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Highly available workloads and deployment on IBM Cloud Private

    In this chapter, highly available workloads and deployments on IBM Cloud Private are described. 

    This chapter includes the following topics:

    •1.1, “Highly available workloads on IBM Cloud Private” on page 2

    •1.2, “High availability versus failover” on page 6

    •1.3, “Horizontal Pod Autoscaler for IBM Cloud Private” on page 8

    •1.4, “Deploy Spring Boot application on WebSphere Liberty Helm chart” on page 9

    •1.5, “Zero downtime deployment updates” on page 20

    •1.6, “Other deployment strategies implemented with native Kubernetes” on page 28

    •1.7, “Deploying a sample stateful application” on page 34

     

    
      
        	
          Note: If you are not familiar with IBM Cloud Private, we suggest that you first read the chapter “Introduction to IBM Cloud Private” in IBM Private Cloud Systems Administrator's Guide, SG2-48440. 

          If you want to follow the code examples that are used in this IBM Redbooks publication, you can download the GitHub repository of this book. For more information, see Appendix A, “Additional material” on page 139. 

        
      

    

     

     

     

     

    1.1  Highly available workloads on IBM Cloud Private

    To understand how the Kubernetes orchestrator supports the high availability of workloads that run on IBM Cloud Private, developers must know a few key characteristics of Kubernetes. In an imperative configuration approach, developers define actions to modify the state of systems. Kubernetes uses a declarative configuration approach, where a developer defines the wanted state. Kubernetes then ensures that the state that you want becomes the actual state.

    This capability of Kubernetes is the basis of its self-healing behaviors that keep applications running without interactions from developers. For example, Kubernetes can meet a service level response time by auto-scaling or allowing for failure and automatically redeploying pods.

    You can think of an application that is deployed in a Kubernetes environment as an application that is made by one or more deployments. Example 1-1 shows a snippet of a deployment manifest .yaml file.

    Example 1-1   Application deployment sample snippet
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    ...

    kind: Deployment

    metadata:

      ...

      name: my_name

      namespace: default

    spec:

      replicas: 2

      selector:

        ...

          restartPolicy: Always

    [image: ]

    In this manifest file, developer declares to Kubernetes that the application pod should be deployed with two replicas and that if a failure occurs, Kubernetes must restart a pod. Kubernetes deploys the pods and makes sure that two instances are always running. If a pod instance crashes, Kubernetes redeploys a new instance of the pod. The developer declares the status and Kubernetes does the rest. Typically, the restart of a pod happens quickly.

    A developer might wonder: What about the data and storage? Who protects the data from a storage failure? Kubernetes can integrate several storage types, including the cloud storage, but the storage redundancy is assumed to be managed outside the Kubernetes cluster.

     

    
      
        	
          Note: For more information about storage persistence, see the chapter “Managing persistence in IBM Cloud Private” in IBM Private Cloud Systems Administrator's Guide, SG24-8440.

        
      

    

    Kubernetes uses defined persistent volumes (PVs) and binds them to persistent volume claims (PVCs) to assign storage to pods, even when the pod is moved to a new node. However, Kubernetes does not provide resiliency of the underlying storage resources. This task is performed by the selected storage provider.

    Because PVs are Kubernetes resources, view them as any other Kubernetes resource; for example, a node. As Kubernetes decides on which node to deploy a pod, it also associates a PVC (the request of storage from a pod) to a PV that is based on the configurations that are defined. 

    The storage is mounted in the containers of the pod. When a pod is relocated or restarted, Kubernetes configures the correct mount points.

    1.1.1  High-availability cluster models for workload deployment

    The following classification models are used for highly available IBM Cloud Private clusters:

    •Intra-cluster

    •Intra-cluster with multiple availability zones

    •Inter-cluster with federation on different availability zones

    Intra-cluster

    A cluster is composed of at least master nodes and worker nodes. This model consists of HA inside an IBM Cloud Private cluster. The redundancy is implemented by deploying multiple nodes for master and for workers that are distributed in a single site.

    This scenario uses Kubernetes functions but cannot protect applications from site failure. If you need site-based protection, combine this model with other protection solutions, including a disaster recovery solution.

    Figure 1-1 shows the intra-cluster topology for workload deployment.
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    Figure 1-1   Intra-cluster topology

    Figure 1-1 on page 3 also shows a highly available DB cluster that use three replicas of MongoDB. Persistence of storage is provided by the GlusterFS distributed filesystem. GlusterFS can use local disks in the storage cluster nodes (GlusterFS Cluster) or use disk volumes from external persistent storage (for example, sdisk array). Multiple storage classes and providers can coexist within one IBM Cloud Private cluster.

    Intra-cluster with multiple availability zones

    This kind of scenario is often referred to as “business continuity”. It combines intra-cluster HA with the capability to protect from a site failure.

    The cluster is distributed among multiple zones. For example, you might have three, five, or seven master nodes and several worker nodes that are distributed among three zones. Zones are sites on the same campus or sites that are close to each other. If a complete zone fails, the master survives and can move the pods across the remaining worker nodes.

     

    
      
        	
          Note: This scenario is possible, but might present a few challenges. It must be implemented carefully.

        
      

    

    Potential challenges in this form of workload deployment

    This form of workload deployment includes the following potential challenges:

    •The spread across multiple zones must not introduce latency. A high latency can compromise the overall Kubernetes work with unpredictable results. For example, because of latency, the master might consider a group of workers as unreachable and start to uselessly move pods. Or, one of the master nodes might be considered down only because of a long latency.

    •In any failure condition, make sure that most of the master nodes survive. Distributing the cluster in only two zones is almost useless. However, configuring three zones implies more costs and complexity.

    Figure 1-2 shows the intra-cluster with multiple availability zones topologies for workload deployment.
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    Figure 1-2   Intra-cluster with multiple availability zones topologies

    Inter-cluster with federation on different availability zones

    For this model, think of two Kubernetes clusters, each with its own master and worker nodes. If one cluster fails, its pods are run on the other cluster. Kubernetes supports this model by implementing a cluster federation. A higher-level master is deployed as a federated control plane. If a cluster fails, the master control plane instructs the masters of the surviving cluster to redeploy the failed pods.

    The federation model is possible; however, beyond the orchestrator, you must consider all the other components of IBM Cloud Private to recover. For example, you must recover all the tools to manage the logs and to monitor your platform and workloads.

    Although the federation for Kubernetes is a built-in feature, you still must take care of all the other components. As in the Intra-cluster with multiple zones model, you must also be aware of possible latency problems.

    Support for federation is relatively new in Kubernetes. Before you apply federation to business-critical workloads, review its evolution and maturity.

    Figure 1-3 shows the inter-cluster federation on different availability zones for workload deployment.
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    Figure 1-3   Inter-cluster with federation on different availability zone topology

    1.2  High availability versus failover

    At the application level, it is the pods that provide high availability in a Kubernetes environment. Kubernetes allows you to run multiple pods (redundancy) and if a pod fails, Kubernetes spins up a replacement pod to reflect the wanted state of the application. 

    Next, we analyze an example in which a developer runs an application that is composed of stateless front-end and stateful back-end pods. 

    A stateless Kubernetes pod is a pod that does not keep a state in the Kubernetes cluster. When a stateless pod is unhealthy, it is deleted and new pod is started.

    Application state often is represented by the data in the database that is hosted on persistent storage on a file system that is outside of Kubernetes’ control. Kubernetes provides the ability to define stateful pods, which maintain their identity across the restarts. If a stateful pod fails, it is restarted.

    To implement the scenario that is shown on Figure 1-4 on page 7, the developer must define the following resources:

    •A PV where the database data files are hosted (assume a relational database). The PV provides data persistency.

    •The front-end pods that run as a stateless replicaset.

    •A back-end database pod that runs as a statefulset.

    •Services to expose the pods to the incoming traffic. A Kubernetes service allows the developer to select a mechanism for locating target pods in the network. For more information about the Kubernetes services, see IBM Knowledge Center.
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    Figure 1-4   Stateless workload deployed in multiple pods in the same cluster

    Figure 1-4 shows that the database pod uses a persistent volume claim, where the storage for the permanent volume is provided by GlusterFS. The data files are on that volume.

    The high availability for this application is achieved by meeting the following requirements:

    •The front-end deployment is defined as replica=3; therefore, whenever one pod crashes, two other instances are still available and Kubernetes automatically starts a new pod to meet the wanted quantity.

    •The database application deployment is defined as replica=1; therefore, if that a pod fails, Kubernetes restarts it. If the worker node crashes, the pod is restarted on a new node.

    •GlusterFS is self-redundant and you do not manage its high availability. The storage volume that you use is redundant by GlusterFS.

    •In this example, the worker nodes are VMs that are made available by hypervisors. Most of the hypervisors provide an internal HA mechanism; however, Kubernetes redeploys the workloads. If a worker node crashes, you add a worker to restore the overall compute capacity.

    •For the storage, you can also have another NFS or an internet Small Computer Systems Interface (iSCSI), most likely for the VMs. Either way, you can assume that the redundancy of the storage is provided by the storage systems.

    In this scenario, the back-end component has a high availability limitation. Its reliability is equivalent to a traditional failover approach that is based on the high availability between two servers. In case of database pod restart (because of a failure or upgrade) the application experiences some downtime.

    1.3  Horizontal Pod Autoscaler for IBM Cloud Private

    The Horizontal Pod Autoscaler (HPA) automatically scales the number of pods in a replication controller, deployment, or replica set based on observed CPU utilization (or, with custom metrics support, on some other application-provided metrics).

     

    
      
        	
          Note: HPA does not apply to objects that cannot be scaled; for example, DaemonSets.

        
      

    

    The HPA is implemented as a Kubernetes API resource and a controller. The resource determines the behavior of the controller. The controller periodically adjusts the number of replicas in a replication controller or deployment to match the observed average CPU utilization to the target specified by user.

    The HPA in IBM Cloud Private allows the system to automatically scale workloads up or down based on the resource usage. This automatic scaling helps to guarantee service level agreements (SLAs) for your workloads.

    By default, the HPA policy automatically scales the number of pods based on the observed CPU utilization. However, in many situations, you might want to scale the application based on other monitored metrics, such as the number of incoming requests or the memory consumption.

    The basic principle is that you set the CPU requests (or other metrics) on the deployment and then, apply an autoscale component to it. This component then monitors the deployments resource consumption and if one of the specified metrics breaches the usage percentage threshold, it scales the number of pods (up to the specified maximum) until the load per pod is below the usage percentage again. 

    Kubernetes keeps monitoring the load and runs calculations on how many pods it needs, and increases or reduces the number to suit the load. Pods are autoscaled based on the first resource it finds to be in breach of the percentage threshold. 

    The command that is shown in Example 1-2 shows how to enable autoscaling on a deployment. This sets the CPU utilization threshold to 50% of CPU resources that were defined in the deployment, with a minimum of 1 and maximum of 10 pods to which to scale.

    Example 1-2   Kubectl command to configure horizontal pod autoscale
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    kubectl autoscale deployment <name> --cpu-percent=50 --min=1 --max=10

    [image: ]

    To check the autoscaling for deployment, run the command as shown in Example 1-3.

    Example 1-3   List horizontal pod autoscaler
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    kubectl get hpa
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    For more information about HPA, see the following resources:

    •Kubernetes website 

    •IBM Knowledge Center 

    1.4  Deploy Spring Boot application on WebSphere Liberty Helm chart

    This section covers how to deploy a sample “hello world” Spring Boot application with the WebSphere Liberty Helm chart running in IBM Cloud Private.

    We examine different options of how the service is exposed through NodePort and Ingress.

    1.4.1  Sample application

    First, we create a Spring Boot application from scratch.

    Create the project template

    You can go to the https://start.spring.io/ website to construct your Spring Boot project with the template that is provided in the website or run the command that is shown in Example 1-4 to automate it.

    Example 1-4   Command to start a Spring Boot project
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    curl https://start.spring.io/starter.tgz -d baseDir=app -d name=demo -d groupId=com.ibm.redbooksproject.example -d language=java -d type=maven-project dependencie=web| tar -xzvf -
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    The directory structure that is shown in Example 1-5 is then made available.

    Example 1-5   File tree of initial project
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    app

    ├── mvnw

    ├── mvnw.cmd

    ├── pom.xml

    └── src

        ├── main

        │   ├── java

        │   │   └── com

        │   │       └── ibm

        │   │           └── redbooksproject

        │   │               └── example

        │   │                   └── demo

        │   │                       └── DemoApplication.java

        │   └── resources

        │       └── application.propertiess

        └── test

            └── java

                └── com

                    └── ibm

                        └── redbooksproject

                            └── example

                                └── demo

                                    └── DemoApplicationTests.java
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    Notice that the pom.xml file is created. You can import this .xml file into your preferred IDE to continue to work on the project.

    Adding hello REST service

    Create a file named HelloController.java in the same folder of DemoApplication.java, as shown in Example 1-6.

    Example 1-6   HelloController.java
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    package com.ibm.redbooksproject.example.demo;

     

     

    import org.springframework.web.bind.annotation.RequestMapping;

    import org.springframework.web.bind.annotation.RequestParam;

    import org.springframework.web.bind.annotation.RestController;

     

    @RestController

    public class HelloController {

        @RequestMapping("/hello")

        public Hello hello(@RequestParam(value="name", defaultValue="World") String name) {

            return new Hello(name);

        }

    }
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    This code takes the name HTTP parameter from the /hello url and constructs a Hello object, which is automatically delivered by Spring Boot as a JSON response.

    Create the second file Hello.java in the same folder of DemoApplication.java, as shown in Example 1-7.

    Example 1-7   Hello.java
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    package com.ibm.redbooksproject.example.demo;

     

    import org.springframework.http.MediaType;

    import org.springframework.web.HttpMediaTypeNotAcceptableException;

    import org.springframework.web.bind.annotation.ExceptionHandler;

    import org.springframework.web.bind.annotation.ResponseBody;

     

    import java.util.Date;

     

    public class Hello {

        public String name;

        public Date date;

        public String greetings;

     

        public Hello(String name) {

            this.name = name;

            this.date = new Date();

            this.greetings = String.format("Hello, %s!!", name);

        }

     

        public String getName() {

            return name;

        }

     

        public Date getDate() {

            return date;

        }

     

        public String getGreetings() {

            return greetings;

        }

     

        @ResponseBody

        @ExceptionHandler(HttpMediaTypeNotAcceptableException.class)

        public String handleHttpMediaTypeNotAcceptableException() {

            return "acceptable MIME type:" + MediaType.APPLICATION_JSON_VALUE;

        }

    }

    [image: ]

    The Hello class constructs the fields, such as name, date, and greetings. The response body is automatically set as JSON. We have an exception handler in case other types of requests are present.

    Test locally

    Complete the following steps to test this configuration locally:

    1.	Run cd app; maven clean install. The use of this command creates the REST service JAR file that was created. 

    2.	Run the service with java -jar target/demo-0.0.1-SNAPSHOT.jar.

    3.	Start your browser with http://localhost:8080/hello?name=IBM%20Cloud%20Private.

    You should see output that is similar to the output that is shown in Figure 1-5.

    [image: ]

    Figure 1-5   Sample JSON output

    Building the docker image

    We host this app on the WebSphere Liberty container, which is running inside the IBM Cloud Private. First, we build the docker images and push them to the IBM Cloud Private private registry.

    Use the Spring Boot tag of the Liberty image as the base and create the Dockerfile, as shown in Example 1-8.

    Example 1-8   Dockerfile

    [image: ]

    FROM websphere-liberty:springBoot2

    ADD app/target/demo-0.0.1-SNAPSHOT.jar /config/dropins/spring/demo.jar

    [image: ]

     

    
      
        	
          Note: The default user of the Liberty image is a non-root user. If you need to create a directory that is owned by root, you must change the user to root, run your task, set the proper access for the normal user, and then, switch back to the default user.

          It is a recommended best practice to run your container process as non-root. In fact, the default pod security policy in the current IBM Cloud Private release blocks the containers that run as root.

        
      

    

    Build the Docker image by using the docker build -t hello-liberty:v1 command.

    
      
        	
          Tip: The last character is period (.), which instructs docker to search the Dockerfile in the current directory.

        
      

    

    Your Docker image is created locally on your development machine. Next, we push it to the IBM Cloud Private Registry. 

    For more information about how to set up your local docker client so that you can push the image, see IBM Knowledge Center.

    Pushing the docker image to IBM Cloud Private registry

    Before pushing the image, make sure that the target namespace is created on the IBM Cloud Private cluster because the images must be in the specific namespace. In our example, we use exp as a namespace.

    Run the commands that are shown in Example 1-9.

    Example 1-9   Command to push the docker image

    [image: ]

    docker login <Your Cluster>:8500

    docker tag hello-liberty:v1 <Your Cluster>:8500/exp/hello-liberty:v1

    docker push <Your Cluster>:8500/exp/hello-liberty:v1

    [image: ]

    You should have your Docker image pushed into the IBM Cloud Private’s private registry.

    1.4.2  Deploying the application with the WebSphere Liberty Helm chart

    To deploy our application, we use the command-line approach. In this section, we describe the high-level steps that are used to deploy the application through a Helm chart. Later, in “Deploying with NodePort service exposure” on page 13, and “Deploying with Ingress Transport Layer Security termination” on page 18, we complete these steps to specify different deployment options through the values.yaml overrides.

    Setting up Helm repository for command line

    Log in with cloudctl, which sets up the kubectl and Helm client for you. Then, run the command as shown in Example 1-10.

    Example 1-10   Adding Helm repo

    [image: ]

    helm repo add ibm https://raw.githubusercontent.com/IBM/charts/master/repo/stable

    helm repo update

    [image: ]

    A Helm repository is created that is named “ibm” that points to the online IBM Helm charts repository.

    Preparing override values.yaml file

    To customize the variable values that are used in the Helm chart installation, you can create a .yaml file that contains a variable with values that you use to override the default values. For more information about the values.yaml file, see 2.2.3, “Helm values” on page 54.

    Deploying the Helm chart

    Run the command that is shown in Example 1-11 to deploy the Helm chart. The flag -f takes as an argument the file name with your override values for the Helm chart variables.

    Example 1-11   Deploying the Helm chart

    [image: ]

    helm install --name {{ .releaseName }} --namespace {{ .namespace }} -f {{ .valueFile }} --tls ibm/ibm-websphere-liberty
[image: ]

    Validating that the application is running

    Run the following command to validate that the Helm chart was deployed successfully:

    helm list --tls

    Look for the releaseName that you provided during deployment. You can also access the REST services to validate that the application pod is working.

    In the following sections, we use these steps to examine the two ways of service exposure, namely NodePort and Ingress.

    1.4.3  Deploying with NodePort service exposure

    In this deployment scenario, we use the NodePort to expose the application. All of the exposed interfaces are HTTPS-based. As a prerequisite, complete the steps that are described in “Deploying the application with the WebSphere Liberty Helm chart” on page 12 to build the Docker images.

    Variable overrides

    Prepare the .yaml file as shown in Example 1-12 and name it as vars.nodeport.yaml.

    Example 1-12   Variables for NodePort service exposure

    [image: ]

    resourceNameOverride: redbooksproject

     

    deployment:

      labels:

        environment: dev

        application: demo

        version: "1.0"

     

    pod:

      labels:

        environment: dev

        application: demo

        version: "1.0"

     

    service:

      enabled: true

      name: demo

      

      type: NodePort

      port: 9443

      targetPort: 9443

      labels:

        environment: dev

        application: demo

        version: "1.0"

     

    image:

      repository: <Your ICP Host>:8500/exp/hello-liberty

      tag: v1@sha256:6aa245f6ad5c17766a2bccca3c0a71bcb07d56a68f9c41149269bc219bb61eecs

     

      readinessProbe: 

        httpGet:

          path: /

          port: 9080

        initialDelaySeconds: 40

        periodSeconds: 10

      

      livenessProbe:

        httpGet:

          path: /

          port: 9080

        initialDelaySeconds: 40

        periodSeconds: 10

     

    ssl:

      enabled: true

      useClusterSSLConfiguration: true

      createClusterSSLConfiguration: false

     

    ingress:

      enabled: false

     

    monitoring:

      enabled: true

     

    resources:

      constraints: 

        enabled: true

      requests:

        cpu: 500m

        memory: 512Mi

      limits:

        cpu: 500m

        memory: 512Mi

    [image: ]

    Recommended practices for the settings

    The following recommended settings practices are used in this scenario:

    •resourceNameOverride: Overwrite the default “ibm-websphere-liberty” to provide a more meaningful name.

    •It is always a good practice to add labels on your deployment objects, such as deployment, pod, and services.

    •Expose the services as NodePort. You can then access your application on a proxy node (or any other cluster node) by using automatically assigned port 3xxxx.

    •Use the image that is pushed into the IBM Cloud Private’s private registry, as described in “Pushing the docker image to IBM Cloud Private registry” on page 12. If you use an external image registry, you must create a whitelist to allow the external images to run. For other private registries, you might also need to define the pull secret for them.

    •Define your own readiness probe and liveness probe. Depending on your environment, these two probes might be different.

    •Specify the resource constraints for this request carefully and use near real situation values so that the scheduler can select the correct nodes to run the pods and monitor and stop them when the application misbehaves.

    •We turned off ingress for this scenario.

    •SSL is set enabled. We provide the certificate and keystore and truststore instead of using the system self-created ones, which is the common practice in most of the environments. This is achieved by setting the option useClusterSSLConfiguration as true.

    Keystore and truststore

    In a production environment, it is common to get a certificate/key pair that is signed by the Enterprise Certificate Authority (CA). 

    Here, we use a self-signed certificate. You can use a tool, such as openssl or cfssl, to create and sign the certificate. 

    We do not provide the steps in this scenario to create and sign a self-signed certificate. It is assumed that you received the certificate and the key file that is stored in the Privacy Enhanced Mail (PEM) format that is named demo.pem and demo-key.pem. In this example, we have both Common Name (CN) and Subject Alternative Name (SAN) in the certificate set as liberty.demo.redbooksproject.ibm, as shown in Figure 1-6 on page 16.

    [image: ]

    Figure 1-6   Certificate CN and SAN

    Complete the following steps:

    1.	Use the pair of keys that we created for the keystore and truststore for Liberty. To avoid any format incompatibility issues, we use the IBM JDK that is inside the Liberty docker images to create the keystore and truststore.

    2.	Assuming your certificate files are stored in the keystore directory, run the Docker command that is shown in Example 1-13 to import the certificate and create the keystore and truststore.

    Example 1-13   Docker exec command to generate keystore and truststore

    [image: ]

    docker run --rm -i -v $(pwd)/keystore:/keystore websphere-liberty sh -c 'cd keystore && rm -rf key.p12 key.jks trust.jks && openssl pkcs12 -export -in demo.pem -inkey demo-key.pem -out key.p12 -name default -passout pass:password && keytool -importkeystore -deststorepass password -destkeypass password  -destkeystore key.jks -srckeystore key.p12 -srcstoretype PKCS12 -srcstorepass password -alias default && keytool -importcert -keystore trust.jks -storepass password -file demo.pem -alias default -noprompt'

    [image: ]

    Now, your key.jks and trust.jks is created in the keystore/ directory.

    3.	Run the command that is shown in Example 1-14 to import the certificate files into the Kubernetes’ namespace exp.

    Example 1-14   Secret for keystore and truststore

    [image: ]

    kubectl -n exp create secret generic mb-keystore --from-file=keystore/key.jks

    kubectl -n exp create secret generic mb-truststore --from-file=keystore/trust.jks

    kubectl -n exp create secret generic mb-keystore-password --from-literal=password=password

    kubectl -n exp create secret generic mb-truststore-password --from-literal=password=password

    [image: ]

     

    
      
        	
          Note: The password can be encoded with XOR or AES format.

        
      

    

    These secrets are expected for the Helm chart when you use your own keystore and truststore.

    Deploying and validating the Helm chart

    Complete the following steps to deploy the Helm chart:

    1.	Run the command that is shown in Example 1-15.

    Example 1-15   Command to deploy a Helm chart

    [image: ]

    helm install --name demo --namespace exp -f vars.nodeport.yaml --tls ibm/ibm-websphere-liberty

    [image: ]

    2.	Run the kubectl -n exp get pods command to verify that the service is ready (the READY column goes to 1/1), as shown in Example 1-16.

    Example 1-16   Status of Liberty Pod

    [image: ]

    NAME                                   READY   STATUS    RESTARTS   AGE

    demo-redbooksproject-7f67bf94d-g2rdf   1/1     Running   0          96s

    [image: ]

    3.	Determine the NodePort number by running the kubectl -n exp get svc command, as shown in Example 1-17.

    Example 1-17   Identify NodePort

    [image: ]

    NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE

    demo                  NodePort    172.21.179.28   <none>        9443:32057/TCP   2m12s

    demo-http-clusterip   ClusterIP   172.21.7.17     <none>        9080/TCP         2m12s

    [image: ]

    4.	In a browser, enter https://<Proxy Node IP>:32057/hello?name=IBM Cloud Private. You see the output that is shown in Figure 1-7.

    [image: ]

    Figure 1-7   Sample output with NodePort service exposure

    The certificate is the one that we imported into the truststore (see Figure 1-8).

    [image: ]

    Figure 1-8   Certificate used for Nodeport

    1.4.4  Deploying with Ingress Transport Layer Security termination

    In this scenario, we expose the service not as the NodePort, but through Ingress with TLS termination instead. If the Host field in the request header matches what we defined, Ingress uses a predefined certificate to communicate with the client. 

    Variable overrides

    Most of the settings are the same as the NodePort example, except those fields that are listed in Example 1-18.

    Example 1-18   Variables for Ingress service exposure

    [image: ]

    service:

      enabled: true

      name: demo

      

      type: ClusterIP

      port: 9080

      targetPort: 9080

      labels:

        environment: dev

        application: demo

        version: "1.0"

     

    ssl:

      enabled: true

      useClusterSSLConfiguration: true

      createClusterSSLConfiguration: false

     

    ingress:

      enabled: true

      host: "liberty.demo.redbooksproject.ibm"

      secretName: demo-ingress-tls

    [image: ]

    Recommended practices on the settings

    We enabled Ingress. When the Host field matches liberty.demo.redbooksproject.ibm, the traffic is redirected to the Liberty pod that we created. Notice that the user can access the normal URL, such as https://liberty.demo.redbooksproject.ibm, by using the default port 443, instead of the 3xxxx which is automatically assigned to the NodePod.

    We create a TLS secret that is named demo-ingress-tls by running the command that is shown in Example 1-19.

    Example 1-19   TLS secret

    [image: ]

    kubectl -n exp create secret tls demo-ingress-tls --key keystore/demo-key.pem --cert keystore/demo.pem

    [image: ]

    Between the browser and Ingress, the traffic is encrypted with this TLS secret. After passing through Ingress, the traffic is not encrypted. Because the service that Ingress forwards the traffic to is HTTP, we define it by using the port 9080.

     

    
      
        	
          Note: So that Ingress is working properly, the Subject Alternative Name (SAN) must match the “host” value that is defined in Ingress.

        
      

    

    In the current Helm chart version, SSL must be enabled to allow the Ingress TLS work.

    Deploying and validating the Helm chart

    Deploy the Helm chart. Assume that the DNS name of liberty.demo.redbooksproject.ibm in the enterprise is registered and resolves to the IBM Cloud Private proxy node. Here, we simulate it by updating the local /etc/hosts file (see Figure 1-9).

    [image: ]

    Figure 1-9   Browse through Ingress service exposure

    Validate that the certificate is the certificate that we defined in the secret, as shown in Figure 1-10 on page 20.

    [image: ]

    Figure 1-10   Certificate used for Ingress 

    1.5  Zero downtime deployment updates

    It is a basic requirement to update the application; for example, to fix a bug or release a new feature. Kubernetes provides the zero downtime application updates by default.

    Next, we demonstrate this feature by using an example. 

    1.5.1  Kubernetes deployment strategy 

    In a Kubernetes Deployment object definition, the default value is set as shown in Example 1-20 if no specific strategy is defined.

    Example 1-20   Default update strategy

    [image: ]

    strategy:

      rollingUpdate:

        maxSurge: 25%

        maxUnavailable: 25%

      type: RollingUpdate

    [image: ]

    In the deployment definition (JSON file), if any field under the tree structure (for example .spec.template) is changed, a rolling update is triggered that follows the default rolling update strategy. 

    In the default setting that is shown in Example 1-20 on page 20, Kubernetes creates pods with the updates, such as the new image version and new environment variables. The number of new pods is limited to up to 25% of the total pods. 

    After the new pods are created, the liveness probe and the readiness probe help to detect if the newly created pod is ready. This strategy ensures that the availability of the overall pods is 75% percent. Accordingly, based on this value, old pods are stopped until all the pods are replaced. 

    Another type of strategy, named Recreate, is available. It deletes the old pods and creates pods where the application downtime is required. 

    We demonstrate the zero downtime approach in the next sections.

    1.5.2  Sample application

    In this section, we create a hello-world example with Golang and deploy it into IBM Cloud Private.

    The source code is listed in Example 1-21.

    Example 1-21   Sample Golang application

    [image: ]

    package main

     

    import (

    	"fmt"

    	"log"

    	"math/rand"

    	"net/http"

    	"os"

    	"time"

    )

     

    var version string

     

    func init() {

    	version = "1.0"

    }

     

    func greet(w http.ResponseWriter, r *http.Request) {

    	fmt.Fprintf(w, "Hello World! from host:%s ver:%s", os.Getenv("HOSTNAME"), version)

    }

     

    func ready(w http.ResponseWriter, r *http.Request) {

    	time.Sleep(time.Duration(rand.Intn(10)) * time.Second)

    	fmt.Fprintf(w, "ok")

    }

     

    func main() {

    	http.HandleFunc("/", greet)

    	http.HandleFunc("/healthz", ready)

    	http.HandleFunc("/readyz", ready)

     

    	port := os.Getenv("LISTEN_PORT")

    	if port == "" {

    		port = "8080"

    	}

    	log.Printf("starting server on port:%s", port)

    	err := http.ListenAndServe(fmt.Sprintf(":%s", port), nil)

    	if err != nil {

    		log.Fatalf("Failed to start the handler:%v", err)

    	}

    }

    [image: ]

    Create two HTTP handlers. The greet() handler prints the “Hello world” greeting with the version information. The read() handler is used for Kubernetes readiness and the liveness probe. 

    Compile and build the binary. Create the Dockerfile, as shown in Example 1-22.

    Example 1-22   Dockerfile

    [image: ]

    FROM alpine

    RUN adduser -D app -u 1000

    USER 1000

    WORKDIR /home/app/hello

    COPY --chown=app hello .

     

    CMD ["./hello"]

    [image: ]

    We create a non-root user with id 1000 to follow the recommended practices for image security. Build the image and push it to the image registry. (In this example, we use Docker hub with zhiminwen account).

    1.5.3  Deploying the image to IBM Cloud Private

    Complete the following steps to deploy the image to IBM Cloud Private:

    1.	Create a namespace that is called deploy-demo by using the kubectl create ns deploy-demo command. 

    2.	Add an image whitelist policy for this namespace so that the dockerhub image can be used, as shown in Example 1-23.

    Example 1-23   Image policy

    [image: ]

    apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1

    kind: ImagePolicy

    metadata:

      name: my-cluster-images-whitelist

      namespace: deploy-demo

    spec:

      repositories:

        - name: docker.io/zhiminwen/*

    [image: ]

    3.	Create a deployment file (as shown in Example 1-24) that is named deploy.yaml.

    Example 1-24   Deployment file

    [image: ]

    apiVersion: apps/v1

    kind: Deployment

    metadata:

      name: demo

      labels:

        app: demo

    spec:

      replicas: 10

      selector:

        matchLabels:

          app: demo

      strategy:

        type: RollingUpdate

        rollingUpdate:

          maxUnavailable: 0 

          maxSurge: 2

      template:

        metadata:

          labels:

            app: demo

        spec:

          containers:

          - name: demo

            image: zhiminwen/update-demo:v1.0

            env:

              - name: LISTEN_PORT

                value: "8080"

            livenessProbe:

              httpGet:

                path: /healthz

                port: 8080

            readinessProbe:

              httpGet:

                path: /readyz

                port: 8080

    [image: ]

     

    
      
        	
          Note: Instead of using the default parameters of the rolling update, we set the maxUnavailable as 0 and maxSurge as 2.

        
      

    

    4.	Apply it to IBM Cloud Private by running the kubectl -n deploy-demo apply -f deploy.yaml command.

    5.	Create the service and Ingress objects to access the application, as shown in Example 1-25.

    Example 1-25   Service and Ingress

    [image: ]

    ---

    apiVersion: v1

    kind: Service

    metadata:

      name: demo-svc

      labels:

        app: demo

    spec:

      type: NodePort

      ports:

      - port: 80

        targetPort: 8080

        protocol: TCP

        name: http

      selector:

        app: demo

    ---

    apiVersion: extensions/v1beta1

    kind: Ingress

    metadata:

      annotations:

        kubernetes.io/ingress.class: nginx

        ingress.kubernetes.io/rewrite-target: /

      labels:

        app: demo-svc

      name: demo-svc

    spec:

      rules:

      - host: demo.52.116.21.122.nip.io

        http:

          paths:

          - path: /

            backend:

              serviceName: demo-svc

              servicePort: 80

    [image: ]

    6.	Access the application from the browser or use the command that is shown in Example 1-26.

    Example 1-26   Access the application

    [image: ]

    curl demo.52.116.21.122.nip.io

    Hello World! from host:demo-58c7d5dc67-26zqk ver:1.0

    [image: ]

    1.5.4  Zero downtime update

    Complete the following steps to test the zero downtime update:

    1.	Update the application with a version information change, as shown in Example 1-27.

    Example 1-27   Version update

    [image: ]

    // skipped...

    func init() {

    	version = "1.1"

    }

     

    func greet(w http.ResponseWriter, r *http.Request) {

    	fmt.Fprintf(w, "Hello World! from host:%s ver:%s", os.Getenv("HOSTNAME"), version)

    }

    // skipped...

    [image: ]

    2.	Build the application and the Docker image. Deploy the image into the image registry with the tag of v1.1.

    3.	Update the pod image in the deployment by modifying the .yaml file from the IBM Cloud Private console to replace the new image tag, as shown in Figure 1-11.

    [image: ]

    Figure 1-11   Update image from console

    4.	You can edit your deployment .yaml file and apply it again. You also can run the following command to update the image: 

    kubectl -n deploy-demo set image deploy/demo demo=zhiminwen/update-demo:v1.1 

    1.5.5  Validation 

    After the image is updated, immediately run a series of commands (kubectl -n deploy-demo get pods) to list the pods. We do not use the watch option. Instead, we rerun the kubectl command so that the number of pods can be clearly seen.

    You can see the output of the pods as shown in Example 1-28. Consider the following points:

    •At any time, 10 pods are always in the READY state. We defined the maxUnavailable as 0, which means that Kubernetes must make sure that 10 out of 10 replicas are always ready. 

    •With the availability guaranteed, Kubernetes creates two pods each time and stops the old pod, which updates the pod version.

    •The old pod versions are slowly replaced by the new pod versions, until all of the pods are running in the new version.

    Example 1-28   Rolling update of pods

    [image: ]

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS              RESTARTS   AGE

    demo-58c7d5dc67-26zqk   0/1     Running             0          4s

    demo-58c7d5dc67-qbm85   0/1     ContainerCreating   0          0s

    demo-58c7d5dc67-zjqmq   1/1     Running             0          4s

    demo-59b9bffd4-4ktnl    1/1     Running             0          3m35s

    demo-59b9bffd4-8h6kg    1/1     Running             0          3m35s

    demo-59b9bffd4-gb5sc    1/1     Running             0          3m35s

    demo-59b9bffd4-h5j82    1/1     Running             0          3m35s

    demo-59b9bffd4-hr7wq    1/1     Running             0          3m35s

    demo-59b9bffd4-kdrqx    1/1     Running             0          3m35s

    demo-59b9bffd4-qhpsk    1/1     Running             0          3m35s

    demo-59b9bffd4-swwtw    1/1     Running             0          3m35s

    demo-59b9bffd4-tdcv5    1/1     Terminating         0          3m35s

    demo-59b9bffd4-vfg4v    1/1     Running             0          3m35s

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS    RESTARTS   AGE

    demo-58c7d5dc67-26zqk   0/1     Running   0          11s

    demo-58c7d5dc67-qbm85   0/1     Running   0          7s

    demo-58c7d5dc67-zjqmq   1/1     Running   0          11s

    demo-59b9bffd4-4ktnl    1/1     Running   0          3m42s

    demo-59b9bffd4-8h6kg    1/1     Running   0          3m42s

    demo-59b9bffd4-gb5sc    1/1     Running   0          3m42s

    demo-59b9bffd4-h5j82    1/1     Running   0          3m42s

    demo-59b9bffd4-hr7wq    1/1     Running   0          3m42s

    demo-59b9bffd4-kdrqx    1/1     Running   0          3m42s

    demo-59b9bffd4-qhpsk    1/1     Running   0          3m42s

    demo-59b9bffd4-swwtw    1/1     Running   0          3m42s

    demo-59b9bffd4-vfg4v    1/1     Running   0          3m42s

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS        RESTARTS   AGE

    demo-58c7d5dc67-26zqk   1/1     Running       0          17s

    demo-58c7d5dc67-274ln   0/1     Running       0          4s

    demo-58c7d5dc67-qbm85   1/1     Running       0          13s

    demo-58c7d5dc67-xdjnt   0/1     Running       0          5s

    demo-58c7d5dc67-zjqmq   1/1     Running       0          17s

    demo-59b9bffd4-8h6kg    1/1     Running       0          3m48s

    demo-59b9bffd4-gb5sc    1/1     Running       0          3m48s

    demo-59b9bffd4-h5j82    1/1     Running       0          3m48s

    demo-59b9bffd4-hr7wq    1/1     Running       0          3m48s

    demo-59b9bffd4-kdrqx    0/1     Terminating   0          3m48s

    demo-59b9bffd4-qhpsk    1/1     Running       0          3m48s

    demo-59b9bffd4-swwtw    1/1     Running       0          3m48s

    demo-59b9bffd4-vfg4v    1/1     Running       0          3m48s

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS        RESTARTS   AGE

    demo-58c7d5dc67-26zqk   1/1     Running       0          22s

    demo-58c7d5dc67-274ln   1/1     Running       0          9s

    demo-58c7d5dc67-ntx4w   0/1     Running       0          3s

    demo-58c7d5dc67-qbm85   1/1     Running       0          18s

    demo-58c7d5dc67-spnpz   0/1     Running       0          3s

    demo-58c7d5dc67-xdjnt   1/1     Running       0          10s

    demo-58c7d5dc67-zjqmq   1/1     Running       0          22s

    demo-59b9bffd4-8h6kg    1/1     Running       0          3m53s

    demo-59b9bffd4-gb5sc    0/1     Terminating   0          3m53s

    demo-59b9bffd4-h5j82    1/1     Running       0          3m53s

    demo-59b9bffd4-hr7wq    1/1     Running       0          3m53s

    demo-59b9bffd4-qhpsk    1/1     Running       0          3m53s

    demo-59b9bffd4-swwtw    0/1     Terminating   0          3m53s

    demo-59b9bffd4-vfg4v    1/1     Running       0          3m53s

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS        RESTARTS   AGE

    demo-58c7d5dc67-26zqk   1/1     Running       0          29s

    demo-58c7d5dc67-274ln   1/1     Running       0          16s

    demo-58c7d5dc67-82757   0/1     Running       0          2s

    demo-58c7d5dc67-ntx4w   0/1     Running       0          10s

    demo-58c7d5dc67-qbm85   1/1     Running       0          25s

    demo-58c7d5dc67-spnpz   1/1     Running       0          10s

    demo-58c7d5dc67-xdjnt   1/1     Running       0          17s

    demo-58c7d5dc67-zjqmq   1/1     Running       0          29s

    demo-59b9bffd4-8h6kg    1/1     Running       0          4m

    demo-59b9bffd4-gb5sc    0/1     Terminating   0          4m

    demo-59b9bffd4-h5j82    0/1     Terminating   0          4m

    demo-59b9bffd4-hr7wq    1/1     Running       0          4m

    demo-59b9bffd4-qhpsk    1/1     Running       0          4m

    demo-59b9bffd4-swwtw    0/1     Terminating   0          4m

    demo-59b9bffd4-vfg4v    1/1     Running       0          4m

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS        RESTARTS   AGE

    demo-58c7d5dc67-26zqk   1/1     Running       0          37s

    demo-58c7d5dc67-274ln   1/1     Running       0          24s

    demo-58c7d5dc67-82757   1/1     Running       0          10s

    demo-58c7d5dc67-m6l56   0/1     Running       0          6s

    demo-58c7d5dc67-ntx4w   1/1     Running       0          18s

    demo-58c7d5dc67-qbm85   1/1     Running       0          33s

    demo-58c7d5dc67-qn9p6   1/1     Running       0          4s

    demo-58c7d5dc67-spnpz   1/1     Running       0          18s

    demo-58c7d5dc67-xdjnt   1/1     Running       0          25s

    demo-58c7d5dc67-zjqmq   1/1     Running       0          37s

    demo-59b9bffd4-8h6kg    0/1     Terminating   0          4m8s

    demo-59b9bffd4-h5j82    0/1     Terminating   0          4m8s

    demo-59b9bffd4-hr7wq    1/1     Running       0          4m8s

    demo-59b9bffd4-vfg4v    0/1     Terminating   0          4m8s

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS        RESTARTS   AGE

    demo-58c7d5dc67-26zqk   1/1     Running       0          43s

    demo-58c7d5dc67-274ln   1/1     Running       0          30s

    demo-58c7d5dc67-82757   1/1     Running       0          16s

    demo-58c7d5dc67-m6l56   1/1     Running       0          12s

    demo-58c7d5dc67-ntx4w   1/1     Running       0          24s

    demo-58c7d5dc67-qbm85   1/1     Running       0          39s

    demo-58c7d5dc67-qn9p6   1/1     Running       0          10s

    demo-58c7d5dc67-spnpz   1/1     Running       0          24s

    demo-58c7d5dc67-xdjnt   1/1     Running       0          31s

    demo-58c7d5dc67-zjqmq   1/1     Running       0          43s

    demo-59b9bffd4-hr7wq    0/1     Terminating   0          4m14s

    # kubectl -n deploy-demo get pods

    NAME                    READY   STATUS    RESTARTS   AGE

    demo-58c7d5dc67-26zqk   1/1     Running   0          45s

    demo-58c7d5dc67-274ln   1/1     Running   0          32s

    demo-58c7d5dc67-82757   1/1     Running   0          18s

    demo-58c7d5dc67-m6l56   1/1     Running   0          14s

    demo-58c7d5dc67-ntx4w   1/1     Running   0          26s

    demo-58c7d5dc67-qbm85   1/1     Running   0          41s

    demo-58c7d5dc67-qn9p6   1/1     Running   0          12s

    demo-58c7d5dc67-spnpz   1/1     Running   0          26s

    demo-58c7d5dc67-xdjnt   1/1     Running   0          33s

    demo-58c7d5dc67-zjqmq   1/1     Running   0          45s
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    1.6  Other deployment strategies implemented with native Kubernetes

    In the previous section, we described the Recreate/Rolling update strategy for the deployment. Now, we examine some commonly available deployment options that can be implemented with the native Kubernetes objects. We continue to use the sample application as was used in the previous section, where two versions of the application are simulated with the Docker image tags of v1.0 and v1.1.

    1.6.1  Blue/green deployment

    In a blue/green deployment, a fresh new application deployment (green) is created along with the existing version (blue). After the testing is done, you can configure the load balancer to switch the traffic to the new application.

    In this section, we build the blue/green deployment example with the native Kubernetes techniques.

    Blue deployment

    We assume the hello world application is running with the image tag of v1.0. It is served as the blue deployment. Nothing needs to be changed before switching Ingress to the green deployment.

    Testing the green deployment

    Complete the following steps to test the green deployment:

    1.	Create a Kubernetes deployment object with the .yaml file that is named green.yaml, as shown in Example 1-29.

    Example 1-29   Green deployment
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    piVersion: apps/v1

    kind: Deployment

    metadata:

      name: demo-green

      labels:

        app: demo-green

    spec:

      replicas: 10

      selector:

        matchLabels:

          app: demo-green

      template:

        metadata:

          labels:

            app: demo-green

        spec:

          containers:

          - name: demo-green

            image: zhiminwen/update-demo:v1.1

            env:

              - name: LISTEN_PORT

                value: "8080"

            livenessProbe:

              httpGet:

                path: /healthz

                port: 8080

            readinessProbe:

              httpGet:

                path: /readyz

                port: 8080

    [image: ]

    Pay attention to the changes by comparing the output with the blue deployment. Other than the different image version we assigned, we also use a different name and label for the green deployment.

    2.	Deploy the app by using the kubectl -n deploy-demo apply -f green.yaml command.

    3.	Check the pods with their labels, as shown in Example 1-30.

    Example 1-30   Pods with the label
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    kubectl -n deploy-demo get pods -L app

     

    NAME                          READY   STATUS    RESTARTS   AGE     APP

    demo-58c7d5dc67-26zqk         1/1     Running   0          179m    demo

    demo-58c7d5dc67-274ln         1/1     Running   0          178m    demo

    demo-58c7d5dc67-82757         1/1     Running   0          178m    demo

    demo-58c7d5dc67-m6l56         1/1     Running   0          178m    demo

    demo-58c7d5dc67-ntx4w         1/1     Running   0          178m    demo

    demo-58c7d5dc67-qbm85         1/1     Running   0          179m    demo

    demo-58c7d5dc67-qn9p6         1/1     Running   0          178m    demo

    demo-58c7d5dc67-spnpz         1/1     Running   0          178m    demo

    demo-58c7d5dc67-xdjnt         1/1     Running   0          178m    demo

    demo-58c7d5dc67-zjqmq         1/1     Running   0          179m    demo

    demo-green-6f8869759f-4jmz7   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-4p98r   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-7xc2t   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-b72lg   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-dctgt   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-l7m5d   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-l96xd   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-lnmv8   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-nkvr9   1/1     Running   0          4m13s   demo-green

    demo-green-6f8869759f-wz5m5   1/1     Running   0          4m13s   demo-green
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    4.	Now Expose the green service with NodePort for testing purposes only. Create the file greenService.yaml with the content, as shown in Example 1-31.

    Example 1-31   Expose the green service as NodePort
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    apiVersion: v1

    kind: Service

    metadata:

      name: demo-green-svc

      labels:

        app: demo-green

    spec:

      type: NodePort

      ports:

      - port: 80

        targetPort: 8080

        protocol: TCP

        name: http

      selector:

        app: demo-green
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    5.	Test the application as shown in Example 1-32. As expected, we see that the version is shown as 1.1.

    Example 1-32   Validate the green app’s version
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    curl http://52.116.21.122:31089;echo

     

    Hello World! from host:demo-green-6f8869759f-lnmv8 ver:1.1

    [image: ]

    Switching to the green deployment

    Before the switch, ensure that Ingress still points to the blue deployment. Complete the following steps:

    1.	Verify that the blue app’s version is 1.0, as shown in Example 1-33. The output shows the version is still 1.0.

    Example 1-33   Verifying the blue app’s version
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    curl demo.52.116.21.122.nip.io;echo

     

    Hello World! from host:demo-59b9bffd4-xk68w ver:1.0

    [image: ]

    2.	Prepare a new file for Ingress. Keep all of the existing settings, including the labels, name, and ingress rules the same as in the blue deployment. Only update the serviceName to the green deployment, demo-green-svc, as shown in Example 1-34.

    Example 1-34   Update ingress for the new green service
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    apiVersion: extensions/v1beta1

    kind: Ingress

    metadata:

      annotations:

        kubernetes.io/ingress.class: nginx

        ingress.kubernetes.io/rewrite-target: /

      labels:

        app: demo

      name: demo-svc

    spec:

      rules:

      - host: demo.52.116.21.122.nip.io

        http:

          paths:

          - path: /

            backend:

              serviceName: demo-green-svc

              servicePort: 80
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    3.	Apply the objects by running kubectl -n deploy-demo apply -f green_ingress.yaml.

    4.	Check that the application is upgraded to v1.1 through Ingress, as shown in Example 1-35.

    Example 1-35   Ingress updated to the new app
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    curl demo.52.116.21.122.nip.io;echo

    Hello World! from host:demo-green-6f8869759f-b72lg ver:1.1

    [image: ]

    Now the blue deployment can be retired.

    1.6.2  Canary deployment

    Canary deployment allows a small amount of traffic to be routed to the new version of the application for testing purposes. Assuming we want 20% of the requests served by our new version 1.1, we can achieve this type of canary deployment by using native Kubernetes.

    Complete the following steps:

    1.	Create a deployment with the Kubernetes deployment object, as shown in the .yaml file in Example 1-36.

    Example 1-36   New deployment Kubernetes object
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    apiVersion: apps/v1

    kind: Deployment

    metadata:

      name: demo-canary

      labels:

        app: demo

        version: v1.1

    spec:

      replicas: 2

      selector:

        matchLabels:

          app: demo

      template:

        metadata:

          labels:

            app: demo

        spec:

          containers:

          - name: demo

            image: zhiminwen/update-demo:v1.1

            env:

              - name: LISTEN_PORT

                value: "8080"

            livenessProbe:

              httpGet:

                path: /healthz

                port: 8080

            readinessProbe:

              httpGet:

                path: /readyz

                port: 8080
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    This new deployment is different than the existing deployment but shares the selection label for the pod. We set the image version as v1.1 and the replicas as 2.

    2.	Apply the .yaml file. You should see two deployments now (see Example 1-37).

    Example 1-37   List of deployment
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    kubectl -n deploy-demo get deploy

     

    NAME          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE

    demo          8         8         8            8           12m

    demo-canary   2         2         2            2           50s
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    3.	If we check the pods based on the label “app”, we see the output that is shown in Example 1-38. 

    Example 1-38   List of pods with the same label.
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    kubectl -n deploy-demo get pods -l app=demo -L app

     

    NAME                           READY   STATUS    RESTARTS   AGE   APP

    demo-59b9bffd4-9jx8n           1/1     Running   0          14m   demo

    demo-59b9bffd4-bc5pd           1/1     Running   0          14m   demo

    demo-59b9bffd4-h5kxs           1/1     Running   0          14m   demo

    demo-59b9bffd4-htgb6           1/1     Running   0          14m   demo

    demo-59b9bffd4-kspr4           1/1     Running   0          14m   demo

    demo-59b9bffd4-rtz5x           1/1     Running   0          14m   demo

    demo-59b9bffd4-s2pzv           1/1     Running   0          14m   demo

    demo-59b9bffd4-tsnkx           1/1     Running   0          14m   demo

    demo-59b9bffd4-v56tf           1/1     Running   0          14m   demo

    demo-59b9bffd4-vfvrx           1/1     Running   0          14m   demo

    demo-canary-58c7d5dc67-8gwmj   1/1     Running   0          76s   demo

    demo-canary-58c7d5dc67-jxp7v   1/1     Running   0          76s   demo
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    As defined in the service exposure, any pod that has the label app=demo is part of the service that is serving the request. Therefore, we can bring the canary application to be part of the service by giving the same label to the pods. We set the difference by giving a version label to the new deployment.

    4.	To have the number of percentages easily matched, we scale down the old deployment down to 8 pods to ensure that 20% of the pods are used for the canary application, and 80% are used the existing applications. The command to run is kubectl -n deploy-demo scale --replicas=8 deploy demo.

    5.	List the pods again (see Example 1-39).

    Example 1-39   Count of the app
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    kubectl -n deploy-demo get pods -l app=demo -L app

     

    NAME                           READY   STATUS    RESTARTS   AGE     APP

    demo-59b9bffd4-9jx8n           1/1     Running   0          15m     demo

    demo-59b9bffd4-h5kxs           1/1     Running   0          15m     demo

    demo-59b9bffd4-htgb6           1/1     Running   0          15m     demo

    demo-59b9bffd4-kspr4           1/1     Running   0          15m     demo

    demo-59b9bffd4-rtz5x           1/1     Running   0          15m     demo

    demo-59b9bffd4-s2pzv           1/1     Running   0          15m     demo

    demo-59b9bffd4-tsnkx           1/1     Running   0          15m     demo

    demo-59b9bffd4-v56tf           1/1     Running   0          15m     demo

    demo-canary-58c7d5dc67-8gwmj   1/1     Running   0          2m11s   demo

    demo-canary-58c7d5dc67-jxp7v   1/1     Running   0          2m11s   demo
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    As Ingress distributes the traffic evenly among the pod, we can have 20% (2 pods) running the new app and 80% (8 pods) running with the existing version. Therefore, only 20% of the traffic goes to the new app of version 1.1, which achieves the canary deployment.

    6.	Validate the canary deployment by triggering the request constantly, as shown in Example 1-40.

    Example 1-40   Validating the canary deployment.
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    while true; do curl http://demo.52.116.21.122.nip.io ; echo; sleep 1; done

    Hello World! from host:demo-59b9bffd4-v56tf ver:1.0

    Hello World! from host:demo-59b9bffd4-s2pzv ver:1.0

    Hello World! from host:demo-canary-58c7d5dc67-jxp7v ver:1.1

    Hello World! from host:demo-59b9bffd4-rtz5x ver:1.0

    Hello World! from host:demo-59b9bffd4-tsnkx ver:1.0

    Hello World! from host:demo-canary-58c7d5dc67-8gwmj ver:1.1

    Hello World! from host:demo-59b9bffd4-kspr4 ver:1.0

    Hello World! from host:demo-59b9bffd4-9jx8n ver:1.0

    Hello World! from host:demo-59b9bffd4-h5kxs ver:1.0

    Hello World! from host:demo-59b9bffd4-htgb6 ver:1.0

     

    Hello World! from host:demo-59b9bffd4-v56tf ver:1.0

    Hello World! from host:demo-59b9bffd4-s2pzv ver:1.0

    Hello World! from host:demo-canary-58c7d5dc67-jxp7v ver:1.1

    Hello World! from host:demo-59b9bffd4-rtz5x ver:1.0

    Hello World! from host:demo-59b9bffd4-tsnkx ver:1.0

    Hello World! from host:demo-canary-58c7d5dc67-8gwmj ver:1.1

    Hello World! from host:demo-59b9bffd4-kspr4 ver:1.0

    Hello World! from host:demo-59b9bffd4-9jx8n ver:1.0

    Hello World! from host:demo-59b9bffd4-h5kxs ver:1.0

    Hello World! from host:demo-59b9bffd4-htgb6 ver:1.0
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    As you can see in the output, 20% of the requests are handled by the new version, version 1.1. Therefore, we achieved the canary deployment.

    1.7  Deploying a sample stateful application

    In this section, you learn how to deploy a sample stateful application on IBM Cloud Private. The sample application that is demonstrated is a Nginx web server. You store the page content on an NFS server outside IBM Cloud Private.

     

    
      
        	
          Note: You store the page content on an NFS server that is outside of IBM Cloud Private. Similar steps can be followed if your stateful application depends on GlusterFS or Ceph.

        
      

    

    We perform the following high-level steps in this section:

    1.	Set up an NFS server in case you do not have an existing NFS server.

    2.	Create a persistence volume and a persistence volume claim on IBM Cloud Private to connect to the NFS server. 

    3.	Create a Nginx application from the IBM Cloud Private catalog and bind it to the persistence volume claim.

    4.	Test the application.

    1.7.1  Prerequisite: Setting up an NFS server

    This section describes the basic steps that are used to create an NFS server on top of the virtual server instances on IBM Cloud. Skip this section if you have an NFS server. Alternatively, you can create a File Storage service on IBM Cloud to achieve the same results, or use one of your IBM Cloud Private nodes and create a File Storage service on top of an NFS server.

    Complete the following steps:

    1.	Create a virtual server instance in IBM Cloud. You use this instance to install your File Server on top of it. Complete the following steps:

    a.	Browse to https://cloud.ibm.com/ and log in as shown in Figure 1-12.
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    Figure 1-12   IBM Cloud console login page

    b.	Click Catalog from the tool bar.

    c.	Select Virtual Server from the catalog.

    d.	Select Public Virtual Server then, click Continue.

    e.	Keep all defaults, and choose Ubuntu in the Image Panel, as shown in Figure 1-13.
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    Figure 1-13   Creating IBM Cloud Virtual Server instance

    f.	Read the terms and conditions. Then, click I have read and agree to the Third-Party Service Agreements listed below. Click Create.

    g.	Wait until the virtual server is provisioned.

    2.	Log in to the server by using SSH or PuTTY.

    3.	Run the script that is shown in Example 1-41 as a root user on your virtual server to create the NFS server. This a sample script is used for testing purposes and is not intended for production use.

    Example 1-41   Creating NFS server script on virtual machine
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    apt update

    apt install nfs-kernel-server -y

    mkdir /redbooks

    chown nobody:nogroup /redbooks

    echo /redbooks *(rw,sync,no_root_squash,no_subtree_check) > /etc/exports

    systemctl restart nfs-kernel-server
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    4.	Create an index.html file in the /redbooks directory, as shown in the following example. This file is served from the Nginx application that you deploy later on IBM Cloud Private: 

    echo Redbooks Welcome Message Stored in NFS > /redbooks/index.html

    1.7.2  Creating a persistence volume and persistence volume claim 

    Complete the following steps to create a persistence volume and persistence volume claim on IBM Cloud Provider to persist on the NFS server:

    1.	Browse to IBM Cloud Private console with your web browser and log in to it.

    2.	Click Menu → Platform → Storage, as shown in Figure 1-14.
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    Figure 1-14   Menu

    3.	Click Create PersistentVolume to create a persistence volume, as shown in Figure 1-15 on page 37.
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    Figure 1-15   Creating PersistentVolume

    4.	In the General tab, complete the following information, as shown in Figure 1-16:

     –	Name: nginx

     –	Capacity: 1

     –	Access mode: Read write many
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    Figure 1-16   Create Persistence Volume - General tab

    5.	Click the Labels tab. Then, add Label: type, Value: nginx-nfs, as shown in Figure 1-17.
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    Figure 1-17   Create Persistent Volume: Labels tab

    6.	Click the Parameters tab and add the following parameters, as shown in Figure 1-18 on page 40:

     –	Server: {IP address of the NFS server}

     –	Path: /redbooks
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    Figure 1-18   Create Persistent Volume: Parameters tab

    7.	Click Create.

    Your persistence volume should appear as “Available” in the status, as shown in Figure 1-19. This process can take a few seconds. Also, notice that persistence volume claim is not bound yet to this persistent volume.
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    Figure 1-19   Created Persistence Volume

    8.	Click PersistentVolumeClaim and then, click Create PersistentVolumeClaim, as shown in Figure 1-20 on page 41.
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    Figure 1-20   Create PersistenceVolumeClaim

    9.	Complete the following parameters in the Create PersistenceVolumeClaim dialog box:

     –	Name: nginx-pvc

     –	Namespace: deploy-demo

     –	Storage requests: 1

     –	Access mode: Read write many

     –	Volume selector label: type

     –	Value: nginx-nfs

    10.	Click Create, as shown in Figure 1-21.
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    Figure 1-21   Create PersistentVolumeClaim dialog box

    11.	Wait until the persistent volume claim is bound to the persistent volume, as shown in Figure 1-22.
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    Figure 1-22   Persistent volume claim list

    1.7.3  Creating a Nginx app

    Complete the following steps to create a Nginx web server:

    1.	Click Catalog in the tool bar.

    2.	Locate and click ibm-nginx-dev, as shown in Figure 1-23.
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    Figure 1-23   Catalog

    3.	Read the chart details. Then, click Configure, as shown in Figure 1-24.
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    Figure 1-24   Nginx chart details

    4.	Add the following details to the configurations: 

     –	Helm release name: nginx-dev

     –	Target namespace: deploy-demo

    5.	Read the license and click I have read and agreed to the License agreement.

    6.	Click All parameters.

    7.	Click Enable volume mounting content * and complete the following parameters to bind the pod with the persistence volume claim that was created earlier:

     –	Access mode: ReadWriteMany

     –	existingClaimName: nginx-pvc

    8.	Click Install, as shown in Figure 1-25.
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    Figure 1-25   Create Nginx Helm release

    9.	Click View Helm Release to view the status of deployment.

    10.	Wait until the pod is available, as shown in Figure 1-26.
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    Figure 1-26   Helm release status

    11.	Expose the service as NodePort to test it. Click Menu → Network Access → Services, as shown in Figure 1-27.
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    Figure 1-27   Menu -> Network Access

    12.	Locate nginx-dev-ibm-nginx-dev. Then, click .... and select Edit, as shown in Figure 1-28.
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    Figure 1-28   Edit menu for Services

    13.	Change the service type from ClusterIP to NodePort, as shown in Figure 1-29.
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    Figure 1-29   Edit Service

    14.	Click Submit.

    15.	Click 	nginx-dev-ibm-nginx-dev to view the details.

    The Node port is displayed, as shown in Figure 1-30.
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    Figure 1-30   Service details

    16.	Browse to {Proxy Node}:{Node Port} from your web browser. You see the content of the index.html that you specified as described in 1.7.1, “Prerequisite: Setting up an NFS server” on page 34 (see Figure 1-31).
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    Figure 1-31   Demo application output
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Helm and application packaging

    IBM Cloud Private is a cloud native environment in which automation plays a significant role. In the Kubernetes world, manual deployments are not sustainable in the end, thus the requirement for proper application packaging and automated deployments. 

    In this chapter, we discuss the Helm charts, a de facto standard of application packaging for Kubernetes environments. 

    This chapter includes the following topics:

    •2.1, “Introduction to Helm” on page 50

    •2.2, “Helm chart structure” on page 52

    •2.3, “Creating a chart” on page 59

    •2.4, “IBM Cloud Paks” on page 74

    2.1  Introduction to Helm

    Helm is an open source package manager for Kubernetes that is governed by the Cloud Native Computing Foundation (CNCF). By using Helm, developers can define, version, and securely distribute their applications. Kubernetes cluster administrators can easily manage instances of applications that are running in their clusters.

    The Helm public website provides many materials about the project. For the purposes of this book, we introduce the following key concepts:

    Helm client	A binary program that is written in Go, which can be used to interact with and manage the Helm charts and deploy them to the Kubernetes environment.

    Tiller	A server process that is installed in the Kubernetes environment that exposes API endpoints and can accept commands from the Helm client. By default, it operates with the permissions of the service account that is used to run the process. However, in IBM Cloud Private, Tiller also is secured by using Identity and Access Management (IAM) service that controls access rights.

    Helm chart	A structured collection of files and directories that contain definitions of the Kubernetes objects that are needed for running an application and metadata that describes the application and helps users to manage the deployment.

    Helm release	An instance of the Helm chart that runs within the Kubernetes environment.

    Helm repo	A simple HTTP server that exposes the index.yaml file that points to the location of one or more Helm charts that are packaged in the .tgz format. There are several public, curated repositories that contain hundreds of ready-to-use applications; however, enterprises can run their own repositories by using a plain HTTP server or a more sophisticated solution, such as JFrog Artifactory.

    The Helm Client is a command-line client for users. The client is responsible for the following domains:

    •Developing local charts

    •Managing repositories

    •Interacting with the Tiller server

    •Sending charts to be installed

    •Asking for information about releases

    •Requesting upgrading or uninstalling existing releases

    The Tiller is an in-cluster server that interacts with the Helm client and Kubernetes API server. The server is responsible for the following tasks:

    •Listening for incoming requests from the Helm client

    •Combining a chart and configuration to build a release

    •Installing charts into Kubernetes, and then tracking the subsequent release

    •Upgrading and uninstalling charts by interacting with Kubernetes

    The client is responsible for managing the charts, and the server is responsible for managing the releases.

    The Helm client and Tiller are written in the Go programming language, and use the gRPC protocol suite to interact. It is recommended to use a matching versions of the Helm client and Tiller. Versions of the components can be verified, as shown in Example 2-1.

    Example 2-1   Verification of Helm and Tiller versions
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    helm version --tls

     

    Client: &version.Version{SemVer:"v2.7.3+icp", GitCommit:"27442e4cfd324d8f82f935fe0b7b492994d4c289", GitTreeState:"dirty"}

    Server: &version.Version{SemVer:"v2.9.1+icp", GitCommit:"8ddf4db6a545dc609539ad8171400f6869c61d8d", GitTreeState:"clean"}
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          Tip: When the versions do not match, the provisioning in most cases still works, but the use of such a setup is not recommended.

        
      

    

    IBM Cloud Private implements TLS layer between the Helm client and Tiller, because by default (at the time of this writing), the Helm project did not enforce any security. To successfully run the Helm commands in an IBM Cloud Private environment, you first must authenticate to the IBM Cloud Private cluster, as shown in Example 2-2.

    Example 2-2   Authenticating to an IBM Cloud Private cluster
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    cloudctl login -a https://mycluster.icp:8443 --skip-ssl-validation 

     

    Username> admin

     

    Password> 

    Authenticating...

    OK

     

    Targeted account mycluster.icp Account (id-mycluster.icp-account)

     

    Select a namespace:

    1. cert-manager

    2. default

    3. istio-system

    4. kube-public

    5. kube-system

    6. platform

    7. services

    Enter a number> 2

    Targeted namespace default

     

    Configuring kubectl ...

    Property "clusters.mycluster.icp" unset.

    Property "users.mycluster.icp" unset.

    Property "contexts.mycluster.icp" unset.

    Cluster "mycluster.icp" set.

    User "mycluster.icp-user" set.

    Context "mycluster.icp-context" created.

    Switched to context "mycluster.icp-context".

    OK

     

    Configuring helm: /Users/guest/.helm

    OK
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    Upon successful login, the use of the cloudctl command creates a .helm subdirectory in your home directory that contains the following files:

    ~/.helm

    ├── ca.pem

    ├── cert.pem

    └── key.pem

    To run the Helm commands, it is useful to set the HELM_HOME environment variable by using the export HELM_HOME=~/.helm command.

    2.2  Helm chart structure

    A Helm chart is a structured collection of files, typically in a YAML format. The following types of elements are used within a Helm chart:

    •Metadata

    •Templates

    •Values

    2.2.1  Helm chart metadata

    Several files within a Helm chart are the metadata that describes the chart. The key file (and the only one that is required) is the Chart.yaml file. Sample content of Chart.yaml is shown in Example 2-3.

    Example 2-3   Sample content of a Chart.yaml file
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    apiVersion: v1

    appVersion: "1.0"

    description: A Helm chart for Kubernetes

    name: sample

    version: 0.1.0
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    Although most of the tags are self-explanatory, the difference between the version and appVersion tags is important. The version tag refers to the Helm chart version; the appVersion tag refers to the application being deployed. The version tag value is automatically appended to a release name during the deployment time and added to the chart name during the chart packaging.

    It is recommended to automatically update those tags as a part of your DevOps pipeline. Packages in repositories are identified by name plus version.

    A Chart.yaml file must specify a version in the Semantic Versioning 2.0.0 format. As defined by Semantic Versioning 2.0.0, given a version number MAJOR.MINOR.PATCH, increment the following components:

     –	MAJOR version when you make incompatible API changes

     –	MINOR version when you add functionality in a backwards-compatible manner

     –	PATCH version when you make backwards-compatible bug fixes

    Next, we provide some general guidelines for the use of version numbers to ease the process of deploying your Helm charts.

    Using a MAJOR version number

    MAJOR version zero (0.MINOR.PATCH) is for initial development. Version 1.0.0 defines the start of production use. MAJOR version must be incremented if any backwards incompatible changes are introduced, such as the following examples:

    •Major chart changes.

    •Changes in Helm installation variables usage or definitions in which previous Helm installation commands do not work.

    •New resource prerequisites in which previous Helm installation commands do not work.

    Using a MINOR and PATCH version numbers

    Consider the following rules that you must follow in your chart development practice:

    •Reset MINOR and PATCH versions to 0 when MAJOR version is incremented.

    •Increment a MINOR version if new backwards compatible functionality is added.

    •Reset PATCH versions to 0 when MINOR version is incremented.

    •Update PATCH versions for bug fixes.

    Two other pieces of metadata within a Helm chart refer to NOTES.txt and LICENSE.txt: 

    •NOTES.txt often is in the templates subdirectory and is used to display some contextual usage information upon successful deployment of the chart, such as Access URL.

    •LICENSE.txt is an optional file that is used to include Licensing information, specifically if the Chart embeds some of the open source technologies that are governed by specific license terms.

    The last element of metadata is IBM Cloud Private-specific. A file that is named values-metadata.yaml can contain more information that is used by the Catalog app to format the fields that are displayed to user in a browser and validate field inputs. For more information, see “Using IBM Cloud Private Catalog features (values-metadata)” on page 74.

    2.2.2  Helm templates

    All files that are in the \templates subdirectory (except NOTES.txt) are treated as Kubernetes manifests (resource templates) and are sequentially processed during the chart deployment. File names are not enforced in any way; however, the recommended practice is to keep the file names that are relevant to the content with .yaml suffix for the Kubernetes resources and .tpl for the template files that produce no formatted content. The files that include a name that starts with “_” are assumed partials that do not produce any direct output.

     

    
      
        	
          Tip: For more information about the current list of the Helm template recommended practices, see this GitHub web page.

        
      

    

    As an example, the default _helpers.tpl file is shown in Example 2-4.

    Example 2-4   Sample content of _helpers.tpl
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    {{/* vim: set filetype=mustache: */}}

    {{/*

    Expand the name of the chart.

    */}}

    {{- define "sample.name" -}}

    {{- default .Chart.Name .Values.nameOverride | trunc 63 | trimSuffix "-" -}}

    {{- end -}}

     

    {{/*

    Create a default fully qualified app name.

    We truncate at 63 chars because some Kubernetes name fields are limited to this (by the DNS naming spec).

    If release name contains chart name it will be used as a full name.

    */}}

    {{- define "sample.fullname" -}}

    {{- if .Values.fullnameOverride -}}

    {{- .Values.fullnameOverride | trunc 63 | trimSuffix "-" -}}

    {{- else -}}

    {{- $name := default .Chart.Name .Values.nameOverride -}}

    {{- if contains $name .Release.Name -}}

    {{- .Release.Name | trunc 63 | trimSuffix "-" -}}

    {{- else -}}

    {{- printf "%s-%s" .Release.Name $name | trunc 63 | trimSuffix "-" -}}

    {{- end -}}

    {{- end -}}

    {{- end -}}

     

    {{/*

    Create chart name and version as used by the chart label.

    */}}

    {{- define "sample.chart" -}}

    {{- printf "%s-%s" .Chart.Name .Chart.Version | replace "+" "_" | trunc 63 | trimSuffix "-" -}}

    {{- end -}}
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    You can refer to the templating functions that are defined in _helper.tpl by using the template or tpl directive within your template files. For example, to call sample.fullname, you can include the following reference in your template file:

    {{ template "sample.fullname" . }}

    In this example, the dot (“.”) is the top-level context that is passed into the template and sample is the chart name.

    When packaged, all of the Helm resources run through a Go templating engine that dynamically generates output that is based on the template code evaluation. The use of this templating language for each deployment can be customized with a unique set of values for the release.

    2.2.3  Helm values

    To allow users to customize the chart deployment, it is possible to replace static parts within a template with references to the content of the values.yaml file. The values.yaml file can define whatever names you want by following a hierarchical YAML structure. A sample values.yaml file is shown in Example 2-5.

    Example 2-5   Sample values.yaml file
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    # Default values for sample.

    # This is a YAML-formatted file.

    # Declare variables to be passed into your templates.

     

    replicaCount: 1

     

    image:

      repository: nginx

      tag: stable

      pullPolicy: IfNotPresent

     

    service:

      type: ClusterIP

      port: 80

     

    ingress:

      enabled: false

      annotations: {}

        # kubernetes.io/ingress.class: nginx

        # kubernetes.io/tls-acme: "true"

      path: /

      hosts:

        - chart-example.local

      tls: []

      #  - secretName: chart-example-tls

      #    hosts:

      #      - chart-example.local

     

    resources: {}

      # We usually recommend not to specify default resources and to leave this as a conscious

      # choice for the user. This also increases chances charts run on environments with little

      # resources, such as Minikube. If you do want to specify resources, uncomment the following

      # lines, adjust them as necessary, and remove the curly braces after 'resources:'.

      # limits:

      #  cpu: 100m

      #  memory: 128Mi

      # requests:

      #  cpu: 100m

      #  memory: 128Mi

     

    nodeSelector: {}

     

    tolerations: []

     

    affinity: {}
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    Whatever you define in the values.yaml file then can be referenced in the templates by using {{ .Values.<yamlpath> }}. The use this example {{ .Values.image.repository }} is resolved into “nginx”.

    In addition to the entries that are directly specified in the values.yaml file, Helm provides a list of predefined values that refers to the release (for example, Release.Name) or the chart metadata (for example, Chart.Version). For more information about a full list of predefined values, see this web page.

     

    
      
        	
          Tip: For more information about a current list of recommended practices for the values file, see this GitHub web page.

        
      

    

    2.2.4  Templating language hints and tips

    The templating code is embedded into the Kubernetes resource file that is submitted by Tiller to the Kubernetes API, which replaces the values of fields with the content of the values.yaml file and some tags that are generated at runtime (for example, the release name when it is not specified up front). It is recommended to include all of the fields that you want to allow the user to customize in the values.yaml file.

    This book is not meant to extensively cover all of the template functions available. For more information, see the Helm publicationThe Chart Template Developer’s Guide. 

    If you are new to Helm, this section might not be as useful until you develop a Helm chart. For more information, see 2.3, “Creating a chart” on page 59.

    Next, we review several basic, but instructive, examples.

    White space trimming 

    White space in the YAML files can be a problem, and they are not always easy to debug. When developing Helm charts, take care when template functions are used that you do not generate unwanted white spaces (and later, bad parameter mapping), as shown in Example 2-6. 

    Example 2-6   Space to the left of the function not trimmed
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    data:

      {{ if .Values.key1.value }}

      key1: {{ .Values.key1.value }}

      {{ end }}
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    The use of such syntax results in an error that is similar to the following example

    “Error: YAML parse error on mychart/templates/configmap.yaml: error converting YAML to JSON: yaml: line 9: did not find expected key”

    It produces the following result:

    data:

        key1: value1

    As you can see, the key1 parameter is incorrectly indented. You can trim the white space at the start of a template function by using a hyphen (-), as shown in Example 2-7.

    Example 2-7   Space to the left of the function trimmed
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    data:

      {{- if .Values.key1.value }}

      key1: {{ .Values.key1.value }}

      {{- end }}
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    This produces the wanted result:

    data:

      key1: value1

    Conditional statements

    By using templating language, you can define conditional blocks within a template that are used based on the result of the conditional expression. Such conditional blocks are defined by using the If/Else clause.

    In Example 2-8, an “if” block prints mug: true if the .Values.favorite.drink value is 'coffee', else it will print glass: true.

    Example 2-8   If/Else clause example
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    beverage:

      {{- if eq .Values.favorite.drink "coffee"}}

      mug: true

      {{- else }}

      glass: true

      {{- end}}
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    If the value that is passed to the template engine is “coffee”, the following output is generated when the chart is packaged:

    beverage:

      mug: true

    Scoping the values

    When defining the template files, references to the variables that are defined in the values.yaml file can become long. 

    The use of the with clause sets the scope of the .Values, so that references to a particular variable can be shorter. Example 2-9 shows the syntax with a value scope of .Values.favorite.drink.

    Example 2-9   Reference to the values using the ‘with’ clause
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    favorite:

      {{- with .Values.favorite.drink }}

      champagne: {{ .champagne }}

      coffee: {{ .coffee }}

      tea: {{ .tea }}

      {{- end }}
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    The outcome of this template is the same as from template that is shown in Example 2-10.

    Example 2-10   Reference to the values without a scoping ‘with’ clause
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    favorite:

      champagne: {{ .Values.favorite.drink.champage }}

      coffee: {{ .Values.favorite.drink.coffee }}

      tea: {{ .Values.favorite.drink.tea }}
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    Range 

    The range function allows you to loop through a list (and apply a prefix or suffix). It iterates through an array and prints the output. Example 2-11 show a sample syntax to iterate through an array of items.

    Example 2-11   Sample syntax to iterate through an array of items
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    items: |-

      {{- range .Values.items }}

      - {{ . | quote }}

      {{- end }}
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    When used with the ["item1","item2","item3"] array as input, the following output is produced:

    items:

      - item1

      - item2

      - item3

    toYaml/toJson 

    These functions are useful if you want users to supply valid YAML or JSON data as a parameter. In this case, the built-in parser attempts to output correct YAML or JSON, so it is important that the data is supplied correctly. Any valid YAML or JSON formatted data is accepted. 

    As shown in Example 2-12, a simple JSON list is passed in the format {"key1:"value1","key2":"value2","key3":"value3"} by using a template.

    Example 2-12   Sample toYaml clause
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    keys:

      {{- toYaml .Values.keys | indent 2 }}

    [image: ]

    The following output is produced:

    keys:

      key1: value1

      key2: value2

      key3: value3

    The indent function is used here to indent the output by two spaces.

    Because more complex structured data can also be used, ensure that the data you supply is correct JSON. One limitation to YAML is if the supplied data is a literal string (enclosed in single quotation marks), it is still valid YAML. Therefore, it is printed as a literal string and not expanded to YAML.

    Commenting

    Commenting within a template can be done by using ‘{{/*’ to open and ‘*/}}’ to close, as shown in Example 2-13.

    Example 2-13   Sample comment section
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    {{/*

    This is a comment that describes the next section

    */}}
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    Any text that is put between comment markers is ignored by the template engine and does not appear in the output.

    2.3  Creating a chart

    A Helm chart can be created by using several methods. In this section, we describe the simplest method: the use of the Helm CLI command. It is also possible to easily generate a draft Helm chart for your project by using Microclimate or IBM Cloud Developer Tools.

    To create a Helm chart, run the following command:

    helm create <your_app_name>

    Running this command creates a directory that is named <your_app_name>. Several new directories and files are included within this directory, as shown in Example 2-14. Because the name of the chart that is created is used in several places, it is best to use a suitable chart name.

    Example 2-14   Content of a generic sample Helm chart
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    <your_app_name>/

    ├── Chart.yaml

    ├── charts

    ├── templates

    │   ├── NOTES.txt

    │   ├── _helpers.tpl

    │   ├── deployment.yaml

    │   ├── ingress.yaml

    │   └── service.yaml

    └── values.yaml
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    The following resources are created for you:

    charts/	Directory to contain all of the embedded charts.

    values.yaml	The initial values file that contains a default value of all variables that are used in template files in templates directory.

    Chart.yaml	File that contains information about the chart, such as description and versioning.

    templates/	Directory to contain all chart resources.

    templates/NOTES.txt	
Default file that is displayed postinstallation that contains instructions to the user about how to use the chart.

    templates/_helpers.tpl	
Initial template file that is used to provide templated data to the other files within the chart.

    templates/deployment.yaml	
Initial sample Kubernetes deployment.

    templates/ingress.yaml	
Initial sample Kubernetes ingress.

    templates/service.yaml
	Initial sample Kubernetes service.

    We are now ready to customize the default resources to match our application.

     

    
      
        	
          Tip: Before continuing with development of your own Helm chart, we strongly recommend that you to review Helm’s The Chart Best Practices Guide.

        
      

    

    2.3.1  Making your Helm chart flexible

    Several other best practices are available that help you define a well-developed Helm template. One of the practices is to allow the chart to be installed in multiple copies. To achieve this task, avoid any hardcoded resource names; instead, use the helper function to render unique names for all the resources within a specific release. 

    The default helper file _helpers.tpl includes a set of reusable functions that helps with this task. You can customize the helper files and share them between different charts as a reusable asset. 

    Requirements for using namespaces with Helm charts

    While developing a Helm chart, adhere to the following rules:

    •Charts do not specify a namespace in any resource definitions.

    The namespace is specified when the chart is installed, and the namespace should not be specified in any template resource YAML files.

    •Install a chart and subcharts into only one namespace.

    Helm does not support installing a chart in multiple namespaces. Helm supports creating and managing resources only in the target namespace of the release. Doing otherwise breaks the ability to upgrade or remove a Helm release and can result in orphaned resources or worse (consequences are unpredictable).

    •A chart does not require installation into any specifically named namespace, including the default namespace.

    •A chart is installable multiple times in a single namespace.

    This rule requires the resource names to be qualified by the Helm release name to provide a unique resource name.

    2.3.2  Sample application

    For the rest of this chapter, we use a sample application: a Node.js microservices that implements the REST API and requires a MongoDB to operate. One way to start customizing the empty chart is to take the .yaml files that you use for testing the manual deployment and put them into the templates subdirectory. Then, you can edit the files by replacing any fixed values with references to the values.yaml (and adding the appropriate entries there).

    Pod definition

    When testing the application locally, you can run a single instance of the application container. When deploying to a Kubernetes cluster, you must follow the Kubernetes logic. 

    The smallest object that can be deployed to a Kubernetes cluster is called pod. The following description for a pod is provided in the Kubernetes documentation:

    “A Pod is the basic building block of Kubernetes–the smallest and simplest unit in the Kubernetes object model that you create or deploy. A Pod represents a running process on your cluster.

    A Pod encapsulates an application container (or, in some cases, multiple containers), storage resources, a unique network IP, and options that govern how the container(s) should run. A Pod represents a unit of deployment: a single instance of an application in Kubernetes, which might consist of either a single container or a small number of containers that are tightly coupled and that share resources.”

    Although it is possible to define pods directly as Kubernetes resources within a Helm chart, it is not a recommended method because this process limits your options for managing your application lifecycle.

    Rather than creating pods on your own, allow the dedicated controller do this work for you. The available controllers include the following examples:

    •ReplicaSet

    •DeamonSet

    •StatefulSet

    •Deployment

    Deployment definition

    In our example, we use the Deployment definition, as shown in Example 2-15. This definition describes a wanted state of application resources that are running in a Kubernetes cluster.

    Example 2-15   Deployment template definition
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    apiVersion: extensions/v1beta1

    kind: Deployment

    metadata:

      name: "{{ template "fullname" . }}-deployment"

      labels:

        chart: '{{ template "chart" . }}'

    spec:

      replicas: {{ .Values.replicaCount }}

      strategy:

        type: RollingUpdate

        rollingUpdate:

          maxUnavailable: 0

          maxSurge: 1

      revisionHistoryLimit: {{ .Values.revisionHistoryLimit }}

      template:

        metadata:

          labels:

            app: "{{ template "fullname" . }}-selector"

            version: "current"

        spec:

          containers:

          - name: "{{ .Chart.Name }}"

            image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"

            imagePullPolicy: {{ .Values.image.pullPolicy }}

            livenessProbe:

              httpGet:

                path: /health

                port: {{ .Values.service.servicePort }}

              initialDelaySeconds: {{ .Values.livenessProbe.initialDelaySeconds}}

              periodSeconds: {{ .Values.livenessProbe.periodSeconds}}

            ports:

            - containerPort: {{ .Values.service.servicePort}}

            resources:

              requests:

                cpu: "{{ .Values.image.resources.requests.cpu }}"

                memory: "{{ .Values.image.resources.requests.memory }}"

            env:

              - name: PORT

                value: "{{ .Values.service.servicePort }}"

              - name: APPLICATION_NAME

                value: "{{ template "fullname" . }}"

              {{- $configmap := .Values.services.configMap | default (printf "%s-configmap" (include "fullname" .)) }}  

              - name: NODE_ENV

                value: "{{ default .Values.env.type "production" }}"

              - name: MONGO_HOST

                valueFrom:

                  configMapKeyRef:

                    name: "{{ $configmap }}"

                    key: MONGO_HOST            

              - name: MONGO_PORT

                valueFrom:

                  configMapKeyRef:

                    name: "{{ $configmap }}"

                    key: MONGO_PORT

              - name: MONGO_DB_NAME

                valueFrom:

                  configMapKeyRef:

                    name: "{{ $configmap }}"

                    key: MONGO_DB_NAME

              - name: MONGO_USER

                valueFrom:

                  configMapKeyRef:

                    name: "{{ $configmap }}"

                    key: MONGO_USER

              - name: MONGO_PASS

                valueFrom:

                  configMapKeyRef:

                    name: "{{ $configmap }}"

                    key: MONGO_PASS
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    As you can see in Example 2-15 on page 61, several values, such as metadata.name, metadata.labels.app, or spec.template.spec.container.name, are specified by using a {{ template }} keyword. This keyword instructs the templating engine to use a template that is defined in helper files (“_helper.tpl” specifically in our example).

    Next, we review the fullname helper function (for convenience, a line-by-line breakdown of the code and the corresponding explanations are shown next):

    {{- define "fullname" -}}

    Definition of the function name:

    {{- if .Values.fullnameOverride -}}

    If during the Helm chart installation fullnameOverride value is provided, then:

    {{- .Values.fullnameOverride | trunc 63 | trimSuffix "-" -}}

    Output it, truncating to 63 characters and removing any trailing hyphens (“-” ):

    {{- else -}}

    If not:

    {{- $name := default .Chart.Name .Values.nameOverride -}}

    Define $name temporary variable as name of the Helm chart or nameOverride value if provided:

    {{- if contains $name .Release.Name -}}

    If the newly defined $name variable contains a Helm release name:

    {{- .Release.Name | trunc 63 | trimSuffix "-" -}}

    Output release name, truncating it to 63 characters and removing any trailing hyphens (“-”):

    {{- else -}}

    Otherwise:

    {{- printf "%s-%s" .Release.Name $name | trunc 63 | trimSuffix "-" -}}

    Output release name plus hyphen (“-”) plus$name, truncating the concatenated string to 63 characters and removing any trailing hyphens (“-”):

    {{- end -}}

    {{- end -}}

    {{- end -}}

    The last three lines are closures of the if statements that are used.

     

    
      
        	
          Tip: Value names (including Override in the name) are treated differently by linter and they do not have to be defined in the values.yaml file. They can be provided at runtime.

        
      

    

    The goal of this function is to generate a unique name so the multiple deployments that are generated by this chart can coexist in the same target namespace.

    Service definition

    To expose your application to the world, an access method must be defined. Kubernetes pods feature a lifespan. They are created and expire under many circumstances, such as auto-healing by way of liveness, readiness probes, scaling up, scaling down, or performing rolling updates. 

    Thus, your workload must avoid working with static IP addresses because IP addresses cannot be relied upon to be stable over time. In complex applications that have pods that depend on other pods, it becomes untenable to track the changing IP addresses. Services were designed by Kubernetes to handle this problem.

    A Kubernetes service defines a logical set of pods and a policy to access them, which is often called a microservice. It is this construct that must be mastered to take full advantage of Kubernetes.

    As workloads mature, secure access becomes a critical component to providing enterprise ready workloads. It is important to used advanced concepts, such as ingress and network policies to access to Kubernetes resources.

    Consider the following high-level guiding principles that immediately drive a level of security and isolation: 

    •Use Kubernetes service type of ClusterIP as the default: 

     –	Keep as much network traffic within the cluster network as possible.

     –	If you do not specify a service type, ClusterIP is the default.

     –	Services with type=ClusterIP handle traffic only within the cluster container network.

    •Discourage the use of NodePort. Consider the use of an Ingress Controller/Ingress rule approach instead:

     –	Nodeports are a simple way of exposing external access to a workload for initial development and testing. However, they expose more security concerns and are difficult to manage from an application and networking infrastructure perspective.

     –	NodePort services expose “non-standard” ports in the 30000 - 32767 range externally on all the worker nodes in your cluster. All worker nodes are configured to listen on the specific NodePort that is assigned. 

    You now have each node externally accessible, which opens more paths that must be protected by way of fire walls, and so forth. Security products also are available that consider the use of NodePort to be something that they flag. For more information, see this web page.

     –	It is more difficult for an application to make itself accessible when NodePorts are used in the real world. Most network ingress access it controlled by corporation fire walls that are managed by a networking team. The odds of having incoming access on a well-know port, such as 80, 443 are much greater than a dynamically generated port in the 30000 - 32767 range.

    The same argument also holds for applications that want to use your service. They must be configured to communicate with “non-standard” ports and address similar firewall port requirements with their networking team.

    Example 2-16 shows the service template definition of our application.

    Example 2-16   Service template definition
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    apiVersion: v1

    kind: Service

    metadata:

      annotations:

        prometheus.io/scrape: 'true'

      name: "{{ template "fullname" . }}-api-service"

      labels:

        chart: "{{ template "chart" . }}"

    spec:

      type: {{ .Values.service.type }}

      ports:

      - name: http

        port: {{ .Values.service.servicePort }}

      selector:

        app: "{{ template "fullname" . }}-selector"
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    Ingress definition

    To expose the service to the outside traffic (coming from outside of an IBM Cloud Private cluster), you must specify an Ingress object. In Example 2-17, we show a sample ingress definition for the service.

    Example 2-17   Ingress definition template
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    apiVersion: extensions/v1beta1

    kind: Ingress

    metadata:

      name: {{ template "fullname" . }}

      labels:

        app: {{ template "fullname" . }}

        chart: {{ template "chart" . }}

        release: "{{ .Release.Name }}"

        heritage: "{{ .Release.Service }}"

      annotations:

        ingress.kubernetes.io/backend-protocol: "HTTP"

        ingress.kubernetes.io/rewrite-target: /

        ingress.kubernetes.io/proxy-body-size: "0"

        ingress.kubernetes.io/secure-backends: "true"

        nginx.ingress.kubernetes.io/rewrite-target: /

        nginx.ingress.kubernetes.io/proxy-body-size: "0"

        nginx.ingress.kubernetes.io/secure-backends: "true"

        nginx.ingress.kubernetes.io/backend-protocol: "HTTP"

    spec:

      tls:

      - secretName: {{ .Release.Name }}-tls-secret

        hosts:

        - {{ .Values.service.ingresshost }}

      rules:

      - host: {{ .Values.service.ingresshost }}

        http:

          paths:

          - path: /*

            backend:

              serviceName: "{{ template "fullname" . }}-api-service"

              servicePort: {{ . Values.service.servicePort }}
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    It is important to ensure that serviceName value in the Ingress definition matches the metadata.name that is provided in the service template; otherwise, it does not work. Annotations in the Ingress definition are translated into Ingress controller configuration files. In IBM Cloud Private, the default ingress is implemented by using nginx. For more information about the full list of possible annotations, see the nginx ingress documentation.

    You also might notice that the ingress definition that is shown in Example 2-17 includes the TLS section. This means that the port open for incoming traffic expects HTTPS protocol.

    As of this writing, the Ingress supports only a single TLS port (443) and assumes TLS termination. If the TLS configuration section in an Ingress specifies different hosts, they are multiplexed on the same port according to the hostname that is specified through the SNI TLS extension (which is provided the Ingress controller supports SNI). The TLS secret must contain keys named tls.crt and tls.key that contain the certificate and private key to use for TLS.1

     

    
      
        	
          Note: In Example 2-17 on page 65, duplicate annotations are listed. The set that begins with ingress.kubernetes.io is the old definition; the set that begins with nginx.ingress.kubernetes.io is the new definition. You can specify both, and the Ingress controller filters to use only the one it needs.

        
      

    

    In our example, we use a dynamically generated self-signed certificate for testing convenience. It is not recommended to use such certificates for any production use. 

    
      
        	
          Important: Because Helm is not secure enough to hide sensitive information in its release data, it is a recommended best practice to manually create any secrets that your chart needs before the chart is deployed. The user creates the secrets and then passes in the names of the secrets in their values.yaml file during the Helm chart deployment process.

        
      

    

    Example 2-18 shows the template that generates the self-signed certificate during the Helm chart deployment.

    Example 2-18   Secret definition template
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    apiVersion: v1

    kind: Secret

    metadata:

      name: "{{ template "fullname" . }}-tls-secret"

    type: Opaque  

    data:

      {{ $ca := genCA "SampleApi CA" 3650 }}

      {{- $cn := .Values.service.ingresshost | quote }}

      {{- $altNames := list .Values.service.ingresshost ( printf "%s.%s" (include "fullname" .) .Release.Namespace ) ( printf "%s.%s.svc" (include "fullname" .) .Release.Namespace ) -}}

      {{- $cert := genSignedCert $cn nil $altNames 3650 $ca -}}

      tls-ca.crt: {{ print $ca.Cert | b64enc }}

      tls-ca.key: {{ print $ca.Key | b64enc }}

      tls.crt: {{ print $cert.Cert | b64enc }}

      tls.key: {{ print $cert.Key | b64enc }}
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          Attention: The genSignedCert function takes the following arguments:

          •cn

          •list of IP addresses

          •list of alternative DNS names

          •validity period in days

          •CA certificate

          You can skip some arguments by using ‘nil’ keyword, which is correctly handled by the function; however, the use of the helm lint command validation can complain about it.

        
      

    

    Autoscaling definition

    One of the foundational assumptions about an application’s production readiness is that it must meet the requirements for availability. Although designing applications for high availability is out-of-scope for this book, one aspect of availability (the ability to handle dynamic demand) is particularly relevant to cloud native applications. 

    To address this requirement, Kubernetes provides scaling policies that allow applications to adapt to changing conditions. As traffic and workload increases for an application, scaling the application allows it to keep up with user demand. Running multiple instances of an application distributes the traffic to all of them. Additionally, after multiple instances of an application running are available, rolling updates can be performed without downtime.

    To allow our sample application to scale, we define a HorizontalPodAutoscaler object that defines how scaling controller should react for changing conditions; in our case, an average CPU utilization (represented as a percentage of requested CPU) over all the pods.

    Example 2-19   HorizontalPodAutoscaler template definition

    [image: ]

    {{ if .Values.hpa.enabled }}

    apiVersion: autoscaling/v2beta1

    kind: HorizontalPodAutoscaler

    metadata:

      name: "{{ template "fullname" . }}-hpa-policy"

      namespace: default

    spec:

      scaleTargetRef:

        apiVersion: apps/v1beta1

        kind: Deployment

        name: "{{ template "fullname" . }}-deployment"

      minReplicas: {{ .Values.hpa.minReplicas }}

      maxReplicas: {{ .Values.hpa.maxReplicas }}

      metrics:

      - type: Resource

        resource:

          name: cpu

          targetAverageUtilization: {{ .Values.hpa.metrics.cpu.targetAverageUtilization }}

      - type: Resource

        resource:

          name: memory

          targetAverageUtilization: {{ .Values.hpa.metrics.memory.targetAverageUtilization }}

    {{ end }}
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    MongoDB component definition

    The last element that is required by our sample application to run successfully is a MongoDB database. Without a working connection to the database, our Node.js app fails and Kubernetes keeps restarting the pods. The following options are available to satisfy the requirement for MongoDB:

    •Install MongoDB as a part of the deployment, with or without a persistent volume.

    •Reuse external MongoDB chart as requirement for our chart.

    •Provide the user option to specify the connection parameters for external MongoDB service (directly or as existing ConfigMap object).

    Next, we show how to include any of these options. To make it transparent to the rest of the chart, we must provide our Node.js app a consistent way to access connection information, no matter how the MongoDB gets provisioned. To achieve this, we use a ConfigMap object, as shown in Example 2-20 on page 68.

    Example 2-20   ConfigMap template definition
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    {{- if not .Values.services.configMap }}

    kind: ConfigMap

    apiVersion: v1

    metadata:

      name: {{ template "fullname" . }}-configmap

      namespace: {{ .Release.Namespace}}

      labels:

        chart: {{ template "chart" . }}

        app: {{ template "fullname" . }}

        release: "{{ .Release.Name }}"

        heritage: "{{ .Release.Service }}"     

    data:

        {{- if not .Values.services.mongo.install }}

        MONGO_HOST: {{ .Values.services.mongo.host }}

        MONGO_PORT: {{ .Values.services.mongo.port | default "27017" }}

        MONGO_DB_NAME: {{ .Values.services.mongo.dbname | default "TodoApp"}}

        MONGO_USER: {{ .Values.services.mongo.username }}

        MONGO_PASS: {{ .Values.services.mongo.password }}

        {{ else }}

        MONGO_HOST: {{ template "fullname" . }}-mongo-service

        MONGO_PORT: "27017"

        MONGO_DB_NAME: "TodoApp"

        MONGO_USER: null

        MONGO_PASS: null

        {{ end }}

    {{- end }}
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    Installing MongoDB as a part of the deployment

    For development purposes, it is convenient to include MongoDB as a part of a chart because it makes the app self-contained and allows for easy deployment in any namespace. To include MongoDB as a part of your chart, add MongoDB deployment and service templates.

    The deployment of a local MongoDB instance is controlled with the services.mongo.install field in the values.yaml file.

    Sample templates are shown in Example 2-21 and Example 2-22 on page 69.

    Example 2-21   Definition of MongoDB local deployment definition template
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    {{- if and (not .Values.services.configMap) .Values.services.mongo.install }}

    apiVersion: extensions/v1beta1

    kind: Deployment

    metadata:

      name: "{{ template "fullname" . }}-mongo-deployment"

    spec:

      # this replicas value is default

      # modify it according to your case

      replicas: 1

      template:

        metadata:

          labels:

            app: "{{ template "fullname" . }}-mongo-selector"

            service: mongo

        spec:

          containers:

          - name: {{ template "fullname" . }}-mongo-container

            image: mongo:latest

            # resources:

            #   requests:

            #     cpu: 100m

            #     memory: 100Mi

    {{-end}}[image: ]

    Example 2-22   Local MongoDB service definition template
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    {{- if and (not .Values.services.configMap) .Values.services.mongo.install }}

    apiVersion: v1

    kind: Service

    metadata:

      name: "{{ template "fullname" . }}-mongo-service"

    spec:

      # if your cluster supports it, uncomment the following to automatically create

      # an external load-balanced IP for the frontend service.

      #type: LoadBalancer

      type: ClusterIP

      ports:

      # the port that this service should serve on

      - name: http

        port: 27017

      selector:

        app: "{{ template "fullname" . }}-mongo-selector"

    {{- end }}
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    Verifying Helm chart syntax with lint

    For the YAML files, defining templates in a Helm chart formatting is crucial. Any indentation mistake generates an error during deployment. To help with the verification of the chart syntax, use the following command:

    helm lint <chart name>

    A sample output of the correct linting is shown in Example 2-23.

    Example 2-23   Sample output of Helm verification with lint
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    helm lint ibm-nodejs-sample

     

    ==> Linting ibm-nodejs-sample

    Lint OK

     

    1 chart(s) linted, no failures
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    Another useful method is to generate a specific template file output by using the helm template command, as shown in Example 2-24 on page 70.

    Example 2-24   Sample output of helm template command
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    helm template -x templates/service.yaml ibm-nodejs-sample

     

    ---

    # Source: ibm-nodejs-sample/templates/service.yaml

    apiVersion: v1

    kind: Service

    metadata:

      name: release-name-nodejssample-nodejs

      labels:

        app: "nodejsSample"

        chart: "ibm-nodejs-sample"

        heritage: "Tiller"

        release: "RELEASE-NAME"

        component: "nodejs"

      annotations:

        prometheus.io/scrape: 'true'

    spec:

      type: NodePort

      ports:

        - port: 3000

      selector:

        app: nodejsSample

        release: RELEASE-NAME

        component: nodejs
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    2.3.3  Embedding MongoDB chart as prerequisite

    While embedding a simple MongoDB is handy for development, it is not useful for serious testing and production deployments. However, rather than developing complex options for prerequisites, it is better to reuse sophisticated, production-tested Helm charts that are defined by the software vendor or a dedicated support team. Next, we discuss when and how to embed other charts as prerequisites for your chart.

    Helm subcharts overview

    Helm charts can have dependencies, which are called subcharts. These subcharts can have their own values and templates. There are multiple ways to manage dependencies between and share information across the charts. Careful consideration must be given to understand the global versus local scope of constructs, conditional enablement, and behavior when duplicate template defines are encountered across charts. 

    The following primary use cases are available for subcharts: 

    •Code packaged for modularity:

     –	Modularity of charts, which allows multiple teams to code and test pieces of a deployment independently, yet the charts are often specialized for a particularly parent chart deployment

     –	Generally, this drives the subchart source to be embedded into your chart structure as a source in the /charts directory

    •Code packaged for ReUse (unchanged):

     –	Inclusion of charts shared by many teams where the code is to be reused unchanged across parent charts

     –	Generally, this results in the subchart being a TGZ (TAR archive) that is packaged in the /charts directory

    Helm dependencies are used to manage subchart inclusion and critical to understand when preparing your charts for integration with the content CICD build process and publication.

    Generally, the helm dependency update command is used to verify that the required charts, as expressed in requirements.yaml, are present in charts/ and are at an acceptable version. It pulls down the latest charts that satisfy the dependencies, and clean up old dependencies. On a successful update, this process generates a lock file that can be used to rebuild the requirements for an exact version.

    Helm supports the following commands to manage dependencies that are expressed in requirements.yaml: 

    •helm dependency build: This command rebuilds the charts/ directory based on the requirements.lock file.

    •helm dependency list: This command lists the dependencies for the specific chart.

    •helm dependency update: This command updates the charts/ directory that is based on the contents of the requirements.yaml file.

    The content build process expects dependencies to be managed before any push of the chart to a product team’s individual or the overall consolidated charts git repository.

    Helm chart dependencies

    Regarding Helm chart dependencies, Helm documentation states: 

    In Helm, one chart may depend on any number of other charts. These dependencies can be dynamically linked through the requirements.yaml file or brought in to the charts/ directory and managed manually.

    Although manually managing your dependencies has a few advantages some teams need, the preferred method of declaring dependencies is by using a requirements.yaml file inside of your chart.

    Specifying chart dependencies via requirements.yaml

    The requirements.yaml file originally was an instruction to packaging (name, version, repository, and so on), but was extended to give direction during installation (enable/disable subchart inclusion based on conditions or tags and reference chart via alias). 

    The dual purpose of this file requires careful consideration, especially if mixing external dependency chart inclusion and conditional (or alias) logic related to internal subcharts. For example, if specifying an alias for an internal subchart, you might think that only requires chart name and alias when version + repository are required if pulling in external charts by using the helm dependency update command. An exact match must be found for the version that is specified in requirements.yaml or the alias are not established (without warning) and the helm dependency update command requires a repository for all specified entries.

    Consider the following points:

    •An alias is not two names for the same thing; instead, it is creating multiple instances of a specific chart.

    •Condition logic is ignored if yaml paths that are specified do not exist in the parent’s values or do not evaluate to a Boolean.

    •Conditions set in values.yaml override tags.

    •For a parent to access values of a subchart, must address directly and parameters cannot have a '-'; therefore, an alias is required for all charts with a '-' (which is a Helm standard).

    A sample requirements.yaml file is shown in Example 2-25 on page 72.

    Example 2-25   Sample content of requirements.yaml file
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    dependencies:

    - name: mongodb 

      version: 5.7.0 

      repository: https://kubernetes-charts.storage.googleapis.com

      alias: mongo
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    To download subcharts and verify a requirements.yaml file, run the commands that are in Example 2-26.

    Example 2-26   Sample output of helm dependency update command
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    helm dependency update

     

    Hang tight while we grab the latest from your chart repositories...

    ...Unable to get an update from the "local" chart repository (http://127.0.0.1:8879/charts):

    	Get http://127.0.0.1:8879/charts/index.yaml: dial tcp 127.0.0.1:8879: getsockopt: connection refused

    ...Successfully got an update from the "stable" chart repository

    Update Complete. ⎈Happy Helming!⎈

    Saving 1 charts

    Downloading mongodb from repo https://kubernetes-charts.storage.googleapis.com

    Deleting outdated charts
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          Tip: Run the helm init command (as shown in Example 2-27) if you receive an error as shown in the following example:

          Error: Couldn't load repositories file (.helm/repository/repositories.yaml)

        
      

    

    Example 2-27   Sample output of helm init command
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    helm init --client-only

     

    Creating /Users/guest/.helm/repository 

    Creating /Users/guest/.helm/repository/cache 

    Creating /Users/guest/.helm/repository/local 

    Creating /Users/guest/.helm/plugins 

    Creating /Users/guest/.helm/starters 

    Creating /Users/guest/.helm/repository/repositories.yaml 

    Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com 

    Adding local repo with URL: http://127.0.0.1:8879/charts 

    $HELM_HOME has been configured at /Users/guest/.helm.

    Not installing Tiller due to 'client-only' flag having been set

    Happy Helming!
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    The MongoDB Helm chart from the @stable repository (which is an alias for https://kubernetes-charts.storage.googleapis.com) defines its own sets of resources (for example, mongodb service). Therefore, to effectively use it, we must add mongodb-specific values (for subchart) to our values.yaml and adjust our configmap template.

    Values that are under the name of the subchart are sent to subchart during deployment, which overrides subchart defaults. 

    Example 2-28 shows how such a section of the values.yaml file might look.

    Example 2-28   Section of values.yaml that will be sent to mongodb subchart
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    mongodb:

      mongodbUsername: myusername

      mongodbPassword: mypassword

      mongodbDatabase: mydatabase
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    2.3.4  Testing Helm charts

    As a recommended practice, every Helm chart should include a tests definition that can be run automatically to verify the Helm chart releases. 

    The Helm tests provide a level of validation that a chart is installed correctly and services are available. They are defined in the chart under the templates/tests directory by convention and consist of a pod definition that includes the following components:

    •A hook annotation (helm.sh/hooks: test-success or helm.sh/hooks: test-failure)

    •Container image

    •Command to use for installation verification   

    Commonly, the container image that is used for testing is lightweight and publicly available with just enough functionality that is installed to run the verification commands. However, cases exist in which a more heavyweight image (such as another instance of the application) is required. 

    Independent of type of image, all tests pods must conditionally allow specification of an imagePullSecret or use a service account that contains imagePullSecret to access the internal IBM Cloud Private registry in isolated installations. In addition, test pods require affinity to ensure lands on architecture supported by image in a hybrid cluster (multi-architecture).

    For more information about Helm tests and examples, see the Helm documentation.

    2.3.5  Upgrading Helm charts

    As your application evolves, the application images and Helm chart changes versions. Helm provides a convenient way to upgrade existing releases with new content. The same command is used for upgrading to new version of Helm chart (for example, to define new Kubernetes resources) and to update the resources with new values (without changing the Helm chart version).

    To upgrade the release, run the following command:

    helm upgrade <release> <chart>

    Helm upgrade can take new values that are specified with -f <new_values.yaml> or using --set key=value option. You must specify only the new values to be used for the upgrade. All of the previous values that are used before in release are carried forward. For example, run the following command to update only the container image tag that us used by the chart:

    helm upgrade <release> <chart> --set image.tag=v1.0.1

    To avoid this behavior and reset all the values to default values that are included in the chart, add --reset-values.

    If any of the values change, the pod specification template within deployment definition (for example, the image tag as shown in our example), triggers creating a ReplicaSet. If the update strategy that is specified in deployment is RollingUpdate, the deployment controller gradually scales up new ReplicaSet and scales down old ReplicaSet. This process ensures that the required number of application pods is available in any point. As the result, the application should be upgraded in place, without a downtime that is visible for users. An alternative update strategy is to Recreate. In that case, the old ReplicaSet and pods are deleted and a new one is created.

    Istio allows for some other application update strategies (for example, Blue/Green or Canary deployment) as described in Chapter 4, “Managing your service mesh by using Istio” on page 97. 

    2.4  IBM Cloud Paks

    In these sections, we briefly introduce the concept of IBM Cloud Paks, which is an enterprise ready packaging of cloud native solutions.

    2.4.1  What is an IBM Cloud Pak?

    IBM Cloud Paks provide enterprise software container images that are pre-packaged in production-ready configurations. These configurations can be quickly and easily deployed to IBM’s container platforms. They include support for resiliency, scalability, and integration with core platform services, such as monitoring or identity management. 

    2.4.2  Developing Helm charts for IBM Cloud Private

    IBM provides a Helm chart repository that is available at GitHub that contains a stable repo with publicly available versions of many IBM software products. IBM also encourages others to publish their software charts in the community section of the repo. 

    To help build quality Helm charts, the repository includes detailed recommendations about how to build a proper Helm chart for IBM Cloud Private environments. Because document is a living document, we do not copy its content in this book; instead, see this web page. 

    For more information about CloudPak certification for Helm charts, see this web page.

    Using IBM Cloud Private Catalog features (values-metadata)

    IBM Cloud Private catalog provides some other features to make the Helm charts easier to use. One of these features is formatting and validating the values that the chart makes available for users to customize.

    You can define metadata for the parameters in values-metadata.yaml file that is placed in root directory of the chart (same as values.yaml). The file values-metadata.yaml defines the metadata for values defined in values.yaml. It should mirror the same structure of values.yaml, except that instead of specifying a value for the leaf property, define a property named __metadata (see Example 2-29 on page 75).

    If the values-metadata.yaml file is not present, the UI continues to display all parameters that are declared in values.yaml based on the type inference.

    Example 2-29   Sample content of values-metadata.yaml 
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    demonstration:

      __metadata:

        label: Demonstration

        description: I am an h2

      stringField:

        __metadata:

          label: String field

          type: string

          required: true

      numberField:

        __metadata:

          label: Number field (with validation)

          type: number

          required: true

      checkboxField:

        __metadata:

          label: Checkbox field

          type: boolean

          required: true

      selectField:

        __metadata:

          label: Select field

          type: string

          required: true

          options:

          - label: myOpt1

            value: myNotSelectedValue

          - label: myOpt2

            value: mySelectedValue

      multilineField:

        __metadata:

          label: Multiline field

          type: string

          multiline: true

          required: true

      immutableField:

        __metadata:

          label: Immutable field

          type: string

          required: true

          immutable: true

      arrayField:

        __metadata: ### arrayField: "[]" or [] must be set in values.yaml (see below for details).

          label: Array field

          type: string   ### do to backwards-compat bug, type must be string

          description: I am an array.

          required: true

      objectField: ### objectField: "{}" or {} must be set in values.yaml (see below for details)

        __metadata:

          label: Object field (new)

          type: string   ### do to backwards-compat bug, type must be string

          description: I am an object.

          required: true
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    The following metadata fields are available:

    description	Description of the parameter. Should appear in tooltip or, if group description, as subheader.

    hidden	If hidden = true, the element is hidden (does the same thing as immutable, but the form field is never exposed in the UI).

    immutable	If immutable = true, the user cannot modify the parameter (field = disabled).

    label	Title of the parameter. If label is not specified, the key from values.yaml is used.

    multiline	If type = string, display a text area field.

    options	Describes a parameter that transforms into a drop-down menu.

    required	Describes if the parameter is required. If so, an asterisk (*) is displayed next to the name in the UI.

    type	The type of the parameter (string, boolean, number or password; array and object are also type: string bc of historical backwards-compatibility issues).

    validation	Regular expression (JavaScript regex) to validate parameter value.

     

     

    

    1 For more information, see: https://kubernetes.io/docs/concepts/services-networking/ingress/
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DevOps and application automation

    This chapter introduces DevOps and application automation. It also covers several tooling options to enable DevOps with IBM Cloud Private. 

    The chapter includes the following topics:

    •3.1, “DevOps overview” on page 78

    •3.2, “DevOps tooling options” on page 82

    •3.3, “Introduction to Microclimate” on page 84

    •3.4, “Sample DevOps scenario with Microclimate” on page 84

    3.1  DevOps overview

    DevOps is short for development and operations. To speed the release of new applications and updates, the IT industry works to apply agile and lean principles to development and deployment. At the core of these principles is eliminating wasted effort, breaking down artificial barriers between related functional teams, and adopting continuous release cycles that push improvements out to users faster than ever before. This approach allows the business to more quickly seize market opportunities and reduce the time to include customer feedback. 

    A DevOps approach can be successful when dealing with the complexities of enterprise applications that involve multiple products and technologies.

    3.1.1  Benefits of DevOps

    In a DevOps shop, the business owner, developers, and operations team work cooperatively. The plan-develop-build-deploy-feedback process is continuous (see Figure 3-1). When possible, human actions are minimized in favor of autonomous tools, including software builds that start on their own when eligible code updates become available. Applications reach their full potential faster, often by using fewer resources than in the past.
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    Figure 3-1   DevOps overview

    3.1.2  Continuous business planning

    Continuous business planning, also known as continuous steering, helps to continuously plan, measure, and bring business strategy and customer feedback into the development lifecycle. It provides the tools and practices to help organizations do the correct things and focus on the following activities where they can gain most value:

    •Attacking the high-value and high-risk items first

    •Predicting and quantifying the outcomes and resources

    •Measuring honestly with distributions of outcomes

    •Learning what customers really want

    •Steering with agility

    Continuous business planning has the following benefits:

    •Helps you continuously plan business needs and prioritize them

    •Integrates customer feedback with business strategy

    •Aligns customer feedback into the development lifecycle as business needs

    •Focuses on doing the correct things

    •Prioritizes business needs that add the most value

    3.1.3  Continuous integration and collaborative development

    Continuous integration refers to the leading practice of integrating the code of the entire team regularly to verify that it works well together. Continuous integration is a software development practice that requires team members to integrate their work frequently. 

    Integrations are verified by an automated build that runs regression tests to detect integration errors as quickly as possible. Teams find that this approach leads to significantly fewer integration problems, and enables development of cohesive software more rapidly. 

    Collaborative development enables collaboration between business, development, and quality assurance (QA) organizations (including contractors and vendors in outsourced projects that are spread across time zones) to deliver innovative, quality software continuously. This includes support for polyglot programming, multi-platform development, elaboration of ideas, and creation of user stories, complete with cross-team change and lifecycle management. 

    Collaborative development includes the practice of continuous integration, which promotes frequent team integrations and automatic builds. By integrating the system more frequently, integration issues are identified earlier, when they are easier to fix. The overall integration effort is reduced by using continuous feedback, and the project shows constant and demonstrable progress. Continuous integration has the following benefits:

    •Each developer integrates daily, leading to multiple integrations per day.

    •Integrations are verified by automated builds that run regression tests to detect integration errors as quickly as possible.

    •Small, incremental, frequent builds help with early error detection, and require less rework.

    •It is a leading practice to make a global collaborative development work successfully.

    Collaborative development has the following benefits:

    •Bringing together customer and IBM team stakeholders toward a partnered goal

    •Focusing on delivering a tangible and functional business outcome

    •Working within a time-boxed scope

    •Using common tools and process platform (customer, traditional, or IBM Cloud)

    3.1.4  Continuous testing

    Continuous testing eliminates testing bottlenecks and simplifies the creation of virtualized test environments that can be easily deployed, shared, and updated as systems change. The use of these capabilities can reduce the cost of provisioning and maintaining test environments, and shorten test cycle times by enabling integration testing earlier in the lifecycle.

    Continuous testing has the following benefits:

    •Avoidance of unexpected disruption to business

    •More reliable applications

    •Proactive problem prevention

    •More effective and quicker testing

    •Less rework

    •More efficient and happier workers

    •Lower operational costs and improved topline

    3.1.5  Continuous release and deployment

    Continuous delivery is a set of practices that enables the code to be rapidly and safely deployed to production by delivering changes to a production-like environment. It also ensures that business applications function as expected through exhaustive automated testing. Because all changes are delivered to a staging environment by using complete automation, your applications can be deployed to production with the “push of a button” when the business is ready. 

    Continuous release and deployment provides a continuous delivery pipeline by automating deployments to production and test environments. It reduces the amount of manual labor, resource wait-time, and rework by using push-button deployments that enable a higher frequency of releases, reduced errors, and end-to-end transparency for compliance.

    Continuous delivery has the following benefits:

    •The leading practice of deploying code rapidly and safely into production-like environments is followed.

    •Deployments start automated tests to ensure that components perform business functions as expected.

    •Every change is automatically deployed to staging.

    •Deployments are on-demand and self-service.

    •Applications can be deployed into production with the push of a button, when business is ready.

    3.1.6  Continuous monitoring

    Continuous monitoring offers reporting that helps developers and testers understand the performance and availability of their applications, even before it is deployed into production. The early feedback that is provided by continuous monitoring is vital to lowering the cost of errors and change, and for steering projects toward successful completion.

    In production, the operations team manages and ensures that the application is performing as wanted, and that the environment is stable by using continuous monitoring. The Ops teams have their own tools for monitoring their environments and systems. The DevOps principles go beyond suggesting that they should also monitor the applications to ensure that the applications are performing at optimal levels. 

    This requires that Ops teams use tools for monitoring application performance and issues. In addition, it might require that they work with Dev to build self-monitoring or analytics gathering capabilities that are directly built into the applications. This allows for true end-to-end and continuous monitoring.

    Continuous monitoring has the following benefits:

    •The leading practice of managing the infrastructure, platform, and applications to ensure that they are functioning optimally is followed.

    •Thresholds can be set for what is considered optimal.

    •Any untoward incident triggers an automatic alert or remediation.

    •Monitoring logs are used for operational analytics.

    •Developers can also self-monitor applications and look at real-time reports.

    3.1.7  Continuous customer feedback and optimization

    Efficient DevOps enables faster feedback. Continuous customer feedback and optimization provides visual evidence and full context to analyze customer behavior, pinpoint customer struggles, and understand customer experiences by using web or mobile applications. 

    Experimentation, learning through first-hand client experiences, and continuous feedback are critical to being successful in this new world. Whether it is entering a new market space or evolving a current set of capabilities, delivering a minimally viable product, or learning and pivoting in a responsive way challenges the status quo. This is DevOps in action, showing how instrumented feedback, which is included with sponsor users that are connected into cross functional feature teams to act quickly, can be an incredible combination. 

    The trick is to evolve in a disruptive yet healthy way that enables the team to innovate while remaining connected with the system of record team, where the data and transactions live. Finding this balance and a pattern that works is essential to capturing the value of hybrid cloud and mobile.

    Continuous customer feedback and optimization provides the following benefits:

    •Provide clients the ability to gain insight with intuitive reporting and optimized web, mobile, and social channels

    •Empower stakeholders, including users

    •Provide and assess important feedback, from idea through live-use 

    •Respond with insight and rapid updates 

    •Maintain and grow competitive advantage

    The DevOps approach is multi-platform. The principles are the same whether the application runs on a mainframe, in a distributed environment, or in the cloud. It can be applied to any development effort, from enterprise applications, such as back-end banking systems, to more customer-facing products, such as smartphone tools. It also is customer-neutral. Whether you are working with an external client or an internal line of business, DevOps can help you meet your commitments faster and with better results.

    For more information about DevOps, see DevOps for Dummies (IBM Edition).

     

    3.2  DevOps tooling options

    This section provides various tooling options to enable DevOps with IBM Cloud Private.

    3.2.1  Code Editors tooling options

    Table 3-1 list the various code editor options that can be used by the developers.

    Table 3-1   Code Editor tooling options

    
      
        	
          Tool

        
        	
          On-premises hosted

        
        	
          IBM Cloud Private

        
      

      
        	
          Visual Studio Code

        
        	
          On Developers Machine.

        
        	
          Integrate with Microclimate hosted on IBM Cloud Private.

        
      

      
        	
          Eclipse

        
        	
          On Developers Machine.

        
        	
          Integrate with Microclimate hosted on IBM Cloud Private.

        
      

      
        	
          Microclimate - Theia

        
        	
          Microclimate hosted outside IBM Cloud Private. Accessed as Online editor.

        
        	
          Microclimate hosted on IBM Cloud Private. Accessed as Online editor.

        
      

    

    3.2.2  Microservice builder tooling options

    Microclimate is a tool for building microservices. Microclimate is a dockerized, end-to-end development environment that enables agile development and delivery of microservices, hybrid, and Docker containerized apps in Java, Node.js, and Swift. 

    Microclimate offers services and tools to help you create and modernize applications in one seamless experience. You can use Microclimate for every step of the process, from writing and testing code locally to building and deployment with a pipeline. Microclimate can be hosted on IBM Cloud Private or as a stand-alone application. For more information about Microclimate, see the following resources:

    •“Microservice builder tooling options” on page 82 

    •Microclimate documentation 

    3.2.3  Source code management tooling options

    Table 3-2 list the various source code tooling options that can be used by the developers.

    Table 3-2   Source code options

    
      
        	
          Tool

        
        	
          On-premises hosted

        
        	
          IBM Cloud Private 

        
      

      
        	
          GitHub

        
        	
          Hosted on-premises

        
        	
          Pipelines in IBM Cloud Private can integrate GitHub hosted externally to IBM Cloud Private

        
      

      
        	
          Gitlab

        
        	
          Hosted on-premises

        
        	
          Hosting and Integration

        
      

      
        	
          IBM Rational® Team IBM Concert®

        
        	
          Hosted on-premises

        
        	
          Pipelines in IBM Cloud Private can integrate IBM Rational Team Concert™ external to IBM Cloud Private

        
      

    

    3.2.4  Build, Test, and Continuous Integration tools

    Table 3-3 list the various CI/CD tooling options that can be used by developers.

    Table 3-3   CI/CD tooling options

    
      
        	
          Tool

        
        	
          On-premises

        
        	
          IBM Cloud Private

        
      

      
        	
          Jenkins

        
        	
          Hosted

        
        	
          Hosted

        
      

      
        	
          Urban Code Deploy

        
        	
          Hosted

        
        	
          Hosted and Integration

        
      

      
        	
          Sauce Labs

        
        	
          Enterprise

        
        	
          Integration via Jenkins

        
      

    

    Jenkins

    Jenkins is an open source continuous integration platform that runs under a Java web servlet container (such as the Liberty profile server). 

    Continuous integration is the practice of frequently building and testing software projects during development. The aim of this process is to discover defects and regressions early by automating the process of running unit and integration tests. These automated build and test cycles typically happen on a regular schedule (such as every night) or even after each change is delivered.

    Jenkins can integrate with a large variety of frameworks and toolkits by using its extensive library of available plug-ins, including the following items:

    •Source code management and version control platforms, including CVS, Subversion, Git, Mercurial, Perforce, IBM ClearCase®, and IBM Rational Team Concert.

    •Build automation tools, such as Apache Ant and Maven, and standard operating system batch and script files.

    •Testing frameworks, such as JUnit and TestNG.

    •RSS, email, and instant messenger clients for reporting results in real time.

    •Artifact uploaders and deployers for several integration platforms.

    IBM UrbanCode Deploy

    IBM UrbanCode® Deploy is a tool for automating application deployments through your environments. It is designed to facilitate rapid feedback and continuous delivery in agile development while providing the audit trails, versioning, and approvals that are needed in production.

    IBM UrbanCode Deploy provides the following benefits:

    •Automated, consistent deployments and rollbacks of applications

    •Automated provisioning, updating, and de-provisioning of cloud environments

    •Orchestration of changes across servers, tiers, and components

    •Configuration and security differences across environments

    •Clear visibility: What is deployed, where, and who changed what

    •Integrated with middleware, provisioning, and service virtualization

    Sauce Labs

    When a Sauce Labs test suite is configured as a test job in a pipeline, the test suite can run functional and unit tests against your web or mobile app as part of your continuous delivery process. These tests can provide valuable flow control for your projects, acting as gates to prevent the deployment of bad code.

    Functional testing emulates what users do when they interact with your website. Functional testing is often confused with unit testing, which tests the underlying code to ensure that it works as prescribed. 

    You can use Sauce Labs to automate functional testing on multiple operating systems and browsers, emulating the way that a user uses the website. With Sauce Labs, you can also run tests on various operating system and browser combinations in parallel, which reduces the amount of time to get results. Sauce Labs can be integrated with Jenkins for testing.

    For more information about Sauce Labs, see this web page.

    3.3  Introduction to Microclimate

    Microclimate is a dockerized, end-to-end development environment that enables agile development and delivery of microservices, hybrid, and Docker containerized apps in Java, Node.js, Swift, and more. Microclimate offers services and tools to help you create and modernize applications in one seamless experience. You can use Microclimate for every step of the process, from writing and testing code locally to building and deployment with a pipeline.

    Teams are increasingly turning to continuous delivery, microservices, DevOps, and containers as the foundation for application architectures to enable faster innovation and business agility. To achieve agility and stability, use a microservices architecture to develop and deliver modern, lightweight, and composable workloads across public, private, and hybrid application environments.

    For those users who want to maximize the pace and benefits of continuous delivery, Microclimate serves as the enabling technology for the entire software delivery lifecycle.

     

    
      
        	
          Microclimate documentation: For more information about the Microclimate documentation, see this web page.

        
      

    

    3.4  Sample DevOps scenario with Microclimate 

    In this section, we provide a step-by-step Microclimate usage example, starting from the installation, building an application with Microclimate, and deploying the application through Microclimate pipelines.

    3.4.1  Installing Microclimate on IBM Cloud Private

    You can install Microclimate on IBM Cloud Private by using the IBM Helm chart.

    Next, we describe how to install Microclimate on IBM Cloud Private.

     

    
      
        	
          Tip: Always refer to the latest Helm chart to get the most recent version of Microclimate.

        
      

    

    Logging in to IBM Cloud Private with cloudctl

    Log in to the IBM Cloud Private by using the cloudctl command so that the configuration for kubectl and helm are set up properly. You use some of the files that are configured for Helm during the Microclimate installation later.

    Namespace setup for Microclimate

    Create two namespaces in IBM Cloud Private: one for hosting the Microclimate application, (for example mc-demo), the other for the target namespace for the application that is being developed (for example mc-deploy). 

    Create a cluster image policy to allow the Microclimate docker images to run by preparing the following yaml file as shown in Example 3-1. Save it as image.policy.yaml.

    Example 3-1   Cluster image policy for Microclimate

    [image: ]

    apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1

    kind: ClusterImagePolicy

    metadata:

      name: microclimate-image-policy

    spec:

      repositories:

      - name: docker.io/maven:*

      - name: docker.io/jenkins/*

      - name: docker.io/docker:*

      - name: docker.io/ibmcom/*

    [image: ]

    Apply the yaml file by using the kubectl apply -f image.policy.yaml command.

    Docker registry secret and Helm secret

    To push the Docker image to the private registry after the build, you must specify the Docker registry credentials in a Kubernetes secret. Complete the following steps:

    1.	Determine the fully qualified name of the private registry. You can refer to the cluster_ca_domain field in your installation config.yaml file. You also can find it by running the command to display the cluster information that is shown in Example 3-2.

    Example 3-2   Command to list cluster info

    [image: ]

    kubectl -n kube-public get cm ibmcloud-cluster-info -o yaml

     

    apiVersion: v1

    data:

      cluster_address: rb-icp312-ee-ubuntu-xxxxxxxx.bluemix.net

      cluster_ca_domain: rb-icp312-ee-ubuntu--xxxxxxxx.bluemix.net

      cluster_kube_apiserver_port: "8001"

      cluster_name: rb-icp312-ee-ubuntu

      cluster_router_http_port: "8080"

      cluster_router_https_port: "8443"

      edition: Enterprise Edition

      proxy_address: rb-icp312-ee-ubuntu-proxy--xxxxxxxx.bluemix.net

      proxy_ingress_http_port: "80"

      proxy_ingress_https_port: "443"

    ...

    [image: ]

    2.	Create the Docker registry secret for your namespace mc-demo and the mc-deploy namespace with the fixed name of microclimate-registry-secret, as shown in Example 3-3.

    Example 3-3   Create docker registry secret

    [image: ]

    kubectl -n mc-demo create secret docker-registry microclimate-registry-secret --docker-server={{ .cluster_ca_domain }}:8500 --docker-username={{ .user }} --docker-password={{ .password }} --docker-email={{ .email }}

     

    kubectl -n mc-deploy create secret docker-registry microclimate-registry-secret --docker-server={{ .cluster_ca_domain }}:8500 --docker-username={{ .user }} --docker-password={{ .password }} --docker-email={{ .email }}

    [image: ]

    3.	Replace {{ .cluster_ca_domain }} with the findings of cluster_ca_domain. Replace the {{ .user }}, {{ .password }}, and {{ .email }} with the user name, password, and email address (can be a dummy email address) of the account you used to log in to IBM Cloud Private. 

    4.	Patch the default service account of the namespace mc-deploy to use this registry credential for pulling the image from the private registry. Run the following command:

    kubectl patch serviceaccount default -n mc-deploy -p "{\"imagePullSecrets\": [{\"name\": \"microclimate-pipeline-secret\"}]}"

    5.	Create a Kubernetes secret for the Microclimate by using the following command:

    kubectl -n mc-demo create secret generic microclimate-helm-secret --from-file=cert.pem=~/.helm/cert.pem --from-file=ca.pem=~/.helm/ca.pem --from-file=key.pem=~/.helm/key.pem

    We are using the certificates and certificate authority files that are created properly after a successful cloudctl login.

    Installing the Helm chart

    Perform the following steps to install the Helm chart:

    1.	Prepare the variable overrides yaml file as shown in Example 3-4.

    Example 3-4   Variable overrides for Microclimate chart

    [image: ]

    persistence:

      enabled: true

      useDynamicProvisioning: true

      size: 8Gi

      storageClassName: nfs-client

     

    global:

      ingressDomain: mc.{{ .yourProxyIp }}.xip.io

     

    jenkins:

      Pipeline:

        TargetNamespace: mc-deploy

        Registry:

          Url: rb-icp312-ee-ubuntu-xxxxxxxx.bluemix.net:8500

      Persistence:

        StorageClass: nfs-client

    [image: ]

    2.	Enable the Microclimate persistency, which is used for storing the Microclimate project workspaces. Set useDynamicProvisioning as true and specify the storageClassName you want to use in your IBM Cloud Private environment.

     

    
      
        	
          Tips: Consider the following tips:

          •The storage access mode that is required is ReadWriteMany (RWX) for the project workspace. Not all storage classes can provide the RWX capability. NFS, GlusterFS, and CephFS volumes can provide the RWX access. The Ceph Rados Block Device (RBD), enabled by Rook, cannot fulfill this requirement. Here, we use the NFS dynamic storage class that is enabled by the NFS client provisioner.

          •The persistence volume must be turned on for Jenkins. The storage mode that is required is ReadWriteOnce (RWO), which is supported by most of the persistent volumes.

          •The global.ingressDomain field defines how you access Microclimate through Ingress. Assuming that you have internet access, you can use the xip.io to resolve the host name to the proxy of your cluster. Otherwise, you must register this ingressDomain name with the DNS server in your environment.

          •In the jekins.pipeline.Registry.Url, define your private registry URL by using cluster_ca_domain.

        
      

    

    3.	Save the yaml file as values.override.yaml. Install the Helm chart by using the command that is shown in Example 3-5.

    Example 3-5   Helm command to install Microclimate

    [image: ]

    helm install --name mclimate --namespace mc-demo -f values.override.yaml ibm/ibm-microclimate --tls

    [image: ]

    4.	Ensure that all the pods are running, as shown in Example 3-6.

    Example 3-6   Validate pods are running

    [image: ]

    kubectl -n mc-demo get pods

     

    NAME                                                      READY   STATUS    RESTARTS   AGE

    jenkins-slave-1lxn1-bzd1w                                 5/5     Running   0          41s

    mclimate-ibm-microclimate-7bbd887b4c-z4lkq                1/1     Running   0          3m12s

    mclimate-ibm-microclimate-atrium-7d48b45b6c-nxrsr         1/1     Running   0          3m12s

    mclimate-ibm-microclimate-devops-7987cdffb6-c8gqm         1/1     Running   0          3m12s

    mclimate-jenkins-5bc78b8549-pp87p                         1/1     Running   0          3m12s

    [image: ]

    You now can access Microclimate https://microclimate.mc.{{ .yourProxyIp }}.xip.io and Jenkins https://jenkins.mc.{{ .yourProxyIp }}.xip.io.

    5.	Log in with your account in IBM Cloud Private and dismiss the introduction pages. You land on the page that is shown in Figure 3-2.

    [image: ]

    Figure 3-2   Microclimate welcome page

    You are now ready to start a project with Microclimate.

    3.4.2  Creating a hello world app by using Microclimate

    Complete the following steps to create a hello world app by using Microclimate:

    1.	On the welcome page, click New Project. On the next page, select your language as Go.

    2.	Name your project; for example, mcgosample. Click Create project in GitHub and enter your GitHub access token, as shown in Figure 3-3 on page 89. 

    You can define the access token on github.com by clicking GitHub Settings → Developer settings →Personal access tokens with the correct permissions.

    [image: ]

    Figure 3-3   Creating a project on github.com

    3.	Click Next to continue. Select the project type as Go sample template. Then, click Create. You see that the project is created, as shown in Figure 3-4 on page 90.

     

    [image: ]

    Figure 3-4   Summary page of the project

    4.	Go to GitHub to browse what was auto-generated for you, as shown in Figure 3-5.

    [image: ]

    Figure 3-5   Files created on GitHub

    You now have a Dockerfile, a Jenkinsfile, and a Helm chart that are created and ready to use.

    5.	To build the application, lick the Build button if the building process is not started automatically.

    6.	Click Build logs on the left vertical bar to check the build logs, as shown in Figure 3-6.

    [image: ]

    Figure 3-6   Build logs

    7.	Now, validate the pods under the mc-demo namespace. More Microclimate application pods are running and the build application is also running, as shown in Example 3-7.

    Example 3-7   Pods running under mc-demo namespace

    [image: ]

    kubectl -n mc-demo get pods

     

    NAME                                                          READY   STATUS    RESTARTS   AGE

    mc-mcgosample-70a53a70-42f8-11e9-b9cf-85f9bbcb96-2m5g9        1/1     Running   0          7m11s

    mclimate-ibm-microclimate-7bbd887b4c-txlj2                    1/1     Running   0          13m

    mclimate-ibm-microclimate-admin-editor-66bfc5674-szqmk        2/2     Running   0          11m

    mclimate-ibm-microclimate-admin-filewatcher-bbdf7ddd7-87txh   1/1     Running   0          11m

    mclimate-ibm-microclimate-admin-loadrunner-5c866c6757-8vmxm   1/1     Running   0          11m

    mclimate-ibm-microclimate-atrium-7d48b45b6c-9fdcj             1/1     Running   0          13m

    mclimate-ibm-microclimate-devops-7987cdffb6-9dxdm             1/1     Running   0          13m

    mclimate-jenkins-5bc78b8549-pn2bf                             1/1     Running   0          13m

    [image: ]

    The build is successful, as shown in Figure 3-7.

    [image: ]

    Figure 3-7   Build success

    8.	Click the application URL. You should see the greeting from the application as shown in the following example: 

    Hello from your Go sample application running in Microclimate!

    3.4.3  Creating build and deployment pipelines

    Now, we create build and deployment pipelines so that when a source code update is pushed, the changes are automatically deployed.

    Complete the following steps:

    1.	Click the Pipeline icon on the bottom of the left vertical bar. Then, click Create pipeline. 

    2.	Name the pipeline as build.

    3.	Click the Credentials drop-down list. 

    4.	Click Add new.

    5.	Add your GitHub personal token, as shown in Figure 3-8 on page 93.

     

    [image: ]

    Figure 3-8   Creating GitHub credentials

    6.	Select the credential that was just created. Click Create pipeline at the bottom of the page. The result is shown in Figure 3-9.

    [image: ]

    Figure 3-9   Creation of Build pipeline

    7.	Browse to github.com. Select <your repository> → Settings → Webhooks. You see a display that is similar to the example that is shown in Figure 3-10.

    [image: ]

    Figure 3-10   Webhook on github.com

    8.	After the Webhook is set, any push of the new code begins the build pipeline automatically.

    9.	Create a deploy pipeline so that the application can be deployed after the build. On the same page, click Add deployment.

    As shown in Figure 3-11, the Deploy to cluster is set as default, and the namespace is set as mc-deploy because this setting was specified during the Helm chart installation process.
[image: ]

    Figure 3-11   Deploy pipeline

    10.	Click Save to complete the pipeline.

    3.4.4  Continuous integration and deployment in action

    Now, you are ready to test the pipeline to observe the automatic build and deployment whenever a new code checks in.

     

    
      
        	
          Tip: IBM Cloud Private tightens the security control of the namespace. By default, the most restricted pod security policy (PSP) is used. Therefore, any container that uses the root account cannot run. For this reason, a non-root account is used in our example.

        
      

    

    Complete the following steps:

    1.	Update the Dockerfile in the repository, as shown in Example 3-8. As you can see, we are use a non-root account.

    Example 3-8   Dockerfile with non-root

    [image: ]

    FROM golang:latest 

    RUN mkdir /app && useradd -m -u 1000 app && chown app:app /app

    USER 1000

    ADD . /app/ 

    WORKDIR /app 

    RUN go build -o main . 

    CMD ["/app/main"]

    EXPOSE 8000

    [image: ]

    2.	Commit the changes and push to the GitHub repository. Start the Jenkins console with the URL https://jenkins.mc.{{ .yourProxyIp }}.xip.io.

    You should see that the pipeline is started automatically, as shown in Figure 3-12.

    [image: ]

    Figure 3-12   Jenkins pipeline trigger

    After the Jenkins build success, you should see that the Microclimate deployment is successful, as shown in Figure 3-13 on page 96.

     

    [image: ]

    Figure 3-13   Microclimate deployment 

    3.	Check the target namespace (mc-deploy) to see that the app is deployed and running, as shown in Example 3-9.

    Example 3-9   Pods running in the target namespace

    [image: ]

    kubectl get pods -n mc-deploy

    NAME                                     READY   STATUS    RESTARTS   AGE

    mcgosample-deployment-59d8564d6d-nhnjr   1/1     Running   0          7m

    [image: ]

    4.	List the service, as shown in Example 3-10.

    Example 3-10   Service of the application deployed

    [image: ]

    kubectl get svc -n mc-deploy

    NAME                 TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE

    mcgosample-service   NodePort   172.21.200.113   <none>        8000:31325/TCP   24m

    [image: ]

    You can then browse the port 31325 by using the proxy node IP. You should see the greeting message that is shown in Figure 3-14.

    [image: ]

    Figure 3-14   Application deployment

  
[image: ]
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Managing your service mesh by using Istio

    This chapter describes some practical use cases for how to use Istio to manage your service mesh.

    This chapter includes the following topics:

    •4.1, “Introduction” on page 98

    •4.2, “Traffic management and application deployment” on page 98

    •4.3, “Application testing” on page 109

    •4.4, “Enforcing policy controls” on page 131

    4.1  Introduction

    Istio is an open platform that is used to connect, secure, control, and observe microservices:

    •Connect

    It allows you to connect different microservices through decoupling the traffic management by way of Istio, as described in 4.2, “Traffic management and application deployment”. It also allows you to test applications by injecting delays and faults without changing the application code, as described in 4.3, “Application testing”.

    •Secure

    It allows you to secure your microservices through managed authentication, authorization, and encryption of communication between services, as described in “Chapter 8- Security” in IBM Private Cloud Systems Administrator's Guide, SG24-8440. For more information about how to securely configure the ingress rules for your microservices and egress rules to communicate to an external HTTPS service, see 4.3, “Application testing” on page 109.

    •Control

    It allows enforcing policies to eliminate and decouple policy logic from the code, as described in 4.4, “Enforcing policy controls”.

    •Observe

    It allows observing your microservices through integrated telemetry, monitoring, tracing, and logging.

    For more introduction about Istio and service mesh, see Chapter 8 of IBM Cloud Private: System Administrator’s Guide, SG24-8441.

    4.2  Traffic management and application deployment

    In this section, we describe how to use the Istio techniques to achieve the same kinds of deployments, which are done with the native Kubernetes, as described in Chapter 1, “Highly available workloads and deployment on IBM Cloud Private” on page 1. We also describe the extra features that Istio brings for your application rollout.

    You still use the same sample Golang application v1.0 and v1.1 as was used in Chapter 1, “Highly available workloads and deployment on IBM Cloud Private” on page 1.

    4.2.1  Setup prerequisites

    Complete the following steps for setting up the prerequisites:

    1.	Clean up the existing namespace deploy-demo by removing the deployment and services, as shown in Example 4-1.

    Example 4-1   Removing the existing deployment and service

    [image: ]

    kubectl -n deploy-demo delete deployment <deployment names>

    kubectl -n deploy-demo delete service < service names>

    [image: ]

    2.	Assuming Istio is up and running, you must label the target namespace deploy-demo with istio-injection for Istio to manage the traffic. This process enables the automatic sidecar container injection, as shown in Example 4-2.

    Example 4-2   Allowing sidecar auto injection

    [image: ]

    kubectl label namespace deploy-demo istio-injection=enabled

    [image: ]

    3.	As discussed in Chapter 8 of IBM Private Cloud Systems Administrator's Guide, SG24-8440, we need to create an image policy to allow the envoy container to run. Apply the yaml content (see Example 4-3), which is saved as image.policy.yaml, by using the kubectl apply -f image.policy.yaml command.

    Example 4-3   Image policy

    [image: ]

    apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1

    kind: ImagePolicy

    metadata:

      name: my-images-whitelist

      namespace: deploy-demo

    spec:

      repositories:

        - name: docker.io/*

    [image: ]

    4.2.2  Deploying the application versions 1.0 and 1.1

    Complete the following steps to deploy the application versions 1.0 and 1.1:

    1.	Deploy the application version 1.0 with the yaml files, as shown in Example 4-4.

    Example 4-4   Version 1.0 deployment

    [image: ]

    apiVersion: apps/v1

    kind: Deployment

    metadata:

      name: demo-v1

      labels:

        app: demo

        version: v1.0

    spec:

      replicas: 5

      selector:

        matchLabels:

          app: demo

      template:

        metadata:

          labels:

            app: demo

            version: v1.0

        spec:

          containers:

          - name: demo

            image: zhiminwen/update-demo:v1.0

            env:

              - name: LISTEN_PORT

                value: "8080"

            livenessProbe:

              httpGet:

                path: /healthz

                port: 8080

            readinessProbe:

              httpGet:

                path: /readyz

                port: 8080

    [image: ]

    2.	Deploy the application version 1.1 with yaml files, as shown in Example 4-5.

    Example 4-5   Version 1.1 deployments

    [image: ]

    apiVersion: apps/v1

    kind: Deployment

    metadata:

      name: demo-v2

      labels:

        app: demo

        version: v1.1

    spec:

      replicas: 5

      selector:

        matchLabels:

          app: demo

      template:

        metadata:

          labels:

            app: demo

            version: v1.1

        spec:

          containers:

          - name: demo

            image: zhiminwen/update-demo:v1.1

            env:

              - name: LISTEN_PORT

                value: "8080"

            livenessProbe:

              httpGet:

                path: /healthz

                port: 8080

            readinessProbe:

              httpGet:

                path: /readyz

                port: 8080

    [image: ]

    Notice that we set the two deployments independently. They share the “app” label, but have a different “version” label.

    3.	Create a service, as shown in Example 4-6.

    Example 4-6   Service for application

    [image: ]

    apiVersion: v1

    kind: Service

    metadata:

      name: demo-svc

      labels:

        app: demo

    spec:

      type: NodePort

      ports:

      - port: 80

        targetPort: 8080

        protocol: TCP

        name: http

      selector:

        app: demo

    [image: ]

    4.	Run a curl test command to ensure that the app is deployed successfully, as shown in Example 4-7.

    Example 4-7   Validating the application 

    [image: ]

    while true; do curl 52.116.21.122:31942;echo; sleep 1; done

     

    Hello World! from host:demo-v1-764c49c785-xp5jd ver:1.0

    Hello World! from host:demo-v2-78bd765b9f-fs6lx ver:1.1

    Hello World! from host:demo-v2-78bd765b9f-fs6lx ver:1.1

    [image: ]

    4.2.3  Creating an Istio gateway and destination rule

    Complete the following steps to create an Istio gateway and destination rule:

    1.	Create a file that is named gw.yaml with the content that is shown in Example 4-8. Deploy it by using the kubectl apply -f gw.yaml command.

    Example 4-8   Istio gateway

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: Gateway

    metadata:

      name: hello-istio-gw

      namespace: deploy-demo

    spec:

      selector:

        istio: ingressgateway

      servers:

      - port:

          number: 80

          name: http

          protocol: HTTP

        hosts:

        - demo.52.116.21.122.nip.io

    [image: ]

    In this example, you created a gateway service on the Istio pods that were selected by the label istio=ingressgateway. You applied the gateway settings on the Istio ingress pods. When the HTTP traffic with the Host field in the HTTP header is set as demo.52.116.21.122.nip.io, the traffic is served through this gateway.

    2.	Create a file and name it destination.rule.yaml. Deploy this file by using the kubectl apply -f destination.rule.yaml command (see Example 4-9).

    Example 4-9   Istio destination rule

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: DestinationRule

    metadata:

      name: hello-app-destination

      namespace: deploy-demo

    spec:

      host: demo-svc.deploy-demo.svc.cluster.local

      subsets:

      - name: hello-v10

        labels:

          version: v1.0

      - name: hello-v11

        labels:

          version: v1.1

    [image: ]

    The destination service is set as the service name of the application in Kubernetes. Use the fully qualified name demo-svc.deploy-demo.svc.cluster.local to avoid any cross namespace resolving issues. Define two subsets with the labels of versions that are used to select the correct pods for the request to be served.

    With these settings, you are now ready to explore the different deployment options with Istio.

    4.2.4  Canary testing with Istio

    Complete the following steps:

    1.	Create an Istio virtual service object, as shown in Example 4-10.

    Example 4-10   Canary virtual service

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: hello-app-vs

      namespace: deploy-demo

    spec:

      hosts:

      - demo.52.116.21.122.nip.io

      gateways:

      - hello-istio-gw

      http:

        - route:

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v10

            weight: 90

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v11

            weight: 10 

    [image: ]

    2.	Set the host list as demo.52.116.21.122.nip.io, which matches what was defined in the Istio gateway. This way, for any HTTP request that includes the Host field in the request header matching this value, the traffic is served by this virtual service. 

    3.	Set the destination host by using the Kubernetes service name and the subset, which are defined in the destination rule. Two destinations are available in this example: one for version 1.0 and the other for version 1.1. We assign the weight of the new service v1.0 as 10%, and the v1.0 as 90%. This assignment implements the canary deployment.

     

    
      
        	
          Tip: Compare this method with the native Kubernetes way of implementation. Kubernetes achieves the canary deployment by using different number of replicas, while Istio manages the traffic directly by assigning different weights to services. By using Istio, we can control the canary percentages more easily.

        
      

    

    4.	You can test the result by running the command that is shown in Example 4-11.

    Example 4-11   Canary validation

    [image: ]

    while true; do curl 52.116.21.122:31380 -H "Host: demo.52.116.21.122.nip.io"; echo; sleep 1;  done

     

    Hello World! from host:demo-v2-78bd765b9f-jc4kl ver:1.1

    Hello World! from host:demo-v1-764c49c785-gjxnb ver:1.0

    Hello World! from host:demo-v1-764c49c785-m7rqq ver:1.0

    Hello World! from host:demo-v1-764c49c785-8xrnw ver:1.0

    Hello World! from host:demo-v1-764c49c785-m7rqq ver:1.0

    Hello World! from host:demo-v1-764c49c785-8xrnw ver:1.0

    Hello World! from host:demo-v1-764c49c785-8xrnw ver:1.0

    Hello World! from host:demo-v1-764c49c785-xp5jd ver:1.0

    Hello World! from host:demo-v1-764c49c785-gjxnb ver:1.0

    Hello World! from host:demo-v2-78bd765b9f-65k6l ver:1.1

    Hello World! from host:demo-v1-764c49c785-xp5jd ver:1.0

    Hello World! from host:demo-v1-764c49c785-8xrnw ver:1.0

    Hello World! from host:demo-v1-764c49c785-hg8k6 ver:1.0

    Hello World! from host:demo-v1-764c49c785-8xrnw ver:1.0

    Hello World! from host:demo-v1-764c49c785-xp5jd ver:1.0

    Hello World! from host:demo-v1-764c49c785-gjxnb ver:1.0

    Hello World! from host:demo-v1-764c49c785-hg8k6 ver:1.0

    Hello World! from host:demo-v1-764c49c785-xp5jd ver:1.0

    [image: ]

    4.2.5  Blue-green testing with Istio

    Create an Istio virtual service object as defined in Example 4-12.

    Example 4-12   Blue-green virtual service

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: hello-app-vs

      namespace: deploy-demo

    spec:

      hosts:

      - demo.52.116.21.122.nip.io

      gateways:

      - hello-istio-gw

      http:

        - route:

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v10

            weight: 0

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v11

            weight: 100 

    [image: ]

    To have the blue-green testing, you can adjust the weights of the two services. Assuming that the green application is fully tested, you can set the weight as 100. With this configuration, the service is 100% routed to the new version.

    4.2.6  A/B testing with Istio

    By using the dynamic routing feature of Istio, you can implement A/B testing to allow the traffic to flow to the new version of the application. Complete the following steps:

    1.	As shown in Example 4-13, we route the request to the new version of the application when the users are using the Chrome browser.

    Example 4-13   A/B testing virtual service

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: hello-app-vs

      namespace: deploy-demo

    spec:

      hosts:

      - demo.52.116.21.122.nip.io

      gateways:

      - hello-istio-gw

      http:

        - match: 

          - headers:

              user-agent: 

                regex: "^.*Chrome.*$"

          route:

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v11

        - route:

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v10

    [image: ]

    In the HTTP ordered list, if the HTTP header that includes the field user-agent regex matches the Chrome, Istio routes the traffic to the hello-v11 subset, hence the new version of the application.

    2.	Test this configuration by using the curl command, as shown in Example 4-14.

    Example 4-14   Test A/B testing

    [image: ]

    curl 52.116.21.122:31380  -H "Host: demo.52.116.21.122.nip.io" -H "User-Agent: Chrome"; echo

     

    Hello World! from host:demo-v2-78bd765b9f-lrwnt ver:1.1

    [image: ]

    As expected, you see the response from version 1.1.

    3.	Start your Chrome browser and modify the Header with the ModHeader extension, as shown in Figure 4-1.

    [image: ]

    Figure 4-1   Modify the header field of Host

    4.	Browse to the URL, as shown in Figure 4-2.

    [image: ]

    Figure 4-2   Chrome browser result

    You see that the user who uses the Chrome browser is served by the new version of the application.

    If you want a new API service to follow the A/B testing approach, you can specify a header value; for example, api-version/. Then, create the virtual service rules to match this value and direct the traffic to the new version.

    4.2.7  Mirroring the traffic by using Istio

    At times, you might want to test your application with a real production workload traffic before it goes on live. You can achieve this by using Istio’s traffic mirroring feature. 

    Complete the following steps:

    1.	Update the application to log the request and response, as shown in Example 4-15. Set the version to 1.2.

    Example 4-15   Updated application

    [image: ]

    // skipped

    func init() {

    	version = "1.2"

    }

    func greet(w http.ResponseWriter, r *http.Request) {

    	requestDump, err := httputil.DumpRequest(r, true)

    	if err != nil {

    		log.Printf("failed to dump the request:%v", err)

    	}

    	log.Print(string(requestDump))

    	resp := fmt.Sprintf("Hello World! from host:%s ver:%s", os.Getenv("HOSTNAME"), version)

    	log.Printf("response:%s", resp)

    	fmt.Fprint(w, resp)

    }

    //skipped

    [image: ]

    2.	Compile the application. 

    3.	Build the docker image and tag it with v1.2. 

    4.	Push the image to the Docker Hub.

    5.	Deploy the application that is named demo-v3 by using the yaml file, as shown in Example 4-16.

    Example 4-16   Deploying yaml file of the new application

    [image: ]

    apiVersion: apps/v1

    kind: Deployment

    metadata:

      name: demo-v3

      labels:

        app: demo

        version: v1.2

    spec:

      replicas: 1

      selector:

        matchLabels:

          app: demo

      template:

        metadata:

          labels:

            app: demo

            version: v1.2

        spec:

          containers:

          - name: demo

            image: zhiminwen/update-demo:v1.2

            env:

              - name: LISTEN_PORT

                value: "8080"

            livenessProbe:

              httpGet:

                path: /healthz

                port: 8080

            readinessProbe:

              httpGet:

                path: /readyz

                port: 8080

    [image: ]

    6.	Deploy only one replica so that you can track the logs more easily.

    7.	Update the Istio destination rule, as shown in Example 4-17. Name the new subset hello-v12 and define the label of version to v1.2.

    Example 4-17   Updated Istio destination rule

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: DestinationRule

    metadata:

      name: hello-app-destination

      namespace: deploy-demo

    spec:

      host: demo-svc.deploy-demo.svc.cluster.local

      subsets:

      - name: hello-v10

        labels:

          version: v1.0

      - name: hello-v11

        labels:

          version: v1.1

      - name: hello-v12

        labels:

          version: v1.2

    [image: ]

    8.	Update the virtual service definition, as shown in Example 4-18.

    Example 4-18   Updated Istio virtual service

    [image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: hello-app-vs

      namespace: deploy-demo

    spec:

      hosts:

      - demo.52.116.21.122.nip.io

      gateways:

      - hello-istio-gw

      http:

        - route:

          - destination:

              host: demo-svc.deploy-demo.svc.cluster.local

              subset: hello-v10

          mirror:

            host: demo-svc.deploy-demo.svc.cluster.local

            subset: hello-v12

    [image: ]

    9.	Set the first route rule (default rule) to v1.0 application by using the subset hello-v10. Add the mirror to the hello-v12 subset so that the same traffic is routed to the v1.2 pod. The new version of the application can now be tested with the production request.

    10.	Validate the setup. Determine the v1.2 pod by using the command that is shown in Example 4-19.

    Example 4-19   Find out the new version application pod

    [image: ]

    kubectl -n deploy-demo get pods

    NAME                       READY   STATUS    RESTARTS   AGE

    demo-v1-64465b486c-c4j58   2/2     Running   0          28m

    demo-v1-64465b486c-j57jw   2/2     Running   0          28m

    demo-v1-64465b486c-nwb9h   2/2     Running   0          28m

    demo-v1-64465b486c-tgpb7   2/2     Running   0          28m

    demo-v1-64465b486c-w7fjp   2/2     Running   0          28m

    demo-v2-5bb7c4f45c-c55q5   2/2     Running   0          28m

    demo-v2-5bb7c4f45c-v9h7r   2/2     Running   0          28m

    demo-v2-5bb7c4f45c-wwmc4   2/2     Running   0          28m

    demo-v2-5bb7c4f45c-xqghm   2/2     Running   0          28m

    demo-v2-5bb7c4f45c-z4nq6   2/2     Running   0          28m

    demo-v3-7c8d5d7ff9-stvls   2/2     Running   0          28m

    [image: ]

    11.	Copy the name of the only pod whose name starts with demo-v3 and monitor its log by running the kubectl -n deploy-demo logs demo-v3-7c8d5d7ff9-stvls -c demo -f command.

    12.	Open another shell and trigger a request to the v1.0 application, as shown in Example 4-20.

    Example 4-20   Request to application

    [image: ]

    curl 52.116.21.122:31380  -H "Host: demo.52.116.21.122.nip.io";echo

    Hello World! from host:demo-v1-64465b486c-w7fjp ver:1.0

    [image: ]

    You should see the log output of the v1.2 pods that were started to receive the real traffic, as shown in Example 4-21.

    Example 4-21   Mirrored request to the application of v1.2

    [image: ]

    kubectl -n deploy-demo logs demo-v3-7c8d5d7ff9-stvls -c demo -f

    2019/02/27 20:19:09 starting server on port:8080

     

    2019/02/27 20:21:09 GET / HTTP/1.1

    Host: demo.52.116.21.122.nip.io-shadow

    Accept: */*

    Content-Length: 0

    User-Agent: curl/7.54.0

    X-B3-Sampled: 1

    X-B3-Spanid: fb35f52aeace793f

    X-B3-Traceid: fb35f52aeace793f

    X-Envoy-Decorator-Operation: demo-svc.deploy-demo.svc.cluster.local:80/*

    X-Envoy-Internal: true

    X-Forwarded-For: 10.73.147.239, 172.20.74.12

    X-Forwarded-Proto: http

    X-Istio-Attributes: Ck8KCnNvdXJjZS51aWQSQRI/a3ViZXJuZXRlczovL2lzdGlvLWluZ3Jlc3NnYXRld2F5LTU2NzU4YmY5NjgtNGI2cXouaXN0aW8tc3lzdGVtCj8KE2Rlc3RpbmF0aW9uLnNlcnZpY2USKBImZGVtby1zdmMuZGVwbG95LWRlbW8uc3ZjLmNsdXN0ZXIubG9jYWwKQgoXZGVzdGluYXRpb24uc2VydmljZS51aWQSJxIlaXN0aW86Ly9kZXBsb3ktZGVtby9zZXJ2aWNlcy9kZW1vLXN2YwpEChhkZXN0aW5hdGlvbi5zZXJ2aWNlLmhvc3QSKBImZGVtby1zdmMuZGVwbG95LWRlbW8uc3ZjLmNsdXN0ZXIubG9jYWwKLgodZGVzdGluYXRpb24uc2VydmljZS5uYW1lc3BhY2USDRILZGVwbG95LWRlbW8KJgoYZGVzdGluYXRpb24uc2VydmljZS5uYW1lEgoSCGRlbW8tc3Zj

    X-Request-Id: a1beac06-7a23-9285-85ec-ba5fc5e1db0e

     

    2019/02/27 20:21:09 response:Hello World! from host:demo-v3-7c8d5d7ff9-stvls ver:1.2

    [image: ]

    4.3  Application testing

    In this section, we describe how to perform the following tasks within the context of a scenario in which your microservice is integrated with an external public service over the internet:

    1.	Create an instance of the Watson Language Translator service.

    2.	Clone the GitHub repository that includes the sample code for the microservice.

    3.	Deploy and test the microservice on IBM Cloud Private.

    4.	Define an Istio egress rule to integrate with the external service.

    5.	Expose services to be used externally by defining ingress rules.

    6.	Handle the unreliable external service by simulating different failures through Istio Abort Injection and Delay Injection.

    7.	Enhance the application resiliency by adding automatic retry attempts and setting request timeouts.

     

    
      
        	
          No change to your code: You can perform all of these steps without changing your application code.

        
      

    

    4.3.1  Creating an instance of the Watson Language Translator service

    In this section, an instance of the Watson Language Translator service is created on IBM Cloud. It is used to integrate with your sample microservice. Later on, you configure Istio egress rules to connect to it. 

     

    
      
        	
          Note: This exercise shows a sample integration scenario. The same logic applies to any other integrations and are not tied to the services on IBM Cloud.

        
      

    

    Complete the following steps to create an instance of the Watson Language Translator service:

    1.	Log in to IBM Cloud console by using https://cloud.ibm.com, as shown in Figure 4-3 on page 110.

    [image: ]

    Figure 4-3   IBM Cloud login page

    2.	Click Catalog in the top toolbar.

    3.	Locate and select the Language Translator service, as shown in Figure 4-4.

    [image: ]

    Figure 4-4   IBM Cloud catalog

    4.	Select the region where you want to deploy the service; then, click Create.

    5.	Complete the following steps to copy the credentials to authenticate to your service instance:

    a.	Click the Manage tab in the left bar.

    b.	Copy the API Key and the URL, as shown in Figure 4-5 on page 111.

    [image: ]

    Figure 4-5   Language Translator credentials

    6.	Language Translator provides an REST API that translates a text. Download and use curl (https://curl.haxx.se/download.html) to test it. You can also use Postman (https://www.getpostman.com/downloads/) or any other REST API testing tool for testing purposes.

    7.	If you are using curl, write the following command in your terminal. This command calls the Language Translator API to translate How are you? from English to French. Replace {apikey} and {url} with the values that were retrieved in step 5.

    curl -X POST -u "apikey:{apikey}" --header "Content-Type: application/json" --data "{\"text\": \"How are you?\", \"model_id\":\"en-fr\"}" "{url}/v3/translate?version=2018-05-01"

    Your output should look like the output that is shown in Example 4-22.

    Example 4-22   Language Translator sample output

    [image: ]

    {

      "translations" : [ {

        "translation" : "Comment es-tu?"

      } ],

      "word_count" : 3,

      "character_count" : 12

    }

    [image: ]

    4.3.2  Cloning GitHub repository including microservice sample code

    In this section, you clone the sample code of the microservices that integrates with the Language Translator API. This simple Node.js code passes a text to the Language Translator API in English, then the service translates it into French. That is, the same scenario that you tried by using curl in 4.3.1, “Creating an instance of the Watson Language Translator service” on page 109.

    Review the code that is found at this GitHub web page.

    Open /services/watsonService.js to view the procedure for calling the external service. As an environment variable, you provide the API_KEY and WATSON_TRANSLATOR_API that was retrieved in step 5 in 4.3.1, “Creating an instance of the Watson Language Translator service” on page 109. Later, you pass the text to the service to be translated.

    Complete the following steps to clone the code:

    1.	Download and Install Git client (if not already installed) from this web page.

    2.	Run the following command to clone the GitHub repository:

    git clone https://github.com/IBMRedbooks/SG248441-IBM-Cloud-Private-Application-Developer-s-Guide.git

    4.3.3  Deploying and testing the microservice on IBM Cloud Private

    In this section, you deploy and test the microservice on IBM Cloud Private without the use of Istio. 

    Building the container image

    Complete the following steps to build the container image:

    1.	Browse to the following translator-microservice directory:

    cd SG248441-IBM-Cloud-Private-Application-Developer-s-Guide\Ch4-Manage-your-Service-Mesh-with-Istio\application-testing\translator-microservice

    2.	View the DockerFile that includes instructions to build the container image, as shown in Example 4-23. The instructions retrieve the base image (a Node.js image) that is based on the Linux Alpine project. The instructions later copy the files to the container image, install the app dependencies, and expose the app on a specific port.

    Example 4-23   Dockerfile content

    [image: ]

    FROM node:6.12.0-alpine

     

    # Install the application

    ADD package.json /app/package.json

    RUN cd /app && npm install  

    COPY /routes/* /app/routes/

    COPY /services/* /app/services/

    COPY /views/* /app/views/

    ADD app.js /app/app.js

    ENV WEB_PORT 80

    EXPOSE  80

     

     

    # Define command to run the application when the container starts

    CMD ["node", "/app/app.js"] 

    [image: ]

     

    
      
        	
          Tip: The use of the npm install command installs the dependencies for the application that is defined in package.json. Notice that npm install is run  early in the Dockerfile. 

          Docker works in a layer concept, which means that when you change an upper layer, Docker does not rebuild the lower layer. In this example, when you change app.js, Docker does not reinstall the dependencies, which results in a more efficient build. 

          As a recommended practice, order your instructions so that the less frequently changed instructions are placed first (to ensure that the build cache is reusable) and the more frequently changed instructions are placed last.

        
      

    

    3.	Build the image as shown in Example 4-24.

    Example 4-24   Build the image

    [image: ]

    docker image build -t <Registry Repository>/translator-microservice:2.0 .

     

    Sending build context to Docker daemon  73.73kB

    Step 1/10 : FROM node:6.12.0-alpine

     ---> fa74995b3b27

    Step 2/10 : ADD package.json /app/package.json

     ---> 1f825a242533

    Step 3/10 : RUN cd /app && npm install

     ---> Running in 37bbcd81496c

    translator-microservice@1.0.0 /app

    +-- body-parser@1.18.3 

    | +-- bytes@3.0.0 

    …

    OUTPUT OMITTED FOR CLARITY

    …

     ---> fc16e71128c8

    Step 4/10 : COPY /routes/* /app/routes/

     ---> 42d1e3715243

    Step 5/10 : COPY /services/* /app/services/

     ---> 0dd2433461ff

    Step 6/10 : COPY /views/* /app/views/

     ---> b07f2852b78c

    Step 7/10 : ADD app.js /app/app.js

     ---> 8ab805d703dd

    Step 8/10 : ENV WEB_PORT 80

     ---> Running in 22a0cde8772e

    Removing intermediate container 22a0cde8772e

     ---> 71378f99b5fd

    Step 9/10 : EXPOSE  80

     ---> Running in 784b2baca744

    Removing intermediate container 784b2baca744

     ---> e85c47a9b975

    Step 10/10 : CMD ["node", "/app/app.js"]

     ---> Running in 392069a8903e

    Removing intermediate container 392069a8903e

     ---> 7e71bd05d560

    Successfully built 7e71bd05d560

    Successfully tagged aazraq/translator-microservice:2.0

    [image: ]

    4.	Log in to your Docker Registry:

     –	docker login in case you are using the DockerHub.

     –	docker login <IBM Cloud Private Domain>:8500 in case you are using the IBM Cloud Private Docker Registry.

    5.	Push your image to the Docker Registry by running the command that is shown in Example 4-25.

    Example 4-25   Pushing the image 
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    docker push <Registry Repository>/translator-microservice:2.0

     

    docker push aazraq/translator-microservice:2.0

    The push refers to repository [docker.io/aazraq/translator-microservice]

    d35a671ac3a1: Pushed 

    65f4377b6e65: Pushed 

    79aef7c2c8a2: Pushed 

    0af0c62a1337: Pushed 

    f36b26657f2e: Pushed 

    a36b93489ff7: Pushed 

    31c270e8fe7e: Layer already exists 

    86a4d08dfa94: Layer already exists 

    52a5560f4ca0: Layer already exists 

    2.0: digest: sha256:f54a05207e8a7486da1349c4d2fd8e696887ca6c64b801452fb80def27e3935b size: 2197
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    Deploying the microservice on IBM Cloud Private

    Complete the following steps to deploy the microservice on IBM Cloud Private:

    1.	Log in to your IBM Cloud Private cluster from your local workstation. This process makes your kubectl commands point to the master node of your cluster. You use the same namespace that is used in 4.2, “Traffic management and application deployment” on page 98, which is deploy-demo. Run the following command:

    cloudctl login -a CLUSTER_URL -n deploy-demo --skip-ssl-validation 

    2.	Disable the Istio Injection on the deploy-demo namespace by running the following command. In the first scenario, you test it without using istio:

    kubectl label namespace deploy-demo istio-injection=disabled --overwrite

    3.	Browse to the yaml directory. Then, edit the line that begins with “image:” in 01translator-ms-deployment.yaml (see Example 4-26) to point to the container image repository that you pushed in the previous step.

    Example 4-26   Edit the line starting with image: in 01translator-ms-deployment.yaml

    [image: ]

    apiVersion: apps/v1

    kind: Deployment

    metadata:

      name: translator-ms-deployment

    spec:

      replicas: 3

      selector:

        matchLabels:

          app: translator-ms

      template:

        metadata:

          labels:

            app: translator-ms

        spec:

          containers:

          - name: translator-ms

            image: <Registry Repository>/translator-microservice:2.0

            env:

            - name: WATSON_TRANSLATOR_API

              valueFrom:

                secretKeyRef:

                  name: watson-translator

                  key: url

            - name: API_KEY

              valueFrom:

                secretKeyRef:

                  name: watson-translator

                  key: api-key

            resources:

              limits:

                memory: "200Mi"

                cpu: "250m"

              requests:

                memory: "100Mi"

                cpu: "125m"

            ports:

            - containerPort: 80

    [image: ]

    4.	This deployment expects a Kubernetes secret object that is named watson-translator with two keys: url and api-key. 

    Complete the following steps to create the secret:

    a.	Browse to and log in to the IBM Cloud Private console by using a web browser.

    b.	Click the Menu icon in the toolbar. Then, click Configuration and Secrets, as shown in Figure 4-6 on page 116.
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    Figure 4-6   IBM Cloud Private menu

    c.	Click Create Secret, as shown in Figure 4-7.
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    Figure 4-7   Secrets

    d.	In the General tab, add the name of the Secret as watson-translator, and select deploy-demo for the namespace, as shown in Figure 4-8.
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    Figure 4-8   Create Secret - General tab

    e.	Click Data to add the keys and values properties of this secret.

    f.	Retrieve the value of url and api-key from step 5 in 4.3.1, “Creating an instance of the Watson Language Translator service” on page 109.

    g.	Run the following command to decode the values of url and api-key to Base64 by using the command line or any other tool:

    echo -n <api-key>|base64

    echo -n <url>|base64

    h.	Add the following key value pairs to store within the secret: url, api-key with their encoded Base64 as value (see Figure 4-9). 
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    Figure 4-9   Create Secret - Data tab

    i.	Click Create to create the secret.

    5.	Return to the terminal. Apply the deployment to deploy the application to IBM Cloud Private by running the following command:

    kubectl apply -f 01translator-ms-deployment.yaml

    deployment.apps/translator-ms-deployment created

    6.	To ensure that the pods are created successfully, run the command that is shown in Example 4-27.

    Example 4-27   get pods command
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    kubectl get pods --selector=app=translator-ms

     

    NAME                                        READY   STATUS                       RESTARTS   AGE

    translator-ms-deployment-854c849cbd-6ssdr   0/1     CreateContainerConfigError   0          49m

    translator-ms-deployment-854c849cbd-bsfzb   0/1     CreateContainerConfigError   0          49m

    translator-ms-deployment-854c849cbd-k4vtr   0/1     CreateContainerConfigError   0          49m
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    7.	The results show that pods failed with an error CreateContainerConfigError. To understand the reason for failure, run the kubectl describe pod {pod-name} command.

    Notice that the error is “Error: container has runAsNonRoot and image will run as root on machine”. The reason for this error is that the container you are creating runs as root, which is not a recommended practice. It is stopped by default by the IBM Cloud Private pod security policy, as described in Chapter 8 of IBM Private Cloud Systems Administrator's Guide, SG24-8440.

    8.	For illustration purposes, enable the privileged container to run inside the deploy-demo namespace by applying the RoleBinding, as shown in Example 4-28.

    Example 4-28   RoleBinding to allow privileged containers access
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    apiVersion: rbac.authorization.k8s.io/v1

    kind: RoleBinding

    metadata:

      name: ibm-privileged-clusterrole-rolebinding

      namespace: deploy-demo

    roleRef:

      apiGroup: rbac.authorization.k8s.io

      kind: ClusterRole

      name: ibm-privileged-clusterrole

    subjects:

    - apiGroup: rbac.authorization.k8s.io

      kind: Group

      name: system:serviceaccounts:deploy-demo
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    9.	Apply the RoleBinding by running the following command:

    kubectl apply -f role-binding.yaml

    rolebinding.rbac.authorization.k8s.io/ibm-privileged-clusterrole-rolebinding configured

    10.	Delete and apply the deployment again by running the following command:

    kubectl delete -f 01translator-ms-deployment.yaml

    deployment.apps "translator-ms-deployment" deleted

     

    kubectl apply -f 01translator-ms-deployment.yaml

    deployment.apps/translator-ms-deployment created

    11.	Run the get pods command again to ensure that the deployment is successful, as shown in Example 4-29.

    Example 4-29   Successful deployment
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    kubectl get pods --selector=app=translator-ms

    NAME                                        READY   STATUS    RESTARTS   AGE

    translator-ms-deployment-854c849cbd-6xswp   1/1     Running   0          5m55s

    translator-ms-deployment-854c849cbd-7rnb8   1/1     Running   0          5m55s

    translator-ms-deployment-854c849cbd-ht2fz   1/1     Running   0          5m55s
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    12.	Expose the service as NodePort, as shown in Example 4-30.

    Example 4-30   Expose the service as NodePort
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    apiVersion: v1

    kind: Service

    metadata:

      name: translator-ms-service

    spec:

      selector:

        app: translator-ms

      ports:

      - name: http

        protocol: TCP

        port: 80

      type: NodePort
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    13.	Apply the service by running the following command:

    kubectl apply -f 02translator-ms-service.yaml

    service/translator-ms-service created

    Testing the microservice

    In this section, you test the microservice to ensure that it works as-is without introducing Istio. 

    Complete the following steps to test the microservice:

    1.	Get the NodePort for the service, as shown in Example 4-31.

    Example 4-31   Get NodePort of the service
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    kubectl get services translator-ms-service

     

    NAME                    TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE

    translator-ms-service   NodePort   172.21.119.12   <none>        80:30321/TCP   7h37m
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    2.	As shown in Example 4-31, the NodePort is 30321. Open your browser and browse to <Proxy IP>:30321. You receive a similar window as shown in Figure 4-10.
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    Figure 4-10   Microservice UI

    3.	Enter any English-based text and then, click Submit. You should receive its French translation, as shown in Figure 4-11.
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    Figure 4-11   Result of translation of a sample text “Hello Egypt” to French through the microservice

    You now successfully deployed and tested your microservice on IBM Cloud Private.

    4.3.4  Defining an Istio egress rule to integrate with an external service

    This scenario features the following high-level steps:

    1.	Enable Istio for the namespace.

    2.	Redeploy the application to inject Istio sidecar and notice that Istio blocks all external traffic.

    3.	Allow external outbound traffic and retest.

    Enabling Istio for the namespace

    Assuming Istio is up and running, for Istio to manage the traffic, you must label the target namespace deploy-demo with istio-injection to allow the automatic sidecar container injection, as shown in Example 4-32.

    Example 4-32   Allowing sidecar auto injection
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    kubectl label namespace deploy-demo istio-injection=enabled --overwrite

    namespace/deploy-demo labeled
[image: ]

    Redeploying the application

    To configure the sidecar injection of Istio at creation time, you must redeploy the app. Complete the following steps to redeploy and test the application:

    1.	Delete all pods that are related to the deployment, as shown in Example 4-33.

    Example 4-33   Deleting all pods that are related to the deployment
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    kubectl delete pods --selector=app=translator-ms

     

    pod "translator-ms-deployment-6998df47b7-6z7sq" deleted

    pod "translator-ms-deployment-6998df47b7-jscn2" deleted

    pod "translator-ms-deployment-6998df47b7-vns2z" deleted
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    2.	Kubernetes self-healing capability ensures that the current state of replicaset matches the target state of replicaset that is defined in the deployment. It automatically self-heals the pods and creates pods. When it creates pods, Istio automatically injects its side car container into each pod. Notice that two containers are displayed for each pod, as shown in Example 4-34.

    Example 4-34   Each pod now has two containers 
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    kubectl get pods --selector=app=translator-ms

     

    NAME                                        READY   STATUS    RESTARTS   AGE

    translator-ms-deployment-649b855c6b-4n5t4   2/2     Running   0          2m38s

    translator-ms-deployment-649b855c6b-ht6x2   2/2     Running   0          2m27s

    translator-ms-deployment-649b855c6b-rjnq6   2/2     Running   0          2m32s
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    3.	Access the microservice again with your web-browser through its NodePort. Enter any text then, click Submit. Now, all of the external traffic is blocked by Istio. Complete the steps that are presented in “Allowing external outbound traffic” on page 122 to allow outbound (egress) traffic.

    Allowing external outbound traffic

    As described in “Redeploying the application” on page 121, the external traffic is blocked by default by Istio. This capability of Istio secures your service mesh. 

    Complete the following steps to allow outbound (egress) traffic to a specific endpoint, which is Language Translator API in this scenario:

    1.	In your terminal, go to the following istio directory:

    cd istio

    2.	When you define Istio Egress traffic, you communicate within your service mesh as HTTP even with external services and Istio handles the HTTPS external communication, as shown in Figure 4-12.
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    Figure 4-12   Communicating with external services in Istio

    3.	Figure 4-13 on page 123 shows how to define egress rules in Istio for enabling outbound traffic from the service mesh to a specific HTTPS host. Egress Rules are defined in Istio Pilot then Pilot converts high level routing rules that control traffic behavior into Envoy-specific configurations, and propagates them to the sidecars at runtime.

     –	ServiceEntry

    Enables services within the mesh to access a service that is not necessarily managed by Istio. The rule describes the endpoints, ports, and protocols of a white-listed set of mesh-external domains and IP blocks that services in the mesh can access. In this example, you add a ServiceEntry to define the Watson Language Translator APIs by specifying the port and stating that the port is external to the mesh.

     –	VirtualService

    Defines a set of traffic routing rules to apply when a host is addressed. Each routing rule defines a matching criteria for the traffic of a specific protocol. If the traffic is matched, it is sent to a named destination service (or a subset or a version of it) that is defined in the DestinationRule. In this example, notice that it matches with HTTP only and redirects the traffic to the 443 HTTPS port that was defined in the DestinationRule. Therefore, your applications used HTTP within your service mesh for communicating with external services and Istio handles the HTTPS external communication.

     –	DestinationRule

    Defines policies that apply to the traffic that is intended for a service after routing occurred. Any destination host and subset reference in a VirtualService rule must be defined in the corresponding DestinationRule. In this example, the DestinationRule starts HTTPS when accessinggateway-lon.watsonplatform.net.
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    Figure 4-13   Defining egress rules in Istio for enabling outbound traffic

    4.	Example 4-35 shows the istio configurations that are needed to define the egress rules in Istio for enabling outbound traffic from the service mesh to a specific HTTPS host. 

    Example 4-35   Istio configuration
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    apiVersion: networking.istio.io/v1alpha3

    kind: ServiceEntry

    metadata:

      name: watson

    spec:

      hosts:

      - gateway-lon.watsonplatform.net

      ports:

      - number: 443

        name: http-port-for-tls-origination

        protocol: HTTP

      resolution: DNS

      location: MESH_EXTERNAL

    ---

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: watson

    spec:

      hosts:

      - gateway-lon.watsonplatform.net

      http:

      - match:

        - port: 80

        route:

        - destination:

            host: gateway-lon.watsonplatform.net

            port:

              number: 443

          weight: 100

    ---

    apiVersion: networking.istio.io/v1alpha3

    kind: DestinationRule

    metadata:

      name: watson-tls-originate

    spec:

      host: gateway-lon.watsonplatform.net

      trafficPolicy:

        loadBalancer:

          simple: PASSTHROUGH

        portLevelSettings:

        - port:

            number: 443

          tls:

            mode: SIMPLE # initiates HTTPS when accessing gateway-lon.watsonplatform.net
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    5.	As explained in step 2, from the microservice perspective, the microservice should communicate with the external service as HTTP; then, Istio handles the HTTPS communication. Change the secret to change watson-translator.url from https://gateway-lon.watsonplatform.net/language-translator/api to http://gateway-lon.watsonplatform.net/language-translator/api. 

    6.	Run the following command to decode the values of the updated url to Base64 by using the command line or any other tool: 

    echo -n http://gateway-lon.watsonplatform.net/language-translator/api|base64

    7.	Update the secret watson-translator.url by completing the following steps:

    a.	Browse to and log in to IBM Cloud Private console by using your web browser.

    b.	Click Menu → Configuration → Secrets. 

    c.	Locate the watson-translator secret then, click ... . Then, click Edit, as shown in Figure 4-14 on page 125.
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    Figure 4-14   Secret options

    d.	Edit the url with the updated Base64 of URL and then, click Submit, as shown in Figure 4-15.
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    Figure 4-15   Edit Secret

    8.	Delete all the pods that are related to the deployment so that Node.js picks up the updated URL by running the following command:

    kubectl delete pods --selector=app=translator-ms

    9.	Access the microservice again by using your web-browser through its NodePort. Enter some text then, click Submit. You should now have a successful result that displays the translated text.

    4.3.5  Exposing services to be used externally through defining ingress rules

    In this section, you define ingress rules to expose your service to be used externally. 

    Complete the following steps to define ingress rules for your service:

    1.	Example 4-36 shows how to define ingress rules in Istio. The following components are available:

     –	Gateway

    Describes a load balancer that is operating at the edge of the mesh that is receiving incoming or outgoing HTTP/TCP connections. In this example, you use the default Istio gateway implementation.

     –	VirtualService	

    Defines a set of traffic routing rules to apply when a host is addressed. Each routing rule defines matching criteria for traffic of a specific protocol. If the user browses to the prefix /translator-ms, Istio redirects requests to the service translator-ms-service. The output page is run through a POST to /watson-translator. Another route is defined for it for Istio to redirect the output page to the translator-ms-service.

    Example 4-36   Defining ingress rules
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    apiVersion: networking.istio.io/v1alpha3

    kind: Gateway

    metadata:

      name: translator-ms-gateway

    spec:

      selector:

        istio: ingressgateway # use Istio default gateway implementation

      servers:

      - port:

          number: 80

          name: http

          protocol: HTTP

        hosts:

        - "*"

    ---

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: translator-ms

    spec:

      hosts:

      - "*"

      gateways:

      - translator-ms-gateway

      http:

      - match:

        - uri:

            prefix: "/translator-ms"

        rewrite:

          uri: "/"

        route:

        - destination:

            port:

              number: 80

            host: translator-ms-service

      - match:

        - uri:

            prefix: "/watson-translator"

        route:

        - destination:

            port:

              number: 80

            host: translator-ms-service
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    2.	Apply the Istio rule, as shown in Example 4-37.

    Example 4-37   Apply Istio ingress rule
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    istioctl create -f 02trans-ms-ingress.yaml

    Created config gateway/deploy-demo/translator-ms-gateway at revision 4233161

    Created config virtual-service/deploy-demo/translator-ms at revision 4233163
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    3.	You access the service through the Istio ingress gateway. For illustration purposes, you can access it through the Istio service NodePort. Get the NodePort of the istio-ingressgateway by running the following command:

    kubectl get svc istio-ingressgateway -n=istio-system

    4.	Browse to the service through your web-browser by using {Proxy Node IP}:{Istio Ingress Gateway NodePort}/translator-ms-service. The application should be up and running, as shown in Figure 4-16.
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    Figure 4-16   Accessing the application through ingress

    4.3.6  Handling an unreliable external service by simulating different failures through Istio abort and delay injection

    In this section, you explore how to simulate different failures for the external service through injecting Abort in the service mesh and delays.

    Istio fault injection

    Example 4-38 shows how to inject fault with Istio. In this example, it injects the status code “500”, which means “Internal Server Error” with a frequency of 50% of the time. This injection simulates that Language Translator API returns this error. You use this during the testing of your application to ensure that it can handle different failures.

    Example 4-38   Istio fault injection
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    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: watson

    spec:

      hosts:

      - gateway-lon.watsonplatform.net

      http:

      - match:

        - port: 80

        route:

        - destination:

            host: gateway-lon.watsonplatform.net

            port:

              number: 443

          weight: 100

        fault:

          abort:

            httpStatus: 500

            percent: 50 
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    Apply the rule to your Istio by running the istioctl command, as shown in the following example:

    istioctl replace -f 03watson-fault.yaml

    Updated config virtual-service/deploy-demo/watson to revision 4242847

    Notice that now 50% of the time, you receive “error: 500” when you try to translate a text. This result indicates that you need a better error handling in your application to display a more explanatory message in case the service responds with statusCode 500.

    Istio delay injection

    Example 4-39 shows how to delay fault. In this example, it injects a delay of 50 seconds 100% of the time. This result simulates that the Language Translator API response is received after this delay. You use this during testing your application to ensure that it can handle different delays.

    Example 4-39   Istio delay injection
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    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: watson

    spec:

      hosts:

      - gateway-lon.watsonplatform.net

      http:

      - match:

        - port: 80

        route:

        - destination:

            host: gateway-lon.watsonplatform.net

            port:

              number: 443

          weight: 100

        fault:

          delay:

            percent: 100

            fixedDelay: 50s

    [image: ]

    Apply the rule to your istio through istioctl as shown in the following example:

    istioctl replace -f 04watson-delay.yaml

    Updated config virtual-service/deploy-demo/watson to revision 4242847

    Notice that after you click Submit, it takes at least 50 seconds to see a response. 

    4.3.7  Enhancing the application resiliency by setting request timeouts and adding automatic retry attempts

    In this section, you explore how to set request timeout and how to handle automatic retry attempts without any modification to the code.

    Setting request timeouts

    Example 4-40 shows how to set a request timeout. You just added a timeout to the ingress rule (see the last line in bold in Example 4-40). In this example, /watson-translator ingress times out after 5 seconds. Because you injected delay of 50 seconds for watson egress in the previous section, this ingress should time out.

    Example 4-40   Istio: Define a timeout for ingress
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    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: translator-ms

    spec:

      hosts:

      - "*"

      gateways:

      - translator-ms-gateway

      http:

      - match:

        - uri:

            prefix: "/translator-ms"

        rewrite:

          uri: "/"

        route:

        - destination:

            port:

              number: 80

            host: translator-ms-service

      - match:

        - uri:

            prefix: "/watson-translator"

        route:

        - destination:

            port:

              number: 80

            host: translator-ms-service

        timeout: 5s
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    Apply the rule to your Istio through istioctl as shown in the following example:

    istioctl replace -f 05trans-ms-timeout.yaml

    Updated config virtual-service/deploy-demo/translator-ms to revision 4245924

    Notice that after you click Submit, the request times out after 5 seconds with the message “upstream request timeout”. During the development, you must enhance your application to handle the timeout in a more explanatory way. By using Istio, you can know your application’s behavior in these scenarios so that you can enhance it.

    Adding automatic retry attempts

    Example 4-41 shows how to set automatic retry attempts. You just added a retries to the egress rule (last three lines in bold in Example 4-41). In this example, Istio automatically retries the endpoint if it fails 10 times and times out in each retry after 2 seconds. 

    Example 4-41   Retries[image: ]

    apiVersion: networking.istio.io/v1alpha3

    kind: VirtualService

    metadata:

      name: translator-ms

    spec:

      hosts:

      - "*"

      gateways:

      - translator-ms-gateway

      http:

      - match:

        - uri:

            prefix: "/translator-ms"

        rewrite:

          uri: "/"

        route:

        - destination:

            port:

              number: 80

            host: translator-ms-service

      - match:

        - uri:

            prefix: "/watson-translator"

        route:

        - destination:

            port:

              number: 80

            host: translator-ms-service

        timeout: 5s

        retries:

          attempts: 10

          perTryTimeout: 2s 
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    Apply the rule to your Istio through istioctl, as shown in the following example:

    istioctl replace -f 06trans-ms-retries.yaml

    Updated config virtual-service/deploy-demo/translator-ms to revision 4250902

    Apply the 50% fault injection rule to be able to test the retries, as shown in the following example: 

    istioctl replace -f 03watson-fault.yaml

    Updated config virtual-service/deploy-demo/watson to revision 4251462

    Notice that after you click Submit, the request succeeds even if we have an abort failure injected 50% of the time. This result occurs because Istio keeps retrying the service 10 times. Because the fault is injected only 50% of the time, the service should pass in one of the 10 attempts.

    4.4  Enforcing policy controls

    Istio provides a flexible model to enforce authorization policies and collect telemetry for the services in a mesh.

    Infrastructure backends are designed to provide support functionality that is used to build services. They include such things as access control systems, telemetry capturing systems, quota enforcement systems, and billing systems. Services are traditionally directly integrated with these backend systems, which creates a hard coupling and bakes-in specific semantics and usage options.

    Istio provides a uniform abstraction that makes it possible for Istio to interface with an open-ended set of infrastructure backends. This process is done in such a way to provide rich and deep controls to the operator, while imposing no burden on service developers. 

    Istio also is designed to change the boundaries between layers to reduce systemic complexity, eliminate policy logic from service code, and give control to operators.

    Figure 4-17 on page 132 shows enforcing policy control using Mixer.
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    Figure 4-17   Enforcing policy control using Mixer1

    The Envoy sidecar logically calls Mixer before each request to perform precondition checks, and after each request to report telemetry. The sidecar has local caching such that most precondition checks can be performed from cache. Additionally, the sidecar buffers outgoing telemetry such that it calls Mixer only infrequently.

    At a high level, Mixer provides the following benefits:

    •Backend abstraction: Mixer insulates the rest of Istio from the implementation details of individual infrastructure backends.

    •Intermediation: Mixer allows operators to have fine-grained control over all interactions between the mesh and infrastructure backends.

    Policy enforcement and telemetry collection are entirely driven from configuration. These features can be disabled, which avoids the need to run the Mixer component in an Istio deployment.

    For more information, see this Istio web page.

     

    

    1 Image source: https://istio.io/docs/concepts/policies-and-telemetry/

  
[image: ]
[image: ]

Application development with Cloud Foundry

    This chapter discusses the application development aspect of using Cloud Foundry and includes the following topics:

    •5.1, “Introduction” on page 134

    •5.2, “What is Cloud Foundry?” on page 134

    •5.3, “Application high availability” on page 134

    •5.4, “Autoscale” on page 135

    •5.5, “Using external services ” on page 135

    •5.6, “Application packaging” on page 135

    •5.7, “IBM buildpacks versus community” on page 136

    •5.8, “Zero downtime deployment” on page 136

    •5.9, “Command lines” on page 137

    •5.10, “Sample application to use” on page 137

    5.1  Introduction

    Cloud Foundry is an application service that allows developers to focus on code and not application hosting, routing, or scale. Cloud Foundry makes it easy to add and remove routes for your applications. It manages load balancing inbound routes when multiple instances of an application occur.  

    When Twelve-Factor Application development is used, instances can be created or destroyed on-demand to meet the needs of the enterprise. All the routing that is required to divert and shape traffic to different instances is handled automatically by Cloud Foundry.

    Cloud Foundry with IBM Cloud Private Kubernetes also brings stateful services to your enterprise applications. These local services can be provisioned by the CLI or console and attached to your applications. Kubernetes offers accelerated deployment and tear down, which allows developers access data services on-demand at any time.

    5.2  What is Cloud Foundry?

    Cloud Foundry is a platform for delivering cloud applications. It builds on the Twelve-Factor Application concept, where the application is stateless and services are bound to the application to provide state, processing, and transformations.  

    It allows developers to focus on developing and lowers the bar of entry to anyone with a basic knowledge of a programming language. With that, developers can get up and running quickly, whether they are new or experienced. It also manages all the aspects of application hosting and routing, which means experienced developers can switch languages, and push applications even faster.

    5.3  Application high availability

    Cloud Foundry offers application high availability by way of stateless instances. With this tenant for cloud applications, Cloud Foundry can scale the number of instances by adding or removing instances of the application. This process occurs quickly because all of the artifacts that are needed to host the application are readily available and can be combined at a moments notice.

    IBM Cloud Private Cloud Foundry usually operates with more than one Diego cell host. With this fact in mind, Cloud Foundry instantiates new instances on different cells to improve the high availability of the application. Then, if an outage of the instance is detected, it is restarted in a working Diego cell, with an attempt that is made by the placement engine not to colocate instances of the same application when possible.

    5.4  Autoscale

    IBM Cloud Private Cloud Foundry offers an autoscale service for automatically managing the instance counts of your applications. It can be used to increase or decrease an application by using memory that is used, response time, and throughput. Several other factors can be used to better constrain the autoscaler so that the best application performance versus resource utilization can be maintained. 

    For more information about the autoscaler implementation that is available for use with IBM Cloud Private Cloud Foundry, see IBM Knowledge Center.

    5.5  Using external services 

    Consider the following points regarding the use of external services:

    •Cloud Application runtimes are inherently stateless. Therefore, multiple instances can be started or stopped, and the application continues to function. This ability often is achieved by using stateful services. 

    Cloud Foundry provides a catalog of services in the Cloud Foundry marketplace. The marketplace displays services that are available to the user that can be local, dedicated, or public in nature. In the default configuration, IBM public services and Kubernetes-based data services are available (Postgres, MongoDB, IBM Db2®, Rabbit MQ, and MariaDB).

    •With local services running on Kubernetes, the provisioning speed of the service is quick. No more waiting around for VMs to spin up and software to be deployed. The service containers are pre-built to run the application in a lean, expandable format. Creating and removing occurs in seconds. 

    The fact that containers also manage resources well (because of their streamlined nature), means more services fit on a host than when VMs are used. They also easily grow with the service (a VM requires much more intervention or to be reprovisioned).

    5.6  Application packaging

    IBM Cloud Private Cloud Foundry comes includes several community and IBM buildpacks:

    •IBM Buildpacks:

     –	SDK for NodeJS

     –	Liberty

     –	Swift

     –	Linux DotNet

    •Community Buildpacks:

     –	Golang

     –	PHP

     –	Java

     –	Ruby

     –	Python

     –	Binary buildpack

     –	Staticfile buildpack

     –	Hostable Web Core (HWC) Windows legacy DotNet

    This wide breath of languages means that new developers can start hosting their applications on immediately. It also provides experienced developers an easy way to move between languages without having to deal with the varying hosting and publishing requirements.

    5.7  IBM buildpacks versus community

    IBM-provided buildpacks are instrumented, reviewed, and cleared open source, and security scanned. IBM maintains and applies security patches and application environment-level maintenance and enhancement. IBM buildpacks are fully supported by our Cloud Application Support organization through IBM’s standard support processes.

    5.8  Zero downtime deployment

    Blue/Green deployments are the idea that you deploy an update to your application on a different host URL, validate that the application is working, then seamlessly transfer traffic from the old application instance to the new one. This process allows for zero downtime during a production upgrade. It also provides a window to test the application in production before transferring all traffic.

    Example 5-1 shows a basic Blue/Green deployment example.

    Example 5-1   Blue/Green deployment example

    [image: ]

    #Push the production application

    cf push prod1-green -n my-production-app

    #Now I make updates to the application and push a new version, but to a temporary URL.

    cf push prod1-blue -n my-production-app-blue

    #I now validate the new version of the application at the URL prefix my-production-app-blue...

    #When I am satisfied that the blue version of the application is working, I map the existing route used by the green app, to the blue app

    cf map-route prod1-blue APP_DOMAIN --hostname my-production-app

    #now all traffic to my-production-app.APP_DOMAIN will be sent to either prod1-green or prod1-blue

    # Finally we remove the old route mapping from prod1-green

    cf unmap-route prod1-green APP_DOMAIN --hostname my-production-app

    #For good measure, we should also remove the old blue route

    cf unmap-route prod1-blue APP_DOMAIN --hostname my-production-app-blue

    #now remove the old production application

    cf delete prod1-green

    #Finally rename the prod1-blue to prod1-green

    cf rename prod1-blue prod1-green

    [image: ]

    At this point, the update is complete, and no outage should be experienced by the users.

    5.9  Command lines

    IBM Cloud Private Cloud Foundry uses the command lines from the community. As such, the developer can use the same sets of command lines in an IBM Cloud Private Cloud Foundry environment.

    5.10  Sample application to use

    For more information about a sample MongoDB Java application that you can use to test the Cloud Foundry functionality in your environment, see this web page.

    This sample application provides you with a sample workflow for working with any Liberty app on IBM Cloud or in IBM Cloud Private. You set up a development environment, deploy an app locally and on the cloud, and then, integrate an IBM Cloud database service in your app.

     

  
[image: ]
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Additional material

    This book refers to additional material that can be downloaded from the internet as described in the following sections. 

    Locating the GitHub material

    The web material that is associated with this book is available in softcopy on the internet from the IBM Redbooks GitHub repository.

    Cloning the GitHub material

    Complete the following steps to clone the GitHub repository for this book:

    1.	Download and install Git client if not installed from this web page.

    2.	Run the following command to clone the GitHub repository:

    git clone https://github.com/IBMRedbooks/SG248441-IBM-Cloud-Private-Application-Developer-s-Guide.git.

     

  
    Related publications

    The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

    IBM Redbooks

    The IBM Redbooks publication IBM Cloud Private: System Administrator’s Guide, SG24-8440, provides more information about the topic in this document. Note that this publication might be available in softcopy only. 

    You can search for, view, download or order this document and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website: 

    ibm.com/redbooks

    Online resources

    The following websites are also relevant as further information sources:

    •IBM Cloud Private v3.1.2 documentation:

    https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/kc_welcome_containers.html

    •IBM Cloud Private v3.1.2 supported platforms:

    https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html 

    •Spring Boot project website:

    https://start.spring.io

    •Full list of predefined values for Helm:

    https://helm.sh/docs/developing_charts/#predefined-values 

    •Current list of Helm template recommended practices:

    https://github.com/helm/helm/blob/master/docs/chart_best_practices/templates.md 

    •Helm Developer’s Guide:

    https://helm.sh/docs/chart_template_guide/#the-chart-template-developer-s-guide

    •Helm Chart dependencies:

    https://github.com/helm/helm/blob/master/docs/charts.md#chart-dependencies

    •Microclimate website:

    (https://microclimate-dev2ops.github.io/creatingaproject#doc

    •IBM Cloud Developer Tools:

    https://console.bluemix.net/docs/cli/idt/index.html#developing

    •Helm public website:

    (https://helm.sh

    •IBM Helm Charts repository:

    https://github.com/IBM/charts

    •CloudPak certification guidance:

    https://github.com/IBM/cloud-pak/blob/master/community/cloud-pak.md

    •Helm Charts Best Practices Guide:

    https://github.com/helm/helm/tree/master/docs/chart_best_practices

    •Istio concepts:

    https://istio.io/docs/concepts/what-is-istio/

    •Knowledge Center link for installing Istio:

    https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/istio.html

    •Ingress documentation:

    https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md

    •DevOps for Dummies (IBM Edition):

    http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=BK&infotype=PM&appname=SWGE_RA_VF_USEN&htmlfid=RAM14026USEN&attachment=RAM14026USEN.PDF#loa

    •Sauce Labs information:

    https://wiki.saucelabs.com/display/public/DOCS/The+Sauce+Labs+Cookbook+Home

    •Installing Microclimate on IBM Cloud Private:

    https://github.com/IBM/charts/tree/master/stable/ibm-microclimate

    •Istio telemetry website:

    https://istio.io/docs/tasks/telemetry/

    Help from IBM

    IBM Support and downloads

    ibm.com/support

    IBM Global Services

    ibm.com/services
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