

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page v.

 First Edition (June 2017)

 This edition applies to IBM Watson services in IBM Bluemix.

 Notices

 This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

 The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

 AlchemyAPI®

 Bluemix®

 developerWorks®

 Global Business Services®

 IBM®

 IBM MobileFirst™

 IBM Watson®

 IBM Watson IoT™

 Redbooks®

 Redbooks (logo)[image:]®

 Redpapers™

 SPSS®

 Tivoli®

 Watson™

 Watson IoT™

 The following terms are trademarks of other companies:

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 The Building Cognitive Applications with IBM Watson Services series is a seven-volume collection that introduces IBM® Watson™ cognitive computing services. The series includes an overview of specific IBM Watson® services with their associated architectures and simple code examples. Each volume describes how you can use and implement these services in your applications through practical use cases.

 The series includes the following volumes:

 •Volume 1 Getting Started, SG24-8387

 •Volume 2 Conversation, SG24-8394

 •Volume 3 Visual Recognition, SG24-8393

 •Volume 4 Natural Language Classifier, SG24-8391

 •Volume 5 Language Translator, SG24-8392

 •Volume 6 Speech to Text and Text to Speech, SG24-8388

 •Volume 7 Natural Language Understanding, SG24-8398

 Whether you are a beginner or an experienced developer, this collection provides the information you need to start your research on Watson services. If your goal is to become more familiar with Watson in relation to your current environment, or if you are evaluating cognitive computing, this collection can serve as a powerful learning tool.

 This IBM Redbooks® publication, Volume 7, introduces the Watson Natural Language Understanding service. This service is a collection of text analysis functions that derive semantic information from your content. This book includes a basic description of several of the Natural Language Understanding service features and provides sample code snippets to demonstrate their use. This book includes an example of an application that integrates the Watson Natural Language Understanding service with the Watson Personality Insights and Insights for Twitter services to create a simple application to analyze Tweets from a Twitter handle. You can develop and deploy the sample applications by following along in a step-by-step approach and using provided code snippets. Alternatively, you can download an existing Git project to more quickly deploy the application.

 Authors

 This book was produced by a team of specialists from around the world, working in collaboration with the IBM International Technical Support Organization.

 Sebastian Vergara is an Expert Certified Architect in IBM Sales & Distribution, IBM Uruguay. His areas of expertise include cloud computing, DevOps, Design Thinking, and cognitive computing. He has over 8 years of experience in the IT industry. Sebastian led several projects to design and build cognitive solutions, such as the development of a transactional virtual assistant for an international bank and a cognitive chatbot for a major pharmaceutical company in Latin America that uses Watson Natural Language Classifier, Text to Speech, Natural Language Understanding, Visual Recognition, and other Watson technologies. Sebastian teaches at the Engineering College in the Universidad de la República Uruguay (UdelaR) where he introduces students to architecture and design, integration, cloud computing, and trending technologies.

 Mohamed El-Khouly is a Certified IT Specialist in IBM Cloud Services, IBM Egypt. Mohamed has 15 years of experience in various roles in IT Services, including Software Development, Project Management, Testing, and Services Delivery. Mohamed currently focuses on cloud and analytics services, which include IBM Bluemix®, IBM SPSS® Modeler, IBM SPSS Statistics, and IBM Cognitive services.

 Mariam El Tantawi is a Certified IT Specialist in Actualizing IT Solutions, IBM Egypt. Mariam is a Senior Software Developer; her areas of expertise include cloud computing, predictive analytics, text analytics, and cognitive computing. She has over 4 years of experience in the IT industry. Mariam participated in and led several projects to design and build cognitive solutions, such as an application that helps graduates to find and explore career paths and career-related hiring entities and jobs, depending on their field of study. Mariam was part of the team that developed a question answering system for Dubai Road and Transport Authority (RTA). The solution enables users to ask questions related to the services provided by RTA in their native language. It integrates several Watson services, such as Conversation, Text to Speech, and Speech to Text. Mariam is a frequent speaker at IBM conferences and she teaches university courses sponsored by IBM Skills Academy Programs in the areas of predictive analytics and business analytics. Mariam holds two IBM patents.

 Shireesh Marla is a Mobile Solution Architect in IBM Global Business Services®, India. His areas of expertise include IBM MobileFirst™, Android, IBM Bluemix cloud development platform, IBM Watson Analytics, and Cognitive Computing. He has over 13 years of experience in the IT industry and has been involved in mobile application technologies and cloud computing technologies. Shireesh has been part of the team in building a bot for a digital satellite network entertainment company in South Africa. It uses IBM Watson Natural Language Classifier, Speech to Text, and Text to Speech APIs.

 Lak Sri currently serves as a Program Director in IBM developerWorks®, part of the IBM Digital Business Group organization. Lak leads innovation in the developer activation space. He was the Technical Leader for the Building Cognitive Applications with IBM Watson Services Redbooks series. Lak led the development of the IBM Cloud Application Developer Certification program and the associated course. Earlier he worked as a Solution Architect for Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor in several technology areas, and he volunteers in planning and supporting local community programs.

 The project that produced this publication was managed by Marcela Adan, IBM Redbooks Project Leader, ITSO.

 Thanks to the following people for their contributions to this project:

 Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

 Juan Pablo Napoli
Skills Academy Worldwide Leader, Global University Programs

 Teja Tummalapalli
IBM Digital Business Group

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Basics of Watson Natural Language Understanding service

 This chapter introduces the IBM Watson Natural Language Understanding service. The Natural Language Understanding service is a collection of text analysis functions that derive semantic information from your content. You can input text, HTML, or a public URL, and leverage sophisticated natural language processing techniques to get a quick high-level understanding of your content and obtain detailed insights.

 This chapter provides basic information about how to use the service features, provides usage examples, and includes simple code examples in the following technologies:

 •Node.js

 •Java

 •Node-RED

 	
 Note: A runtime environment that is specific to each technology is required in order to run the snippets provided in this chapter. The purpose of the snippets is to serve as code examples for future reference. Therefore, documentation about the installation and configuration of the technology-specific runtime environment is not included.

 The following topics are covered in this chapter:

 •Natural Language Understanding overview

 •Service features

 •Migrating from AlchemyLanguage to Natural Language Understanding

 •References

 1.1 Natural Language Understanding overview

 With Natural Language Understanding, developers can analyze semantic features of input text and extract metadata from content, such as categories, concepts, emotion, entities, keywords, metadata, relations, semantic roles, and sentiment. With custom annotation models developed using IBM Watson Knowledge Studio, you can further customize the service to identify domain-specific entities and relations in your content.

 Natural Language Understanding can be useful in many scenarios that demand rapid analysis of unstructured text without requiring in-depth natural language processing expertise. For example, you can monitor sentiment and emotion in customer support chat transcripts, or you can quickly categorize blog posts and sort them based on general concepts, keywords, and entities.

 1.1.1 How it works

 Figure 1-1 shows a high-level flow of the Natural Language Understanding service.

 [image:]

 Figure 1-1 Natural Language Understanding high-level flow

 The flow is as follows:

 1.	You input the following types of text to be analyzed:

  –	Any publicly accessible URL

  –	Plain text or HTML content

 2.	The service will output this information:

  –	Extracted metadata in JSON format

 Figure 1-2 shows an overview of code snippets, in Java and Node.js, to call the API and process the response in these steps:

 1.	Initializes the Natural Language Understanding service instance, passing the credentials (username and password) and version.

 2.	Calls the /Analyze endpoint with the text, HTML, or a public URL to be analyzed; the Natural Language Understanding service features indicate the text analysis functions that the API should perform (the Keywords feature is shown in Figure 1-2 as an example). You can also specify the options for each feature.

 3.	Processes the API response returned in JSON format.

 The table at the bottom of Figure 1-2 shows the Natural Language Understanding (NLU) service features and the options for each feature.

 [image:]

 Figure 1-2 Calling the NLU service and processing response

 1.1.2 Supported languages

 Table 1-1 shows the features that are supported by each language. For updated information, see the Supported languages web page.

 Table 1-1 Features supported by each language

 	

 	
 Sentiment

 	
 Semantic roles

 	
 Relations1

 	
 Metadata

 	
 Keywords

 	
 Entitiesa

 	
 Emotion

 	
 Concepts

 	
 Categories

 	
 Arabic

 	
 X

 	

 	
 X

 	
 X

 	

 	

 	

 	

 	
 Xc

 	
 English

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 French

 	
 X

 	

 	
 X2

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Xc

 	
 German

 	
 X

 	

 	
 Xb

 	
 X

 	
 X

 	
 X

 	

 	

 	

 	
 Italian

 	
 X

 	

 	
 Xb

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Xc

 	
 Japanese

 	

 	

 	
 X

 	

 	

 	

 	

 	

 	

 	
 Portuguese

 	
 X

 	

 	
 Xb

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Xc

 	
 Russian

 	
 X

 	

 	

 	
 X

 	
 X

 	
 X

 	

 	

 	

 	
 Spanish

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	
 X

 	
 X3

 	
 Swedish

 	

 	

 	

 	
 X

 	
 X

 	
 X

 	

 	

 	

 1 You can build Watson Knowledge Studio custom models for entities and relations in English, French, German, Italian, Portuguese, and Spanish. You can use some of these languages in Natural Language Understanding or you can customize the models.

 2 These languages are supported only through custom models in IBM Watson Knowledge Studio.

 3 These languages are supported in the public service, but not in Bluemix Dedicated.

 You can indicate the language to use for analysis with the ISO 639-1 code. This code overrides automatic language detection performed by the service. Valid codes are as follows:

 ar	Arabic

 en	English

 fr	French

 de	German

 it	Italian

 ja	Japanese

 pt	Portuguese

 ru	Russian

 es	Spanish

 sv	Swedish

 1.1.3 Authentication

 You authenticate to the Natural Language Understanding service with Basic Authentication in each request. To get the username and password, you must create a service instance and retrieve the credentials. For information, see Chapter 2, “Creating a Natural Language Understanding service in Bluemix” on page 59.

 1.2 Service features

 To use the Natural Language Understanding (NLU) service, send API requests to the Analyze endpoint with the input text, HTML, or a public URL, specify one or more of the supported service features, and specify the options for the features or accept the default options.

 This section includes a basic description of several NLU service features and provides sample code snippets to demonstrate their use.

 1.2.1 NLU Concepts

 The NLU Concepts feature identifies high-level concepts that might not be directly referenced in the input text. Concept-related API functions understand how concepts relate. Concepts that are detected typically have an associated link to a DBpedia resource. See the following input and response examples.

 Input

 Text:

 Machine learning is the science of how computers make sense of data using algorithms and analytic models.

 Response

 Concepts tags:

 •Computer

 •Machine learning

 •Artificial intelligence

 •Computer science

 •Alan Turing

 •Scientific method

 •Psychology

 •Learning

 Use case example: Clustering articles

 Concepts tagging allows you to perform high-level analysis of the content. This feature can help you to cluster news articles based on concepts, and study or analyze articles associated with specific concepts. A use case might be the extraction of concepts from an online article by using, for example, the following URL as input to the API:

 http://www.bbc.com/news/technology-38595480

 NLU Concepts flow

 Figure 1-3 on page 6 shows the basic flow:

 1.	Input (call the API with input parameters): Pass the NLU service instance credentials (username and password), for authentication, and URL to the news article to be analyzed.

 2.	Processing (analyze the input text with the Concepts feature).

 3.	Response (returns a response in JSON format):

  –	Text: Name of the concept.

  –	Relevance: Score for the concept in the range of 0 - 1. A score of 1 means the concept is highly relevant; 0 means it is not relevant.

  –	dbpedia_resource: Link to the DBpedia resource that is associated with the concept.

 [image:]

 Figure 1-3 Concepts flow

 NLU Concepts snippets

 This section includes sample snippets to illustrate the use of the NLU Concepts feature in Node.js, Java, and Node-RED.

 This example shows how to extract concepts from the following BBC article:

 http://www.bbc.com/news/technology-38595480

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-1 shows the nlu-concepts.js snippet.

 Example 1-1 Snippet: nlu-concepts.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.bbc.com/news/technology-38595480',

 	features : {

 		concepts : {

 			'limit' : 50

 		}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var concepts = response.concepts;

 		// process the array of concepts

 	}

 });

 [image:]

 Java snippet

 Example 1-2 shows the nluconcepts.java snippet.

 Example 1-2 Snippet: nluconcepts.java

 [image:]

 /**

 * Created on 29-04-2017.

 */

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.Features;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalyzeOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalysisResults;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.ConceptsOptions;

 public class nluconcepts {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The URL to be analyzed for concepts

 String url = "http://www.bbc.com/news/technology-38595480";

 //The concepts objects, which will collect 50 concepts from the text

 ConceptsOptions concepts = new ConceptsOptions.Builder().limit(50).build();

 //Features object to hold analysis features

 Features features = new Features.Builder().concepts(concepts).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().url(url).features(features).build();

 //the top 50 concepts found in the analysis

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4).

 [image:]

 Figure 1-4 Drag inject node to canvas

 2.	Edit the inject node (Figure 1-5). Select string from the Payload pull-down and enter the URL to the document you want to analyze. In this example, the URL is http://www.bbc.com/news/technology-38595480.

 [image:]

 Figure 1-5 Edit inject node dialog

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6).

 [image:]

 Figure 1-6 Drag Natural Language Understanding node to canvas

 4.	Edit the Natural Language Understanding node (Figure 1-7). Enter your Natural Language Understanding service instance credentials (username and password) and select the Concepts feature.

 [image:]

 Figure 1-7 Edit Natural Language Understanding node dialog

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8).

 [image:]

 Figure 1-8 Connect the inject and Natural Language Understanding nodes

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9).

 [image:]

 Figure 1-9 Drag the debug node to the canvas

 7.	Edit the debug node to match the configuration shown in Figure 1-10.

 [image:]

 Figure 1-10 Edit debug node dialog

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11).

 [image:]

 Figure 1-11 Connect the Natural Language Understanding and debug nodes

 9.	Click Deploy (Figure 1-12).

 [image:]

 Figure 1-12 Deploy Node-RED flow

 10.	Click the button at the left side of the inject node to inject, into the flow, the document that is to be analyzed (Figure 1-13).

 [image:]

 Figure 1-13 Button on the inject input node

 11.	Watch the debug tab. The output should be similar to Figure 1-14.

 [image:]

 Figure 1-14 NLU Concepts feature response on the debug tab

 Example 1-3 shows the nodes and connections flow, exported in JSON format.

 Example 1-3 NLU Concepts: Exported flow

 [image:]

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Un-derstanding","categories":false,"concepts":true,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"","doc-sentiment":false,"doc-sentiment-target":"","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"50","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"http://www.bbc.com/news/technology-38595480","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow from the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15).

 [image:]

 Figure 1-15 Importing Node-RED flow from the clipboard

 1.2.2 NLU Emotion

 The NLU Emotion feature detects anger, disgust, fear, joy, and sadness implied in text. It can analyze the overall emotional tone of the content or it can analyze emotion conveyed by specific target phrases. You can also enable emotion analysis for entities and keywords that are automatically detected by the service. See the following input and response examples.

 Input

 A document that includes customer reviews on a new smart device just released to the market.

 Response

 Emotion keys and score values (0.0 - 1.0), such as these:

 •Anger score: 0.639028

 •Disgust score: 0.009711

 •Fear score: 0.037295

 •Joy score: 0.00902

 •Sadness score: 0.002552.

 Use case example: Client emotion analysis

 Emotion analysis can help call centers analyze the caller’s emotions from the caller’s reviews and feedback and then use the information to improve the services.

 Emotion analysis can be used by an online company to analyze customer reviews and to understand customer feelings.

 NLU Emotion flow

 Figure 1-16 on page 16 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password), for authentication, and the text that will be analyzed for emotion.

 2.	Processing: The service analyzes emotion in the input text.

 3.	Response (returns response in JSON format):

  –	Document: Object containing emotion analysis results for the entire document.

  –	Targets: Array of objects containing emotion results for the targets.

  –	Emotion: Emotion scores in the range of 0 - 1 for sadness, joy, fear, disgust, and anger. A score of 0 means the text does not convey the emotion; 1 means the text definitely carries the emotion.

 [image:]

 Figure 1-16 Emotion flow

 NLU Emotion snippets

 This section includes sample snippets to illustrate the use of the NLU Emotion feature in Node.js, Java, and Node-RED.

 This example shows how to analyze emotion in the following sample text:

 This card is way too slow for my taste. It's probably great shooting JPEG but if you are shooting Raw you may want to go with something else.

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-4 shows the nlu-emotion_1.js snippet.

 Example 1-4 Snippet: nlu-emotion_1.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	text : "This card is way too slow for my taste. It's probably great shooting JPEG but if your shooting Raw you may want to go with something else",

 	features : {

 		emotion : {}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var docEmotions = response.emotion.document.emotion;

 		// process object 'docEmotions' that contains properties 'anger', 'disgust', 'fear', 'joy', 'sadness'

 	}

 });

 [image:]

 Java snippet

 Example 1-5 shows the nluemotion1.java snippet.

 Example 1-5 Snippet: nluemotion1.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.EmotionOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.Features;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalyzeOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalysisResults;

 public class nluemotion1 {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The text to be analyzed

 String text = "This card is way too slow for my taste. It's probably great shooting JPEG but if your shooting Raw you may want to go with something else";

 //The Emotions object

 EmotionOptions emotions = new EmotionOptions.Builder().build();

 //Features object to hold analysis features

 Features features = new Features.Builder().emotion(emotions).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().text(text).features(features).build();

 //The emotions returned from the analysis with their relative weight

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the text that you want to analyze: This card is way too slow for my taste. It's probably great shooting JPEG but if you are shooting Raw you may want to go with something else.

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-17). Enter your Natural Language Understanding service instance credentials (username and password) and select Document Emotion.

 [image:]

 Figure 1-17 Edit Natural Language Understanding node dialog

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-18.

 [image:]

 Figure 1-18 NLU Emotion feature response: The debug tab

 Example 1-6 shows the nodes and connections flow, exported in JSON format.

 Example 1-6 NLU Emotion: Exported flow

 [image:]

 The Nodes and connections flow exported in JSON format.

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Un-derstanding","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":true,"doc-emotion-target":"","doc-sentiment":false,"doc-sentiment-target":"","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"50","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"I purchased this card from Best Buy for around $69 to use in my new camcorder. It's perfect. The read/write speed is exactly what I needed to record HD video and the storage capacity is enough for several hours of video. I wish it had been a little cheaper when I bought it. I see it's on sale now so get it while you can before the price goes back up!","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.3 NLU Emotion (targets option)

 The NLU Emotion feature with the targets option can detect emotions that are associated with targeted phrases, entities, or keywords. See the following input and response examples.

 Input

 A document that includes customer reviews on a new smart device was just released to the market with this target phrase:

 Benefits, such as more personalized recommendations of things to watch.

 Response

 Emotion keys and score values (0.0 - 1.0) such as these:

 •Anger score: 0.139028

 •Disgust score: 0.009711

 •Fear score: 0.037295

 •Joy score: 0.60902

 •Sadness score: 0.020552

 Use case example: Client emotion toward a brand

 Targeted emotion can aid in recognizing the emotions toward a certain product or brand. For example, an online store can analyze reviews to objectively understand customer feelings toward the store’s brand or the brand of the products that the store sells.

 NLU Emotion with targets option flow

 Figure 1-19 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password) for authentication, the text to analyze, and the targets string (the service analyzes emotion for each target string found in the text).

 2.	Processing: The service analyzes emotion in the input text for the targets string.

 3.	Response (returns response in JSON format):

  –	Document: Object containing emotion analysis results for the entire document.

  –	Targets: Array of objects containing emotion results for the targets.

  –	Emotion: Emotion scores in the range of 0 - 1 for sadness, joy, fear, disgust, and anger. A score of 0 means the text does not convey the emotion; 1 means the text definitely carries the emotion.

 [image:]

 Figure 1-19 Emotion with targets option flow

 NLU Emotion with targets option snippets

 This section includes sample snippets to illustrate the use of the NLU Emotion feature with the targets option in Node.js, Java, and Node-RED.

 This example shows how to analyze emotion in the following sample text with targets phrase of Best Buy:

 I purchased this card from Best Buy for around $69 to use in my new camcorder. It's perfect. The read/write speed is exactly what I needed to record HD video and the storage capacity is enough for several hours of video. I wish it had been a little cheaper when I bought it. I see it's on sale now so get it while you can before the price goes back up.

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-7 shows the nlu-targetedEmotion.js snippet.

 Example 1-7 Snippet: nlu-targetedEmotion.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	text : "I purchased this card from Best Buy for around $69 to use in my new camcorder. It's perfect. The read/write speed is exactly what I needed to record HD video and the storage capacity is enough for several hours of video. I wish it had been a little cheaper when I bought it. I see it's on sale now so get it while you can before the price goes back up!",

 	features : {

 		emotion : {

 			targets : ['Best Buy']

 		}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error || response.status === "ERROR") {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		// as there's only 1 target, will select element 0 of the array of results

 		var targetedEmotion = response.emotion.targets[0].emotion;

 		// process object 'targetedEmotion' that contains properties 'anger', 'disgust', 'fear', 'joy', 'sadness'

 	}

 });

 [image:]

 Java snippet

 Example 1-8 shows the nlutargetedEmotion.java snippet.

 Example 1-8 Snippet: nlutargetedEmotion.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalysisResults;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalyzeOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.EmotionOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.Features;

 import java.util.ArrayList;

 import java.util.List;

 public class nlutargetedEmotion {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The text to be analyzed for

 String text = "I purchased this card from Best Buy for around $69 to use in my new camcorder. It's perfect. The read/write speed is exactly what I needed to record HD video and the storage capacity is enough for several hours of video. I wish it had been a little cheaper when I bought it. I see it's on sale now so get it while you can before the price goes back up!";

 //The keywords to do emotion analysis on

 List<String> targets = new ArrayList<String>();

 targets.add("Best Buy");

 //The Emotions object

 EmotionOptions emotions = new EmotionOptions.Builder().targets(targets).build();

 //Features object to hold Analysis features

 Features features = new Features.Builder().emotion(emotions).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().text(text).features(features).build();

 //The emotions returned from the analysis with their relative weight

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the text that you want to analyze:

 I purchased this card from Best Buy for around $69 to use in my new camcorder. It's perfect. The read/write speed is exactly what I needed to record HD video and the storage capacity is enough for several hours of video. I wish it had been a little cheaper when I bought it. I see it's on sale now so get it while you can before the price goes back up.

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-20). Enter your Natural Language Understanding service instance credentials (username and password), select Document Emotion, and enter Best Buy in the Emotion Targets field.

 [image:]

 Figure 1-20 Edit Natural Language Understanding node dialog: Document Emotion and targets

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-21.

 [image:]

 Figure 1-21 NLU Emotion with targets option response: The debug tab

 Example 1-9 shows the nodes and connections flow, exported in JSON format.

 Example 1-9 NLU Emotion with targets option: Exported flow

 [image:]

 The Nodes and connections flow exported in JSON format.

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Understand-ing","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":true,"doc-emotion-target":"Best Buy","doc-sentiment":false,"doc-sentiment-target":"","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"50","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"I purchased this card from Best Buy for around $69 to use in my new camcorder. It's perfect. The read/write speed is exactly what I needed to record HD video and the storage capacity is enough for several hours of video. I wish it had been a little cheaper when I bought it. I see it's on sale now so get it while you can before the price goes back up!","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.4 NLU Entities

 The NLU Entities feature helps you Identify people, cities, organizations, and many other types of entities in your text. It returns items such as persons, places, and organizations that are present in the input text. Entity extraction adds semantic knowledge to content to help understand the subject and context of the text that is being analyzed. See the following input and response examples.

 Input

 Text:

 IBM is an American multinational technology company headquartered in Armonk, New York, United States, with operations in over 170 countries.

 Response

 Entities:

 •IBM: Company

 •Armonk: Location

 •New York: Location

 •United States: Location

 Use case example: Identify products and people in technology article

 Analyze a news article on the latest smart devices and identify entities such as technologies, people, and organizations.

 NLU Entities flow

 Figure 1-22 on page 26 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password) for authentication and the URL of the article to be analyzed.

 2.	Processing: The service analyzes the text and identifies entities.

 3.	Response (returns response in JSON format):

  –	Type: Entity type.

  –	Text: Entity text.

  –	Relevance: Entity relevance score in the range of 0 - 1. A score of 0 means it is not relevant; 1 means it is highly relevant.

  –	Count: Number of times the entity is mentioned in the text.

 [image:]

 Figure 1-22 Entities flow

 NLU Entities snippets

 This section includes sample snippets to illustrate the use of the NLU Entities feature in Node.js, Java, and Node-RED.

 This example shows how to identify entities in the following sample news article about the latest smart phones:

 http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-10 shows the nlu-entities.js snippet.

 Example 1-10 Snippet: nlu-entities.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440',

 	features : {

 		entities : {

 			limit: 250

 		}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var entities = response.entities;

 		// process the array of entities

 	}

 });

 [image:]

 Java snippet

 Example 1-11 shows the nluentities.java snippet.

 Example 1-11 Snippet: nluentities.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.*;

 public class nluentities {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The url to analyze its content

 String url = "http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440";

 //The Entities object, to extract people, cities, organizations from our text

 EntitiesOptions entities = new EntitiesOptions.Builder().build();

 //Features object to hold Analysis features

 Features features = new Features.Builder().entities(entities).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().url(url).features(features).build();

 //The entities returned from the analysis with some information about their type, relevance and count

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the URL of the article that you want to analyze:

 http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-23). Enter your Natural Language Understanding service instance credentials (username and password) and select Entities.

 [image:]

 Figure 1-23 Edit Natural Language Understanding node dialog: Entities

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-24.

 [image:]

 Figure 1-24 NLU Entities feature response: The debug tab

 Example 1-12 shows the nodes and connections flow exported in JSON format.

 Example 1-12 NLU Entities: Exported flow

 [image:]

 [{"id":"6157097b.7bf008","type":"tab","label":"Flow 8"},{"id":"4aeb2156.cd01","type":"natural-language-understanding","z":"6157097b.7bf008","name":"Natural Language Understanding","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"","doc-sentiment":false,"doc-sentiment-target":"","entity":true,"entity-emotion":false,"entity-sentiment":false,"maxentities":"50","keyword":false,"keyword-emotion":false,"keyword-sentiment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-keywords":false,"maxsemantics":"50","x":500,"y":232,"wires":[["6424a91f.ec0688"]]},{"id":"7e7eb298.be3dac","type":"inject","z":"6157097b.7bf008","name":"","topic":"","payload":"http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440","payloadType":"str","repeat":"","crontab":"","once":false,"x":107,"y":251,"wires":[["4aeb2156.cd01"]]},{"id":"6424a91f.ec0688","type":"debug","z":"6157097b.7bf008","name":"","active":true,"console":"false","complete":"features","x":858,"y":287,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.5 NLU Keywords

 The NLU Keywords feature identifies the important keywords in your content. Important topics in your content that are typically used when indexing data, generating tag clouds, or when searching are identified. The service automatically identifies supported languages in your input content, and then identifies and ranks keywords in that content. The supported languages are: English, French, German, Italian, Portuguese, Russian, Spanish, Swedish. See the following input and response examples.

 Input

 A document about the American Civil War:

 http://www.historynet.com/civil-war

 Response

 •Civil war

 •Union

 •Battle

 •Confederate

 Use case example: Identify keywords to build a glossary

 Keyword extraction allows for the automatic identification of terms (keywords) that best describe the subject of a document. This feature can be used by organizations to build a glossary based on the most common terms used in their documentation and the relevance of the term.

 NLU Keywords flow

 Figure 1-25 on page 31 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password) for authentication and the URL of the article to be analyzed.

 2.	Processing: The service analyzes the text and extracts keywords.

 3.	Response (returns response in JSON format):

  –	Text: Keyword text.

  –	Relevance: Keyword relevance score in the range of 0 - 1. A score of 0 means it is not relevant; 1 means it is highly relevant.

  –	Count: Number of times the entity is mentioned in the text.

 [image:]

 Figure 1-25 Keywords flow

 NLU Keywords with emotion and sentiment options

 The Keywords feature supports these options:

 •emotion: Set this option to true to enable emotion analysis for detected keywords.

 •sentiment: Set this option to true to enable sentiment analysis for detected keywords.

 See the following input and response examples.

 Input

 The following article is input:

 http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440

 Response

 After the article is analyzed, keywords are extracted and the corresponding sentiment and emotion for each keyword is computed as shown in Example 1-13.

 Example 1-13 Response for NLU Keywords with emotion and sentiment options set to true

 [image:]

 "retrieved_url": "http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440",

 "keywords": [

 {

 "text": "Samsung Galaxy S8",

 "sentiment": {

 "score": 0.456834

 },

 "relevance": 0.972386,

 "emotion": {

 "sadness": 0.120647,

 "joy": 0.502089,

 "fear": 0.07519,

 "disgust": 0.010992,

 "anger": 0.127171

 }

 },

 {

 "text": "Galaxy S8 Plus",

 "sentiment": {

 "score": 0.409326

 },

 "relevance": 0.743052,

 "emotion": {

 "sadness": 0.129332,

 "joy": 0.459097,

 "fear": 0.09797,

 "disgust": 0.012402,

 "anger": 0.136951

 }

 },

 {

 "text": "Xperia XZ",

 "sentiment": {

 "score": 0.46716

 },

 "relevance": 0.58121,

 "emotion": {

 "sadness": 0.053549,

 "joy": 0.453336,

 "fear": 0.006229,

 "disgust": 0.008426,

 "anger": 0.316831

 }

 [image:]

 NLU Keywords snippets

 This section includes sample snippets to illustrate the use of the NLU Keywords feature in Node.js, Java, and Node-RED.

 This example shows how to extract keywords and determine the corresponding relevance score in the following sample news article about the latest smart phones:

 http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-14 shows the nlu-keywords.js snippet.

 Example 1-14 Snippet: nlu-keywords.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440',

 	features : {

 		keywords : {

 			limit : 250

 		}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var keywords = response.keywords;

 		// process the array of keywords

 	}

 });

 [image:]

 Java snippet

 Example 1-15 shows the nlu-keywords.java snippet.

 Example 1-15 Snippet: nlukeywords.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.*;

 public class nlukeywords {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The url to analyze its content

 String url = "http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440";

 //The keywords object, to identify important keywords in the content

 KeywordsOptions keywords = new KeywordsOptions.Builder().build();

 //Features object to hold Analysis features

 Features features = new Features.Builder().keywords(keywords).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().url(url).features(features).build();

 //The keywords returned from the analysis, and their relevance.

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the URL of the article that you want to analyze:

 http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-26). Enter your Natural Language Understanding service instance credentials (username and password) and select Keywords.

 [image:]

 Figure 1-26 Edit Natural Language Understanding node dialog: Keywords

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-27.

 [image:]

 Figure 1-27 NLU Keywords feature response: The debug tab

 Example 1-16 shows the nodes and connections flow exported in JSON format.

 Example 1-16 NLU Keywords: Exported flow

 [image:]

 [{"id":"512b4c36.e88b04","type":"tab","label":"Flow 2"},{"id":"6a344cf4.a48dc4","type":"natural-language-understanding","z":"512b4c36.e88b04","name":"Natural Language Understanding","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"Best Buy","doc-sentiment":false,"doc-sentiment-target":"","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"250","keyword":true,"keyword-emotion":false,"keyword-sentiment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-keywords":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["c55bf3d9.f44a6"]]},{"id":"4719f358.a728cc","type":"inject","z":"512b4c36.e88b04","name":"","topic":"","payload":"http://www.techradar.com/news/phone-and-communications/mobile-phones/20-best-mobile-phones-in-the-world-today-645440","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["6a344cf4.a48dc4"]]},{"id":"c55bf3d9.f44a6","type":"debug","z":"512b4c36.e88b04","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.6 NLU Relations

 The NLU Relations feature identifies subject, action, and object relations within sentences in the input content. After parsing sentences into subject, action, and object form, the Relations feature can use this information for subsequent processing by other Natural Language Understanding features such as entities, keywords, and so on.

 Relation information can be used to automatically identify buying signals, key events, and other important actions. See the following input and response examples.

 Input

 Text:

 Bob Dylan won the Nobel Prize in Literature in 2016. Bob Dylan was born in Duluth, Minnesota.

 Response

 Output examples:

 •"affectedBy" relation between “Bob Dylan” and “won”

 •"timeOf" relation between “2016” and “won”

 •"awardedTo" relation between "Nobel Prize" and "Bob Dylan"

 •"bornAt" relation between "Bob Dylan" and "Duluth"

 •"locatedAt" relation between "Duluth" and "Minnesota"

 Use case example:

 The Relations feature can be used to recognize when two entities are related and the type of relation between them. An organization can use this feature to better understand what customers are saying about them or to disambiguate a phrase.

 NLU Relations flow

 Figure 1-28 on page 37 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password) for authentication and the text to be analyzed.

 2.	Processing: The service analyzes the text and identifies relations.

 3.	Response (returns response in JSON format):

  –	type: Type of the relation.

  –	sentence: Selection of text that contains the relation.

  –	score: Relation confidence score in the range of 0 - 1. A score of 0 means it is not confident; 1 means it is highly confident.

  –	arguments: The arguments of the relation. Each argument contains the argument text, and an entities object that details the type of entity involved in the relation.

 [image:]

 Figure 1-28 Relations flow

 NLU Relations snippets

 This section includes sample snippets to illustrate the use of the NLU Relations feature in Node.js, Java, and Node-RED.

 This example shows how to identify relations in the following sentence:

 Cutting Cash Would Be a Boon for the World’s Poor, Rogoff Says.

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-17 shows the nlu-relations.js snippet.

 Example 1-17 Snippet: nlu-relations.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	text : 'Cutting Cash Would Be a Boon for the World’s Poor, Rogoff Says',

 	features : {

 		relations : {}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var relations = response.relations;

 		// process the array of relations

 	}

 });

 [image:]

 Java snippet

 Example 1-18 shows the nlurelations.java snippet.

 Example 1-18 Snippet: nlurelations.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.*;

 public class nlurelations {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The text to analyze its content

 String text = "Cutting Cash Would Be a Boon for the World’s Poor, Rogoff Says";

 //The Relations object, to identify important relations in the content

 RelationsOptions relations = new RelationsOptions.Builder().build();

 //Features object to hold Analysis features

 Features features = new Features.Builder().relations(relations).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().text(text).features(features).build();

 //The relations returned from the analysis, and their types.

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the text that you want to analyze:

 Cutting Cash Would Be a Boon for the World’s Poor, Rogoff Says.

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-29). Enter your Natural Language Understanding service instance credentials (username and password) and select Relations.

 [image:]

 Figure 1-29 Edit Natural Language Understanding node dialog: Relations

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-30.

 [image:]

 Figure 1-30 NLU Relations feature response: The debug tab

 Example 1-19 shows the nodes and connections flow exported in JSON format.

 Example 1-19 NLU Emotions: Exported flow

 [image:]

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Understand-ing","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"Best Buy","doc-sentiment":false,"doc-sentiment-target":"","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"250","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":true,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"Cutting Cash Would Be a Boon for the World's Poor, Rogoff Says","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.7 NLU Sentiment

 The NLU Sentiment feature identifies attitude, opinions, or feelings in the content that is being analyzed. You can use this feature to analyze the sentiment toward specific target phrases or simply analyze the sentiment toward the document as a whole. You can also get sentiment information for detected entities and keywords by enabling the sentiment option for those features. The supported languages are Arabic, English, French, German, Italian, Portuguese, Russian, Spanish. See the following input and response examples.

 Input

 Text:

 I'm very upset about the quality of this product.

 Response

 Negative sentiment (score: -0.890748)

 Use case example: Social media sentiment analysis

 Analyze what the public is saying in social media channels about your products, services, and brand. Organizations can collect Twitter data with a Twitter crawler and then use the Sentiment feature to analyze what people are saying about the products and services.

 NLU Sentiment flow

 Figure 1-31 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password) for authentication, the URL of the text to be analyzed, and the target option (optional).

 2.	Processing: The service analyzes sentiment for each target string found in the text and for the document as a whole.

 3.	Response (returns response in JSON format):

  –	document: Document-level sentiment analysis results.

  –	targets: Array of target analysis results. Each object contains the text of the target, sentiment score, and a label.

  –	score: Sentiment score ranges from -1 (negative sentiment) to 1 (positive sentiment).

  –	label: Indicates whether the sentiment is positive, neutral, or negative.

 [image:]

 Figure 1-31 Sentiment with target option flow

 NLU Sentiment snippets

 This section includes sample snippets to illustrate the use of the NLU Sentiments feature in Node.js, Java, and Node-RED.

 Example 1: Identify sentiment to document

 The sample code performs these steps:

 1.	Analyzes an article at the following web page:

 http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review

 2.	Identifies the sentiment toward the entire document.

 3.	Prints the response to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-20 shows the nlu-sentiment.js nlu-sentiment.js snippet.

 Example 1-20 Snippet: nlu-sentiment.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review',

 	features : {

 		sentiment : {}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var docSentiment = response.sentiment.document;

 		// process sentiment at 'docSentiment' object containing 'score' and 'type'

 	}

 });

 [image:]

 Java snippet

 Example 1-21 shows the nlusentiment.java snippet.

 Example 1-21 Snippet: nlusentiment.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.*;

 public class nlusentiment {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The text to analyze its content

 String url = "http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review";

 //The sentiment object, to get the sentiment measure in the content

 SentimentOptions sentiment = new SentimentOptions.Builder().build();

 //Features object to hold Analysis features

 Features features = new Features.Builder().sentiment(sentiment).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().url(url).features(features).build();

 //The sentiment score returned from the analysis, in the range of 0 to 1.

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the URL to the article that you want to analyze:

 http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review

 3.	From the node palette, drag the a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-32 on page 44). Enter your Natural Language Understanding service instance credentials (username and password) and select Document Sentiment.

 [image:]

 Figure 1-32 Edit Natural Language Understanding node dialog: Document Sentiment

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-33.

 [image:]

 Figure 1-33 NLU Sentiment feature response: The debug tab

 Example 1-22 shows the nodes and connections flow, exported in JSON format.

 Example 1-22 NLU Sentiment: Exported flow

 [image:]

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Understand-ing","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"Best Buy","doc-sentiment":true,"doc-sentiment-target":"","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"250","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 Example 2: Identify sentiment to document and target text

 The sample code does these steps:

 1.	Analyzes an article at the following web page:

 http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review

 2.	Identifies the sentiment toward the entire document and target text fitness.

 3.	Prints the response to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-23 shows the nlu-targetedSentiment.js snippet.

 Example 1-23 Snippet: nlutargetedSentiment.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review',

 	features : {

 		sentiment : {

 			targets : ['fitness']

 		}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error || response.status === "ERROR") {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		// as there's only 1 target, will select element 0 of the array of results

 		var sentiment = response.sentiment.targets[0];

 		// process sentiment at 'sentiment' object containing 'score' and 'label'

 	}

 });

 [image:]

 Java snippet

 Example 1-24 shows the nlutargetedSentiment.java snippet.

 Example 1-24 Snippet: nlutargetedSentiment.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalysisResults;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalyzeOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.Features;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.SentimentOptions;

 import java.util.ArrayList;

 import java.util.List;

 public class nlutargetedSentiment {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The text to analyze its content

 String url = "http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review";

 //The keywords to do sentiment analysis on

 List<String> targets = new ArrayList<String>();

 targets.add("fitness");

 //The sentiment object, to get the sentiment analysis in the content

 SentimentOptions sentiment = new SentimentOptions.Builder().targets(targets).build();

 //Features object to hold Analysis features

 Features features = new Features.Builder().sentiment(sentiment).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().url(url).features(features).build();

 //The sentiment score returned from the analysis, in the range of 0 to 1.

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the URL of the article that you want to analyze:

 http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-34). Enter your Natural Language Understanding service instance credentials (username and password), select Document Sentiment, and enter Fitness in the Sentiment Targets field.

 [image:]

 Figure 1-34 Edit Natural Language Understanding node dialog: Document Sentiment and Fitness

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-35.

 [image:]

 Figure 1-35 NLU Sentiment with targets “fitness” response: The debug tab

 Example 1-25 shows the nodes and connections flow exported in JSON format.

 Example 1-25 NLU Sentiment with target option: Exported flow

 [image:]

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Understand-ing","categories":false,"concepts":false,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"Best Buy","doc-sentiment":true,"doc-sentiment-target":"Fitness","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"250","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"http://www.techradar.com/reviews/wearables/apple-watch-2-1323213/review","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":672.9000244140625,"y":79.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.8 NLU Categories

 The NLU Categories feature categorizes input text, HTML, or web-based content into a hierarchical taxonomy using a five-level classification hierarchy. The top three categories are returned. See the following input and response examples.

 Input

 Text:

 Machine learning is the science of how computers make sense of data using algorithms and analytic models.

 Response

 These are the responses:

 •/science/computer science/artificial intelligence; score: 0.398614

 •/science/; score: 0.386026

 •/science/mathematics/geometry; score: 0.229613

 Use case example: Document classification

 Analyze and classify an organization’s documentation to organize articles and documents into directories and subdirectories. Use the Category feature in conjunction with the Concepts feature to create a well organized set of documentation, making access to the content easier.

 NLU Categories flow

 Figure 1-36 shows the basic flow:

 1.	Input parameters (call the API with input parameters): Pass the NLU service instance credentials (username and password) for authentication and the URL of the text to be analyzed.

 2.	Processing: The service analyzes the text and identifies categories and subcategories.

 3.	Response (returns response in JSON format):

  –	score: Categorization score in the range of 0 - 1. A score of 0 means it is not confident in the categorization; 1 means it is highly confident.

  –	label: Category label. Forward slashes separate category hierarchy levels.

 [image:]

 Figure 1-36 Categories flow

 NLU Categories snippets

 This section includes sample snippets to illustrate the use of the NLU Categories feature in Node.js, Java, and Node-RED.

 This example shows how to identify categories in the following article:

 http://www.espn.com/tennis/story/_/id/18436908/australian-open-2017-tournament-news-schedule-live-scores-tv-coverage

 The response is printed to the console or to the debug log (Node-RED).

 Node.js snippet

 Example 1-26 shows the nlu-categories.js snippet.

 Example 1-26 Snippet: nlu-categories.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.espn.com/tennis/story/_/id/18436908/australian-open-2017-tournament-news-schedule-live-scores-tv-coverage',

 	features : {

 		categories : {}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var categories = response.categories;

 		// process categories array

 	}

 });

 [image:]

 Java snippet

 Example 1-27 shows the nlucategories.java snippet.

 Example 1-27 Snippet: nlucategories.java

 [image:]

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.NaturalLanguageUnderstanding;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.Features;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalyzeOptions;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.AnalysisResults;

 import com.ibm.watson.developer_cloud.natural_language_understanding.v1.model.CategoriesOptions;

 public class nlucategories {

 private static final String username="87fa88fb-a638-463c-9bc3-225aa1c6f01e";

 private static final String password="VDlBnikeRTFS";

 public static void main(String[] arg) {

 //Construct NLU service instance

 NaturalLanguageUnderstanding service=new NaturalLanguageUnderstanding(NaturalLanguageUnderstanding.VERSION_DATE_2017_02_27

 ,username,password);

 //The URL to be analyzed for categories

 String url = "http://www.espn.com/tennis/story/_/id/18436908/australian-open-2017-tournament-news-schedule-live-scores-tv-coverage";

 //The Categories options, 5-level taxonomy the content is to be categorized into

 CategoriesOptions categories = new CategoriesOptions();

 //Features object to hold Analysis features

 Features features = new Features.Builder().categories(categories).build();

 //Options to hold the options for our analysis , e.g., url or text

 AnalyzeOptions parameters = new AnalyzeOptions.Builder().url(url).features(features).build();

 //the top three levels of categories found in the analysis

 AnalysisResults response = service.analyze(parameters).execute();

 System.out.println(response);

 }

 }

 [image:]

 Node-RED flow

 Follow these steps to create the flow:

 1.	From the node palette, drag an inject node (under the input palette) to the flow canvas (Figure 1-4 on page 8).

 2.	Edit the inject node (Figure 1-5 on page 9). Select string from the Payload pull-down and enter the URL to the article that you want to analyze:

 http://www.espn.com/tennis/story/_/id/18436908/australian-open-2017-tournament-news-schedule-live-scores-tv-coverage

 3.	From the node palette, drag a Natural Language Understanding node (under the IBM Watson palette) to the flow canvas (Figure 1-6 on page 10).

 4.	Edit the Natural Language Understanding node (Figure 1-37). Enter your Natural Language Understanding service instance credentials (username and password) and select Categories.

 [image:]

 Figure 1-37 Edit Natural Language Understanding node dialog: Categories

 5.	Connect the inject and Natural Language Understanding nodes (Figure 1-8 on page 11).

 6.	From the node palette, drag a debug node (under the output palette) to the flow canvas (Figure 1-9 on page 12).

 7.	Edit the debug node (Figure 1-10 on page 12). Enter msg.feature in the Output field.

 8.	Connect the Natural Language Understanding node to the debug node (Figure 1-11 on page 12).

 9.	Click Deploy (Figure 1-12 on page 13).

 10.	Click the button at the left side of the inject node to inject into the flow the document that is to be analyzed (Figure 1-13 on page 13).

 11.	Watch the debug tab. The output should be similar to Figure 1-38.

 [image:]

 Figure 1-38 NLU Categories feature response: The debug tab

 Example 1-28 shows the nodes and connections flow, exported in JSON format.

 Example 1-28 NLU Categories: Exported flow

 [image:]

 [{"id":"a31695e2.13285","type":"tab","label":"Flow 2"},{"id":"7cc616b1.7a5f8","type":"natural-language-understanding","z":"a31695e2.13285","name":"Natural Language Understand-ing","categories":true,"concepts":false,"maxconcepts":"8","doc-emotion":false,"doc-emotion-target":"Best Buy","doc-sentiment":false,"doc-sentiment-target":"Fitness","entity":false,"entity-emotion":false,"entity-sentiment":false,"maxentities":"250","keyword":false,"keyword-emotion":false,"keyword-senti-ment":false,"maxkeywords":"50","metadata":false,"relation":false,"semantic":false,"semantic-entities":false,"semantic-key-words":false,"maxsemantics":"50","x":454.9000244140625,"y":145.8000030517578,"wires":[["587c390d.0c7e2"]]},{"id":"e8fd9ee0.6bb058","type":"inject","z":"a31695e2.13285","name":"","topic":"","payload":"http://www.espn.com/tennis/story/_/id/18436908/australian-open-2017-tournament-news-schedule-live-scores-tv-cover-age","payloadType":"str","repeat":"","crontab":"","once":false,"x":244.90000915527344,"y":84,"wires":[["7cc616b1.7a5f8"]]},{"id":"587c390d.0c7e2","type":"debug","z":"a31695e2.13285","name":"","active":true,"console":"false","complete":"features","x":650.9000244140625,"y":68.80000305175781,"wires":[]}]

 [image:]

 To import the flow in the Node-RED flow editor, copy the flow to your clipboard, and then from the menu icon, select Import → Clipboard (Figure 1-15 on page 15).

 1.2.9 NLU Language detection

 Basic language detection is included in every request with the Natural Language Understanding service; it is not a separate feature. It detects the natural language in which input text, HTML, or web-based content is written. Language identification functions can identify English, German, French, Italian, Portuguese, Russian, Spanish, and Swedish. These functions enable applications to categorize or filter content based on the language in which it was written.

 	
 Note: The Language Detection API that was available as a separate API for the AlchemyLanguage service is now embedded in the /analyze endpoint.

 See the following input and response examples.

 Input

 Input is from a web page or text, such as the following page, in a supported language and any Natural Language Understanding feature, for example, Concepts:

 https://www.ibm.com/ar-es/

 Response

 Here is the response:

 {

 "retrieved_url": "https://www.ibm.com/ar-es/",

 "concepts": [

 {

 "text": "IBM",

 "relevance": 0.965628,

 "dbpedia_resource": "http://es.dbpedia.org/resource/IBM"

 }

],

 "language": "es"

 Use case example: Document language detection

 Automatically identify the natural language that documents are written in and cluster documents based on their language.

 NLU Language detection snippets

 This section includes sample snippets to illustrate the use of language detection in Node.js.

 Example 1: Detect the language of a web page

 This first example shows how to detect the language of this web page:

 http://www.elpais.com.uy/

 The response is printed to the console or to the debug log (Node-RED) in ISO-639-1 format.

 Node.js snippet 1

 Example 1-29 shows the nlu-languageDetection_1.js snippet.

 Example 1-29 Snippet: nlu-languageDetection_1.js

 [image:]

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	url : 'http://www.elpais.com.uy/',

 	features : {

 		concepts : {

 			limit : 1

 		}

 	}

 };

 natural_language_understanding.analyze(parameters, function(error, response) {

 	if (error) {

 		onError(error, response); // function to be defined by you

 	} else {

 		console.log(JSON.stringify(response, null, 2));

 		var language = response.language;

 		// process the language text in 'language'

 	}

 });

 [image:]

 Example 2: Detect the language of multiple web pages

 This second example shows how to detect the language of multiple web pages:

 •http://www.elpais.com.uy/

 •https://www.ibm.com/blockchain/what-is-blockchain.html

 The response is printed to the console.

 Node.js snippet 2

 Example 1-30 on page 56 shows the nlu-languageDetection_2.js snippet.

 The pseudocode for this sample snippet is as follows:

 1.	Get a reference to the Watson Developer Cloud module.

 2.	Get a reference to the async module.

 3.	Get a reference to the NLU module passing your username and password in the options parameter.

 4.	By using the async module, parallelize the following API calls:

 a.	Call the /analyze endpoint selecting any Natural Language Understanding feature. This example uses the concepts feature. As an input parameter, pass this URL:

 https://www.ibm.com/blockchain/what-is-blockchain.html

 b.	Call the /analyze endpoint selecting any Natural Language Understanding feature. this example uses the concepts feature. As an input parameter pass this URL:

 http://www.elpais.com.uy/

 5.	After the response from both calls is received, print the results to the console.

 Example 1-30 Snippet: nlu-languageDetection_2.js

 [image:]

 var async = require('async');

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'username' : your_username_here,

 	'password' : your_password_here,

 	'version_date' : NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 var parameters = {

 	features : {

 		concepts : {

 			limit : 1

 		}

 	}

 };

 function callLanguageDetection(callback) {

 	natural_language_understanding.analyze(parameters, function(error, response) {

 		if (error) { // do some error handling

 			onError(error, null);

 			callback(error, null);

 		} else {

 			callback(null, response);

 		}

 	});

 }

 async.parallel({

 	"call1" : function(callback) {

 		parameters.url = 'https://www.ibm.com/blockchain/what-is-blockchain.html';

 		callLanguageDetection(callback);

 	},

 	"call2" : function(callback) {

 		parameters.url = 'http://www.elpais.com.uy/';

 		callLanguageDetection(callback);

 	}

 }, function(err, results) {

 	if (err) {

 		onError(err);

 	} else {

 		console.log(JSON.stringify(results, null, 2));

 		// process the languages of asynchronous calls

 		var lang1 = results.call1.language;

 		var lang2 = results.call2.language;

 	}

 });

 [image:]

 1.3 Migrating from AlchemyLanguage to Natural Language Understanding

 This information applies only to users of the AlchemyLanguage API. For detailed information, see the Migrating from AlchemyLanguage topic in Watson Developer Cloud.

 Starting on April 7, 2017, creating a new instance of IBM AlchemyAPI® on Bluemix is no longer possible. Existing service instances will be supported until March 7, 2018. To continue using AlchemyLanguage features, you must migrate your code to Natural Language Understanding. Natural Language Understanding offers a more economical pricing model and a consolidated API that is much easier to use.

 These are the major changes:

 •New API request syntax: send requests to the /analyze endpoint.

 •New response structure (code that parses AlchemyLanguage output does not work for Natural Language Understanding output).

 •JSON is the only output format.

 •Text extraction is enabled by setting the return_analyzed_text parameter to true.

 •Microformats are not supported.

 •Date extraction is not supported (Publication Date is still supported in the Metadata feature).

 •The "quotations" options for entities are not supported.

 •The "knowledgeGraph" is not supported for concepts, keywords, or entities.

 •TypedRelations from AlchemyLanguage is Relations in Natural Language Understanding.

 •Relations from AlchemyLanguage is Semantic Roles in Natural Language Understanding.

 •Entity types have changed.

 1.4 References

 See the following resources:

 •Natural Language Understanding documentation:

 https://www.ibm.com/watson/developercloud/doc/natural-language-understanding/

 •Natural Language Understanding demonstration:

 https://natural-language-understanding-demo.mybluemix.net/

 •Natural Language Understanding in Watson API Explorer:

 https://watson-api-explorer.mybluemix.net/apis/natural-language-understanding-v1

 •Migrating from AlchemyLanguage:

 https://www.ibm.com/watson/developercloud/doc/natural-language-understanding/migrating.html

[image:]
[image:]

Creating a Natural Language Understanding service in Bluemix

 IBM Watson Developer Cloud offers a variety of services for developing cognitive applications. One of these services, which is the focus of this book, is the Watson Natural Language Understanding (NLU) service.

 This chapter explains how to create an instance of the NLU service in Bluemix. That Natural Language Understanding service instance is required for the use cases described in this book.

 The following topics are covered in this chapter:

 •Requirements

 •Creating the NLU service instance

 2.1 Requirements

 To create service and perform the use cases in this book, you must have a Bluemix account. You can register to create an account and log in at IBM Bluemix. When you log in, you are prompted to authenticate with your email or IBMid and password.

 2.2 Creating the NLU service instance

 The two ways to create the NLU service instance are as follows:

 •Creating the NLU service instance from the Bluemix website

 •Creating the NLU service instance by using Cloud Foundry commands

 2.2.1 Creating the NLU service instance from the Bluemix website

 To create the service instance from Bluemix, follow these steps:

 1.	Log in to the IBM Bluemix website.

 2.	When the home page opens, click Catalog.

 3.	On the IBM Bluemix Catalog page, scroll to the Services section, select Watson, and then click Natural Language Understanding. Another way to find the service is to use the search filter (Figure 2-1).

 [image:]

 Figure 2-1 Natural Language Understanding in the Bluemix catalog

 4.	On the Natural Language Understanding page (Figure 2-2), create the service instance:

 a.	You can either change the Service name and Credentials name fields by using your personal choices or keep the default values.

 b.	Select the plan. In this example, the Free Plan tier is selected.

 c.	Click Create.

 [image:]

 Figure 2-2 Creating Natural Language Understanding service instance

 5.	Get the username and password credentials (Figure 2-3) from the service instance you created in your Bluemix space:

 a.	Click the Service credentials tab.

 b.	Click View credentials to show the NLU service credentials.

 c.	Store the username and password values in a separate file or note for future reference.

 [image:]

 Figure 2-3 Get username and password from Natural Language Understanding service instance

 2.2.2 Creating the NLU service instance by using Cloud Foundry commands

 To create the service instance with Cloud Foundry commands, follow these steps:

 1.	Download the Cloud Foundry software and install it on your computer.

 2.	Open a command prompt.

 3.	Run the cf login command and insert the email and password for your Bluemix account in the sequence that is shown in Example 2-1.

 Example 2-1 Run login and provide email and password for the Bluemix account

 [image:]

 cf login

 API endpoint: https://api.ng.bluemix.net

 Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Password> <PUT_YOUR_PASSWORD_ACCOUNT>

 Authenticating...

 OK

 [image:]

 4.	If you have multiple organizations, select an organization and a Bluemix space to host the service (Example 2-2).

 Example 2-2 Select an organization and Bluemix space

 [image:]

 Select an org (or press enter to skip):

 1. <YOUR_BLUEMIX_EMAIL_ACCOUNT>

 2. Organization_2

 3. Organization_3

 Org> 1

 Targeted org <YOUR_ORGANIZATION>

 Select a space (or press enter to skip):

 1. dev

 2. itso-ed6000

 3. space_3

 Space> 1

 Targeted space dev

 API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

 User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Org: <YOUR_ORGANIZATION>

 Space: <YOUR_SPACE>

 [image:]

 5.	Run the following command to create an instance of the service:

 cf create-service <service> <service_plan> <ser-vice_instance>

 About the command:

 cf create-service	The Cloud Foundry command to create the service instance.

 <service>	The name of the service you want to create an instance of.

 <service_plan>	The pricing plan.

 <service_instance>	The service instance name you want to use.

 Example 2-3 shows the command.

 Example 2-3 The cf create-service command

 [image:]

 cf create-service natural-language-understanding free "NLU-ITSO-ED6000"

 Creating service instance NLU-ITSO-ED6000 in org <YOUR_ORGANIZATION>/ space <YOUR_SPACE> as <YOUR_BLUEMIX_EMAIL_ACCOUNT>......

 OK

 [image:]

 6.	List the service information by using the cf service <service_name> command to confirm that it was successfully created (Example 2-4).

 Example 2-4 The cf service command

 [image:]

 cf service NLU-ITSO-ED6000

 Service instance: NLU-ITSO-ED6000

 Service: natural-language-understanding

 Bound apps:

 Tags:

 Plan: free

 Description: Analyze text to extract meta-data from content such as concepts, entities, emotion, relations, senti-ment and more.

 Documentation url: https://www.ibm.com/watson/developercloud/doc/natural-language-understanding/

 Dashboard: https://www.ibm.com/watson/developercloud/dashboard/en/natural-language-understanding-dashboard.html

 Last Operation

 Status: create succeeded

 Message:

 Started: 2017-04-28T18:52:54Z

 Updated:

 [image:]

 7.	Create user and password credentials to access the service by using this command:

 cf create-service-key <service_instance> <service_key>

 About the command:

 cf create-service-key	The Cloud Foundry command to create the service key with user and password.

 <service_instance>	The name of the NLU service instance.

 <service_key>	The name of the service key you want to create.

 Example 2-5 shows this command.

 Example 2-5 The cf create-service-key command

 [image:]

 cf create-service-key "NLU-ITSO-ED6000" nlu-keys

 Creating service key nlu-keys for service instance NLU-ITSO-ED6000 as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

 OK

 [image:]

 8.	Get the username and password in order to access the service later by running the following command:

 cf service-key <service_instance> <service_key>

 About the command:

 cf service-key	The Cloud Foundry command to view the username and password in the service key.

 <service_instance>	The name of the service instance.

 <service_key>	The name of the service key.

 Example 2-6 shows this command.

 Example 2-6 Use cf service-key to get username and password

 [image:]

 cf service-key "NLU-ITSO-ED6000" nlu-keys

 Getting key nlu-keys for service instance NLU-ITSO-ED6000 as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

 {

 "password": "xxxxxxxxxxxx",

 "url": "https://gateway.watsonplatform.net/natural-language-understanding/api",

 "username": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

 }

 [image:]

[image:]
[image:]

Sentiment and personality analysis

 Natural Language Understanding (NLU) is a family of natural language processing (NLP) APIs that can be combined with other Watson services to perform social media sentiment analysis. These services can be combined to create practical applications, for example, to gain insights about the personality of your customers and their sentiment to your brand or products.

 This chapter describes steps to create a simple application to analyze Tweets from a Twitter handle by using the sentiment feature of the Natural Language Understanding service, combined with the Personality Insights and Insights for Twitter services.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 3.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 3.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create a Sentiment Analysis application in Node.js.

 •Run the Sentiment Analysis application in IBM Bluemix.

 •Feed the application with Tweets from one Twitter handle by using the Insights for Twitter service.

 •Use the Personality Insights service to analyze personality of the Twitter handle owner.

 •Use the Bluemix web user interface to create and manage services.

 3.1.2 Prerequisites

 You must have these prerequisites:

 •Bluemix account.

 •Review Chapter 1, “Basics of Watson Natural Language Understanding service” on page 1 and Chapter 2, “Creating a Natural Language Understanding service in Bluemix” on page 59.

 •A web browser (Chrome, Safari, Firefox, Internet Explorer).

 •An installed CloudFoundry CLI client.

 •Basic JavaScript, HTML, and CSS skills.

 •Git client:

  –	Git download and installation

  –	Cloud Foundry download and installation

 3.1.3 Expected results

 Figure 3-1 shows the expected result after running the application you develop in this chapter. You are asked for a Twitter handle and after you provide it, Tweets will be retrieved, analyzed for sentiment, and the personality of the user will be depicted.

 [image:]

 Figure 3-1 Sentiment and Personality Analysis expected result

 3.2 Architecture

 Figure 3-2 shows an overview of the application use case flow.

 [image:]

 Figure 3-2 Architecture overview

 The architecture has the following flow:

 1.	User enters a Twitter handle.

 2.	The Tweets are retrieved from the handle by using the Insights for Twitter service.

 3.	The text is passed to the Natural Language Understanding service (Sentiment feature) to analyze the sentiment of each Tweet.

 4.	All Tweets are passed to the Personality Insights service.

 Figure 3-3 shows the use case design flow.

 [image:]

 Figure 3-3 Use case flow design

 The use case has the following flow:

 1.	The Twitter handle (for example, @XYZ) is input to the web application.

 2.	The Twitter handle is then fed to the back-end processing system.

 3.	Integration occurs with NLU Sentiment, Insights for Twitter, and Personality Insights services.

 4.	The back-end system passes the results of the Tweets analysis with Personality Insights and Sentiment Analysis associated with Twitter handle to the front end.

 5.	The Personality Insights and Sentiment Analysis that are associated with the Twitter handle are displayed to the user.

 3.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step implementation (incomplete) version of the application.

 This repository contains an incomplete version of the application and is used in all sections of 3.4, “Step-by-step implementation” on page 69. This version takes you through the key steps to integrate the IBM Watson APIs with the application logic.

 •Quick-deploy (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 3.5, “Quick deployment of application” on page 87.

 3.4 Step-by-step implementation

 Implementation of the application involves the following steps:

 1.	Creating the Natural Language Understanding service instance

 2.	Creating the Insights for Twitter service instance

 3.	Creating the Personality Insights service instance

 4.	Coding the Node.js application

 5.	Pushing the application into Bluemix

 6.	Binding all the services to the Bluemix application (alternative option).

 7.	Testing the application

 3.4.1 Creating the Natural Language Understanding service instance

 The steps for creating the Natural Language Understanding (NLU) service instance and retrieving the service credentials are described in Chapter 2, “Creating a Natural Language Understanding service in Bluemix” on page 59.

 3.4.2 Creating the Insights for Twitter service instance

 Complete the following steps:

 1.	Log in to your IBM Bluemix account.

 2.	When the home page opens, click Catalog.

 3.	On the IBM Bluemix Catalog page, scroll to the Services section, select Data & Analytics, and then click Insights for Twitter. Another way to find the Insights for Twitter service is to use the search filter to search for twitter (Figure 3-4).

 [image:]

 Figure 3-4 Insights for Twitter service in the Bluemix catalog

 4.	On the Insights for Twitter page (Figure 3-5), create the service:

 a.	You can either change the Service name and Credentials name fields by using your personal choices or keep the default values.

 b.	Select the plan. In this example, the Free Plan tier is selected.

 c.	Click Create.

 [image:]

 Figure 3-5 Insights for Twitter service creation

 5.	After the service instance is created in your Bluemix space, get the username and password credentials from the service instance (Figure 3-6):

 a.	Click the Service credentials tab.

 b.	Click View credentials to show the service credentials.

 c.	Store the username and password values in a separate file or note for future reference.

 [image:]

 Figure 3-6 Get username and password from Insights for Twitter service instance

 3.4.3 Creating the Personality Insights service instance

 Complete the following steps:

 1.	Log in to your IBM Bluemix account.

 2.	When the home page opens, click Catalog.

 3.	On the IBM Bluemix Catalog page (Figure 3-7), type personality in the search filter. Several results are display. Click Personality Insights.

 [image:]

 Figure 3-7 Search for and select Personality Insights

 4.	On the Personality Insights page (Figure 3-8), create the service:

 a.	You can either change the Service name and Credentials name fields by using your personal choices or keep the default values.

 b.	Select the plan. In this example, the Tiered Plan tier is selected.

 c.	Click Create.

 [image:]

 Figure 3-8 Personality Insights service creation

 5.	After the service instance is created in your Bluemix space, get the username and password credentials from the service instance (Figure 3-9):

 a.	Click the Service credentials tab.

 b.	Click View credentials to show the service credentials.

 c.	Store the username and password values in a separate file or note for future reference.

 [image:]

 Figure 3-9 Get username and password from Personality Insights service instance

 3.4.4 Coding the Node.js application

 Coding involves two basic steps:

 1.	Clone the base structure from Git.

 2.	Code the remainder of the application.

 Clone the base structure from Git

 Complete these steps:

 1.	Fork the base structure from the following Git repository:

 https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs-student

 a.	Open a new command window.

 b.	Change from the current working directory to the location where you want to clone the remote Git repository.

 c.	Code the Git repository by using the git clone command:

 git clone https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs-student.git

 2.	Change to the newly created directory:

 redbooks-nlu-201-sentiment-nodejs-student

 Example 3-1 shows an Express Node.js application that follows the naming conventions and structure, which all Express applications have.

 Example 3-1 Express Node.js application structure

 [image:]

 root directory

 bin

 helpers

 public

 routes

 views

 app.js

 package.json

 README.md

 [image:]

 You code the remainder of the application, as described in the next section (“Code the remainder of the application” on page 76).

 Code the remainder of the application

 The application contains files to accelerate the development of the application and some blank lines (marked with XXX) and instructions so that you can complete the code. To code the remainder of the application, you complete the blank lines. Start in the back-end layer and then work in the presentation layer.

 Back-end layer

 Complete the back-end layer code:

 1.	At the beginning of the app.js file (lines 1 - 4), replace the value of the variables listed in Example 3-2 with their corresponding credentials values.

 Example 3-2 Entering the service instance credentials

 [image:]

 var NLU_USER = XXX; // REPLACE WITH YOUR NLU USER

 var NLU_PASSWORD = XXX; // REPLACE WITH YOUR NLU PASSWORD

 var TWITTER_INSIGHTS_USER = XXX; // REPLACE WITH YOUR TWITTER_INSIGHTS USER

 var TWITTER_INSIGHTS_PASSWORD = XXX; // REPLACE WITH YOUR TWITTER_INSIGHTS PASSWORD

 [image:]

 2.	Navigate to the app.js file and replace the last XXX (line 83) with a call to the Natural Language Understanding service with the sentiment feature. The sentiment feature is set in the parameters var (lines 77 - 80). In the callback, if an error occurs, load the nlu_sentiment property of the input Tweet with the error string (Example 3-3); otherwise, load the same property with the sentiment.document object returned from the call to the NLU service.

 Example 3-3 Calling NLU analyze endpoint with sentiment feature and handling of errors

 [image:]

 natural_language_understanding.analyze(parameters, function(error, sentimentResponse) {

 if (error) {

 tweet.nlu_sentiment = "ERROR"

 } else {

 tweet.nlu_sentiment = sentimentResponse.sentiment.document;

 }

 return resolve();

 });

 [image:]

 3.	The Insights for Twitter service requires you to specify the number of Tweets to return. In this example, this number is specified by setting the size parameter to the appropriate value (default value is 100, max is 500) in line 42 (Example 3-4).

 Also specify the query string that is used to search Tweets. This query string must be URL-encoded and must conform to support operators and terms (see the REST API documentation section at the Using the Insights for Twitter REST APIs web page).

 In this example, the query string is formed in the presentation layer and is passed in the query property of the body of the request. In line 43, set the query with this property (Example 3-4).

 Example 3-4 Set the size and query variables

 [image:]

 var size = 200 /* default value, max = 500 */;

 var query = req.body.query;

 [image:]

 4.	In callNLUAPI, set the value of the text parameter in the parameters object in line 78 (Example 3-5).

 Example 3-5 Set the value of text parameter

 [image:]

 var parameters = {

 text: tweet.message.body,

 features : {

 sentiment : {}

 }

 };

 [image:]

 5.	In the helpers/personality.js module, complete the personalityInsights object by replacing the XXX (lines 4 and 5) with the username and password you obtained from the Personality Insights service instantiation in Bluemix in step 5 on page 75.

 6.	Complete the toContentItem function, line 10, (Example 3-6) in the personality.js module. The objective is to map the Tweet received as a parameter to a ContentItem expected in the Personality Insights API.

 Example 3-6 Complete the toContentItem function

 [image:]

 function toContentItem(tweet) {

 return {

 id: tweet.message.id,

 language: tweet.message.twitter_lang,

 contenttype: 'text/plain',

 content: tweet.message.body.replace('[^(\\x20-\\x7F)]*', ''),

 created: Date.parse(tweet.message.postedTime),

 };

 }

 [image:]

 7.	Complete the Promise declaration in the getProfile function (line 16), in the personality.js module (Example 3-7).

 Example 3-7 Complete the Promise declaration in the getProfile function

 [image:]

 function getProfile(params) {

 return new Promise(function (resolve, reject) {

 personalityInsights.profile(params, function (error, response) {

 if (error) {

 reject(error);

 } else {

 resolve(response);

 }

 })

 });

 }

 [image:]

 Presentation layer

 You now work in the presentation layer.

 In the /public/javascripts/index.js file, you will complete the analyze function. This function is responsible for calling the back-end modules in order to get the Tweets and their corresponding sentiment, and then it loads the personality insights.

 Complete these steps (Example 3-8):

 1.	Review the message object (line 9). The query parameter specifies the query string that will be used to search for Tweets in the Insights for Twitter service.

 2.	After the search query is defined, a POST request is created.

 3.	In the response of the POST request, you complete the call to these functions:

  –	The loadTweetFeed function modifies the DOM of the HTML document to list all the Tweets and their corresponding sentiment (line 18).

  –	The loadPersonality function modifies the DOM of the HTML document to include the sunburst chart (line 19).

 Example 3-8 Complete the analyze function in the index.js file

 [image:]

 function analyze() {

 showProcessing(true);

 var message = {

 "query": 'from:'.concat($("#tw_search").val().replace("@", "")).concat(" posted:2017-01-01")

 };

 var request = new XMLHttpRequest();

 request.open('POST', 'analyze', true);

 request.setRequestHeader("Content-type", "application/json");

 request.onload = function () {

 // process response

 var result = JSON.parse(request.response);

 loadTweetFeed(result.tweets);

 loadPersonality(result.personality, result.error);

 showProcessing(false);

 };

 request.onerror = function () {

 showProcessing(false);

 }

 request.send(JSON.stringify(message));

 }

 [image:]

 3.4.5 Pushing the application into Bluemix

 Complete these steps:

 1.	Open a command prompt window and change to the directory where the project is downloaded. For example, use this command:

 cd redbooks-nlu-201-sentiment-nodejs-student

 2.	Log in with the CLI client cf login command:

 a.	You are prompted for your user name and password.

 b.	If you have multiple organizations, select an organization.

 c.	If you have multiple spaces, select a space.

 3.	After you are logged in, enter the cf push XXX command, where XXX is the unique name of your application (in this example, it is nlu-sentiment-analysis).

 This step creates the Node.js application in Bluemix, uploading all your code.

 Upon success, you see results similar to Example 3-9.

 Example 3-9 Success

 [image:]

 Showing health and status for app nlu-sentiment-analysis in org <YOUR_ORG> / space <YOUR_SPACE> as <YOUR_BLUEMIX_ID> ...

 OK

 requested state: started

 instances: 1/1

 usage: 1G x 1 instances

 urls: nlu-sentiment-analysis.mybluemix.net

 last uploaded: Sun May 14 05:15:16 UTC 2017

 stack: cflinuxfs2

 buildpack: SDK for Node.js(TM) (ibm-node.js-6.10.2, buildpack-v3.12-20170505-0656)

 state since cpu memory disk details

 #0 running 2017-05-14 02:16:42 AM 0.0% 59.5M of 1G 100.8M of 1G

 Finished: SUCCESS

 [image:]

 4.	Navigate to your dashboard in Bluemix to see your newly created application. The application is now in a Running status, which is green (Figure 3-10).

 [image:]

 Figure 3-10 Dashboard with new application

 3.4.6 Binding all the services to the Bluemix application (alternative option)

 As you might have observed, up to now, the services and the application are somewhat independent. The application uses the services by targeting their credentials (URL, username, and password). This is correct and it is one way to connect applications and services.

 Another approach is to bind the services to the application and let the application use the VCAP_SERVICES variable, as the following steps describe.

 	
 Note: In this use case, you entered the username and password for the services instances in the code. This section is optional for this example, but is included here to show the preferred approach to bind the services to the application.

 Complete these steps:

 1.	From your dashboard, click the application you just created (Figure 3-11).

 [image:]

 Figure 3-11 Click the application on the dashboard

 2.	Click Connections (Figure 3-12).

 [image:]

 Figure 3-12 Click Connections

 3.	Click Connect existing (Figure 3-13).

 [image:]

 Figure 3-13 Connect existing services

 4.	Your existing services are listed (Figure 3-14). Select the Natural Language Understanding service and click Connect.

 [image:]

 Figure 3-14 Select the service to connect

 5.	You must restage your application; at the prompt, click Restage.

 6.	Repeat step 3 through step 5 for both the Personality Insights service and for the Insights for Twitter service.

 7.	Click Overview. Your window will look similar to Figure 3-15.

 [image:]

 Figure 3-15 Application with services after binding

 To take advantage of the bound services, the app.js code (lines 1 - 17) should be similar to Example 3-10. See the full app.js listing:

 https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs/blob/master/app.js

 Example 3-10 The app.js code

 [image:]

 var NLU_USER = '46941c99-9f46-4fe0-980f-da4c5e492558'; // REPLACE WITH YOUR NLU USER

 var NLU_PASSWORD = '1pyPqZAfdBpm'; // REPLACE WITH YOUR NLU PASSWORD

 var TWITTER_INSIGHTS_USER = '1d519921-0506-48f9-b8b9-f5bec95f9b2b'; // REPLACE WITH YOUR TWITTER_INSIGHTS USER

 var TWITTER_INSIGHTS_PASSWORD = '04dKoismny'; // REPLACE WITH YOUR TWITTER_INSIGHTS PASSWORD

 if (process.env.VCAP_SERVICES) {

 var services = JSON.parse(process.env.VCAP_SERVICES);

 for (var svcName in services) {

 if (svcName.match("natural-language-understanding")) {

 NLU_USER = services[svcName][0].credentials.username;

 NLU_PASSWORD = services[svcName][0].credentials.password;

 } else if (svcName.match("twitterinsights")) {

 TWITTER_INSIGHTS_USER = services[svcName][0].credentials.username;

 TWITTER_INSIGHTS_PASSWORD = services[svcName][0].credentials.password;

 }

 }

 }

 var express = require('express');

 [image:]

 Likewise, the personality.js code (lines 1 - 22) should be similar to Example 3-11. See the full personality.js listing:

 https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs/blob/master/helpers/personality.js

 Example 3-11 The personality.js code

 [image:]

 var PersonalityInsightsV3 = require('watson-developer-cloud/personality-insights/v3');

 var PERSONALITY_USER;

 var PERSONALITY_PASSWORD;

 if (process.env.VCAP_SERVICES) {

 var services = JSON.parse(process.env.VCAP_SERVICES);

 for (var svcName in services) {

 if (svcName.match("personality_insights")) {

 PERSONALITY_USER = services[svcName][0].credentials.username;

 PERSONALITY_PASSWORD = services[svcName][0].credentials.password;

 }

 }

 }

 var personalityInsights = new PersonalityInsightsV3({

 username: PERSONALITY_USER,

 password: PERSONALITY_PASSWORD,

 version_date: '2016-10-19'

 });

 function toContentItem(tweet) {

 ...

 [image:]

 	
 Note: At this point, if you bound the services to the application as described in this section, you must push the application into Bluemix again. Follow the steps in 3.4.5, “Pushing the application into Bluemix” on page 79.

 3.4.7 Testing the application

 To test the application, run it as follows:

 1.	Click Overview and then click the application route, which is the link next to the Running status (Figure 3-16).

 [image:]

 Figure 3-16 Overview tab

 A new browser tab opens (Figure 3-17).

 [image:]

 Figure 3-17 Your new application

 2.	Insert a Twitter handle in the input text field. This will be used to retrieve Tweets, and analyze sentiment and personality of the account owner (Figure 3-18). Click Analyze.

 [image:]

 Figure 3-18 Insert Twitter handle in input text field and click Analyze

 3.	Two new sections are displayed (Figure 3-19): one lists all the Tweets; the other shows a graphical depiction of the personality.

 [image:]

 Figure 3-19 Analysis result

 Examples of Twitter handle names you can use

 The following examples are Twitter handle names that you can use to test the app:

 •@realDonaldTrump

 •@katyperry

 •@TheEllenShow

 •@Atleti

 •@developerWorks

 •@IBMBluemix

 •@jimmyfallon

 3.5 Quick deployment of application

 As described in 3.3, “Two ways to deploy the application: Step-by-step and quick deploy” on page 69, a Git repository containing the full application code is provided so that you can run the application with minimal steps.

 To run the application more quickly, follow these steps:

 1.	Go to the following web page:

 https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs

 2.	The page shown in Figure 3-20 opens. Click Log In.

 [image:]

 Figure 3-20 Deploy the sample application to Bluemix: Log in

 3.	Enter your Bluemix ID and password.

 4.	On the next page (Figure 3-21), enter a unique name for your app and then click Deploy.

 [image:]

 Figure 3-21 Deploy the sample application to Bluemix: Deploy

 5.	Click Delivery Pipeline (Figure 3-22).

 [image:]

 Figure 3-22 Deploy the sample application to Bluemix: Delivery Pipeline

 6.	Wait until the Deploy Stage completes. The deployment will fail (Figure 3-23) because it expects the Natural Language Understanding, Insights for Twitter, and Personality Insights services to be bound to the application.

 [image:]

 Figure 3-23 Deploy the sample application to Bluemix: Deploy Stage Failed

 7.	Create those three services:

 a.	Create the NLU service as described in 3.4.1, “Creating the Natural Language Understanding service instance” on page 69.

 b.	Create the Insights for Twitter service as described in 3.4.2, “Creating the Insights for Twitter service instance” on page 70.

 c.	Create the Personality Insights service as described in 3.4.3, “Creating the Personality Insights service instance” on page 73.

 8.	Bind the three services to the application as described in 3.4.6, “Binding all the services to the Bluemix application (alternative option)” on page 80.

 	
 Note: Do not push the application to Bluemix after binding the services.

 9.	After the three services are bound and the application is restaged, see that the application starts and is running (Figure 3-24).

 [image:]

 Figure 3-24 Application connected to the three services and status Running

 10.	Click Overview.

 11.	Click Routes and select the link to access the application (Figure 3-25).

 [image:]

 Figure 3-25 Opening the application

 12.	Test the application as described in 3.4.7, “Testing the application” on page 85.

 3.6 References

 See the following resources:

 •Overview of the IBM Watson Natural Language Understanding service:

 https://www.ibm.com/watson/developercloud/doc/natural-language-understanding/index.html

 •Personality Insights:

 https://www.ibm.com/watson/developercloud/personality-insights.html

 •About Insights for Twitter:

 https://console.ng.bluemix.net/docs/services/Twitter/twitter_overview.html#about_twitter

 •SIgn up for Bluemix account:

 https://console.ng.bluemix.net/registration/

 •personality-sunburst-chart:

 https://www.npmjs.com/package/personality-sunburst-chart

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the Internet as described in the following sections.

 Locating the web material

 The following Git repositories are available to help you with the examples in these chapters:

 •Chapter 1, “Basics of Watson Natural Language Understanding service” on page 1:

  –	Node.js sample snippets:

 https://github.com/snippet-java/redbooks-101/tree/master/nodejs

  –	Java sample snippets:

 https://github.com/snippet-java/redbooks-101/tree/master/java

 •Chapter 3, “Sentiment and personality analysis” on page 65:

  –	For the incomplete code (step-by-step implementation version):

 https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs-student

  –	For the complete code (quick deployment version) that you can use for verification or as a code reference:

 https://github.com/snippet-java/redbooks-nlu-201-sentiment-nodejs

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 The volumes in the Building Cognitive Applications with IBM Watson APIs series:

 •Volume 1 Getting Started, SG24-8387

 •Volume 2 Conversation, SG24-8394

 •Volume 3 Visual Recognition, SG24-8393

 •Volume 4 Natural Language Classifier, SG24-8391

 •Volume 5 Language Translator, SG24-8392

 •Volume 6 Speech to Text and Text to Speech, SG24-8388

 •Volume 7 Natural Language Understanding, SG24-8398

 You can search for, view, download or order these documents and other IBM Redbooks, IBM Redpapers™, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Online resources

 These websites are also relevant as further information sources:

 •IBM Watson Knowledge Studio:

 https://www.ibm.com/us-en/marketplace/supervised-machine-learning

 •Supported languages:

 https://www.ibm.com/watson/developercloud/doc/natural-language-understanding/#supported-languages

 •IBM Bluemix:

 https://console.ng.bluemix.net/

 •Cloud Foundry software:

 https://github.com/cloudfoundry/cli/releasesDescription1

 •Git downloads:

 https://git-scm.com/downloads

 •Cloud Foundry download and installation:

 https://github.com/cloudfoundry/cli/releasesDescription2

 •REST API documentation in the Using the Insights for Twitter REST APIs:

 https://console.ng.bluemix.net/docs/services/Twitter/twitter_rest_apis.html#rest_api

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Building Cognitive Applications with IBM Watson Services: Volume 7 Natural Language Understanding

 Back cover

 Acrobat bookmark

 ISBN 0738442623

 SG24-8398-00

 ®

 OPS/images/8398-nlu-sentiment.07.1.45.jpg
Bluemix

app

kDol bty i

TEMPLATEINFO

Tool Integrations

OPS/images/quick-01.png
@ 1BM Bluemix Docs Catalog

Deploy to Bluemix: redbooks-nlu-201-sentiment-nodejs

app

(e BR ale Ld Lo) A Bluemix account is required.
Your app's code willbe automatically loaded into a To get started, click Log In or Sign Up at the top of this

Gitrepo. Each time you committ changes to the.
repo, they are automatically deployed by usinga
toolchain that is associated with your app. You can
‘add more tools to the toolchain and share t with
‘your team. Lear more.

page.

The toolchain uses tools that are part of the
Gontinuous Defivery service. If an instance of that

service isn'talready in your organization, when you
ciick Deploy, itis automatically added at no cost
1o you. For more information and terms, see the.
Biuemix catalog.

Stillneed to create a project at JazzHub? You can
still create a project, but f you do, you must
upgrade that project to a toolchain soon.

TEMPLATE INFO
GIT URL https://github.com/...

OPS/images/quick-04.png
@, IBM Bluemix

& Toolchain

redbooks-nlu-201-sentiment-nodejs-20170516130759677 | Delivery Pipeline

LAST INPUT #GrURL LaST INPUT Stage: Buid Stage / Job: Build

Last commit by Sebastian Vergara 2d ago.
teciaced spps and helpers/persorsitye & Buid1 J-

Jo8s View logs and history Jo8s View logs and history
(@ Build Passed 2mago ®) Deploy Faled 10mago
LAST EXEGUTION RESULT LAST EXEGUTION RESULT
Noresuts

& Build 1 g~

OPS/images/8398-nlu-sentiment.07.1.46.jpg

OPS/images/quick-06.png
@, IBM Bluemix Catalog Support Manage

Cloud Foundry apps /

Getting started
— is) redbooks-nlu-201-sentiment-nodejs-20170516130759677 @ fumns visita. B :
Runtime
Connections Runtime Edit routes
Logs - Manage domains
Monitoring / \
@ 1 ® @ ® 1
suomc wemavoes cBEvORY PER NSTANGE TomaL s ALLocaTon
SDKforNodeis™ Alintances re running 018 sl vl @

Health s 100%

OPS/images/8398-nlu-sentiment.07.1.48.jpg

OPS/images/8398spec.03.1.1.jpg

OPS/images/8398-nlu-sentiment.07.1.41.jpg
@ 0 & e i it OCEEE
o s

Twitter Sentiment Analysis

witerrarce fog @b

OPS/images/8398-nlu-sentiment.07.1.40.jpg
$52.40 $52.40

OPS/images/8398-nlu-sentiment.07.1.43.jpg
co

Twitter Sentiment Analysis

roaDoraisTumo

T ey bt T i i o
N e o o o

e o e o W e o

OPS/images/8398-nlu-sentiment.07.1.42.jpg
Twitter Sentiment Analysis

o

=]

OPS/images/8398-nlu-intro.05.1.097.jpg

OPS/images/8398-nlu-sentiment.07.1.34.jpg

OPS/images/8398-nlu-intro.05.1.098.jpg

OPS/images/8398-nlu-sentiment.07.1.33.jpg
&) nlu-sentiment-ana

Noconnected services

OPS/images/8398-nlu-intro.05.1.099.jpg

OPS/images/8398-nlu-sentiment.07.1.36.jpg

OPS/images/8398-nlu-sentiment.07.1.35.jpg

OPS/images/8398-nlu-sentiment.07.1.38.jpg

OPS/images/8398-nlu-sentiment.07.1.37.jpg

OPS/images/8398-nlu-sentiment.07.1.39.jpg

OPS/images/8398-nlu-intro.05.1.070.jpg

OPS/images/8398-nlu-intro.05.1.071.jpg
1. nput parameters. 2 Processing 3 Response.

peo—
wowr — .
pemaranes e P e—
e o 0002206+ et
[y P ——

Semrtiget s

:)
posbion e

OPS/images/8398-nlu-intro.05.1.072.jpg

OPS/images/8398-nlu-intro.05.1.073.jpg

OPS/images/8398-nlu-sentiment.07.1.10.jpg
sonality Insigf

e Images
Pricing Plans -

OPS/images/8398-nlu-intro.05.1.074.jpg

OPS/images/8398-nlu-intro.05.1.100.jpg

OPS/images/8398-nlu-intro.05.1.064.jpg

OPS/images/8398-nlu-intro.05.1.065.jpg

OPS/images/8398-nlu-intro.05.1.066.jpg

OPS/images/8398-nlu-intro.05.1.067.jpg
Dekte. coce [

Buserame | 5po2150a-173-4a05-ac4- 53859567 44c0

a Passwors

@ Exract e otowng feaures

ko & o
3 OocumentEmcton
2 Oocumer st o o

SName | NaualLanguage Undersianang

OPS/images/nr-relations-2.png
info debug

5182017, 522:20 PM_ node: 280ce1e 515ed8
g festures - Obiect
~object
~relations: array[1]
~6: object
type: "agentof”

sentence: "Cutting Cash Would Be 3 Boon for the World's Poor,
Rogoff Says”

score: 0.859629

~vargunents: array[2]
~6: object
text: "Rogof”

~entities: array[1]
~6: object

type: "person”

text: "Rogof”

~1: object
text: "says”
~entities: array[1]
~6: object
type: "EventComunication”
text: "says”

Languzge: "en’

OPS/images/8398-nlu-intro.05.1.069.jpg

OPS/images/8398-nlu-intro.05.1.060.jpg

OPS/images/8398-nlu-intro.05.1.061.jpg

OPS/images/8398-nlu-intro.05.1.062.jpg
1. Input parameters

EEe

2 Processing

4-_.

3 Response

it
«
et |
B S P —

| A

OPS/images/8398-nlu-intro.05.1.063.jpg

OPS/images/8398-nlu-intro.05.1.053.jpg

OPS/images/8398-nlu-intro.05.1.054.jpg

OPS/images/8398-nlu-intro.05.1.055.jpg

OPS/images/8398-nlu-intro.05.1.056.jpg

OPS/images/8398-nlu-intro.05.1.057.jpg

OPS/images/8398-nlu-intro.05.1.058.jpg
it Naturl Language understanding node

Busemame | soa215aa-o73-4ad9-a5c4 53659567440

& passvord

@ Exrsct e oowng estures

7 Categones @ Keyworss
Concepts 5 Keywora Emoton
Oocument Emoton @ Keyuars Sentment
Oocument Senment Mamum Keyvorss
Entes =

© Relatons

© Semantc Roks

SName | NauratLanguage Undersanang

OPS/images/nr-keywords-2.png
info debug

562017, 3:49:28 PM node: 6550120 14453
msg festures : Object
~object

retrieved_url: "nttp:/ /. techradar. con/news/phone-and-
communi cations/mobile-phones/20-best-mobile-phones-in-the-uorld-
today-645440"

~keywords: array[49]
10 . 9]
~0: object
text: "samsung Galaxy 58"
relevance: 0.972385
~1: object
text: "Galaxy S8 Plus”
relevance: 0.743052
~2: object
text: “Xperia X2
relevance: 0.58121
~3: object
text: "best phones”
relevance: 0.430501
»4: object
»5: object
»6: object
»7: object
»8: object
»9: object
vie 19
>0 . 29
>0 - 391
>0 - 48]

language: "en’

OPS/images/8398-nlu-intro.05.1.090.jpg

OPS/images/8398-nlu-intro.05.1.091.jpg

OPS/images/8398-nlu-intro.05.1.092.jpg

OPS/images/8398-nlu-intro.05.1.093.jpg
Et Natural Language Undersianding node.
Deete [- |

e e]

& passvord -
-, eatures
© Kepwords
& concepts © Metadan
& Document Emoton @ Reatons
& Document Sentment © Semanic Roks

@ Enites

SName | Naurai Language Undersanang

OPS/images/8398-nlu-sentiment.07.1.30.jpg
AlAops) B

AaServces 6 B

OPS/images/nr-categories-2.png
info debug

582017, 7:41:30 PM_ node: aedBfed 1201 B
msg festures : Object
~object

retrieved_url: "http:/ /. espn.con/tennis/ story/_/1id/18436908/ australian-open-2017-tournanent
news -schedule-ive-scores-ty-cover-age”

~categories: array(3]
~6: object
score: 0.619796

Label: "/art and entertainnent/movies and tu/television”

~1: object
score: 0.595202
Label: */sports/tennis”
~2: object
score: 0.426567
Lavel: */news”

languzge: "en”

OPS/images/8398-nlu-intro.05.1.095.jpg

OPS/images/8398-nlu-sentiment.07.1.32.jpg
$5240 $5240

OPS/images/8398-nlu-intro.05.1.096.jpg

OPS/images/8398-nlu-sentiment.07.1.31.jpg
Al Apps (1)

AlServices (5)

OPS/images/8398-nlu-intro.05.1.086.jpg

OPS/images/8398-nlu-sentiment.07.1.23.jpg

OPS/images/8398-nlu-intro.05.1.087.jpg

OPS/images/8398-nlu-sentiment.07.1.22.jpg

OPS/images/8398-nlu-intro.05.1.088.jpg
1. Input parameters 2. Processing 3. Response

pom—
neur | ——————— [
t
[rrm——— i — T T T
Sl 0Oz | Sowcf e et
bR s b ot Lo ot
e tivetig

= }4. sl

OPS/images/8398-nlu-sentiment.07.1.25.jpg

OPS/images/8398-nlu-intro.05.1.089.jpg

OPS/images/8398-nlu-sentiment.07.1.24.jpg

OPS/images/8398-nlu-sentiment.07.1.27.jpg

OPS/images/8398-nlu-sentiment.07.1.26.jpg

OPS/images/8398-nlu-sentiment.07.1.29.jpg

OPS/images/8398-nlu-sentiment.07.1.28.jpg

OPS/images/8398-nlu-intro.05.1.080.jpg

OPS/images/8398-nlu-intro.05.1.081.jpg

OPS/images/8398-nlu-intro.05.1.082.jpg

OPS/images/8398-nlu-intro.05.1.083.jpg

OPS/images/8398-nlu-intro.05.1.084.jpg
it Nawrl Language Undersanding node

Busemame | sos215aa-73-4a05-3504 59855567 44c0

& passvors [

8 Extract ne toowng estures
Categores
Concepts

@ Oocument Senment
Sertiment Targets

=

WName | NotuaiLanguage Undersianang

Keyworss

OPS/images/8398-nlu-sentiment.07.1.21.jpg

OPS/images/nr-targetedSentiment-2.png
info ‘ debug

5182017, 708:27 PM_ node: o416cic8 5es5.
msg festures : Object

~object
~sentinent: object
~targets: array[1]
~6: object
text: "Fitness”

label: “positive”

retrieved_url: "nttp:/ /e techradar. con/revies/wearables /apple-uatch-2-1323213/ review”

Languze

OPS/images/8398-nlu-sentiment.07.1.20.jpg

OPS/images/8398-nlu-sentiment.07.1.19.jpg

OPS/images/8398-nlu-intro.05.1.075.jpg

OPS/images/8398-nlu-sentiment.07.1.12.jpg

OPS/images/8398-nlu-intro.05.1.076.jpg
Edit Natwral Language Understanding node

ausemame

L

@ Exrac e osowng features
o Categores
o concepss
2 _ocument sentment
Senment Targets

@ Enes

Same | Nawrat Language Undersanaing

Kepvorss
Wetagata
Relatons
Semantc Roks

OPS/images/8398-nlu-sentiment.07.1.11.jpg
Personality Insights

OPS/images/nr-sentiment-2.png
debug

582017, 5:32:51 PM node: 62917e83.357e8.
msg festures : Object

~object

~sentinent: object

~document: object
score: 0.455467

label: “positive”

“nttp://uw. techradar . con/reviews /wearables /apple-uatch-2-1323213/ review’

OPS/images/8398-nlu-sentiment.07.1.14.jpg

OPS/images/8398-nlu-intro.05.1.078.jpg

OPS/images/8398-nlu-sentiment.07.1.13.jpg

OPS/images/8398-nlu-intro.05.1.079.jpg

OPS/images/8398-nlu-sentiment.07.1.16.jpg

OPS/images/8398addm.08.1.2.jpg

OPS/images/8398-nlu-sentiment.07.1.15.jpg

OPS/images/8398addm.08.1.1.jpg

OPS/images/8398-nlu-sentiment.07.1.18.jpg

OPS/images/8398-nlu-sentiment.07.1.17.jpg

OPS/images/nr-emotion-2.png
info debug

T e

51512017, 12:25:47 P node: 8726280 414088

msg festures : Object

~object
~vemotion: object
~document: object

~vemotion: object
sadness: 0.267623
Soy: 0.197121
fear: 0.050285
aisgust: 0.030993
anger: 0.348678

language: "en

OPS/images/8398-nlu-intro.05.1.028.jpg

OPS/images/8398-nlu-intro.05.1.029.jpg
Eait Natural Language Understanding node.

P PR ———)

apassvord |

@ Exract e osowng features
© Categores
Concep

@ _OocumentEmoton

EmowonTargE

5 Document sentment
Entes

Wame | NauralLanguage Undersanaing

Kepvorss
etasaia
Reistons
5 semanic Rokes

OPS/images/nr-concepts-10.png
info J debug

512017, 508:13 M node: BE53 1162 ?

+ "nttp://uw. bbe. con/news/ technology-38595480"

~concepts: array[8]
~6: object
text: "Carnegie Mellon University”
relevance: 0.960842

dopedia_resource:
“nttp://dbpedia.org/resource/Carnegie_Mellon University”

~1: object
text: "Artificial intelligence”
relevance: 0.894952

dopedia_resource:
“nttp://dbpedia.org/resource/Artificialintelligence”

~2: object
text: "Computer”
relevance: 0.66725
dopedia_resource: "http://dbpedia.org/resource/Computer”
~3: object
text: "Herbert Simon”
relevance: 0.543397
dopedia_resource: “nttp://dbpedia.org/resource/Herbert_Sinon”
~a: object
text: "Computer science”

relevance: @.501165
dopedia_resource: “nttp://dbpedia.org/resource/Computer_science”

»5: object

»6: object

»7: object

languags

OPS/images/8398-nlu-intro.05.1.021.jpg

OPS/images/8398-nlu-intro.05.1.022.jpg

OPS/images/8398-nlu-intro.05.1.023.jpg
_< e

« mport
Cipbosra o

« Ubrary

OPS/images/8398-nlu-intro.05.1.024.jpg
. nput parameters 2 Processing 3 Rosponse

wer !
= n i
e
feiosty

S s oy
[T ey { -,
s v,

e oo
ety

OPS/images/8398-nlu-intro.05.1.025.jpg

OPS/images/8398-nlu-intro.05.1.026.jpg

OPS/images/8398-nlu-intro.05.1.027.jpg

OPS/images/nr-concepts-8.png

OPS/images/8398-nlu-intro.05.1.018.jpg
it}

e

OPS/images/8398-nlu-intro.05.1.019.jpg

OPS/8398cover.jpg
@ Redhooks

bmcomucbocss

Building Cognitive Applications with
IBM Watson Services: Volume 7
Natural Language Understanding

Sebastian Vergara
Mohamed E-Knouly
Mariam El Tantawi - —
Shireesh Maria
Lak Sri

In partnership with

1BM Skills Academy Program

OPS/images/8398-nlu-sentiment.07.1.09.jpg

OPS/images/8398-nlu-sentiment.07.1.08.jpg

OPS/images/8398-nlu-sentiment.07.1.07.jpg
ghts for Twitter

Features
Pricing Plans [—

OPS/images/8398-nlu-intro.05.1.010.jpg
Flow 1

input

matt

e
websocket

©p

OPS/images/8398-nlu-sentiment.07.1.06.jpg
et e [~]

Le— :

¥ i s

&
Lookingformors?

OPS/images/nr-concepts-2.png
Edit inject node.

& Payload ~ % hitp://www.bbe. com/newmecnnologysases{

flow.
== Topic
global.
C Repeat 4, string M
9 number tart?
® boolean
W Name
{} JSON
terval | fimestamp Ind "at a specific time" will use cron.
‘See info box for

OPS/images/8398-nlu-sentiment.07.1.05.jpg

OPS/images/8398-nlu-intro.05.1.012.jpg
a Flow1

~ 1BM_watson =

OPS/images/8398-nlu-sentiment.07.1.04.jpg

OPS/images/nr-concepts-4.png
Edit Natural Language Understanding node

Delete

&Usemame | 5p9219aa-fb73-4ad9-a5c4-5385956744c0

& Password

B Extract the following features:
@ Categories
@ Concepts

Maximum Concepts.

8
[Document Emotion
[Document Sentiment
[Entities

Cancel [>!

[sNaN=N]

Keywords
Metadata

Relations
Semantic Roles

W Name Natural Language Understanding|

OPS/images/8398-nlu-sentiment.07.1.03.jpg
LR ————

CELTHE

Twitter Sentiment Analysis

Do

s e e i

T T -

b o s

e e ok W A

OPS/images/nr-concepts-5.png

OPS/images/8398-nlu-sentiment.07.1.02.jpg

OPS/images/8398-nlu-intro.05.1.015.jpg
ouput

tp rsponse

——ochat

OPS/images/8398-nlu-sentiment.07.1.01.jpg

OPS/images/nr-concepts-7.png
Edit debug node

Delete

utput ~ msg. features

Ko debug tab

Cancel

Done

% Name Name

OPS/images/8398-nlu-intro.05.1.050.jpg

OPS/images/8398-nlu-intro.05.1.051.jpg
1. Input parametrs. 2 Processing

fsamanes s

3. Response

ot amian oy .

oy St

Fapeort

ey
e i
[y

-

o vt o

OPS/images/8398-nlu-intro.05.1.052.jpg

OPS/images/8398-nlu-intro.05.1.042.jpg
1. Input parametrs

s

— B =

2 Processing 3. Response

o
«
e —
i —— |

o paner

o it

e

e
o e v

ey,

OPS/images/8398create-service.06.1.11.jpg

OPS/images/8398-nlu-intro.05.1.043.jpg

OPS/images/8398create-service.06.1.10.jpg

OPS/images/8398-nlu-intro.05.1.044.jpg

OPS/images/8398create-service.06.1.13.jpg

OPS/images/8398-nlu-intro.05.1.045.jpg

OPS/images/8398create-service.06.1.12.jpg

OPS/images/8398-nlu-intro.05.1.046.jpg

OPS/images/8398create-service.06.1.15.jpg

OPS/images/8398-nlu-intro.05.1.047.jpg
Edit Natural Language Understanding node

Busemame | soe2150a-073-4205-a5c4- 53859567 44c0

a password

@ Exrac e osoung festures

) Categores Kepvorss
Concepts Hetadata
ocument Emation Reatons
ocument sertment ‘Semantc Roks

el

B

Whame | NauralLangusge Undersanang

OPS/images/8398create-service.06.1.14.jpg

OPS/images/nr-entities-2.png
info debug L

51512017, 00455 P node: feB52L 7051
msg festures : Object
~object
retrieved_url:
“nttp://uwn. techradar . con/news phone-
‘and-conmunications/mobi le-phones,/20-
best-mobile-phones-in-the-world-today-
545430
~ventities: array[9]
~6: object
type: "Company”
text: "Samsung”
relevance: 0.766085
~disambiguation: object
subtype: array[0]
name: "Sansung”

dopedia_resource:
“nttp://dbpedia.org/resource/Samsy,

count: &
~1: object
type: "Venicle"
text: "Galaxy”
©.520085

relevance: 0.456216
» disambiguation: object
count: 3

»3: object

OPS/images/8398create-service.06.1.17.jpg

OPS/images/8398-nlu-intro.05.1.049.jpg

OPS/images/8398create-service.06.1.16.jpg

OPS/images/8398-nlu-intro.05.1.040.jpg

OPS/images/8398-nlu-intro.05.1.041.jpg

OPS/images/nr-emotion-target-2.png
info debug

5152017, 82544 PM_ node: 16315310165
msg festures : Object
~object
~vemotion: object
~targets: array[1]
~6: object
text: "Best Buy”

~emotion: object
sadness: 0.175582
oy: 0.51025
fear: 0.008002
disgust: 0.004979
anger: 0.124981

~document: object
~emotion: object
sadness: 0.267623

Soy: 0.197121
fear: 0.050285
aisgust: 0.030993
anger: 0.348678

Languzge: "en’

OPS/images/8398create-service.06.1.09.jpg

OPS/images/8398-nlu-intro.05.1.031.jpg

OPS/images/8398create-service.06.1.08.jpg

OPS/images/8398-nlu-intro.05.1.032.jpg

OPS/images/8398create-service.06.1.07.jpg

OPS/images/8398-nlu-intro.05.1.033.jpg
2 Processing 3 Respense

SR

——]

e

i

OPS/images/8398create-service.06.1.06.jpg

OPS/images/8398-nlu-intro.05.1.034.jpg

OPS/images/8398create-service.06.1.05.jpg

OPS/images/8398-nlu-intro.05.1.035.jpg

OPS/images/8398create-service.06.1.04.jpg
Natural Language Understanding
Prcing Plans =
i
=

OPS/images/8398-nlu-intro.05.1.036.jpg

OPS/images/8398create-service.06.1.03.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/8398-nlu-intro.05.1.037.jpg

OPS/images/8398create-service.06.1.02.jpg

OPS/images/8398-nlu-intro.05.1.038.jpg
Elt Natural Language Understanding node.

Busemame | sbe2150a-o73-4a09-a5c4- 536595 744c0

& passvord

4

8 Exrsct e toowmg estres
@ Categones
© comeps
% ocument Emoton
Emoton Tagets
Bestany
e e
o Entes

Shame | NaurarLanguage Understanang

Retons
@ Semanic Roks

OPS/images/8398create-service.06.1.01.jpg

OPS/images/8398-nlu-intro.05.1.001.jpg

OPS/images/8398-nlu-intro.05.1.009.jpg

OPS/images/8398-nlu-intro.05.1.008.jpg

OPS/images/8398-nlu-intro.05.1.007.jpg

OPS/images/8398-nlu-intro.05.1.006.jpg

OPS/images/8398-nlu-intro.05.1.005.jpg
1. It paramsters

o

[a—
ey

2 Processing

3. Response

OPS/images/8398-nlu-intro.05.1.004.jpg
Java
R
pRw—
-
e

s

e

PR ——

syt e e
i
e

s

[oeme—

Node.js
(] el e]
—m) T

OPS/images/8398-nlu-intro.05.1.003.jpg
Whal it does

(| L
You can input: And the senice wil oulput:
iy puely scssaie URL Exvaced metaotain JSON fomat

OPS/images/8398-nlu-intro.05.1.002.jpg

