {
case DB_ADD:
case DB_UPD:

if (readn (fd, rec, sizeof(DBRECORD)) != sizeof(DBRECORD))
return -1;

break;

case DB_QRY:
case DB_DEL:

232 UNIX C Applications Porting to AS/400

if (readn (fd, name, MAXNAMLEN) != MAXNAMLEN)
return -1;

break;
}
return msg.cmd;

}

static srv_rc send_message(int fd, db_command cmd, char *name,
DBRECORD *rec)

{
srv_rc srvans;
switch (cmd) {
case DB_ADD:
case DB_UPD:

srvans = db_rec_command (cmd, rec);
writen (fd, &srvans, sizeof (srv_rc));
break;

case DB_QRY:
srvans = db_key_command (cmd, name, rec);
writen (fd, &srvans, sizeof (srv_rc));
if (srvans == ANS_OK)

writen (fd, rec, sizeof (DBRECORD));
break;

case DB_DEL:
srvans = db_key_command (cmd, name, rec);
writen (fd, &srvans, sizeof (srv_rc));
break;

case DB_ALL:
db_set_all();

srvans = db_key_command (cmd, name, rec);
if (srvans != ANS_OK)

break;
while (srvans != ANS_EOF) {

if (*rec->name != ′ [′) {
writen (fd, &srvans, sizeof (srv_rc));
writen (fd, rec, sizeof(DBRECORD));

}
srvans = db_key_command (cmd, name, rec);

} /* endwhile */
writen (fd, &srvans, sizeof (srv_rc));
break;

}

}

Appendix B. Integrated File System Example Programs 233

int main(int argc, char **argv)
{

int rc, numbyte;
int sd, ld;
char buf??(1024??);
int conn??(MAXCONN??);
int cnum = 0;
fd_set source, ready;
int i, sel_event, fdp1;

char name??(MAXNAMLEN+1??);
DBRECORD rec;
db_command cmd;

if ((rc = srv_ini(&ld, buf)) != RC_OK)
return rc;

FD_ZERO(&source);
FD_SET(ld, &source);

while(1) {
fdp1 = high_val(cnum, ld, conn) + 1; /* Find the highest fd */

/* Copy the contents of the master (source) fd_set
* to the working (ready) fd_set.
*/
memcpy((char *)&ready, (char *)&source, sizeof(ready));

/* Wait for message */
sel_event = select(fdp1, /* Size of bit array */

&ready, /* Sockets to listen to */
(void*) 0, /* No Sockets writing */
(void*) 0, /* No Error handling */
NULL); /* Time out period */

/*
* sel_event == 0 for time out, -1 for interrupt or Error
* ready now has the socket(s) that have recv′ d data
*/

if (sel_event < 0) {
continue;

}

/* If any new process has connected, register it. */

234 UNIX C Applications Porting to AS/400

if (FD_ISSET(ld, &ready)) {
if (cnum == sizeof conn) {

continue;
}

if ((sd = accept(ld, 0, 0)) < 0)
EXIT_RC(″Accept″ , sd, RC_ACCEPT)
FD_SET(sd, &source);
conn??(cnum++??) = sd;

}

for (i=0; i < cnum ; i++) {
if (FD_ISSET(conn??(i??), &ready)) {

if ((cmd = get_message(conn??(i??), name, &rec)) < 0) {
/* break the communication: Error or shutdown */
FD_CLR(conn??(i??), &source);
close(conn??(i??));

/* save_dbidx(); * index file will be saved */

/* move the last socket to the current place */
conn??(i??) = conn??(--cnum??);

} else {
send_message(conn??(i??), cmd, name, &rec);

}
} /* if */

} /* for */
} /* while */

return RC_OK;
}

 /*
* high_val()
* Calculate the highest used file descriptor in order
* to use the correct mask in the select statement.
*/

static int high_val(int cnum, int sd, int *conn)
{

int hval, i;

if (!cnum)
return sd;

Appendix B. Integrated File System Example Programs 235

else {
for (hval = sd, i=0; i < cnum; i++)

if (conn??(i??) > hval)
hval = conn??(i??);

}

return hval;
}

 /*
 /* server_init()
 /* Initializes server socket and clears buffer
*/

static rcode srv_ini(int *des, char *buf)
{

static struct sockaddr_un server;
 int sock_opt=1;

 unlink(UNDOMNM);
if ((*des = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)

EXIT_RC(″Socket″ , *des, RC_SOCKET)

setsockopt(*des,
SOL_SOCKET,
SO_REUSEADDR,
(char *)&sock_opt,
sizeof(sock_opt));

memset(&server, ′ \0′ , sizeof(struct sockaddr_un));
memset(buf, ′ \0′ , BUFLEN);

server.sun_family = AF_UNIX;
strcpy (server.sun_path, UNDOMNM);

if (bind(*des, (struct sockaddr *) &server,
sizeof(struct sockaddr_un)) < 0)

EXIT_RC(″Bind″ , *des, RC_BIND)

if (listen(*des, HOLDNUM) < 0)
EXIT_RC(″Listen″ , *des, RC_LISTEN)

return db_init(des);
}

236 UNIX C Applications Porting to AS/400

Notes:

�2� <sys/select.h> header fi le is used in UNIX. It should be changed
to <sys/types.h> and <time.h> header f i les for the AS/400 system.

myrdwr.c

#include <unistd.h>

int readn (int fd, void *vptr, int nbytes) �3�
{
 char *ptr = vptr; �3�
 int nleft, nread;
 nleft = nbytes;

while (nleft > 0)
{
nread = read(fd, ptr, nleft);
if (nread < 0)
return nread;
else if (nread == 0)
break;
nleft -= nread;
ptr += nread;
}

 return (nbytes - nleft);
}

int writen (int fd, void *vptr, int nbytes) �3�
{
 char *ptr = vptr; �3�
 int nleft, nwritten;
 nleft = nbytes;

while (nleft > 0)
{
nwritten = write (fd, ptr, nleft) ;
if (nwritten <= 0)
return nwritten;
nleft -= nwritten;
ptr += nwritten;
}

Appendix B. Integrated File System Example Programs 237

 return (nbytes - nleft);
}

Notes:

�3� Char pointers are used in UNIX and void pointers are used on the
AS/400 system according to the difference in the default compiler
option. Pointer type checking on the AS/400 system is stronger than
UNIX.

db.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include ″cs.h″

#include <fcntl.h>
#include <errno.h>

static int db_fd;
static int idx_fd;
static int serno;
static int idxno;

rcode db_init(int *des)
{

serno = 0;
if ((db_fd = open(DBFILE, O_RDWR)) < 0) {

if ((db_fd = creat(DBFILE, O_RDWR)) < 0)
EXIT_RC(″Open DB″ , *des, RC_DBOPEN);

} else {
if ((idx_fd = open(DBIDXFILE, O_RDWR)) < 0) {

if ((idx_fd = creat(DBIDXFILE, O_RDWR)) < 0)
EXIT_RC (″Open IDX″ , *des, RC_IDXOPEN);

} else {
NAMEINDEX nameidx;
while (read(idx_fd, &nameidx, sizeof(nameidx)) > 0)

insert (nameidx.name, nameidx.index, nameidx.flag);
}

}
return RC_OK;

}

238 UNIX C Applications Porting to AS/400

srv_rc db_rec_command (db_command cmd, DBRECORD *rec)
{

HASH *hp;
NAMEINDEX nmidx;

switch (cmd) {
case DB_ADD:

lseek (db_fd, serno*sizeof(DBRECORD), SEEK_SET);
if (errno < 0)

return ANS_OTHER;
if (write (db_fd, rec, sizeof(DBRECORD)) != sizeof(DBRECORD))

return ANS_WRITE;
hp = insert (rec->name, serno++, 0);
lseek (idx_fd, idxno*sizeof(DBRECORD), SEEK_SET);
idxno++;
memcpy (nmidx.name, hp->name, MAXNAMLEN);
nmidx.index = hp->index;
nmidx.flag = hp->flag;
write (idx_fd, &nmidx, sizeof (NAMEINDEX));
break;

case DB_UPD:
hp = lookup (rec->name);
if (hp == NULL)

return ANS_NOTFOUND;
lseek (db_fd, hp->index*sizeof(DBRECORD), SEEK_SET);
if (errno < 0)

return ANS_OTHER;
if (write (db_fd, rec, sizeof(DBRECORD)) != sizeof(DBRECORD))

return ANS_UPDATE;
}
return ANS_OK;

}

srv_rc db_set_all ()
{

lseek (db_fd, 0, SEEK_SET);
if (errno < 0)

return ANS_OTHER;
return ANS_OK;

}

srv_rc db_key_command (db_command cmd, char *name, DBRECORD *rec)
{

Appendix B. Integrated File System Example Programs 239

 HASH *hp;
 int numbyte;

switch (cmd) {
case DB_QRY:
case DB_DEL:

hp = lookup (name);
if (hp == NULL)

return ANS_NOTFOUND;

lseek (db_fd, hp->index*sizeof(DBRECORD), SEEK_SET);
if (errno < 0)

return ANS_OTHER;
if (cmd == DB_QRY) {

if (read (db_fd, rec, sizeof(DBRECORD)) != sizeof(DBRECORD))
return ANS_READ;

} else if (cmd == DB_DEL) {
NAMEINDEX nmidx;
memcpy (nmidx.name, name, MAXNAMLEN);
nmidx.flag = hp->flag = DELETED;
nmidx.name??(0??) = hp->name??(0??) = ′ [′ ;
nmidx.index = hp->index;
lseek(idx_fd, hp->index*sizeof(NAMEINDEX), SEEK_SET);
write (idx_fd, &nmidx, sizeof(NAMEINDEX));
lseek(db_fd, NAMEOFFSET, SEEK_CUR);
if (write (db_fd, nmidx.name, 1) != 1)

return ANS_DELETE;
}
break;

case DB_ALL:
if ((numbyte = read (db_fd, rec, sizeof(DBRECORD))) == 0)

return ANS_EOF;
else if (numbyte != sizeof(DBRECORD))

return ANS_READ;
break;

}
return ANS_OK;

}

240 UNIX C Applications Porting to AS/400

hash.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include ″cs.h″

static HASH *hashtab??(HASHSIZE??);

static unsigned hash(char *str)
{

unsigned hashval;
int i;
for (hashval = i = 0; i < MAXNAMLEN ; i++, str++) {

hashval = *str + 31 * hashval;
}
return hashval % HASHSIZE;

}

HASH *lookup (char *name)
{

HASH *hp;

for (hp = hashtab??(hash(name)??) ; hp ; hp = hp->next) {
if (memcmp(name, hp->name, MAXNAMLEN) == 0 && hp->flag != DELETED)

return hp;
}
return hp;

}

HASH *insert (char *name, int index, short flag)
{

HASH *hp;
unsigned hashval;

if ((hp = lookup(name)) == NULL) {
hp = malloc (sizeof(HASH));
if (hp == NULL || (hp->name = malloc(MAXNAMLEN)) == NULL)

return NULL;
memcpy (hp->name, name, MAXNAMLEN);
hashval = hash(name);
hp->next = hashtab??(hashval??);
hashtab??(hashval??) = hp;

Appendix B. Integrated File System Example Programs 241

}
hp->index = index;
hp->flag = flag;
return hp;

}

client.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h> /* close, read, write */
#include <sys/socket.h> /* AF_INET, SOC_DGRAM... */
#include <string.h> /* strstr() */
#include <stdlib.h> /* exit() */

#include <sys/un.h>

#include ″cs.h″

static rcode cleanup(fds *desc, char *msg, rcode ret);

static rcode cleanup(fds *desc, char *msg, rcode ret)
{

perror(msg);

if (desc->ld > NOFD)
close(desc->ld);

if (desc->ud > NOFD)
close(desc->ud);

if (desc->sd > NOFD)
close(desc->sd);

return ret;
}

static db_command get_command()
{

char buf??(128??);
db_command cmd??(6??) = {DB_QRY, DB_ADD, DB_UPD, DB_DEL, DB_ALL, DB_EXIT};

int opt;
while (1) {

printf (″\n\n″) ;
printf (″1. Query a Record\n″) ;

242 UNIX C Applications Porting to AS/400

printf (″2. Add a Record\n″) ;
printf (″3. Update a Record\n″) ;
printf (″4. Delete a Record\n″) ;
printf (″5. Print all Record\n\n″) ;
printf (″6. Exit\n\n″) ;
printf (″Enter the number\n″) ;
gets (buf);

if ((opt = atoi(buf)) > 0 && opt < 7)
return cmd??(opt-1??);

else
printf (″Invalid Option!\n″) ;

}
}

static void get_str(char *msg, int maxlen, char *name)
{

char buff??(1024??);
printf (msg);
gets(buff);
if (strlen(buff) < maxlen)

strcat(buff, ″ ″) ;
memcpy (name, buff, maxlen);

}

static void get_updstr(char *msg, int maxlen, char *name)
{

char buff??(1024??);
int len;
printf (msg);
gets(buff);
if ((len=strlen(buff)) == 0)

return;
if (strlen(buff) < maxlen)

strcat(buff, ″ ″) ;
memcpy (name, buff, maxlen);

}

static void get_int (char *msg, int *ibuf)
{

char buff??(1024??);
printf(msg);
voidgets(buff);
*ibuf = atoi(buff);

}

Appendix B. Integrated File System Example Programs 243

static void get_updint (char *msg, int *ibuf)
{

char buff??(1024??);
printf(msg);
gets(buff);
if (strlen(buff) == 0)

return;
*ibuf = atoi(buff);

}

static void get_record (DBRECORD *rec)
{

int age;
get_str(″Enter name\n″ , MAXNAMLEN, rec->name);
get_str(″Enter gender(F/M)\n″, 1, &rec->sex);
get_int(″Enter age\n″, &age);
rec->age = age;

}

static void get_update (DBRECORD *rec)
{

int age = rec->age;
get_updstr(″Enter gender(F/M)\n″, 1, &rec->sex);
get_updint(″Enter age\n″, &age);
rec->age = age;

}

static void print_rec(DBRECORD *rec)
{

char name??(MAXNAMLEN+1??);
memcpy (name, rec->name, MAXNAMLEN);
name??(MAXNAMLEN??) = ′ \0′ ;
printf (″Name: %s Jender: %c Age: %d\n″ , name, rec->sex, rec->age);

}

static void print_msg (srv_rc srvans)
{

switch (srvans) {
case ANS_OK:

printf(″OK\n″) ;
break;

case ANS_READ:
printf(″READ error\n″) ;
break;

244 UNIX C Applications Porting to AS/400

case ANS_WRITE:
printf(″WRITE error\n″) ;
break;

case ANS_UPDATE:
printf(″UPDATE error\n″) ;
break;

case ANS_DELETE:
printf(″DELETE error\n″) ;
break;

case ANS_NOTFOUND:
printf(″Record Notfound\n″) ;
break;

case ANS_OTHER:
printf(″Other error\n″) ;
break;

} /* endswitch */
}

int main(int argc, char **argv)
{

static struct sockaddr_un client;
 fds desc;
 int opt;
 int numbytes;

 char buf??(1024??);
 char name??(MAXNAMLEN+1??);
 DBRECORD rec;
 CLIMSG msg, upd2;
 srv_rc srvans;

memset (&client, ′ \0′ , sizeof(struct sockaddr_un));
client.sun_family = AF_UNIX;
strcpy (client.sun_path, UNDOMNM);

if ((desc.ud = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
cleanup (&desc, ″UNIX Socket″ , RC_SOCKET);
exit(-1);

}

if (connect(desc.ud, (struct sockaddr *)&client,
(int)SUN_LEN(&client)) < 0) {

cleanup (&desc, ″UNIX Connect″ , RC_CONNECT);
exit(-1);

}

Appendix B. Integrated File System Example Programs 245

while (1) {
switch ((msg.cmd = get_command())) {
case DB_EXIT:

cleanup(&desc, ″″, RC_OK);
exit(0);

case DB_ADD:
get_record(&rec);
break;

case DB_QRY:
case DB_DEL:
case DB_UPD:

get_str(″Enter name\n″ , MAXNAMLEN, name);
break;

case DB_ALL:
break;

}
if (msg.cmd == DB_UPD) {

memcpy (&upd2, &msg, sizeof(CLIMSG));
msg.cmd = DB_QRY;

}

numbytes = writen (desc.ud, &msg, sizeof(CLIMSG));

switch (msg.cmd) {
case DB_ADD:

numbytes = writen (desc.ud, &rec, sizeof(DBRECORD));
break;

case DB_QRY:
case DB_DEL:
case DB_UPD:

writen (desc.ud, name, MAXNAMLEN);
break;

}

readn (desc.ud, &srvans, sizeof (srv_rc));
print_msg(srvans);

if (upd2.cmd == DB_UPD) {
msg.cmd = DB_UPD;
upd2.cmd = -1;

}

switch (msg.cmd) {
case DB_UPD:

246 UNIX C Applications Porting to AS/400

if (srvans == ANS_OK) {
readn (desc.ud, &rec, sizeof (DBRECORD));
get_update (&rec);
numbytes = writen (desc.ud, &msg, sizeof(CLIMSG));
numbytes = writen (desc.ud, &rec, sizeof(DBRECORD));
readn (desc.ud, &srvans, sizeof (srv_rc));
print_msg(srvans);

}
break;

case DB_QRY:
if (srvans == ANS_OK) {

readn (desc.ud, &rec, sizeof (DBRECORD));
print_rec(&rec);

}
break;

case DB_ALL:
if (srvans != ANS_OK)

break;
while (srvans != ANS_EOF) {

readn (desc.ud, &rec, sizeof(DBRECORD));
print_rec(&rec);
readn (desc.ud, &srvans, sizeof (srv_rc));

} /* endwhile */
break;

}
}
return 0;

}

B.2 Display Stream File
There is no command to display the contents of the stream files on the
AS/400 dummy display. This example shows the stream file on the display.
It tests the argument path, if it is not a full path name, it is expanded to a full
path name with the current working directory using the function getcwd().
This program opens a file, reads data from the file, and writes it on the
display. As mentioned, the file descriptor 1 is not a standard file descriptor
on the UNIX system. To display the data, the ILE C function fwrite() is used.

Appendix B. Integrated File System Example Programs 247

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFFER_SIZE 4096
#define FILENAME_SIZE 1024
#define SEPERATOR ″ /″
#define USAGE ″DSPSTMF filename\n″

int display_stmf(char *path)
{

int fd = -1;
int BytesRead;
char buffer[BUFFER_SIZE];
char filename[FILENAME_SIZE];
.
.

strcpy (filename, path);
if (!isfulldirectory(path)) {

char cwd[FILENAME_SIZE];
int iserror;
iserror = getcwd(cwd, FILENAME_SIZE);
...
makefullpath(filename,cwd);

}

if ((fd = open(filename, O_RDONLY, S_IRWXU)) == -1) {
perror (″open Error″) ;
exit (-1);

}

while ((BytesRead = read (fd, buffer, BUFFER_SIZE)) > 0) {
#ifdef __ILEC400__

fwrite (buffer, 1, BytesRead, stdout); �1�
#else

write (1, buffer, BytesRead); �2�
#endif

}

close(fd);

248 UNIX C Applications Porting to AS/400

return 0;
}

Note:

�1� ILE C/400 simulates the standard output.

�2� Write data on the file descriptor 1 does not work in this case.

B.3 Listing Directory
This example lists the files in a directory that are passed as parameters by
the user. It takes the filename and the other information by calling the
function stat(). If the file is a regular file, it prints the size of the file and its
name. If the file is a directory, this example prints recursively.

This example shows what should be changed in the source code; the marked
lines with �2�, �3�, and �4� are required if it runs not only on the the AS/400
system but also on the UNIX system.

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <errno.h>

#define MAX_PATH 1024

static void fsize (char *);
static void dirwalk (char *, void (*fcn)(char *));

int main (int argc, char **argv)
{

if (argc == 1)
fsize(″ . ″) ;

else
while (--argc > 0)

fsize (*++argv);
return 0;

}

/* fsize:
This function prints the size of the file.
If the file is a directory, fsize first calls the function

Appendix B. Integrated File System Example Programs 249

dirwark().
*/
static void fsize(char *name)
{

struct stat stbuf;
if (stat(name, &stbuf) == -1) { �1�

perror(″stat″) ;
return;

}

#ifdef __ILEC400__ �2�
if (S_ISDIR(stbuf.st_mode)) �3�

#else
if ((stbuf.st_mode & S_IFMT) == S_IFDIR) �4�

#endif
dirwalk(name, fsize);

printf(″%8ld %s\n″ , stbuf.st_size, name);
}

/* dirwalk:
The function dirwalk() opens the directory and read the entry
of the directory. This function is called inderect recursively
to get the files of the directory.

*/
static void dirwalk (char *dir, void(*fcn)(char *))
{

char name[MAX_PATH];
struct dirent *dp;
DIR *dfd;

if ((dfd = opendir(dir)) == NULL) { �5�
perror (″opendir″) ;
return;

}

while ((dp = readdir(dfd)) != NULL) {
if (strcmp(dp->d_name, ″.″) == 0 | |
strcmp(dp->d_name, ″..″) == 0)

continue;
sprintf(name, ″%s/%s″ , dir, dp->d_name);
(*fcn)(name);

}
closedir(dfd);

}

250 UNIX C Applications Porting to AS/400

Notes:

�1� This function takes the pointer to the filename and the structure of
struct stat, which is defined in the header fi le <sys/stat.h>. The
return value is either 0 or 1.

�2� �3� Because the macros S_IFMT and S_IFDIR are not defined in
the ILE C/400, the preprocessor directive #ifdef __ILEC400__ is
required and should be used for the macro S_ISDIR(parm).

�5� This function takes the pointer to the directory name and returns a
NULL pointer if it fails. Otherwise, it returns the pointer to the
structure of DIR, which is defined in the header fi le <dirent.h>.

B.4 Open on a Directory
Some old examples use the function open() to recognize if the file is a
directory or not. If the open() is applied on a directory, its return is -1 and
the global variable errno is set to EISDIR.

The AS/400 open API attempts to conform to the POSIX 1003.1 standard. In
this standard, the definition of EISDIR for open() states that it can be returned
when the oflag specifies O_RDWR or O_WRONLY and the object is a
directory. This means that a directory cannot be opened for writing. But, it
implies that a directory can be opened for reading. Therefore, the source
code should be changed in some way; either the inline macro S_ISDIR is
used or the function opendir() should be used.

int isdir(char *path)
{
#ifdef __ILEC400__

struct stat stbuf;

if (stat(path, &stbuf) == -1) {
perror (″stat″) ;
exit (-1);

}
return (S_ISDIR(stbuf.st_mode)); �1�

#else
int dirf;
int fd;
/* dirf is true if the parameter path cannot be opened and

Appendix B. Integrated File System Example Programs 251

* the global variable errno is set with EISDIR.
*/
dirf = (fd = open(path, 1)) == -1 && errno == EISDIR; �2�
if (fd != -1 && close(fd) == -1) {

perror (″close″) ;
exit (-1);

}
return ans;

#endif
}

The following source code shows how nice it is changed. Because some
implementations are dependent on each machine, it is recommended to use
macro directives and cutout the machine or OS dependencies. In the
following source code, the macro directive #ifdef can even be omitted
because the function opendir() is standard function and, therefore, the user
function isdir() is not necessary.

#ifdef __ILEC400__
#define isdir(aDir) (opendir(aDir) != NULL) �3�
#else
int isdir(char *path)
{

...
}
#endif /* End of __ILEC400__ */

Notes:

�1� See the previous example and note.

�2� The function open(..,1) is used on a directory with the parameter 1,
which means read only. It should be used as open(..,O_RDONLY) and
after the POSIX definition, this function returns 0.

�3� It shows the better way to port old-style C source codes.

252 UNIX C Applications Porting to AS/400

B.5 Link on a Directory
A simple way to move an object into another directory is by copying the
object to another object and deleting the original object. But to copy a
directory is difficult and this takes much time. This method is not elegant at
all. A better way is to link and unlink.

In this example, the functions link() and unlink() are used to move a file or
directory to another file or into a directory.

#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>

#define isdir(aDir) (opendir(aDir) != NULL)

int move (const char *srcobj, const char *destobj)
{

char destdir [MAXLEN]
.
.
strcpy (destdir, destobj);

if (!(dirf = isdir(destdir))) {
/* the object is not a directory but a regular file.
* should be deleted
*/
if (unlink(destdir) == -1 && errno != ENOENT) {

perror (″unlink″) ;
exit (-1);

}
} else {

/* the destdir is a directory. the source name will be
* appended at the end of destdir.
*/
char *p = strrchr(srcobj, ′ / ′) ;
if (p == NULL)

p = srcdir;
else

p++;
strcat (destname, ″ / ″) ;
strcat (destname, p);

Appendix B. Integrated File System Example Programs 253

}
.
.
/* link the object
*/
if (link (srcobj, destname) == -1) { �1�

perror (″link″) ;
exit (-1);

}
.
.
/* unlink the source object
*/
if (unlink (srcobj) == -1) {

perror (″unlink″) ;
exit (-1);

}
}

Notes:

�1� This function returns fail on integrated file system if it is applied
on a directory. The function link(aFile, aDir) returns 0 as successful.
However, link(aDir,aDestDir) returns -1 as fail on the integrated file
system.

Links created by this function are not allowed to cross file systems.
For example, you cannot create a link to a file in the QOpenSys
directory from the root directory.

B.6 Access of Global Variable sys_errlist, nsyserr
Even though the global variables char *sys_errlist??(??) and int sys_nerr are
not documented in the POSIX definition, the preceding variable is accessed
in the UNIX world as usual in order to describe an error message in a
magical way.

For example, the user can attempt to open a certain file to write, which is a
directory or cannot be accessed to write by permissions. Naturally, this file
cannot be opened and the global variable errno is set with a value of either
EACCES or EISDIR. The function perror() shows the corresponding error
message on the display. However, the user wants to modify this error
message and display it more beautifully while accessing the global variable
sys_nerr and sys_errlist.

254 UNIX C Applications Porting to AS/400

The following source code shows how the preceding variables are accessed
in the UNIX system. This does not work on the integrated file system.

.

.
#include <errno.h>
...

/* declaration of global variables */
extern int sys_nerr;
extern char *sys_nerr•‘;

...
/* checkinh the valid range of errno */
if (errno > 0 && errno < sys_nerr) �1�

p = sys_errlist•errno‘; /* return the corresponding */ �2�
/* text pointer */

Notes:

�1� sys_nerr is the maximum number of the list of error text.

�2� sys_errlist is an array of the pointer to the error texts.

This is not portable to the AS/400 system. Because, as previously
mentioned, the integrated file system is designed to confirm the POSIX
definition, the user should use the integrated file system APIs with the POSIX
definitions. The following program code, which is provided by the integrated
file system developers, simulates the way to get the error message text
pointer.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <qmhrtvm.h> /* retrieve message SPI and types */
#include <qusec.h> /* SPI Error Code Parameter types */

char *sys_errlist(int errnovalue);

int main(int argc, char *argv??(??))
{

char *p = NULL;

if (argc != 2) {
printf(″Usage: syserr <errnovalue>\n″) ;
exit(1);

Appendix B. Integrated File System Example Programs 255

}

errno = atoi(argv??(1??));
p = sys_errlist(errno);
if (p != NULL) {

printf(″Error text <%s>\n″ , p);
free(p);
p = NULL;

}

return;
}

/**/
/* char *sys_errlist(int errnovalue) */
/* */
/* Return a pointer to a character string representing */
/* the error that caused the particular errno value. */
/* NOTE: The string returned should be free′ d by the caller. */
/* If the errno is invalid a string stating this is returned */
/**/
char *sys_errlist(int errnovalue)
{

typedef _Packed struct {
Qmh_Rtvm_RTVM0100_t mdata; /* Basic Message Data */
char mtext•1024‘; /* Kind of arbitrary, enough? */

} MyMessage_t;

/* Information about the message that we′ re going to retrieve */
char msgformat??(9??) = ″RTVM0100″ ;
char msgid??(8??) = ″CPExxxx″ ;
char msgfile??(21??) = ″QCPFMSG QSYS ″ ;
char *msgsubstdta = NULL; /* we won′ t be substituting here */
int msgsubstlen = 0;
char msgsubst??(11??) = ″*NO ″ ;
char msgfmtctl??(11??) = ″*NO ″ ;
Qus_EC_t errorcode;
char *p = NULL; /* string to return */

 MyMessage_t message; /* message we′ ll retrieve */
char invalstring•“ = ″Invalid ERRNO value″ ;

/* ERRNO messages are in the range of CPE0000 to CPE9999 */
if (errnovalue < 0 || errnovalue > 9999) {

256 UNIX C Applications Porting to AS/400

return NULL;
}
sprintf(msgid+3, ″%0.4d″ , errnovalue);
printf(″Getting MSGID=<%s>\n″ , msgid); /* INFORMATIONAL */

memset(&errorcode, 0, sizeof(errorcode)); /* Clear the error area */
errorcode.Bytes_Provided = sizeof(errorcode);/* Init the error code */

memset(&message, 0, sizeof(message.mdata)); /* Clear the message area */
message.mtext??(0??)=′ \0′ ; /* Null Text String */

QMHRTVM(&message,
sizeof(message),
msgformat,
msgid,
msgfile,
msgsubstdta,
msgsubstlen,
msgsubst,
msgfmtctl,
&errorcode);

if (errorcode.Bytes_Available) {
printf(″Error on retrieve message: <%.7s>\n″ ,

errorcode.Exception_Id); /* INFORMATIONAL */
p = (char *)malloc(sizeof(invalstring));
memcpy(p, invalstring, sizeof(invalstring));

} else {
p = (char *)malloc(message.mdata.Length_Message_Returned + 1);
memcpy(p, message.mtext, message.mdata.Length_Message_Returned);
p•message.mdata.Length_Message_Returned‘ = ′ \0′ ;

}

return p;
}

Appendix B. Integrated File System Example Programs 257

258 UNIX C Applications Porting to AS/400

Appendix C. Development Cycle of ILE C/400 Applications

Development of a program is a cycle work of editing, compiling, binding, and
debugging. ILE (Integrated Language Environment) on the AS/400 system
provides applications development (and execution) environment from the
program creation phase through the debugging phase.

Figure 100 on page 260 illustrates the typical stages in developing C
applications in the ILE environment.

 Copyright IBM Corp. 1995 259

Application Development Stages CL Commands

1. Code your @=============# Start Source
source program | | Entry Utility

| Source | (STRSEU)
| Code |<========#
| | |
$======¬======% |

| |
=============================+================+================

| |
V |

2. Compile your @=============# | Create a
source program | | | Module

| Module | | (CRTCMOD)
| Object | |
| | |
$======¬======% |

| |
=============================+================+================

| |
V |

3. Create the @=============# | Create a
program object | | | Program
by binding one | Program | | (CRTPGM)
or more modules | Object | | (CRTSRVPGM)

| | |
$======¬======% |

| |
=============================+================+================

| |
4. Enable OS/400 | | Start Debug

debug mode | | (STRDBG)
| |

=============================+================+================
| |
V |

5. Run your @=============# | Call a
program | | | Program

| Program | | (CALL)
| Runs | |
| | |
$======¬======% |

| |
=============================+================+================

| |
V |

6. Use source @=============# |
debugger | | |

| Debug | |
| Mode ″=========%
| |
$=============%

Figure 100. Stages in C Application Development

260 UNIX C Applications Porting to AS/400

C.1 Source Editing
If your UNIX source codes are imported into members of a source physical
file, you can modify the existing source code or edit a new source code with
the editor in the Programming Development Manager tool. Let′s assume
that your source code ′MYPGM ′ is in ′QCSRC′ file of ′MYLIB′ l ibrary. This is
the same as with the ′ /MYLIB/QCSRC′ directory in the UNIX system.

To start Programming Development Manager, you enter STRPDM on the
command line and press Enter. Then the AS/400 Programming Development
Manager menu is displayed.

� �
 MAIN AS/400 Main Menu

System: XXXX
 Select one of the following:

1. User tasks
2. Office tasks

4. Files, libraries, and folders

6. Communications

8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access tasks

90. Sign off

 Selection or command
 ===> strpdm

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu

� �
Figure 101. AS/400 Main Menu with STRPDM Command Specified

Appendix C. Development Cycle of ILE C/400 Applications 261

Select option 2 and press Enter. Then the Specify Objects to Work With is
displayed. You can use this menu to select the type of list you want to work
with.

� �
AS/400 Programming Development Manager (PDM)

 Select one of the following:

1. Work with libraries
2. Work with objects
3. Work with members
4. Work with projects
5. Work with groups
6. Work with parts

9. Work with user-defined options

 Selection or command
 ===> 2__
 __

F3=Exit F4=Prompt F9=Retrieve F10=Command entry
F12=Cancel F18=Change defaults

� �
Figure 102. AS/400 Programming Development Manager (PDM) Menu with Option 2
Specified

262 UNIX C Applications Porting to AS/400

You can use the Specify Objects to Work With window to select the objects
you want to work with. You can use the Library, Name, Type, and the
Attribute prompts to specify subset criteria. When you enter ′MYLIB ′ and
press Enter, the Work with Objects Using PDM menu for ′MYLIB′ is
displayed.

� �
Specify Objects to Work With

 Type choices, press Enter.

Library MYLIB *CURLIB, name

Object:
Name *ALL *ALL, name, *generic*
Type *ALL *ALL, *type
Attribute *ALL *ALL, attribute, *generic*,

*BLANK

F3=Exit F5=Refresh F12=Cancel

� �
Figure 103. Specify Objects to Work With Window

Appendix C. Development Cycle of ILE C/400 Applications 263

You can use this menu to work with objects in a library by selecting options
or pressing function keys. Object name ′QCSRC′ is an AS/400 naming
convention and usually this file has C source members in it.

� �
Work with Objects Using PDM XXXX

 Library MYLIB Position to
Position to type

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 7=Rename
8=Display description 9=Save 10=Restore 11=Move ...

 Opt Object Type Opt Object Type
 __ CPROG *PGM __ CTABLE *MODULE
 __ MYSRVPGM *SRVPGM __ H *FILE
 __ CCAT *MODULE __ QCSRC *FILE
 __ CCD *MODULE
 __ CINPUT *MODULE
 __ CLS *MODULE
 __ CMAIN *MODULE
 __ CPWD *MODULE

Bottom
 Parameters or command
 ===> ___
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

� �
Figure 104. Work with Objects Using PDM

264 UNIX C Applications Porting to AS/400

If you want to see the Attribute field and Text field, then press the <F11>
key. When you press <F11> again, the list is changed to the original form.
This is almost the same with ′DIR/W′ and ′DIR/P′ in DOS or the OS/2 system.

� �
Work with Objects Using PDM XXXX

 Library MYLIB Position to
Position to type

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 7=Rename
8=Display description 9=Save 10=Restore 11=Move ...

 Opt Object Type Attribute Text
CPROG *PGM CLE main entry procedure
MYSRVPGM *SRVPGM CLE
CCAT *MODULE CLE Display File
CCD *MODULE CLE change directory

 CINPUT *MODULE CLE get parameter for each command
 CLS *MODULE CLE List Directory

CMAIN *MODULE CLE main entry procedure
CPWD *MODULE CLE get working directory

More...
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

� �
Figure 105. Work with Objects Using PDM

Appendix C. Development Cycle of ILE C/400 Applications 265

To work with members of ′QCSRC′ file, you enter option 12 on the ′QCSRC′
object. You can see option 12 by pressing the F23 key.

� �
Work with Objects Using PDM XXXX

 Library MYLIB Position to
Position to type

 Type options, press Enter.
12=Work with 13=Change text 15=Copy file
16=Run 18=Change using DFU 25=Find string ...

 Opt Object Type Opt Object Type
 __ CPROG *PGM __ CTABLE *MODULE
 __ MYSRVPGM *SRVPGM __ H *FILE
 __ CCAT *MODULE 12 QCSRC *FILE
 __ CCD *MODULE
 __ CINPUT *MODULE
 __ CLS *MODULE
 __ CMAIN *MODULE
 __ CPWD *MODULE

Bottom
 Parameters or command
 ===> ___
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

� �
Figure 106. Work with Objects Using PDM Menu with Option 12 Specified

266 UNIX C Applications Porting to AS/400

When you enter 12 in the Opt column by ′QCSRC′, members of the source
physical file QCSRC are listed. You can use this menu to work with
members in a physical file by selecting options or pressing function keys.
When you enter option 2 on ′MYPGM ′ and press Enter, the Source Entry
Utility(SEU) window is displayed.

� �
Work with Members Using PDM XXXX

 File QCSRC
Library MYLIB Position to

 Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

Opt Member Type Text
__ CCAT C_________ Display File_____________________________________
__ CCD C_________ change directory_________________________________
2_ MYPGM C_________ My program_______________________________________
 __ CINPUT C_________ get parameter for each command___________________
 __ CLS C_________ List Directory___________________________________
 __ CMAIN C_________ main entry procedure_____________________________
 __ CPWD C_________ get working directory____________________________
 __ CTABLE C_________ command tables___________________________________

More...
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

� �
Figure 107. Work with Members using PDM

Appendix C. Development Cycle of ILE C/400 Applications 267

You can edit your source code in the SEU window. After editing, you can exit
SEU by pressing the F3 key. When you press F3, the Exit Confirmation
window is displayed.

� �
 Columns . . . : 1 80 Edit
 SEU==>
 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 .

*************** Beginning of data **************************************
0001.00 #include <stdlib.h>
0002.00 #include <stdio.h>
0003.00 #include <fcntl.h>
0004.00 #include <unistd.h>
0005.00 #include <sys/types.h>
0006.00 #include <errno.h>
0007.00
0008.00 #include ″hcomm.h″
0009.00
0010.00 int c_cat(int argc, char *argv??(??))
0011.00 {
0012.00 int fd;
0013.00 int BytesRead;
0014.00 char buffer??(BUFFSIZE??);
0015.00 char *filename = argv??(0??);
0016.00
0017.00 if ((fd = open(filename, O_RDONLY)) == -1)
0018.00 return (errno);
0019.00

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
 F16=Repeat find F17=Repeat change F24=More keys

� �
Figure 108. Source Entry Util ity (SEU)

268 UNIX C Applications Porting to AS/400

You can save, print a member, or return to the SEU window on the Exit
Confirmation window. When you press Enter with the default option, the
edited source code is saved and ′Member MYPGM in file MYLIB/QCSRC is
changed with xxx records. A message is displayed on the Work with
Members Using PDM menu.

� �
Exit

 Type choices, press Enter.

Change/create member Y Y=Yes, N=No
Member MYPGM Name, F4 for list
File QCSRC Name, F4 for list
Library MYLIB Name

Text Display File

Resequence member Y Y=Yes, N=No
Start 0001.00 0000.01-9999.99
Increment 01.00 00.01-99.99

Print member N Y=Yes, N=No

Return to editing N Y=Yes, N=No

Go to member list N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F12=Cancel

� �
Figure 109. Exit Confirmation

C.2 Module Creation
Because most C applications consist of many source codes on the UNIX
system, the UNIX system provides a make tool to build a program. With ILE
C/400, each module can be compiled separately and all modules can be
bound into a program. The ILE C/400 provides a make utility ″TMKMAKE″
besides compilers and binders. For a big project, some developer creates
his own object libraries. But the ILE C/400 does not provide library facilities,
however, runtime libraries called ″SERVICE PROGRAM″ can be created and
used easily. The following list can help the developer who ports a UNIX
application to the the AS/400 system.

Appendix C. Development Cycle of ILE C/400 Applications 269

Creating a module is very similar to compiling a source code without
creating a program in the UNIX system.

In UNIX, you can compile a source code with the command

cc -c prog.c.

On the AS/400 system, you can create a module from a C source code with
the command CRTCMOD.

The CRTCMOD command starts an ILE C compiler which, upon successful
compilation of the source code, creates a permanent module object that can
be optionally combined with other modules into a bound program. As in the
preceding syntax diagram, the command has a set of parameters. The
following parameters are relevant to the runtime environment of your
program:

DBGVIEW Specifies the option that controls which views of the input
source or generated listing are available for debugging the
compiled module.

OPTIMIZE Specifies the optimization level of the module.

If you want to change the optimization level of the code or change the
debugging ability at runtime, you must set the appropriate parameters at
compile time.

Table 19 shows related CL commands to Create C Module (CRTCMOD).

Table 19. Related CL Command to Create C Module (CRTCMOD)

CL Command Description

CRTRPGMOD Create RPG Module

CRTCBLMOD Create COBOL Module

DSPMOD Display Module

CHGMOD Change Module

DLTMOD Delete Module

WRKMOD Work with Module

270 UNIX C Applications Porting to AS/400

C.3 Creating/Binding an ILE Program
In UNIX, you can create or bind a program with the command:

ld -o progname ...

On the AS/400 system, you can create or bind a program from modules with
the command CRTPGM.

C.3.1 Creating an ILE Program from One or More Modules
For example, there are two modules to be bound into a program, MAIN and
PROG.

CRTPGM PGM(MYPROG) MODULE(MAIN PROG)

When you enter the preceding command, the OS/400 program creates the
program object in the following way.

 1. Copies the listed modules into what becomes the program object.

 2. Finds the module with the program entry procedure.

 3. Locates the first import in the module with the program entry procedure.

 4. Checks the modules in the order listed in the command until the first
import is matched with a module export.

 5. Returns to the first module to find the next import.

 6. Resolves all imports in the first module, then goes to the next module in
the list.

 7. Resolves all imports in the second module.

 8. Goes to each subsequent module in the list until all imports are resolved.

 9. If one or more imports remain without an export, the binding ends
without creating the program object.

10. When all imports have been resolved, the binding ends and the program
object exists with the specified library and name.

Table 20 on page 272 shows related CL commands to Create Program
(CRTPGM).

Appendix C. Development Cycle of ILE C/400 Applications 271

Table 20. Related CL Command to Create Program (CRTPGM)

CL Command Description

CRTBNDRPG Create Bound RPG Program

CRTBNDCBL Create Bound CBL Program

DSPPGM Display Program

CHGPGM Change Program

DLTPGM Delete Program

C.3.2 Service Program
A service program is a special kind of ILE program. Service programs are
like subroutine libraries. They are also like dynamic link libraries (DLLs) in
the OS/2 system or like shared libraries in the UNIX system. They are used
for common functions that are frequently called within an application.

Program can be created without service programs. But if an application is
very large, it is very difficult to maintain a program. In deciding whether to
use service programs, you should weigh their advantages and
disadvantages. Table 21 on page 273 shows the advantages and
disadvantages of service programs.

An ILE service program is created by binding one or more ILE objects
together to make one functional package such as a shared library in the
UNIX system. The objects bound together must include at least one module
and can include other service programs also. It has an object type of
*SRVPGM to distinguish it from other bound programs.

A service program provides you with a means of packaging externally
supported callable routines (functions) into a separate object.

To create a service program, use the Create Service Program (CRTSRVPGM
) command. This command binds one or more modules into a runnable
object by using a process similar to the process used by the CRTPGM
command. The modules that are packaged together in the service program
do not need to have any functional relationship to each other. The only
requirement for the object to be created is that all imports must be resolved
and, for the program to be useful, some exports are defined for use by other
ILE programs.

272 UNIX C Applications Porting to AS/400

< < s y n t a x o f C R T S R V P G M > >

Table 22 shows related CL commands to Create Program (CRTPGM).

Table 21. Advantages and Disadvantages of using the Service Program

Advantages Disadvantages

Simpler maintenance of
applications

Resolving system pointers for
additional service programs.

Less time to build applications Activation time for the service
programs, including allocation of
the activation, runtime binding,
and static initialization.

Hidden information Application build time

Less memory and disk space Parts management

Table 22. Related CL Command to Create Service Program (CRTSRVPGM)

CL Command Description

DSPSRVPGM Display Service Program

CHGSRVPGM Change Service Program

DLTSRVPGM Delete Service Program

C.4 Debugging an ILE Program
For the program developer, it is very hard to find an error in a program. If
you saves time on debugging, the whole develop time is reduced and then
the development cost is less. The ILE source debugger is used to help find
programming errors in ILE programs and service programs.

Before you can use the ILE source debugger. you must use the debug option
(DBGVIEW) when you create a module object (CRTCMOD) or a program
object. Then you can start your debug session. Once you set breakpoints or
other ILE source debugger options, you can call the program.

Appendix C. Development Cycle of ILE C/400 Applications 273

You use the Start Debug (STRDBG) command to start the ILE source
debugger. Once the debugger is started. it remains active until you enter the
End Debug (ENDDBG) command.

Table 23 shows related CL commands to Start Debug (STRDBG).

Table 23. Related CL Command to Start Debug (STRDBG)

CL Command Description

ENDDBG End Debug

DSPMODSRC Display Module Source

C.5 Tour of Development Cycle with Real Examples
This section shows user the entire development cycle with sample source
codes: how to create an application in ILE environment and how to debug
errors.

This program is simple enough, we hope, to be self-explanatory. This
program displays a menu and the current working directory in the integrated
file system, reads the user input and runs the corresponding functions
(display list, change current working directory, and display file). The
program consists of an ILE program and a service program.

C.5.1 List of Source Codes
The following source codes are in ′QCSRC′ and ′H′ files in ′MYLIB′ l ibrary.

.
• ccomm.h -- common header file
• cproto.h -- prototype definitions
• cmain.c -- main entry function
• ctable.c -- function table definitions
• cinput.c -- input functions
• ccat.c -- display of file
• cls.c -- display of directory
• cpwd.c -- current working directory
• ccd. -- change working directory

274 UNIX C Applications Porting to AS/400

C.5.2 Source Codes

#ifndef __CCOMM__
#define __CCOMM__

#define COK 0
#define CEXIT 9

#define MAXCMD 3
#define MAXARG 3
#define BUFFSIZE 1024
#define MAXNAMLEN 1024

extern int (*cmdlist[])(int argc, char **argv);
extern int (*getlist[])(char **argv);
extern char *cmdname[];
extern char *curwrkdir;

#endif /* __CCOMM__ */

Figure 110. ccomm.h

#ifndef __CPROTO__
#define __CPROTO__

int c_ls (int arg, char *argv[]);
int c_pwd (int arg, char *argv[]);
int c_cd (int arg, char *argv[]);
int c_cat (int arg, char *argv[]);

int c_ls_get (char *argv[]);
int c_pwd_get (char *argv[]);
int c_cd_get (char *argv[]);
int c_cat_get (char *argv[]);
#endif /*__CPROTO__*/

Figure 111. cproto.h

Appendix C. Development Cycle of ILE C/400 Applications 275

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include ″ccomm.h″
#include ″cproto.h″

static int narg;
static char *argp[MAXARG];
static char argbuf[BUFFSIZE*MAXARG];

static void print_menu(void);
static int get_func(void);

static void print_menu(void)
{

printf (″\n″) ;
printf (″Current Working Directory: %s\n\n″ , curwrkdir);
printf (″1. List Directory\n″) ;
printf (″2. Change Working Directory\n″) ;
printf (″3. Display File\n″) ;
printf (″\n\n″) ;
printf (″9. Exit\n″) ;

}

Figure 112. cmain.c - 1 of 2

276 UNIX C Applications Porting to AS/400

static int get_func(void)
{

int ret;
char ans[128];

while (1) {
print_menu();
gets(ans);
ret = atoi (ans);
if (ret <= 0 || ret > MAXCMD) {

if (ret == CEXIT)
return CEXIT;

fprintf (stderr,″Invalid Choice!!!\n″) ;
continue;

}
narg = (*getlist[ret-1])(argp);
break;

};
return ret;

}

int main ()
{
 int i;
 int ret;

for (i = 0; i < MAXARG ; i++)
argp[i] = &argbuf[i*BUFFSIZE];

while (1) {
if ((ret = c_pwd(narg, argp)) != COK) {

perror(″Current Working Directory″) ;
break;

}
if ((i = get_func()) != CEXIT) {

if((ret = (*cmdlist[i-1])(narg, argp)) != COK)
perror(cmdname[i-1]);

} else
break;

}
}

Figure 113. cmain.c - 2 of 2

Appendix C. Development Cycle of ILE C/400 Applications 277

#include <stdio.h>
#include <stdlib.h>

#include ″cproto.h″

int c_ls_get (char *argv[])
{

printf (″ Enter the directory name\n″) ;
gets(argv[0]);
return 1;

}

int c_cd_get (char *argv[])
{

printf (″ Enter the directory name\n″) ;
gets(argv[0]);
return 1;

}

int c_cat_get (char *argv[])
{

printf (″ Enter the File name\n″) ;
gets(argv[0]);
return 1;

}

Figure 114. cinput.c

278 UNIX C Applications Porting to AS/400

#include ″cproto.h″

int (*cmdlist[])(int argc, char *argv[]) = {
c_ls,
c_cd,
c_cat

};

int (*getlist[])(char *argv[]) = {
c_ls_get,
c_cd_get,
c_cat_get

};

char *cmdname[] = {
″List Directory″ ,
″Change Working Directory″ ,
″Display File″

};

Figure 115. ctable.c

Appendix C. Development Cycle of ILE C/400 Applications 279

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>

#include ″ccomm.h″

int c_cat(int argc, char *argv[])
{

int fd;
int BytesRead;
char buffer[BUFFSIZE];
char *filename = argv[0];

if ((fd = open(filename, O_RDONLY)) == -1)
return (errno);

while ((BytesRead = read (fd, buffer, BUFFSIZE)) > 0) {
fwrite (buffer, 1, BytesRead, stdout);

}
fwrite(″\n″, 1, 2, stdout);

close(fd);
return COK;

}

Figure 116. ccat.c

280 UNIX C Applications Porting to AS/400

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>

#include <dirent.h>
#include ″ccomm.h″

/* dirwalk: ...*/
static int dirwalk (char *dir)
{

char name[MAXNAMLEN];
struct dirent *dp;
DIR *dfd;

if ((dfd = opendir(dir)) == NULL)
return errno;

while ((dp = readdir(dfd)) != NULL) {
if (strcmp(dp->d_name, ″.″) == 0 |
strcmp(dp->d_name, ″..″) == 0)

continue;

if (strlen(dir) + strlen(dp->d_name) +2 > sizeof(name))
fprintf(stderr, ″dirwalk: name %s/%s to long\n″ ,

dir, dp->d_name);
else {

struct stat stbuf;
if (stat(dp->d_name, &stbuf) == -1)

return errno;

if (S_ISDIR(stbuf.st_mode))
printf(″DIR: %s/%s\n″ , dir, dp->d_name);

Figure 117. cls.c - 1 of 2

Appendix C. Development Cycle of ILE C/400 Applications 281

else
printf(″FILE: %s %ld\n″ , dp->d_name, stbuf

.st_size);
}

}
closedir(dfd);
return COK;

}

/* fsize: ...*/
static int fsize(char *name)
{
 int ret;

struct stat stbuf;
if (stat(name, &stbuf) == -1)

return errno;

if (S_ISDIR(stbuf.st_mode)) {
if ((ret = dirwalk(name)))

return ret;
} else

printf(″FILE: %s %ld\n″ , name, stbuf.st_size);
printf(″\n″) ;
return COK;

}

int c_ls (int argc, char *argv[])
{

if (strlen(argv[0]) == 0)
return fsize(″ . ″) ;

else
return fsize (argv[0]);

}

Figure 118. cls.c - 2 of 2

282 UNIX C Applications Porting to AS/400

#include <unistd.h>
#include <errno.h>

#include ″ccomm.h″

char *curwrkdir;

int c_pwd(int argc, char **argv)
{

static char workdir[MAXNAMLEN];

if (getcwd(workdir, MAXNAMLEN) == NULL)
return errno;

else {
curwrkdir = workdir;
return COK;

}
}

Figure 119. cpwd.c

#include <errno.h>
#include <unistd.h>

#include ″ccomm.h″

int c_cd (int argc, char *argv[])
{
 char *dirname = argv[0];

if (chdir (dirname) == -1)
return errno;

else
return COK;

}

Figure 120. ccd.c

Appendix C. Development Cycle of ILE C/400 Applications 283

C.5.3 Creating Modules
Before you create the modules, the library names in which there is source
code should be in the library list. The command

ADDLIBLE MYLIB

adds the library ′MYLIB′ in the library list. The command

CHGCURLIB MYLIB

changes the library ′MYLIB′ to the current library on your session.

Let′s create modules by using CRTCMOD command. The following seven
commands create seven modules in ′MYLIB′ l ibrary.

CRTCMOD MODULE(CMAIN) OUTPUT(*PRINT) DBGVIEW(*ALL)
CRTCMOD MODULE(CTABLE) OUTPUT(*PRINT) DBGVIEW(*ALL)
CRTCMOD MODULE(CINPUT) OUTPUT(*PRINT) DBGVIEW(*ALL)
CRTCMOD MODULE(CPWD) OUTPUT(*PRINT) DBGVIEW(*ALL)
CRTCMOD MODULE(CLS) OUTPUT(*PRINT) DBGVIEW(*ALL)
CRTCMOD MODULE(CCD) OUTPUT(*PRINT) DBGVIEW(*ALL)
CRTCMOD MODULE(CCAT) OUTPUT(*PRINT) DBGVIEW(*ALL)

If you do not want the debug option or the print option and if you want
compile the source code with optimization, you can enter the following:

CRTCMOD MODULE(CMAIN) OPTIMIZE(*FULL)

C.5.4 Creating Service Programs
Because the functions c_pwd, c_ls, c_cd, and c_cat are independent of each
other, they can be bound together in a service program.

Let′s create a service program by using the CRTSRVPGM command. The
command:

CRTSRVPGM SRVPGM(MYSRVPGM) MODULE(CCD CPWD CCAT CLS) EXPORT(*ALL)

creates service program ′MYSRVPGM′ in ′MYLIB′ l ibrary.

C.5.5 Creating Programs
Let′s create an ILE program by using the CRTPGM command. The
command:

CRTPGM PGM(CPROG) MODULE(CMAIN CINPUT CTABLE) BNDSRVPGM(MYSRVPGM)

creates an ILE program CPROG in ′MYLIB′ l ibrary.

284 UNIX C Applications Porting to AS/400

If the current library is not set, the program is the first library in the library
list that can be displayed or edited with the command:

EDTLIBL

C.5.6 Executing Programs
Let′s run the program ′CPROG′. The command:

CALL MYLIB/CPROG

runs the ′MYLIB/CPROG′ program. Or, if ′MYLIB′ library is set to the current
library, the command:

CALL CPROG

runs the ′MYLIB/CPROG′ program also.

When you run the ′CPROG′ program, Figure 121 is displayed.

� �
Current Working Directory: /

1. List Directory
2. Change Working Directory
3. Display File

9. Exit

 ===> 1___

 F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
 F18=Bottom F19=Left F20=Right F21=User Window

� �
Figure 121. Run ILE Program CPROG

When you select option 1 to list the directory list, it may not work because of
some errors in the ′CPROG′ program.

Appendix C. Development Cycle of ILE C/400 Applications 285

C.5.7 Debugging Programs
Since ′CPROG′ program is created with debug option (DBGVIEW), we can
debug it by using the STRDBG command. Let′s start debugging the ′CPROG′
program. When you enter:

STRDBG MYLIB/CPROG

command and press Enter, the Display Module Source window for ′CMAIN′
module is displayed.

� �
Display Module Source

 Program: CPROG Library: MYLIB Module: CMAIN
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include ″hcomm.h″
6 #include ″cproto.h″
7
8 static int narg;
9 static char *argp•MAXARG‘;
10 static char argbuf•BUFFSIZE*MAXARG‘;
11
12 static void print_menu(void);
13 static int get_func(void);
14
15 static void print_menu(void)

More... _________
 Debug . . .

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
 F12=Resume F13=Work with module breakpoints F24=More keys

� �
Figure 122. Display Module Source for CMAIN Module

286 UNIX C Applications Porting to AS/400

When you press the <F14> key, the Work with Module List window is
displayed. You can see that the ′CMAIN′ module is selected now.

� �
Work with Module List

System: XXXX
 Type options, press enter.

1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
*LIBL *PGM

CPROG SEY *PGM
CMAIN *MODULE Selected
CINPUT *MODULE

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

� �
Figure 123. Work with Module List for CPROG Program

Appendix C. Development Cycle of ILE C/400 Applications 287

We know option 1 does not work and the source code ′CLS′ is working for
option 1, so we want to see the ′CLS′ module. However, ′CLS′ is not
displayed because this module is bound into the service program
′MYSRVPGM′. To debug the service program ′MYSRVPGM′, it must be
added into the Program/Module list. Figure 124 shows how to add
′MYSRVPGM′ into the list.

� �
Work with Module List

System: XXXX
 Type options, press enter.

1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
1 mysrvpgm mylib *SRVPGM

 CPROG MYLIB *PGM
CMAIN *MODULE Selected
CINPUT *MODULE

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

� �
Figure 124. Work with Module List

288 UNIX C Applications Porting to AS/400

The Figure 125 shows the program/module list after you added the service
program.

� �
Work with Module List

System: RCHASM03

Type options, press enter.

1=Add program 4=Remove program 5=Display module source

8=Work with module breakpoints

Opt Program/module Library Type
_ MYSRVPGM *LIBL *SRVPGM
_ MYSRVPGM MYLIB *SRVPGM
_ CCD *MODULE
_ CPWD *MODULE
_ CCAT *MODULE
5 CLS *MODULE
_ CPROG MYLIB *PGM
_ CMAIN *MODULE Selected
_ CINPUT *MODULE

Bottom
Command
 ===> ___
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
Program MYSRVPGM added to source debugger.� �

Figure 125. Debug Module List

Appendix C. Development Cycle of ILE C/400 Applications 289

On the preceding display, when you entered option 5 on ′CLS′ module, then
Display Module Source window for ′CLS′ module is displayed. The
Figure 126 shows the source of ′CLS′. To set the break point, move the
cursor on the line where you want to set it and press the <F6> key. If the
break point is set on the line 26, the line number is highlighted.

� �
Display Module Source

 Program: MYSRVPGM Library: SEY Module: CLS
16 {
17 char name[MAXNAMLEN];
18 struct dirent *dp;
19 DIR *dfd;
20
21 if ((dfd = opendir(dir)) == NULL)
22 return errno;
23
24 while ((dp = readdir(dfd)) != NULL) {
25 if (strcmp(dp->d_name, ″.″) == 0 |
26 strcmp(dp->d_name, ″..″) == 0)
27 continue;
28
29 if (strlen(dir) + strlen(dp->d_name) +2 > sizeof(name))
30 fprintf(stderr, ″dirwalk: name %s/%s to long\n″ ,

More...
 Debug . . . __

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
 F12=Resume F13=Work with module breakpoints F24=More keys
 Breakpoint added to line 24.

� �
Figure 126. Display Module Source

To debug the program, press the <F12> key, and enter the previous
command to run the program. In Figure 126, when you enter option 1 to
display the directory list, the program is stopped at the break point. With the
<F10> key, you can run the program step-by-step. You can see where the
bug is. In the if statement, the directory name is checked whether it is ″.″ or
″..″. A logical OR operation (| |) should be used instead of bit OR operation
(|).

When you press the <F3> key, you can exit the debugging window.
However, the debug session is still active; if you want to end debugging, then
you enter the command ENDDBG on the command line.

290 UNIX C Applications Porting to AS/400

C.5.8 Fixing Errors
To apply the changed ′CLS′ source code, you create module ′CLS′ and
service program ′MYSRVPGM′ again. You do not need to create ′CPROG′
again.

Appendix C. Development Cycle of ILE C/400 Applications 291

292 UNIX C Applications Porting to AS/400

List of Abbreviations

AIX Advanced Interactive
eXecutive

API Application Program
Interface

APPN Advanced Peer-to-Peer
Network

ASCII American National
Standard Code for
Information Interchange

CISC Complex Instruction Set
Computer

CL Control Language

CLP Control Language
Program

DCE Distributed Computing
Environment

EBCDIC Extended Binary Coded
Decimal Interchange
Code

FTP File Transfer Protocol

IBM International Business
Machines Corporation

IETF Internet Engineering
Task Force

IFS Integrated File System

IMPI Internal
MicroProgrammed
Interface

IPX Internetwork Packet
eXchange

ISO International Standards
Organization

ITSO International Technical
Support Organization

LAN Local Area Network

LIC Licensed Internal Code

MI Machine Interface

NetBIOS Network Basic Input
Output System

NNTP Network News Transfer
Protocl

OSF Open Software
Foundation

OSI Open Systems
Interconnection

POSIX Portable Operating
System Interface

PROFS Professional Office
System

RISC Reduced Instruction Set
Computer

RPC Remote Procedure Call

SMTP Simple Mail Transfer
Protocol

SNA Systems Network
Architecture

SNMP Simple Network
Management Protocol

SPX Sequenced Packet
eXchange

TCP/IP Transmission Control
Protocol/Internet
Protocol

TIMI Technology Independent
Machine Interface

UUCP UNIX-to-UNIX Copy
Program

 Copyright IBM Corp. 1995 293

294 UNIX C Applications Porting to AS/400

Index

A
abbreviations 293
acronyms 293
arguments list 66
ASCII, versus EBCDIC 22

C
CLP, versus shell scripts 162
code page 39
commands

integrated fi le system unique commands 36
UNIX commands equivalents for integrated

file system commands 34
conversion

using FTP 39
using integrated file system 38

creating new jobs 72

D
descriptors 109

arrays 129
passing, access permission 139

E
EBCDIC, versus ASCII 22
environment variable 65

in AS/400 67
in UNIX 66
inheritance 68

envvar
See also environment variable
arguments 65

F
f i le descriptor

descriptors passing, AS/400 way 105

file descriptor (continued)
descriptors passing, UNIX way 104
file descriptor and file pointer 38
management 37
standard descriptors 109

functions 47
spawn() 82
system() 74

I
IFS 25

example programs 227
fi le systems summary 26
tutorial 171

inetd 134
Integrated File System

See also IFS
general description 25

J
job ID

description 45

M
Machine Interface

See MI
makefi le 167
MI 17

O
Object Oriented Architecture 18
open blueprint 101
open standards

summary list for AS/400 6

 Copyright IBM Corp. 1995 295

P
process

authorization 85
process group 46
process ID

description 45

R
Remote Procedure Call

See RPC
RPC 153

S
SBMJOB 81
shell scripts, versus CLP 162
signals

in AS/400 57
in POSIX 57
in UNIX 55
scope on AS/400 61

single level storage 19
socket descriptor

descriptors passing, AS/400 way 105
descriptors passing, UNIX way 104
inherited 119

spawn()
standard descriptors 109
storage management

in AS/400 19
in UNIX 19

submit job
See SBMJOB

system calls
See also functions
spawn() 47

system() 74

T
Technology Independent Machine Interface

See TIMI

thread ID
description 45

threads
concept 43
in AS/400 44
in UNIX 43
thread-enabled 73
thread-safe 73

TIMI 17

296 UNIX C Applications Porting to AS/400

IBML

Printed in U.S.A.

SG24-4438-00

	UNIX C Applications Porting to AS/400
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)
	Acknowledgments
	Standard Conventions

	Chapter 1. Introduction
	AS/400 System: Open System
	What Is Open System for UNIX C Developers?
	How Open Is AS/ 400 System for UNIX C Developers?
	Why This Can Be So Easy on the AS/400 System?
	Evaluation of Porting Cost
	Major UNIX- AS/ 400 Differences
	What IS Easy and What IS Difficult?
	What Is This Book All About?

	Chapter 2. Architecture of the AS/400 System
	Architecture of AS/400 System
	Object Oriented Architecture
	Addressing/ Storage Management
	Library and Address Resolution
	User Profile and Authority Management
	Character Sets and Terminal I/ O
	Architectural Summary

	Chapter 3. File System - AS/400 Integrated File System
	AS/ 400 Integrated File System Introduction
	How to Work with Integrated File System
	UNIX Commands Equivalents on AS/ 400 System
	Integrated File System and Porting
	File Descriptor Management
	File Pointer and File Descriptor
	Data Conversion
	Code Pages
	What Level of Portability Do I Have?
	Example Programs for Integrated File System

	Chapter 4. Process Management
	Introduction
	Processes
	Processes in UNIX
	Processes on the AS/400 System
	Threads
	Threads in UNIX
	Threads in the AS/ 400 System
	Process Groups and Job Control
	Process Groups and Job Control in UNIX
	Process Groups and Job Control on AS/400 System
	Signals
	Signals in UNIX
	Signals in POSIX
	Signals on the AS/ 400 System
	Starting and Stopping Processes/ Threads
	Arguments and Environment Variables
	Threads and Spawning New Jobs
	Threads
	Jobs
	Process Authorization

	Chapter 5. Networking
	TCP/ IP in General
	TCP/ IP on the AS/ 400 System
	Open Blueprint
	Server Models
	Passing of Descriptors
	Standard Descriptors
	Traditional TCP/ IP Server Designs
	Spawning a New Program
	Inherited Socket Descriptors
	Descriptor Arrays
	Inetd (The Super Daemon)
	Passing Descriptor Access Permissions
	General Tips When Porting Network Applications to OS/ 400

	Chapter 6. Development Environment on AS/400 System
	Editors and Programs Location
	ILE C/ 400 Compiler
	Packed Qualifier
	Special Type
	Macros Defined Only by ILE/ C Compiler
	Include Directive
	ILE C/ 400 Specific #pragma Preprocessing Directives
	Shell Scripts versus CLP
	CL Programming
	Creating a CL Program
	CL Programs for Shell Scripts Examples
	Makefile
	How to Create Make Utility TMKMAKE
	Make Utility Example

	Appendix A. Integrated File System Tutorial
	A. 1 Get into the Integrated File System
	A.2 Current Directory and Home Directory
	A.3 Create and Remove a Directory
	A.4 Display and Change Current Directory
	A. 5 Add, Display and Remove Object Links
	A.6 Copy, Move, and Rename Objects
	A.7 Other Tips

	Appendix B. Integrated File System Example Programs
	B. 1 Client/ Server Application for Stream File I/ O
	B. 2 Display Stream File
	B. 3 Listing Directory
	B. 4 Open on a Directory
	B. 5 Link on a Directory
	B. 6 Access of Global Variable sys_errlist, nsyserr

	Appendix C. Development Cycle of ILE C/400 Applications
	C. 1 Source Editing
	C. 2 Module Creation
	C. 3 Creating/ Binding an ILE Program
	C. 3.1 Creating an ILE Program from One or More Modules
	C. 3.2 Service Program
	C. 4 Debugging an ILE Program
	C. 5 Tour of Development Cycle with Real Examples
	C. 5.1 List of Source Codes
	C. 5.2 Source Codes
	C. 5.3 Creating Modules
	C. 5.4 Creating Service Programs
	C. 5.5 Creating Programs
	C. 5.6 Executing Programs
	C. 5.7 Debugging Programs
	C. 5.8 Fixing Errors

	List of Abbreviations
	Index
	A
	C
	I
	D J
	M E
	O
	F
	P
	R
	S
	T

