

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

 First Edition (May 2017)

 This edition applies to IBM Watson services in IBM Bluemix.

 Notices

 This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

 The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

 Ask Watson™

 Bluemix®

 developerWorks®

 Global Business Services®

 Global Technology Services®

 IBM®

 IBM MobileFirst™

 IBM Watson®

 IBM Watson IoT™

 Redbooks®

 Redbooks (logo)[image:]®

 Redpapers™

 Tivoli®

 Watson™

 Watson IoT™

 WebSphere®

 The following terms are trademarks of other companies:

 The Weather Company, and Wundersearch are trademarks or registered trademarks of TWC Product and Technology LLC, an IBM Company.

 ITIL is a Registered Trade Mark of AXELOS Limited.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 The Building Cognitive Applications with IBM Watson Services series is a seven-volume collection that introduces IBM® Watson™ cognitive computing services. The series includes an overview of specific IBM Watson® services with their associated architectures and simple code examples. Each volume describes how you can use and implement these services in your applications through practical use cases.

 The series includes the following volumes:

 •Volume 1 Getting Started, SG24-8387

 •Volume 2 Conversation, SG24-8394

 •Volume 3 Visual Recognition, SG24-8393

 •Volume 4 Natural Language Classifier, SG24-8391

 •Volume 5 Language Translator, SG24-8392

 •Volume 6 Speech to Text and Text to Speech, SG24-8388

 •Volume 7 Natural Language Understanding, SG24-8398

 Whether you are a beginner or an experienced developer, this collection provides the information you need to start your research on Watson services. If your goal is to become more familiar with Watson in relation to your current environment, or if you are evaluating cognitive computing, this collection can serve as a powerful learning tool.

 This IBM Redbooks® publication, Volume 2, describes how the Watson Conversation service can be used to create chatbots and user agents that understand natural-language input and communicate with your users simulating a real human conversation. It introduces the concepts that you need to understand in order to use the Watson Conversation service. It provides examples of applications that integrate the Watson Conversation service with other IBM Bluemix® services, such as the IBM IoT Platform, Text to Speech, Speech to Text, and Weather Company Data, to implement practical use cases. You can develop and deploy the sample applications by following along in a step-by-step approach and using provided code snippets. Alternatively, you can download an existing Git project to more quickly deploy the application.

 Authors

 This book was produced by a team of specialists from around the world working in collaboration with the IBM International Technical Support Organization.

 Ahmed Azraq is a Certified IT Specialist in IBM Egypt. Since joining IBM in 2012, Ahmed worked as a Senior Cloud Developer, Technical Team Leader, and Architect in the IBM Middle East and Africa (MEA) Client Innovation Center, which is part of IBM Global Business Services® (GBS). His areas of expertise include cloud, IBM Business Process Manager, middleware integration, Java, and IBM Watson. Ahmed has acquired several professional certifications, including Open Group IT Specialist, IBM Bluemix, Java EE, IBM Business Process Manager, Agile development process, and IBM Design Thinking. Ahmed has delivered training on IBM Bluemix, DevOps, hybrid cloud Integration, Node.js, Watson APIs, and IBM WebSphere® Liberty Profile to IBM clients, IBM Business Partners, and university students and professors around the world. He is the recipient of several awards, including Eminence and Excellence Award in the IBM Watson worldwide competition Cognitive Build, the IBM Service Excellence Award for showing excellent client value behaviors, and knowledge-sharing award. Ahmed is also a published author for IBM Redbooks Essentials of Cloud Application Development on IBM Bluemix, SG24-8374.

 Hala Aziz is an Experienced Certified IT Specialist in the Cairo Technology Development Center (CTDC) in IBM Egypt. She has more than 10 years of experience in IBM Application and Integration Middleware software and IBM Cloud such as IBM WebSphere Application Server, IBM WebSphere Portal, IBM MobileFirst™, IBM Endpoint Manager, IBM Bluemix, and IBM Watson services. She worked as a consultant on eGovernment, telecom, and banking solutions for clients in Egypt, Saudi Arabia, Dubai, Oman, and Switzerland. Hala has several technical professional certifications, such as Certified Application Developer for IBM Web Content Manager, IBM MobileFirst and Cloud Platform Application Developer v1, and she has published several articles and IBM Redbooks publications. Hala has delivered IBM internal education and client enablement training workshops around the world.

 Nicolas Nappe is an Open Group Master Certified IT Specialist and IBM Certified Cloud Advisor working in IBM Global Technology Services®, IBM Argentina. Nicolas works as a DevOps Specialist, with a focus in infrastructure automation and cloud computing. Nicolas has more than 15 years of experience in UNIX technologies, Information Technology Infrastructure Library (ITIL), and IT service management (ITSM). Nicolas developed the Cognimation solution that uses Watson cognitive service to summarize documents and deliver them in a presentation format. Cognimation uses Watson Alchemy Language and Natural Language Processing to extract the most relevant concepts and deliver a presentation explaining the concepts customized for the user.

 Cesar Rodriguez Bravo is a Program Manager in the IBM North America Cyber Security Project Office. Cesar holds a Master of Science degree in Cyber Security and many certifications in Project Management including PMP, Scrum Master, Scrum Developer, Scrum Product Owner, Agile Expert, and Scrum Trainer. Cesar is also certified as an IBM Expert Project Manager and is currently the Project Manager competence leader for IBM Costa Rica. Cesar is a university professor; he enjoys teaching students about new technologies such as Internet of Things (IoT) and cognitive computing. Cesar is currently working with IBM Master Inventors developing patents in the cognitive and cyber security domains. Cesar won the Internet of Things contest in the regional IBM Technical Exchange with a project based on IBM Watson technologies. Cesar won an IBM worldwide contest (with votes from 41 countries) with the idea of an IoT robot that helps children learn by using IBM Watson capabilities.

 Lak Sri currently serves as a Program Director in IBM developerWorks® part of the IBM Digital Business Group organization. Lak leads innovation in the developer activation space. He was the Technical Leader for the Building Cognitive Applications with IBM Watson Services Redbooks series. Lak led the development of the IBM Cloud Application Developer Certification program and the associated course. Earlier he worked as a Solution Architect for Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor in several technology areas, and he volunteers to plan and support local community programs.

 The project that produced this publication was managed by Marcela Adan, IBM Redbooks Project Leader, ITSO.

 Thanks to the following people for their contributions to this project:

 Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

 Iain McIntosh
IBM Watson and Cloud Platform

 Juan Pablo Napoli
Skills Academy Worldwide Leader, IBM Global University Programs

 Teja Tummalapalli
IBM Digital Business Group

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Basics of Conversation service

 With the IBM Watson Conversation service, you can create an application and user agents that understand natural-language input and communicate with your users simulating a real human conversation. Conversation service uses machine learning to respond to customers in a way that simulates a conversation between humans.

 This chapter introduces the concepts you need to understand to use the Watson Conversation service.

 The following topics are covered in this chapter:

 •Introduction to Watson Conversation service

 •How to use the Conversation service

 •Conversation concepts

 •Conclusion

 •References

 1.1 Introduction to Watson Conversation service

 Figure 1-1 depicts the overall architecture of a solution that includes an application that integrates the Conversation service.

 [image:]

 Figure 1-1 Typical architecture of a Conversation application

 Consider this information about the architecture in Figure 1-1:

 •Users interact with your application through one or more of your chosen interfaces. Common choices might be messaging services, a chat window within a website, or even audio interfaces when combined with Watson Speech to Text services.

 •The application sends the user input to the Conversation service:

  –	The application connects to a workspace. The natural-language processing for the Conversation service happens inside a workspace, which is a container for all of the artifacts that define the conversation flow for an application. You can define multiple workspaces in a Watson Conversation service instance. Each workspace will be trained to recognize certain concepts and to direct the conversation flow that governs user interaction.

  –	The Conversation service interprets the user input, directs the flow of the conversation and gathers information that it needs. The Watson Conversation service uses machine learning to identify the concepts it was trained for. Based on what concepts it identifies, it directs the conversation flow, to provide the user with information or to gather additional information from users.

  –	You can connect additional Watson services to analyze user input, such as Tone Analyzer or Speech to Text.

 •Your application can also interact with existing back-end systems based on the user’s intent and additional information. For example, search for information in public or private databases, open tickets, show diagrams and maps, or write the user input into your systems of record.

 The steps for setting up a working Conversation service are described in 1.2, “How to use the Conversation service” on page 3.

 1.1.1 Supported languages

 The natural language classifiers used in the Conversation service support English, Portuguese (Brazilian), French, Italian, Spanish, and Japanese, and has experimental support for German, Traditional Chinese, Simplified Chinese, and Dutch. Arabic is supported through the use of the Conversation API but not through the tooling interface.

 1.1.2 Innovative ways to use the Watson Conversation service

 After completing this book, you should be able to implement all kinds of innovative and creative interactions with your users in your applications. Here are some examples:

 •You can integrate your application with the Watson Conversation, Speech to Text and Text to Speech services and drive your application by speaking to it. You can use Watson Tone Analyzer to identify the emotions, social tendencies, and writing style expressed by your users.

 •In Watson Developer Cloud, you can find an example of a Conversation agent helping your users while they drive cars. You can integrate this application with Weather Company data, to retrieve weather-related information while driving your car.

 •You can build an agent to chat with young people around the world and engage them in community issues, similar to the UNICEF custom social platform, U-Report.

 •You can build a natural language tutor to chat with your users and teach them as they learn to play a game that you built, giving advice or supporting them.

 •A chatterbot can be created that is present in a dialog between two other people and identifies when they talk about going out, and offers making a reservation, or calling a taxi.

 1.2 How to use the Conversation service

 These are the steps for using the Conversation service:

 1.	Create a workspace in a Watson Conversation service instance.

 2.	Train the Conversation service instance to recognize concepts in the user input (intents and entities):

  –	Train the Conversation service instance with natural language examples of each possible intent. At least five examples are required for minimal training. Providing many examples will give more accurate results, especially if they are varied and representative of possible input from users.

  –	Train the Conversation service instance with natural language examples of each possible entity. Add as many synonyms as you expect your user to possibly use. The Improve interface will allow you to refine this process later on, adding more synonyms as you test your dialog.

 3.	Create a workflow of the stages of the dialog. Use logical conditions evaluating the concepts identified in the user’s reply.

 4.	Test your dialog in the embedded chat in the Conversation workspace. You can monitor how the Watson Conversation service interprets the flow, what intents and entities it detects, and improve its training data in real time.

 5.	Call your workflow from your application using the REST API.

 1.3 Conversation concepts

 This section describes the main concepts you need to understand about Watson Conversation service.

 1.3.1 Intents and entities

 Watson Conversation service uses a natural language processing (NLP) to identify key information from user’s interactions. The information that the Conversation service extracts falls into two categories, as explained in Figure 1-2:

 •Intent: The purpose of a user’s input (the user’s intent).

 •Entity: A term or object that is relevant to the intent (context for the intent).

 [image:]

 Figure 1-2 Intent and entity definitions

 The dialog component of the Conversation service uses the intents and entities that are identified in the user’s input to gather required information and provide a useful response to each user input. The dialog is the logical flow that determines the responses your bot will give when certain intents and/or entities are detected.

 The dialog can be considered a user interface to extract the intents and entities from the users, process them to create a helpful response, and return the results in the form of natural language.

 1.3.2 An example of intents and entities in a conversation

 You can try to extract intents and entities from a conversation between two people (Figure 1-3).

 [image:]

 Figure 1-3 Example of intents and entities in a conversation

 If you want to create a conversational application that is able to help Nelson in the same way that Marie can, you must train it to identify the intent #find_a_place and the entity @transp_landmark, and its possible values. Then, you can trigger a mapping API to direct Nelson to his destination.

 1.3.3 Dialog

 Your users will unlikely provide all of the required information in one pass. Instead, you must organize a conversation flow. The flow will ask users the questions that are useful in order to gather all the necessary input to provide a helpful answer.

 A dialog is a branching conversation flow that defines how your application responds when it recognizes the defined intents and entities. It is composed of many branching dialog nodes. Create a dialog branch for each intent, to gather any required information and make a helpful response.

 Figure 1-4 on page 6 shows the dialog for a weather Conversation flow, which is composed of the following dialog nodes:

 •A greeting node

 •A node to ask the user the city of interest

 •A reply after the city is identified

 •A backup reply in case the program cannot identify the city

 More details about how to build intents, entities, and the dialog for weather Conversation are in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157.

 [image:]

 Figure 1-4 Example of dialog flow

 1.3.4 Dialog node

 The dialog is made up of nodes that define steps in the conversation. Dialog nodes are chained together in a tree structure to create an interactive conversation with the user.

 Each node starts with one or more lines that the bot shows to the user to request a response. Each node includes conditions for the node to be active, and also an output object that defines the response provided. You can think of the node as an if-then construction: if this condition is true, then return this response. The simplest condition is a single intent, which means that the response is returned if the user’s input maps to that intent

 Dialog nodes that originate on another node are their children nodes. Dialog nodes that do not depend on other nodes are base nodes.

 Figure 1-5 shows a sample dialog node, with a labeling name, a condition, and an example response.

 [image:]

 Figure 1-5 Example dialog node

 1.3.5 Context

 As in a real life conversation, context matters. The dialog context is the mechanism for passing information between the dialog and your application code. Context allows you to store information to continue passing it back and forth across different dialog nodes. For example, if you identify the names of your users in the Conversation flow, you could store the information in the context and retrieve it any time you want to call your user by name. Context is described as a JSON entry within the node, or can be modified in your app before the REST call.

 Figure 1-6 shows a sample that sets NYC coordinates in the context, for use later.

 [image:]

 Figure 1-6 Example context, setting the NYC coordinates in the context for future use

 The dialog is stateless, meaning that it does not retain information from one interchange to the next. Your application is responsible for maintaining any continuing information. However, the application can pass information to the dialog, and the dialog can update the context information and pass it back to the application.

 In the context, you can define any supported JSON types, such as simple string variables, numbers, JSON arrays, or JSON objects.

 1.3.6 Condition and responses

 The condition portion of a dialog node determines whether that node is used in the conversation. Conditions are logical expressions that are evaluated to true or false. Conditions are used to select the next dialog node in the flow, or to choose among the possible responses to the user.

 Conditions are expressed in the Spring Expression Language (SpEL).

 Conditions usually evaluate the intents and entities identified in the user responses but also can evaluate information stored in the context. This information in the context can be stored in previous dialog nodes or in your application code as part of an API call.

 Figure 1-7 shows a sample dialog node conditioned on a specific location (NYC) and time (31-Dec-2017) so you can recommend visiting Times Square for New Year’s Eve.

 Responses are messages based on the identified intents and entities that are communicated to the user when the dialog node is activated. You can add variations of the response for a more natural experience, or add conditions to pick one response out of many in the same dialog node.

 [image:]

 Figure 1-7 Special condition (place and time) to celebrate New Year’s Eve in Times Square

 1.3.7 Conversation turn

 A single cycle of user input and a response is called conversation turn (Figure 1-8). Each conversation turn starts in one dialog node, called the active node.

 [image:]

 Figure 1-8 Conversation turn

 1.3.8 Typical conversation flow

 Figure 1-9 on page 11 shows a typical conversation flow and how the nodes are selected:

 1.	The conversation starts in an initial node set up with the conversation_start special condition.

 2.	After some conversation turns, the dialog progresses to the node marked as active node. The response configured in this node is shown to the user. The user input is analyzed for intents and entities and used to select the next dialog node in the flow.

 3.	The conditions in the child nodes are evaluated in descending order using the extracted intents and entities. The first child node to match a condition is selected as the next active node and a new conversation turn starts (not shown in the figure).

 4.	If no child node matches the condition, the Conversation service evaluates the conditions of each base node in the dialog and selects the first matching dialog node as the next active node.

 5.	A useful approach is to have a base node configured with the anything_else special condition so that the conversation defaults to this node when no other nodes match the conditions. The special anything_else condition always evaluates to true. You can use this node in the dialog to tell the user that the input was not understood and suggest valid interaction.

 [image:]

 Figure 1-9 Next active node selection criteria

 1.4 Conclusion

 In this chapter, you learned the basic concepts that apply to the Watson Conversation service. In the next chapters, you learn to combine the concepts introduced in this chapter to create meaningful conversations with your users.

 The Conversation service will extract intents and entities from user input. It will use this information and context information to traverse a flow of dialog nodes, called a dialog. Each node will be selected based on its configured conditions, and will have a response to present to the user.

 These simple basic concepts allow you to create a complex, powerful, and practical user interaction experience.

 1.5 References

 For more information, see the following resources:

 •Overview of the Watson Conversation service:

 https://www.ibm.com/watson/developercloud/doc/conversation/index.html

 •How Watson Conversation Service Works (video):

 https://youtu.be/CV8nNIIQh1c

 •Building chatbots with Watson (video):

 https://www.youtube.com/watch?v=ccLKDBg8Ht8

[image:]
[image:]

Conversation service workspace

 The natural language processing for the Watson Conversation service happens in a workspace, which is a container for all of the artifacts that define the conversation flow for an application.

 This chapter explains how to create and use a Conversation workspace with the Conversation tool. This chapter shows, by example, how to add intents and entities to the workspace and how to build a dialog.

 The information in this chapter is a prerequisite for the other chapters in this book.

 The following topics are covered in this chapter:

 •How to use the Conversation service

 •Exporting the workspace

 •References

 2.1 How to use the Conversation service

 Using the Conversation service involves the following steps:

 1.	Creating a Watson Conversation service instance

 2.	Launching the Conversation tool

 3.	Working with a workspace

 4.	Adding intents

 5.	Adding entities

 6.	Building a dialog

 In the following sections, you import the Weather Forecast workspace to your Conversation service instance. You add new intents and entities to it to become a complete car chatbot, which gives weather information and can also provide traffic information.

 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create a Conversation service instances in Bluemix.

 •Use the Conversation tool.

 •Create and import a workspace.

 •Create intents.

 •Create entities.

 •Build dialogs.

 2.1.1 Creating a Watson Conversation service instance

 Bluemix provides resources to your applications through a service instance. Before you can use the Watson APIs you must create an instance of the corresponding service. You will need to create a Watson Conversation service instance for use in all the examples in this book.

 To create an instance of the Conversation service, follow these steps:

 1.	Create an IBM Bluemix account if you do not have one.

 You must have a Bluemix account to access the Watson APIs. You can create a free trial Bluemix account.

 2.	Log in to IBM Bluemix.

 3.	Click Watson (under Services).

 The Watson services that are available in Bluemix are listed.

 4.	Click Conversation (Figure 2-1 on page 15).

 [image:]

 Figure 2-1 Watson services in Bluemix: Select Conversation

 5.	Do these steps on the next web page (Figure 2-2):

 a.	Enter Conversation as the service instance name.

 b.	Notice the credential name, Credentials-1.

 c.	Select the pricing plan you want to use.

 d.	Click Create and wait for Bluemix to create an instance of your Conversation service.

 [image:]

 Figure 2-2 Conversation service instance name

 2.1.2 Launching the Conversation tool

 The Conversation tool is a visual dialog builder to help you create natural conversations between your apps and users, without any coding experience required. Complete these steps to launch the tooling:

 1.	After creating the Conversation service instance, click Launch tool (Figure 2-3).

 [image:]

 Figure 2-3 Launching the conversation tool immediately after creating the service instance

 2.	Alternatively, you can launch the tool at a later time:

 a.	Go to the Bluemix dashboard.

 b.	Click your Conversation service instance.

 c.	On the service details page, click the Manage tab (Figure 2-4), scroll to Conversation tooling, and click Launch tool.

 [image:]

 Figure 2-4 Launch Conversation tooling

 3.	If this is the first workspace, the Watson Conversation login page opens (Figure 2-5). If you have an IBMid, click Log in with IBM ID; otherwise, click Sign up for IBM ID.

 [image:]

 Figure 2-5 Log in Watson Conversation tooling

 2.1.3 Working with a workspace

 This section describes how to create, delete, import, and rename a workspace.

 Create a new workspace

 Complete the following steps:

 1.	Launch Conversation tooling.

 2.	Click Create to create a workspace (Figure 2-6).

 [image:]

 Figure 2-6 Create new workspace

 3.	As shown in Figure 2-7, specify the details of the new workspace:

  –	Name: conv-lab-workspace

  –	Description: Any description not more than 128 characters.

  –	Language: Language of user input that the workspace will be trained to understand; Keep as default: English (U.S.).

 [image:]

 Figure 2-7 New workspace details

 4.	Click Create.

 Delete a workspace

 Complete the following steps:

 1.	Click the menu icon [image:] and then click Back to workspaces (Figure 2-8).

 [image:]

 Figure 2-8 Conversation workspace

 2.	Click the three vertical dots, then click Delete (Figure 2-9).

 [image:]

 Figure 2-9 Delete workspace

 3.	Type the word delete in the “Delete a workspace” confirmation dialog and then click Delete workspace (Figure 2-10).

 [image:]

 Figure 2-10 Delete workspace confirmation dialog

 Import a workspace

 Complete the following steps:

 1.	Download the Weather Forecast workspace JSON file:

 https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json

 2.	Launch the Conversation tooling by doing one of the following steps:

  –	If this is your first workspace, click Import. Figure 2-11 shows an empty service with no workspaces created.

 [image:]

 Figure 2-11 First time Import workspace

  –	If this is not your first workspace, and workspaces are already associated with the Conversation instance, click the Import workspace button at the top of the page (Figure 2-12).

 [image:]

 Figure 2-12 Import workspace

 3.	In the “Import a workspace” dialog (Figure 2-13 on page 21), use these steps:

 a.	Click Choose a file and select the downloaded JSON file.

 b.	Select Intents and Entities to use the intents and entities from the exported workspace; you will build a new dialog. Figure 2-13 on page 21 shows how to import intents and entities from the workspace JSON file.

 [image:]

 Figure 2-13 Choose JSON file to import

 4.	Click Import to import the intents and entities.

 Figure 2-14 shows the imported intents.

 [image:]

 Figure 2-14 Weather Forecast intents imported

 Figure 2-15 shows the imported entities.

 [image:]

 Figure 2-15 Weather Forecast entities imported

 Rename the Weather Forecast workspace

 After importing the Weather Forecast workspace, rename it to Car Chat-bot to add more car-related features to it.

 Complete the following steps to rename the workspace:

 1.	Go back to Workspaces by clicking the menu button in the upper left corner.

 2.	Click the Actions icon (three vertical dots) and select Edit (Figure 2-16).

 [image:]

 Figure 2-16 Edit the workspace

 3.	Change the name and description of the workspace (Figure 2-17):

  –	Name: Car Chat-bot

  –	Description: Car Chat-bot workspace

 Click Done.

 [image:]

 Figure 2-17 Rename workspace

 2.1.4 Adding intents

 In this section, you add the following intents to the workspace. The workspace currently has the imported intents weather_inquiry and out_of_scope.

 •Greeting

 •Traffic

 •Goodbye

 Create a greeting intent

 Use the Conversation tool to create a new intent:

 1.	Click the Car Chat-bot workspace. The Intents tab opens automatically.

 2.	Click Create new (Figure 2-18).

 [image:]

 Figure 2-18 Create new Intent

 3.	Name the intent #greeting.

 	
 Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.

 4.	In the User example section (Figure 2-19 on page 24), add these greeting examples to the #greeting intent; click the plus sign (+) or press Enter to add each user example:

  –	Hi

  –	How are you?

  –	Hello

  –	Hey

  –	Good morning

  –	Good afternoon

 Add as many greeting examples as you can, so that the application can be more accurate (five examples is the minimum).

 [image:]

 Figure 2-19 Add greeting intent and examples

 5.	When you finish adding user examples, click Create to save the intent.

 After you create the intent, the system starts to train itself with the new data.

 Create a traffic intent

 Use the Conversation tool to create a traffic intent:

 1.	Click Create new. Name the intent: #traffic.

 	
 Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.

 2.	In the User example section (Figure 2-20 on page 25), add these traffic examples to the #traffic intent; click the plus sign (+) or press Enter to add each user example:

  –	What is the traffic today?

  –	Please tell me if it's crowded now

  –	What's the traffic like?

  –	How crowded is it now?

  –	Is it ok to go to my destination now?

 Add as many traffic examples as you can, so that the application can be more accurate (five examples is the minimum).

 [image:]

 Figure 2-20 Add traffic intent and examples

 3.	When you finish adding user examples, click Create to save the intent.

 After you create the intent, the system starts to train itself with the new data.

 Create a goodbye intent

 Complete these steps:

 1.	Click Create new. Name the intent: #goodbye.

 	
 Note: The hashtag symbol (#) is added by default to the name; do not add it yourself.

 2.	In the User example section (Figure 2-21 on page 26), add these goodbye examples to the #goodbye intent; click the plus sign (+) or press Enter to add each user example:

  –	bye

  –	farewell

  –	goodbye

  –	I'm done

  –	see you later

  –	Thanks for your help

 Add as many goodbye examples as you can, so that the application can be more accurate (five examples is the minimum).

 [image:]

 Figure 2-21 Add goodbye intent and examples

 3.	When you finish adding user examples, click Create to save the intent.

 After you create the intent, the system starts to train itself with the new data.

 Final intents list in workspace

 Figure 2-22 shows the final list of intents in the Car Chat-bot workspace.

 [image:]

 Figure 2-22 Car chatbot intents

 Test your intent

 After defining the new intents and examples. You can test your system to be sure it accurately recognizes the intents. If not, then the intents must be refined.

 Complete these steps to test your system:

 1.	Click the ellipses button [image:] at the top right corner of the page.

 2.	Enter a question or a phrase to test whether the system recognizes the correct intent (Figure 2-23).

 [image:]

 Figure 2-23 Testing intents

 3.	If the system does not recognize the correct intent, you can correct it by clicking on the displayed intent and choosing the correct intent from the list. After selecting the intent, the system starts training itself with the new data.

 2.1.5 Adding entities

 An entity represents a class of object or a data type that is relevant to a user’s purpose. By recognizing the entities that are mentioned in the user’s input, the Conversation service can choose the specific actions to take to fulfill an intent.

 The workspace has an imported city entity. In this section, you add a destination entity to the workspace.

 Create destination entity

 Use the Conversation tool to create a new entity:

 1.	Click the Entities tab.

 2.	Click Create new (Figure 2-24).

 [image:]

 Figure 2-24 Create new entity

 3.	Name the entity @destination.

 	
 Note: The at sign (@) is added by default to the name; do not add it yourself.

 4.	Add the following values and synonyms (Figure 2-25).

  –	Value: Home

  –	Synonyms: My Address

  –	Value: Work

  –	Synonyms: IBM, Office

 [image:]

 Figure 2-25 Add location entity

 5.	Click Create.

 The entity you created is added to the Entities tab, and the system begins to train itself with the new data.

 Add sys-time system entity

 The Conversation service provides a number of system entities, which are common entities that you can use for any application.

 The @sys-time system entity extracts mentions such as 2pm, at 4, or 15:30. The value of this entity stores the time as a string in the HH:mm:ss format, for example, 13:00:00.

 Complete the following steps to add a system entity from the Conversation tool:

 1.	Select the System entities tab. You can then choose from a list of system entities.

 2.	Click the on/off toggle switch next to the @sys-time entity to enable it (Figure 2-26).

 [image:]

 Figure 2-26 Add @sys-time system entity

 Final entities list in workspace

 Figure 2-27 shows the final My Entities list in the Car Chat-bot workspace.

 [image:]

 Figure 2-27 My Entities final list

 Figure 2-28 shows the final system entities list in the Car Chat-bot workspace.

 [image:]

 Figure 2-28 System entities final list

 2.1.6 Building a dialog

 In this section, you build the Conversation dialog for the car chatbot by using the created and imported intents and entities.

 Start the dialog

 Complete the following steps:

 1.	Click the Dialog tab and click Create (Figure 2-29).

 [image:]

 Figure 2-29 Create new dialog

 An untitled node is displayed in the dialog, when it is first created (Figure 2-30).

 [image:]

 Figure 2-30 Dialog created with a default node

 2.	In the edit view (Figure 2-31), enter the following details:

  –	Node name: conversation_node

  –	In the “Triggered by” (if) section:

 i.	Start typing the word welcome.

 ii.	From the list, select Welcome (create new condition).

 	
 Note: When you create the condition in your first dialog node, a node with the anything_else condition is created in the dialog tree.

  –	In the “Fulfill with a response” section, add the following text:

 Welcome to Car chat bot!

 [image:]

 Figure 2-31 First node details

 3.	In the dialog, click the anything_else node, to edit its details.

 4.	In the edit view (Figure 2-32), add a response in the “Fulfill with a response” section:

 I can't understand your question. Please try again.

 [image:]

 Figure 2-32 Details of the anything_else node

 Figure 2-33 shows the dialog with the two nodes created so far.

 [image:]

 Figure 2-33 Dialog with two initial nodes

 5.	You can collapse the anything_else node by clicking its Toggle node button (Figure 2-34).

 [image:]

 Figure 2-34 Collapsing the anything_else node

 Create a branch to respond to the greeting intent

 Complete the following steps

 1.	In the dialog, click the conversation_start node.

 2.	Click the plus sign (+) below the conversation_start node (Figure 2-35), to create a base node peer of the conversation_start node.

 [image:]

 Figure 2-35 Create greeting node

 3.	In the edit view (Figure 2-36), add these details:

  –	Node name: greeting

  –	In the “Triggered by if” section:

 i.	Start typing the word greeting.

 ii.	From the list, select #greeting, which is the greeting intent you created previously.

  –	In “Fulfill with a response” section, add the following text:

 Hi! What can I do for you?

 [image:]

 Figure 2-36 The greeting node details

 Create a branch to respond to the goodbye intent

 Complete the following steps:

 1.	In the dialog, click the greeting node.

 2.	Click the plus sign (+) below the greeting node (Figure 2-35 on page 34), to create a base node peer of the greeting node.

 3.	In the edit view (Figure 2-37), add these details:

  –	Node name: goodbye

  –	In the “Triggered by if” section:

 i.	Start typing the word goodbye.

 ii.	From the list, select #goodbye, which is the goodbye intent you created previously.

  –	In “Fulfill with a response” section, add the following text:

 It is my pleasure to help you. Bye

 [image:]

 Figure 2-37 The goodbye node details

 Create a branch to respond to the traffic intent

 Complete the following steps:

 1.	In the dialog, click the greeting node.

 2.	Click the plus sign (+) below the greeting node (Figure 2-38), to create a base node peer of the greeting node (that is, create an alternative conversation).

 [image:]

 Figure 2-38 Create traffic node

 3.	In the edit view (Figure 2-39). add these details:

  –	Node name: traffic

  –	In the “Triggered by if” section:

 i.	Start typing the word traffic.

 ii.	From the list, select #traffic, which is the traffic intent you created previously.

  –	In “Fulfill with a response” section, add the following text:

 Where is your destination?

 [image:]

 Figure 2-39 The traffic node details

 Create a child node for the traffic node

 The #traffic intent requires additional processing, because the dialog needs to determine the location to get the traffic information for. To handle this, create a location child node for the traffic node:

 1.	In the dialog, click the traffic node.

 2.	Click the plus sign (+) next to the traffic node (Figure 2-40), to create a child node of the traffic node.

 [image:]

 Figure 2-40 Create a destination node

 3.	In the edit view (Figure 2-41 on page 40), add these details:

  –	Node name: destination

  –	In the “Triggered by if” section:

 i.	Start typing the word destination.

 ii.	From the list, select @destination, which is the destination entity you created previously.

  –	In “Fulfill with a response” section, add the following text:

 For what time do you need to know the traffic information

 [image:]

 Figure 2-41 The destination node details

 Create a fallback node for the destination node

 Create a fallback node, in case the user did not enter valid input for the destination, which is either the synonym of @destination.Home or @destination.Work.

 Complete these steps:

 1.	Click the plus sign (+) next to the destination node to create a child node of the destination node.

 2.	In the edit view (Figure 2-42 on page 41), add these details:

  –	Node name: anything_else

  –	In the “Triggered by if” section:

 i.	Start typing the word anything_else.

 ii.	From the list, select anything_else (create new condition).

  –	In “Fulfill with a response” section, add the following text:

 I'm not trained for this destination. Please enter Home or Work only as a destination.

 [image:]

 Figure 2-42 The destination fallback node details

 After the response is fulfilled, you need to repeat the destination question again to let the user re-enter the destination. This can be done by using the Jump to function. You create a Jump to response as follows:

 1.	Click the Jump to button at the bottom of the anything_else node you just created (Figure 2-43).

 [image:]

 Figure 2-43 The Jump to button

 2.	Click the node that you want the response to go to. In this case, it is the traffic node to ask for the location again.

 3.	Select Go to response (Figure 2-44).

 [image:]

 Figure 2-44 Go to response of traffic node

 Create a child node for the destination node

 After choosing the destination in the @destination entity, the dialog needs to know the time for which to get traffic information. Therefore, you create a time child node for the destination so the user can enter the time:

 1.	In the dialog, click the destination node.

 2.	Click the plus sign (+) next to the destination node (Figure 2-45) to create a child node of the destination node.

 [image:]

 Figure 2-45 Creating child of destination node

 3.	In the edit view (Figure 2-46), add these details:

  –	Node name: time

  –	In the “Triggered by if” section:

 i.	Start typing the word sys-time.

 ii.	From the list, select @sys-time, which is the system entity @sys-time that you selected previously.

  –	In “Fulfill with a response” section, add two random responses (press Enter after you add the first response):

  •	The traffic is low at this time

  •	The traffic is high at this time of the day

  –	Click the Set to random link, to make sure the dialog randomly selects a response.

 [image:]

 Figure 2-46 The time node details

 After the chatbot responds with the traffic information, the dialog goes to the goodbye node to end the conversation.

 To ensure that the dialog flows to the goodbye node, complete these steps:

 1.	On the time node, click the Jump to button (Figure 2-47).

 [image:]

 Figure 2-47 Jump to the goodbye node

 2.	Select the goodbye node, then select Go to response.

 Create a fallback node for the time node

 As for the location node, create a fallback node for the time node so that the dialog can go to it if the user did not enter a valid time.

 Make the fallback node jump to a destination node response (Figure 2-48).

 [image:]

 Figure 2-48 The time node fallback

 Create a branch to respond to the weather_inquiry intent

 Complete the following steps:

 1.	In the dialog, click the traffic node.

 2.	Click the plus sign (+) at the bottom of the traffic node, to create a base node peer of the traffic node.

 3.	In the edit view, add these details:

  –	Node name: weather

  –	In the “Triggered by if” section:

 i.	Start typing the word weather.

 ii.	From the list, select #weather_inquiry, which is the weather_inquiry intent you created previously.

  –	In “Fulfill with a response” section, add the following text:

 What's the city that you'd like to forecast the weather?

 Figure 2-49 shows the weather node after creation.

 [image:]

 Figure 2-49 weather dialog node

 Create a child node for the weather node

 The #weather_inquiry intent requires additional processing because the dialog needs to determine the city in order to get the weather data for it. To handle this, create a city child node for the weather node:

 1.	In the dialog, click the weather node.

 2.	Click the plus sign (+) next to the weather node, to create a child node of the weather node.

 3.	In the edit view of the created node, add these details:

  –	Node name: city

  –	In the “Triggered by if” section:

 i.	Start typing the word city.

 ii.	From the list, select @city, which is the city entity you created previously.

  –	In “Fulfill with a response” section, add the following text:

 [REPLACE WITH WEATHER DATA]

 	
 Important: Do not provide a response here. In Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157, this part will be integrated with the Weather Data Company service to get the weather information.

 Figure 2-50 shows the city node after creation.

 [image:]

 Figure 2-50 The city dialog node

 After the chatbot responds with the weather data, the dialog goes to the goodbye node to end the conversation

 To ensure the dialog flows to the goodbye node, complete these steps:

 1.	On the city node, click the Jump to button.

 2.	Select the goodbye node, and then select Go to response.

 Create a fallback node for the city node

 Create a fallback node for the city node, for the dialog to go to if the user did not specify the NYC or Cairo cities.

 Make the fallback node jump to the weather node response (Figure 2-51).

 [image:]

 Figure 2-51 the city node fallback

 Move the goodbye node to the bottom

 Complete the following steps to move the goodbye node to the bottom of the weather node:

 1.	On the goodbye node, click the Move button (Figure 2-52).

 [image:]

 Figure 2-52 Move dialog node

 2.	Select the weather node, then click the Move icon below it (Figure 2-53).

 [image:]

 Figure 2-53 Moving goodbye node to the bottom of weather node

 The complete car chatbot dialog

 This section acts as a checkpoint to make sure the dialog is created as it should be. The following sections show the first level dialog nodes and the traffic and weather child nodes.

 Base nodes

 Figure 2-54 shows the base nodes created with the child nodes collapsed.

 [image:]

 Figure 2-54 Base nodes in the dialog

 The traffic child nodes

 Figure 2-55 shows the traffic child nodes created with the fallback nodes collapsed.

 [image:]

 Figure 2-55 The traffic child nodes

 The weather child nodes

 Figure 2-56 shows the weather child nodes created with the fallback nodes collapsed.

 [image:]

 Figure 2-56 The weather child nodes

 Test the dialog

 After creating the nodes of the dialog, test it to determine how it responds to user inputs:

 1.	From the Dialog tab, click the [image:] icon at the upper right corner of the page (Figure 2-57).

 [image:]

 Figure 2-57 Test Dialog icon

 2.	Wait until the system finishes training your most recent changes before you start testing the dialog. If the system is still training, a message appears at the top of the chat pane (Figure 2-58).

 [image:]

 Figure 2-58 Watson is training message

 3.	Start testing the dialog after the system finishes the training. Check the response to see if the dialog correctly interpreted your input and chose the correct response.

 The chat window indicates what intents and entities were recognized in the input.

 Figure 2-59 shows the Car chatbot conversation dialog to get the traffic information.

 [image:]

 Figure 2-59 Testing traffic conversation dialog

 Figure 2-60 on page 53 shows the Car chatbot conversation dialog to get the weather data.

 	
 Note: The weather response is now [REPLACE WITH WEATHER DATA]. In Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157, the response will be replaced with the real-time weather after integrating the Conversation service with the Weather Data Company service to provide real-time weather data for the selected city.

 [image:]

 Figure 2-60 Testing weather conversation dialog

 As you continue to interact with the dialog, you can see how the conversation flows through the dialog.

 If you determine that the wrong intents or entities are being recognized, you might need to modify your intent or entity definitions. If the correct intents and entities are being recognized, but the wrong nodes are being triggered in your dialog, make sure your conditions are written correctly.

 2.2 Exporting the workspace

 You created intents, entities, and the dialog in the previous sections of this chapter.

 Now you can export the workspace to a JSON file with all intents, entities, and dialog. To do this, click the Actions button (vertical dots) at the top right of the Workspaces box, and then select Download as JSON (Figure 2-61).

 [image:]

 Figure 2-61 Export workspace

 A JSON file will be downloaded automatically.

 2.3 References

 Watch the following videos about the Watson Conversation service:

 •Watson Conversation Service Overview:

 https://www.youtube.com/watch?v=1rTl1WEbg5U

 •IBM Watson Conversation: Working with intents:

 https://www.youtube.com/watch?v=DmvN6ZJrZE4

 •IBM Watson Conversation: Working with entities:

 https://www.youtube.com/watch?v=oSNF-QCbuDc

 •IBM Watson Conversation: Working with dialog:

 https://www.youtube.com/watch?v=3HSaVfr3ty0

 •IBM Watson Conversation: Working with Conditional Responses:

 https://www.youtube.com/watch?v=KcvVQAsnhLM

[image:]
[image:]

Cognitive Calculator chatbot

 This chapter guides you through building the Cognitive Calculator chatbot sample application. The app demonstrates the use of Watson Conversation service in creating a calculator chatbot. The chatbot chats with the user in natural language, the Conversation service determines the user request and the application performs simple calculations to respond to the user.

 The sample application demonstrates the integration of the Conversation service with a Node.js application.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 3.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 3.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create a Conversation service instance in IBM Bluemix.

 •Create a Conversation workspace, add intents, entities, system entities, and a dialog for the Cognitive Calculator chatbot application.

 •Integrate the Watson Conversation service in a Node.js application to perform the calculation functionality.

 3.1.2 Prerequisites

 To complete the steps in this chapter, be sure these prerequisites are met:

 •Review Chapter 1, “Basics of Conversation service” on page 1, and Chapter 2, “Conversation service workspace” on page 13

 •Access to a web browser (Chrome, Firefox, or Internet Explorer)

 •Basic JavaScript skills

 •Understand Bluemix DevOps basics

 •Understand Git basics

 •Have a Bluemix account

 •Have an account on GitHub

 3.1.3 Expected results

 Figure 3-1 on page 57 shows the simple Cognitive Calculator chatbot application:

 1.	The user starts the conversation with the addition operation.

 2.	The user tries to add two numbers but specifies only one number without specifying the other number.

 3.	The chatbot application prompts the user to specify two numbers to be able to perform the addition operation.

 4.	The user specifies the two numbers to add.

 5.	The application adds the two numbers and returns the result to the user.

 6.	The user then wants to multiply two numbers.

 7.	The chatbot prompts the user to enter the numbers to multiply.

 8.	The user requests a subtraction operation which the chatbot application does not understand.

 [image:]

 Figure 3-1 Cognitive Calculator chatbot

 3.2 Architecture

 Figure 3-2 shows the components and runtime flow of the application.

 [image:]

 Figure 3-2 Architecture

 The figure describes these steps:

 1.	In a web browser, the user engages in a conversation with the Cognitive Calculator chatbot application, requesting a simple calculation operation, such as I'd like to calculate the addition of 3 and 5.

 2.	The request is passed from the web browser to the chatbot application that runs on Node.js.

 3.	The application passes the request to the Conversation service.

 4.	The Conversation service understands the intent and entities passed by the application. For the user request I'd like to calculate the addition of 3 and 5, the intent is addition and the entities are 3 and 5. Then, it returns a response to the application based on the dialog built in the workspace associated with Conversation service instance. It returns a response (The result of calculating the two numbers is _result_. What else would you like to do (addition or multiplication)?) and the entities to the calling chatbot application.

 5.	The chatbot Node.js application adds the two entities returned from the Conversation service, replaces the _result_ with the calculation results and sends the response to the web browser.

 6.	The user sees the response on the web browser: The result of calculating the two numbers is _result_. What else would you like to do (addition or multiplication)?

 3.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step deployment (incomplete) version of the application

 This repository contains an incomplete version of the application and is used in all sections of 3.4, “Step-by-step implementation” on page 59. This version takes you through the key steps to integrate the IBM Watson APIs with the application logic.

 •Quick deployment (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 3.5, “Quick deployment of application” on page 107.

 3.4 Step-by-step implementation

 Implementing this use case involves the following steps:

 1.	Downloading the project from the Git repository.

 2.	Configuring the Conversation workspace for the Cognitive Calculator chatbot.

 3.	Developing the Cognitive Calculator chatbot application.

 4.	Testing the application.

 3.4.1 Downloading the project from the Git repository

 The version of the repository that you use in these steps includes the incomplete version of the application code. You will follow the steps to complete the code.

 Download the code from GitHub:

 https://github.com/watson-developer-cloud/conversation-simple

 3.4.2 Configuring the Conversation workspace for the Cognitive Calculator chatbot

 This section guides you through creating the Calculator Conversation workspace for the Cognitive Calculator chatbot, and developing the relevant intents, entities, and dialog that are specific to the application. It also shows you how to test the conversation flow.

 Complete these steps:

 1.	Log in to Bluemix.

 2.	On the Bluemix Dashboard, click the Conversation service instance that you created in 2.1.1, “Creating a Watson Conversation service instance” on page 14, which is listed under Services (Figure 3-3 on page 60).

 [image:]

 Figure 3-3 Conversation service instance

 3.	Click Launch tool (Figure 3-4) to open the Conversation tool.

 [image:]

 Figure 3-4 Launch Conversation tool

 4.	On the Watson Conversation dashboard, click Create to create a workspace (Figure 3-5).

 [image:]

 Figure 3-5 Watson Conversation Dashboard

 5.	In the Create a workspace window (Figure 3-6 on page 62), enter the following information and then click Create:

  –	Name: Calculator

  –	Description: Calculator Conversation workspace that allows addition and multiplication operations using Natural Language.

  –	Language: English (U.S.)

 [image:]

 Figure 3-6 Create the Calculator workspace

 6.	Get the Workspace ID so that you can configure your application to point to this workspace in step 1 on page 91:

 a.	Click the three horizontal bars at the top-left corner (Figure 3-7).

 [image:]

 Figure 3-7 Calculator workspace

 b.	Click Back to workspaces (Figure 3-8).

 [image:]

 Figure 3-8 Calculator Conversation workspace

 c.	Click the three vertical dots at the top right of the Calculator box and then select View details (Figure 3-9).

 [image:]

 Figure 3-9 Calculator workspace menu

 d.	Copy the Workspace ID value and save it in a local text file (Figure 3-10). You will use the value of the Workspace ID in step 1 on page 91.

 [image:]

 Figure 3-10 Workspace ID

 Add intents

 For the Conversation service to be able to understand the goal or purpose of the user’s input in natural language, you must train the workspace with some examples for each intent. You will create an intent for the addition operation functionality and another intent for the multiplication operation functionality. Although you are required to train the workspace by providing a minimum of five examples of user input for each intent, to improve the accuracy, you should provide more than five examples.

 The steps in this section describe how you create the intents that are listed in Table 3-1.

 Table 3-1 Intents to be created for the Calculator chatbot use case

 	
 Intent

 	
 Description

 	
 #add_operation

 	
 Identifies that the user wants to perform an addition operation.

 User examples:

 •Add

 •Addition

 •Add Operation

 •Sum

 •Summation

 	
 #multiply_operation

 	
 Identifies that the user wants to perform a multiplication operation.

 User examples:

 •Multiply

 •Multiplication

 •Multiply Operation

 •I have two numbers and I'd like to multiply them

 •Please help me multiply two numbers.

 	
 #add

 	
 Identifies that the user provided two operands and wants to calculate the result of adding them.

 User examples:

 •3+2

 •42534+52

 •calculate 4+6

 •five plus six equals?

 •I’d like to add 3 and 4

 •tell me the results of adding eight and two

 •three plus eleven

 •what's the result of adding ten to fifteen?

 •what's the sum of 1 and 5?

 	
 #add_missing_number

 	
 Identifies that the user provided only one operand for the addition.

 User examples:

 •3+

 •calculate 4+

 •calculate adding 76

 •I'd like to add 8

 •what's the sum of 2?

 •would you please calculate adding six to the result?

 	
 #multiply

 	
 Identifies that the user provided two operands and wants to calculate the result of multiplying them.

 User examples:

 •2 * 6

 •2 X 5

 •3*5

 •3x1

 •5*53

 •5 multiply 7 equals?

 •6*8

 •9X2

 •9 x 5

 •calculate 69*54

 •tell me the results of multiplying four and seven

 •twenty multiply thirty

 	
 #multiply_missing_number

 	
 Identifies that the user provided only one operand for the multiplication.

 User examples:

 •2X

 •3*

 •5x

 •9 x

 •multiply 6

 Figure 3-11 shows a conversation between the user and the Calculator chatbot application, and shows how the Conversation service maps the user input in natural language to the corresponding intent configured in the Conversation workspace.

 [image:]

 Figure 3-11 Cognitive Calculator chatbot showing intents extracted from the user input

 To add the intents that are listed in Table 3-1 on page 64 to the Calculator workspace, follow these steps:

 1.	Open the Calculator workspace (Figure 3-12).

 [image:]

 Figure 3-12 Conversation Workspaces

 2.	At the start of the conversation, the user specifies the mathematical operation to be performed, addition or multiplication, (Figure 3-13).

 [image:]

 Figure 3-13 Calculator chatbot

 Create the intents that will enable the Conversation service to interpret the user input:

 a.	Create an intent for the addition operation capability:

 i.	Click Create new to create new intent (Figure 3-14 on page 68).

 [image:]

 Figure 3-14 Create #add_operation intent (1 of 3)

 i.	Type add_operation in the Intent name field (Figure 3-15).

 [image:]

 Figure 3-15 Create #add_operation intent (2 of 3)

 ii.	Add a minimum of five user examples for this intent (Figure 3-16), then click Create.

 [image:]

 Figure 3-16 Create #add_operation intent: user examples (3 of 3)

 b.	Create a multiply_operation intent for the multiplication operation capability and provide user examples (Figure 3-17).

 [image:]

 Figure 3-17 Create #multiply_operation intent with user examples

 3.	After the user requests the operation to be performed, the user specifies the actual addition or multiplication calculation. The Conversation service must be able to identify the intent of the user for addition or multiplication. The service must also be able to identify whether the user provides only one operand and respond accordingly.

 So that the Conversation service can understand user inputs, create add, multiply, add_missing_number, and multiply_missing_number intents:

 a.	Create the add intent with the user examples (Figure 3-18).

 [image:]

 Figure 3-18 Create #add intent and user examples

 b.	Create add_missing_number intent with the user examples (Figure 3-19).

 [image:]

 Figure 3-19 Create #add_missing_number intent with user examples

 c.	Create the multiply intent with the user examples (Figure 3-20).

 [image:]

 Figure 3-20 Create #multiply intent with user examples

 d.	Create the multiply_missing_number intent with the user examples (Figure 3-21).

 [image:]

 Figure 3-21 Create #multiply_missing_number intent with user examples

 Now, you have all the intents needed for the Cognitive Calculator chatbot (Figure 3-22).

 [image:]

 Figure 3-22 Calculator workspace intents

 Add entities

 You want the service to identify the operands of the addition and multiplication operations. The operands are numbers written as either digits (3, 64, 873, and so on) or text (one, two, eighty-seven, and so on). Use an available system entity that identifies the numbers:

 1.	Click Entities on the top toolbar (Figure 3-23).

 [image:]

 Figure 3-23 Calculator workspace: Adding entities

 2.	Click System entities (Figure 3-24).

 [image:]

 Figure 3-24 System entities

 3.	Switch the off toggle to the on position beside @sys-number to enable this system entity (Figure 3-25).

 [image:]

 Figure 3-25 System entities: Enable @sys-number

 Create the dialog

 Follow these steps:

 1.	Click Dialog in the top toolbar and click Create to create the dialog (Figure 3-26).

 [image:]

 Figure 3-26 Dialog

 A default node is created (Figure 3-27).

 [image:]

 Figure 3-27 Dialog default base node

 2.	Under Triggered by, begin typing conversation_start and then select conversation_start (create_new condition), as shown in Figure 3-28.

 [image:]

 Figure 3-28 The conversation_start condition

 3.	Write the response that you want the chatbot to provide and then press Enter (Figure 3-29). In this case, you might want the chatbot to respond with this greeting:
Hi, Welcome to Watson Calculator. What would like to calculate today (addition or multiplication)?.

 [image:]

 Figure 3-29 The conversation_start response

 4.	Click the plus sign (+) to create a new node (Figure 3-30).

 [image:]

 Figure 3-30 Create a new node

 5.	This node will be triggered when the user input is recognized as the #add_operation intent (Figure 3-31).

 Specify this information and then press Enter:

 a.	Under Triggered by, start typing #add_operation and then select it from the autocomplete text box.

 b.	Under Add response condition, type What would you like to add?

 [image:]

 Figure 3-31 The add_operation node

 6.	Click the plus sign (+) on the right side of the node that you just created (see #add_operation Figure 3-31) to continue building the flow of the conversation.

 7.	This node will be triggered when the user input is recognized as an #add intent (Figure 3-32 on page 84).

 Specify this information and then press Enter:

 a.	Under Triggered by, type #add.

 b.	You can let the Conversation service return various responses. Under Add response condition, provide the following responses. The _result_ text is a placeholder that you will replace with the actual result after developing the application logic in the Node.js application.

 i.	The result of calculating the two numbers is _result_. What else would you like to do (addition or multiplication)?

 ii.	The result is _result_. What else would you like to do (addition or multiplication)?

 iii.	I've added the two numbers for you;) The result is _result_. What else would you like to do (addition or multiplication)?

 [image:]

 Figure 3-32 The add node

 8.	Click the plus sign (+) at the bottom of the node that you just created to create an alternative conversation.

 9.	This node will be triggered when the user input is recognized as an #add_missing_number intent (Figure 3-33).

 Specify this information and then press Enter:

 a.	Under Triggered by, type #add_missing_number.

 b.	Under Add response condition, enter Please specify the two numbers.

 [image:]

 Figure 3-33 The add_missing_number node

 10.	In case of a missing number, the chatbot should return to the user the response What would you like to add? Then, allow the user to try again. To accomplish this, click the Jump to icon in the node (Figure 3-34).

 [image:]

 Figure 3-34 Click Jump to icon

 11.	Click the #add_operation node and then click Go to response (Figure 3-35).

 [image:]

 Figure 3-35 Go to another node response

 12.	Similarly create the nodes to handle the multiplication conversation flow (Figure 3-36).

 [image:]

 Figure 3-36 Multiplication conversation flow

 13.	Edit the response in the anything_else node (Figure 3-37) to be:

 I can't understand what you say. You can say things like "addition" or "multiplication".

 [image:]

 Figure 3-37 The anything_else node

 Test the conversation flow

 Follow these steps:

 1.	Click the Ask Watson icon at the top right (Figure 3-38).

 [image:]

 Figure 3-38 Calculator Conversation workspace

 2.	Test the dialog. For each user input, the Conversation service analyzes intents and entities and responds according to the conversation flow in the dialog (Figure 3-39).

 [image:]

 Figure 3-39 Testing the dialog

 3.4.3 Developing the Cognitive Calculator chatbot application

 This section shows how to develop the Cognitive Calculator chatbot application that integrates with the Conversation service in Node.js.

 Create a Node.js application on Bluemix

 Follow these steps:

 1.	From the Bluemix dashboard, click Create App.

 2.	From the Cloud Foundry Apps section, click SDK for Node.js.

 3.	In the Create a Cloud Foundry App window (Figure 3-40) enter the following information, and then click Create:

  –	App name: conv-201-xxx-calc

  –	Host name: conv-201-xxx-calc

 Replace xxx with a random value; the host name of the application must be unique.

 [image:]

 Figure 3-40 Create Node.js application

 	
 Stop: Wait until the application is started to proceed. The application status should indicate Running, as shown in Figure 3-41 on page 91.

 Configure the application

 Follow these steps:

 1.	Configure the application environment variables. Add the WORKSPACE_ID environment variable with the Workspace ID of your Calculator Conversation workspace (Figure 3-41):

 a.	Click Runtime on the left navigation bar.

 b.	Click the Environment variables tab.

 c.	Click Add.

 d.	For the name, specify WORKSPACE_ID.

 e.	For the value, specify the Workspace ID value that you copied in step 6 on page 62.

 f.	Click Save.

 [image:]

 Figure 3-41 Adding WORKSPACE_ID as environment variable

 	
 Stop: Wait until the application is restaged before you continue.

 2.	Bind the Conversation service to your application (Figure 3-42 on page 92):

 a.	Click Connections from the left toolbar.

 b.	Click Connect existing.

 c.	Click Conversation.

 d.	Click Connect.

 [image:]

 Figure 3-42 Connect existing service

 e.	Click Restage to make the service available for use by the application (Figure 3-43).

 [image:]

 Figure 3-43 Restage application

 	
 Stop: Wait until the restaging is completed and the application is in a running state before you continue.

 Clone the Conversation sample application

 In the next steps, you clone a sample Node.js application, which is a simple chatbot, to your Bluemix workspace.

 1.	Click Overview in the left navigation toolbar (Figure 3-44).

 2.	Scroll to the Continuous delivery panel, on the right, and click Enable.

 This enables the continuous delivery toolchain. With it, you can automate builds, tests, and deployments through the Delivery Pipeline, GitHub, and more.

 [image:]

 Figure 3-44 Application overview

 3.	A new tab opens (Figure 3-45):

 a.	Scroll to Configurable Integrations and click GitHub.

 b.	Keep the repository type as Clone.

 c.	Keep the default new repository name.

 d.	For the Source repository URL, specify this GitHub repository URL:

 https://github.com/watson-developer-cloud/conversation-simple

 e.	Click Create.

 [image:]

 Figure 3-45 GitHub configurations

 Edit the application code

 In this section, you edit the code to implement the calculation functionality:

 1.	In the Toolchains window, click Eclipse Orion Web IDE (Figure 3-46).

 [image:]

 Figure 3-46 Toolchains window: Click Eclipse Orion Web IDE

 2.	Update the manifest.yml file with the host name and service name (Figure 3-47):

 a.	In the list of files on the left, click the manifest.yml file.

 [image:]

 Figure 3-47 The manifest.yml file before update

 b.	In the manifest.yml file shown in Figure 3-48, update this information:

  •	Update the Conversation service to match the name of the Conversation service instance created in 2.1.1, “Creating a Watson Conversation service instance” on page 14. To do this, replace my-conversation-service in line 3 and line 13 by Conversation.

  •	Update the application name to match the name of your application. To do this, update line 7 to conv-201-xxx-calc (where xxx is the value that you used to make your application and host names unique in step 3 on page 90).

  •	Increase the memory to 512M, by updating line 10.

 [image:]

 Figure 3-48 The manifest.yml file after the update

 3.	Edit app.js to perform the calculation and update the response received from the Conversation service with the calculation results based on the intents and entities:

 a.	From the list of files on the left, click the app.js file.

 b.	Add function getCalculationResult (Example 3-1) before the last line in the code, which is (module.exports = app) as shown in Figure 3-49 on page 99. This function performs the calculation and updates the response text.

 Example 3-1 Get calculation result function

 [image:]

 /**

 * Get the operands, perform the calculation and update the response text based on the * calculation.

 * @param {Object} response The response from the Conversation service

 * @return {Object} The response with the updated message

 */

 function getCalculationResult(response){

 	//An array holding the operands

 	var numbersArr = [];

 	

 	//Fill the content of the array with the entities of type 'sys-number'

 	for (var i = 0; i < response.entities.length; i++) {

 		if (response.entities[i].entity === 'sys-number') {

 			numbersArr.push(response.entities[i].value);

 		}

 	}

 	

 	// In case the user intent is add, perform the addition

 // In case the intent is multiply, perform the multiplication

 	var result = 0;

 	if (response.intents[0].intent === 'add') {

 		result = parseInt(numbersArr[0]) + parseInt(numbersArr[1]);

 	} else if (response.intents[0].intent === 'multiply') {

 		result = parseInt(numbersArr[0]) * parseInt(numbersArr[1]);

 	}

 	// Replace _result_ in Conversation Service response, with the actual calculated result

 	var output = response.output.text[0];

 	output = output.replace('_result_', result);

 	response.output.text[0] = output;

 	

 	// Return the updated response text based on the calculation

 	return response;

 }

 [image:]

 Figure 3-49 shows the result of adding the getCalculationResult function to the app.js file.

 [image:]

 Figure 3-49 The app.js file after adding the getCalculationResult function

 c.	Call the getCalculationResult function (Example 3-2) on line 76 (Figure 3-50 on page 100).

 Example 3-2 Check intent

 [image:]

 // Check if the intent returned from Conversation service is add or multiply,

 // perform the calculation and update the response

 if (response.intents.length > 0 && (response.intents[0].intent === 'add' || response.intents[0].intent === 'multiply')) {

 	response = getCalculationResult(response);

 }

 [image:]

 Figure 3-50 shows calling getCalculationResult on line 76.

 [image:]

 Figure 3-50 Calling getCalculationResult

 Push the changes to Git

 Follow these steps:

 1.	Click the Git icon on the left toolbar (Figure 3-51).

 [image:]

 Figure 3-51 Click the Git icon in the IBM Bluemix DevOps page

 2.	Enter any descriptive commit message (such as Edit the application logic to perform the calculation functionality), and click Commit (Figure 3-52 on page 101).

 [image:]

 Figure 3-52 DevOps Git: Commit changes

 3.	Click Push to push your committed changes to the remote branch (Figure 3-53).

 [image:]

 Figure 3-53 DevOps Git: Push changes to remote branch

 4.	Return to the Toolchains tab, and click on Delivery Pipeline (Figure 3-54).

 [image:]

 Figure 3-54 Toolchains: Select Delivery Pipeline

 5.	Wait until the build and deploy stages are completed (Figure 3-55). When they are completed, and with no errors, your application is ready to be tested.

 [image:]

 Figure 3-55 Delivery Pipeline: Build Stage and Deploy Stage

 	
 Stop: Wait until the build and deploy stages are completed before testing.

 3.4.4 Testing the application

 Follow these steps:

 1.	Open your application route (the URL to access your application) in a web browser with the following address, where xxx is the value that you added in step 3 on page 90 to make your application name unique (Figure 3-56):

 http://conv-201-xxx-calc.mybluemix.net/

 [image:]

 Figure 3-56 Calculator chatbot application

 2.	Test the addition and multiplication functionalities by chatting with the application (Figure 3-57).

 [image:]

 Figure 3-57 Multiplication test on the Cognitive Calculator chatbot

 3.	Try various scenarios and identify those for which the application fails to respond appropriately. Failing to respond correctly means that more training is needed. Training is performed by adding more user examples to the intents in the Calculator Conversation workspace (Figure 3-58).

 [image:]

 Figure 3-58 Various scenarios in the Cognitive Calculator chatbot shows that the intents need more training

 3.5 Quick deployment of application

 A second GIT repository is provided so that you can build and deploy the full Cognitive Calculator chatbot even if you did not perform the steps described in 3.4, “Step-by-step implementation” on page 59. This section is independent from the rest of the chapter and it contains instructions to run the application more quickly.

 You can find the full version of the application in the following Git repository:

 https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

 The file calculator_workspace.json includes the Calculator workspace created in this chapter and is at this GitHub location:

 https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json

 Use the following steps to quickly deploy the full application:

 1.	Click Deploy this application to Bluemix at the following web page:

 https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

 2.	Import the Calculator workspace into your Conversation service. For information on importing a Conversation workspace see “Import a workspace” on page 20.

 3.	Follow the steps in “Configure the application” on page 91 to configure your application to point to the Calculator workspace.

 4.	Test the application as described in 3.4.4, “Testing the application” on page 104.

 3.6 References

 For helpful information, see the following resources:

 •Explore other sample applications to understand the types of apps you can develop with the Conversation service:

 https://www.ibm.com/watson/developercloud/doc/conversation/sample-applications.html

 •See the README.md file in the incomplete GitHub repository of the application:

 https://github.com/watson-developer-cloud/conversation-simple

[image:]
[image:]

Help Desk Assistant chatbot

 This chapter describes how to create a chatbot application quickly without coding and integrate it with the Watson Conversation service. For this use case example, you create a Help Desk Assistant chatbot, however you can customize the chatbot to take any other role such as delivery service, Q&A, student assistant, and more.

 To create the chatbot application, you use the Node-RED programming tool. With this powerful tool you can create, edit, and deploy applications quickly. Node-RED is a programming tool for wiring together hardware devices, APIs and online services in new and interesting ways. It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the palette that can be deployed to its runtime in a single-click.

 Node-RED, created by IBM but now part of JS Foundation, provides full integration with Watson APIs, allowing you to make great applications quickly and easy.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •Next steps

 •References

 4.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 4.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Understand the basics of Node-RED.

 •Configure a conversation workspace with intents, entities and dialog.

 •Create a Node-RED application and integrate the Watson Conversation service in the application.

 •Configure a Slack chatbot to call your Node-RED application.

 4.1.2 Prerequisites

 To complete the steps in this chapter, be sure you have these prerequisites:

 •Access to a Bluemix account

 •Basic knowledge of Bluemix

 •Basic knowledge of the IBM Watson Conversation service

 •Access to a Slack account (you can create a free account at www.slack.com)

 Also be sure you completed the previous chapters in this book.

 4.1.3 Expected results

 Figure 4-1 shows the Help Desk Assistant chatbot application interface during a conversation in Slack. Although this chatbot uses Slack, consider that the chatbot can be also integrated with other chat services such as Facebook Messenger.

 [image:]

 Figure 4-1 Help Desk Assistant chatbot interface

 4.2 Architecture

 Figure 4-2 shows the components of the application.

 [image:]

 Figure 4-2 Architecture

 Notice that the flow shown in the figure represents one loop of a conversation, therefore this cycle repeats several times during a conversation:

 1.	The user sends a message to the web front-end (chat service).

 2.	The chat service (for example, Slack, Facebook Messenger, web app) determines whether the message is for the Help Desk Assistant chatbot application. If the message is for the chatbot, then the chat service sends the message to your chatbot application (Node-RED).

 3.	Your application parses the message and sends the filtered message to the Watson Conversation service for processing.

 4.	The Watson Conversation service processes the message and provides a response.

 5.	The response is received and filtered by your application, which then sends the response to the chat service.

 6.	The chat service identifies that the inputs are from the Help Desk Assistant chatbot and presents the message as a response from the chatbot to the user.

 4.2.1 Project structure

 These are the components you use in this use case:

 •A Node-RED instance that is created in Bluemix, which is cloud-based, so installing software is not necessary

 •A Watson Conversation service instance

 •A team space in Slack, which is the cloud collaboration tool that provides the chat service in this use case

 4.3 Two ways to deploy the application: Step-by-step and quick deploy

 These are the two ways to experience this use case:

 •Step-by-step implementation

 This approach takes you through the key steps to integrate the IBM Watson Conversation service with the application logic. All sections of 4.4, “Step-by-step implementation” on page 112 take you through step-by-step deployment.

 •Quick deployment

 A Git repository is provided with a version of the Node-RED application. You only need to perform the required steps to customize the application for your specific Conversation service instance and Slack team. This approach is explained in 4.5, “Quick deployment of application” on page 136.

 4.4 Step-by-step implementation

 Implementing this use case involves the following steps:

 1.	Creating a new Conversation workspace

 2.	Adding intents

 3.	Adding entities

 4.	Creating the dialog

 5.	Testing the dialog

 6.	Creating the Help Desk Assistant chatbot application in Node-RED

 7.	Setting up the chat service (Slack)

 4.4.1 Creating a new Conversation workspace

 Complete the following steps:

 1.	Log in to Bluemix and open the Dashboard.

 2.	Find the Watson service instance created in 2.1.1, “Creating a Watson Conversation service instance” on page 14 and click to open it (Figure 4-3).

 [image:]

 Figure 4-3 Access the Conversation service instance

 3.	Click Launch tool to access your Conversation workspaces (Figure 4-4).

 [image:]

 Figure 4-4 Launch Conversation service tool

 4.	Previously created workspaces are listed (Figure 4-5). However, for this app you need a new workspace, so click Create.

 [image:]

 Figure 4-5 Watson Conversation workspaces

 5.	Add a name and description and click Create (Figure 4-6).

 [image:]

 Figure 4-6 Create a workspace

 The new Conversation workspace is created (Figure 4-7).

 [image:]

 Figure 4-7 Watson Conversation workspace

 For more information about creating Conversation workspaces, see 2.1.1, “Creating a Watson Conversation service instance” on page 14.

 4.4.2 Adding intents

 In this section, you add intents to the Chatbot workspace. The intents should be appropriate for the Help Desk Assistant chatbot. For more information about adding intents to a Conversation workspace, see 2.1.4, “Adding intents” on page 23.

 Add the four intents that are shown in Figure 4-8 through Figure 4-11 on page 116.

 [image:]

 Figure 4-8 Add #Software-Issues intent (part 1 of 4)

 [image:]

 Figure 4-9 Add #Hardware-Issues intent (part 2 of 4)

 [image:]

 Figure 4-10 Add #Hello intent (part 3 of 4)

 [image:]

 Figure 4-11 Add #Affirmative intents (part 4 of 4)

 Those intents are enough for this example; however, you can create as many as you want. Some examples include OutOfScope (for incomprehensible user input), Bye (to close the conversation), and others.

 4.4.3 Adding entities

 In this section, you add entities to the Chatbot workspace. The entities should be appropriate for the Help Desk Assistant chatbot. For more information about adding entities to a Conversation workspace, see 2.1.5, “Adding entities” on page 27.

 Select Entities and create the four entities that are shown in Figure 4-12 through Figure 4-15 on page 118.

 [image:]

 Figure 4-12 Add @Security entity (part 1 of 4)

 [image:]

 Figure 4-13 Add @OS entity (part 2 of 4)

 [image:]

 Figure 4-14 Add @Printers entity (part 3 of 4)

 [image:]

 Figure 4-15 Add @Brands entity (part 4 of 4)

 4.4.4 Creating the dialog

 In this section, you build the Conversation dialog for the Help Desk Assistant chatbot by using the intents and entities created in the previous sections. For more information about building a dialog, see 2.1.6, “Building a dialog” on page 30.

 Complete the following steps:

 1.	Select Dialog and create the base node Hello as shown in Figure 4-16.

 [image:]

 Figure 4-16 Create the dialog: base node Hello (part 1 of 4)

 2.	Create the dialog branch shown in Figure 4-17 with the following nodes:

  –	Hardware Issues (parent)

  –	Affirmative HW (child of Hardware Issues)

  –	HW Brands (child of Affirmative HW)

 [image:]

 Figure 4-17 Adding Hardware Issues, Affirmative HW, and HW Brands nodes (part 2 of 4)

 3.	In the HW Brands node, create a response for each example in the @Brands entity (Acer, Asus, HP, Toshiba, Apple, Lenovo, and so on):

 a.	Click the HW Brands node and then click Add response condition (Figure 4-18).

 [image:]

 Figure 4-18 Add response condition (part 3 of 4)

 b.	Enter the appropriate response for each example in the @Brands entity (Figure 4-19).

 [image:]

 Figure 4-19 Adding a response if brand is Acer part 4 of 4)

 Figure 4-20 shows the dialog branch built in this example for hardware issues.

 [image:]

 Figure 4-20 Dialog branch for hardware issues

 4.	Repeat the process described in step 2 on page 119 and step 3 on page 120 for software issues. In the OS node, create a response for each example in the @OS entity (HPUX, Red Hat, Linux, Windows, UNIX, and so on).

 [image:]

 Figure 4-21 Dialog branch for software issues

 4.4.5 Testing the dialog

 To test the dialog, first click the Ask Watson icon [image:] (upper right corner).

 The Chatbot panel opens (Figure 4-22). Interact with the chatbot by asking questions to test the responses.

 [image:]

 Figure 4-22 Test the dialog

 4.4.6 Creating the Help Desk Assistant chatbot application in Node-RED

 Node-RED is a useful tool to create applications without having to write code. Instead, it uses simple visual components that you configure and connect.

 To make this task even easier, you do not need to install Node-RED, because it is available in Bluemix. In this section, you create a Node-RED application and configure the flow:

 •Create the Node-RED application in Bluemix

 •Create the Help Desk Assistant chatbot application flow with the Node-RED flow editor

 •Configure the Help Desk Assistant chatbot application in Node-RED

 Create the Node-RED application in Bluemix

 Complete the following steps:

 1.	Go to the Bluemix catalog.

 2.	In the catalog, go to Apps → Boilerplates and click Node-RED Starter (Figure 4-23).

 [image:]

 Figure 4-23 Node-RED Starter app in Bluemix

 3.	Enter the name of your application and host as conv-201-xxx-nodered. Replace xxx with any random key because the host name of the application must be unique (Figure 4-24). Accept the default values for the remaining fields and click Create.

 [image:]

 Figure 4-24 Creating a Node-RED application instance

 	
 Note: Wait until the application is created and it is started. The application status should be Running before you can proceed.

 4.	While you are waiting for the status to change to Running (with a green dot as shown Figure 4-26), read through the Start coding with Node-RED information displayed on the page. Also, be sure to record the link to your application (Figure 4-25) because you will need it during the Slack configuration.

 [image:]

 Figure 4-25 The link to your Bluemix application

 5.	After the application starts, click the route URL (highlighted in Figure 4-26).

 [image:]

 Figure 4-26 Launch your Node-RED instance

 The window shown in Figure 4-27 on page 125 opens. The Node-RED starter application is created.

 Create the Help Desk Assistant chatbot application flow with the Node-RED flow editor

 Now you can start to create flows. You use the Node-RED flow editor to add nodes and values and create and wire (connect) the flows:

 1.	Click Go to your Node-RED flow editor (Figure 4-27).

 	
 Note: When you first run this application you are presented with some options to secure the Node-RED flow editor with a username and password. Securing the editor is optional but it is a good practice to do so. Skip through optional windows for this example until you get to the window shown in Figure 4-27.

 [image:]

 Figure 4-27 Open the Node-RED flow editor

 The Node-RED flow editor opens (Figure 4-28). The panel on the left shows a palette of nodes. You can drag nodes to the workspace and connect them together (wire them) to create an application. After dragging a node to a workspace, you can double-click the node to open the Edit (configuration) dialog to provide values for the node.

 [image:]

 Figure 4-28 Node-RED flow editor workspace

 2.	In the next steps, drag the following nodes to the workspace, add values as shown in the figures of each step, and then click Done:

 a.	http input node (Figure 4-29 on page 127): This node will receive the text that the user submits to the Help Desk Assistant chatbot. Edit the node and add these values:

  •	Method is the method used to receive the data, POST in this example.

  •	URL is the last part of the URL (the first part is the route to the Node-RED application as shown in Figure 4-25 on page 124). Enter /watson-chatbot for this example. You can customize this value as desired. Just remember that it should always start with a forward slash character (/).

 	
 Remember: You will use this value later in step 8 on page 134, so remember it or keep a record of it.

  •	Name is the node name (optional)

 [image:]

 Figure 4-29 Edit http in node

 b.	debug node (Figure 4-30): This node displays the message info (for example, Slack user_id, token, and text) received from Slack. You configure and integrate Slack components later in the chapter. In fact, every time that a user submits text to the Help Desk Assistant chatbot, you can see the information received on the debug panel (at the right of the window). This data is important for troubleshooting and analysis of the flow.

 [image:]

 Figure 4-30 Edit debug node

 c.	switch node (Figure 4-31 on page 128): This node is a filter to avoid unauthorized users from using the chatbot.

 Add two rules as shown in Figure 4-31 on page 128 which will create two outputs on the node. The token to be pasted in the rule will be created and copied in steps 15 on page 136 and 16 on page 136.

 This node routes messages based on the value of the payload. When a message arrives, this node checks the value of the Slack token (contained in payload.token) against the values configured in this node. If a match is found then the flow goes to the first output (to continue the flow), otherwise the flow goes to the second output (to exit the flow).

 [image:]

 Figure 4-31 Edit switch node

 d.	function node (Figure 4-32): This is the first function node you use. Every time a user sends a question to the Help Desk Assistant chatbot, some metadata will be submitted with the text, so this function filters the data to send only the user text to the Conversation service. This example queries just the text from the payload. Be sure you enter the same information as shown in the figure.

 [image:]

 Figure 4-32 Edit function node, 1

 e.	conversation node (Figure 4-33): Here you add the Conversation service and interconnect it to your chatbot application. Before you can edit the conversation node, you must gather the credentials and workspace ID as described in the steps after Figure 4-33 (steps i through vi on page 130).

 [image:]

 Figure 4-33 Edit conversation node

 Gather the information needed to fill out the values in the conversation node:

 i.	In another window, open the Bluemix Dashboard, find the Conversation service instance you created in 2.1.1, “Creating a Watson Conversation service instance” on page 14 and click to open it (shown in Figure 4-3 on page 113).

 ii.	Select Service Credentials and click View Credentials (Figure 4-34). If you do not yet have any listed credentials, click New Credential to create one.

 [image:]

 Figure 4-34 Watson Conversation credentials

 iii.	Copy the Username and Password values and paste them in the Node-RED conversation node, as shown in the Edit conversation node window (Figure 4-33).

 iv.	Click the Manage tab and click Launch tool to open the Conversation workspace.

 v.	Find the Chatbot workspace, click the three vertical dots icon (upper right corner as shown in Figure 4-35 on page 130) and select View details.

 [image:]

 Figure 4-35 Click View details to find the Watson Conversation workspace ID

 vi.	From the details, copy the Workspace ID and paste it in the Node-RED conversation node, as shown in the Edit conversation node window (Figure 4-33 on page 129).

 f.	function node (Figure 4-36): This is the second function. It will filter all the output from the Conversation service and send only the response in the format needed.

 Add the values shown in Figure 4-36 (the end of line 1 (+ " ") was added for formatting purposes).

 [image:]

 Figure 4-36 Edit function node, 2

 g.	http response node (Figure 4-37): This node takes the response from the Conversion service and sends it back to the chat service (Slack). Add two instances of this node (one for each flow). The configuration for both nodes is the same as shown in Figure 4-37.

 [image:]

 Figure 4-37 Edit http response node

 Configure the Help Desk Assistant chatbot application in Node-RED

 Now you can connect and configure all the nodes that you dragged to the Node-RED workspace.

 Connect the modules (Figure 4-38). To connect each module, click the small grey connector on the edge of the node and drag it to the desired node.

 [image:]

 Figure 4-38 Connecting the required nodes for the application

 To run your Node-RED application, click Deploy at the top right of the window.

 4.4.7 Setting up the chat service (Slack)

 As described in the architecture of this use case (4.2, “Architecture” on page 111), the chat service (for example, Slack, Facebook Messenger, web app) determines whether the input message from the user is for the Help Desk Assistant chatbot application. If the message is for the chatbot, then the chat service sends the message to your Node-RED application.

 This use case uses Slack as an example of a front-end chat service. To configure Slack to work with your Node-RED application, complete the following steps:

 1.	Sign in to Slack and create a new Slack team if you do not have a team.

 2.	After you sign in, go to the top of the left panel and click under your room name, and then click Apps & integrations (Figure 4-39).

 [image:]

 Figure 4-39 The Apps & integrations link

 3.	At the upper right corner, click Build (Figure 4-40).

 [image:]

 Figure 4-40 Access to build the integration

 4.	Click Start Building to start building the Slack app (Figure 4-41).

 [image:]

 Figure 4-41 Click Start Building

 5.	The Create an App window opens (Figure 4-42). Enter an app name, select your Slack team, and click Create App.

 [image:]

 Figure 4-42 Create an App in Slack

 6.	Click Slash Commands (Figure 4-43).

 [image:]

 Figure 4-43 Add features in Slack integration

 7.	In the next window, click Create New Command.

 8.	In the Create New Command window (Figure 4-44), enter the following information, and then click Save:

  –	Command: /watson

 This is the trigger to call Watson-chatbot when you type text in Slack.

  –	Request URL: https://conv-201-xxx-nodered.mybluemix.net/watson-chatbot

 This is the URL of the Node-RED application (/watson-chatbot) that you configured in the http input node in step a on page 126 and Figure 4-29 on page 127.

  –	Short Description: Any text

 [image:]

 Figure 4-44 Create New Command: Add Slack command

 9.	Click Install App, and then click Install App to Team (Figure 4-45).

 [image:]

 Figure 4-45 Install the app to the Slack team

 10.	Click Authorize (Figure 4-46).

 [image:]

 Figure 4-46 Authorize the Slack application

 11.	Return to the Slack room:

 http://<room-name>.slack.com

 12.	At any channel (for example the #general channel), in the send message text column, type the text /watson, and notice the pop-up message (Figure 4-47).

 [image:]

 Figure 4-47 Test application

 13.	Continue typing any message, such as /watson hi. For now, the response is only the echo back of the message you send.

 14.	Go to the Node-RED flow editor:

 http://<node_red_appname>.mybluemix.net/red

 15.	Click the debug tab (Figure 4-48). Notice the msg.payload message that contains Slack information including token, command, text, user_name, and others under object.

 [image:]

 Figure 4-48 Object information in the msg.payload

 16.	Copy the token value (copy only the text inside double quotation marks).

 17.	Open switch node (named Authentication). Paste the token you just copied in the first rule (input box) replacing the text Paste Token Here in Figure 4-31 on page 128.

 18.	Click Done, then click Deploy (located at the top right).

 19.	Return to the Slack room:

 http://<room-name>.slack.com

 20.	Now type the text /watson hi. Notice that this time, the response is coming from the Conversation service.

 4.5 Quick deployment of application

 This section provides a quicker way to create the chatbot application in Node-RED if you want to skip many of the steps described in 4.4, “Step-by-step implementation” on page 112:

 1.	Access the Node-RED Bluemix Starter Application, which is at this GitHub location:

 https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

 2.	Scroll to and click Deploy to Bluemix (Figure 4-49); then follow the prompts.

 [image:]

 Figure 4-49 Click Deploy to Bluemix

 3.	Open the Node-RED flow editor for your application by entering the following URL in your browser; replace <HOSTNAME> with the host name of your application:

 https://<HOSTNAME>.mybluemix.net/red/

 4.	Import the additional nodes developed in this chapter, which are at this GitHub location:

 https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json

 Copy the content of this file to your clipboard.

 5.	To import the nodes, click the menu at the top-right and select Import → Clipboard (Figure 4-50).

 [image:]

 Figure 4-50 Import Node-RED nodes from the clipboard

 6.	Follow the steps described in these sections:

  –	4.4.1, “Creating a new Conversation workspace” on page 113

  –	4.4.2, “Adding intents” on page 115

  –	4.4.3, “Adding entities” on page 117

  –	4.4.4, “Creating the dialog” on page 119

  –	4.4.7, “Setting up the chat service (Slack)” on page 131

 7.	Edit the nodes and add the authentication values based on your Conversation service instance credentials, workspace ID (edit conversation node as shown in Figure 4-33 on page 129) and Slack token (edit switch node as shown in Figure 4-31 on page 128).

 4.6 Next steps

 You can enhance your chatbot. For example, you can add intents, entities, and dialogs.

 Also if you identify any unexpected responses, you can make the corrections to improve the answers.

 4.7 References

 For more information, see the following resources:

 •Node-RED:

 https://nodered.org/

 •Creating apps with Node-RED Starter:

 https://console.ng.bluemix.net/docs/starters/Node-RED/nodered.html#nodered

[image:]
[image:]

Using a cognitive chatbot to manage IoT devices

 A cognitive chatbot understands natural language. In Chapter 4, “Help Desk Assistant chatbot” on page 109, you learn how to create a cognitive chatbot to answer questions from users requesting help with software and hardware problems.

 In this chapter, you learn to expand the cognitive chatbot capabilities so it can interact with IoT devices and send commands to them in response to user’s requests.

 In this use case the Node-RED sample application created in Chapter 4, “Help Desk Assistant chatbot” on page 109 is modified to connect to the Watson Internet of Things Platform service in order to manage a device. The application also integrates the Watson Conversation service to understand the user’s request in natural language.

 This example considers a mobile smartphone as an IoT device because getting access to an Android phone for testing purposes is fairly easy. This example can be applied to other IoT devices such as street light sensors, smart meters, sensors to manage household appliances, and so on.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Step-by-step deployment of application

 •References

 5.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 5.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create a Watson IoT Platform service instance and connect devices to be managed.

 •Integrate the Watson IoT Platform service with the cognitive chatbot application to handle the user’s requests and respond to the user.

 •Train the Chatbot Conversation workspace with the appropriate intents for understand user’s request in natural language to manage IoT devices.

 •Add capabilities to the chatbot Node-RED application to send commands to the IoT device.

 5.1.2 Prerequisites

 To complete the steps in this chapter, be sure these prerequisites are met:

 •You implement the use case in Chapter 4, “Help Desk Assistant chatbot” on page 109.

 •You have an Android smartphone.

 5.1.3 Expected results

 In this chapter, the cognitive chatbot that you developed in Chapter 4, “Help Desk Assistant chatbot” on page 109 is enhanced to understand user’s request to change the background color of a smart phone by sending commands to the device in response to the user’s request.

 The approach used in this simple example can be used to send other commands and send and receive information to and from IoT devices.

 Figure 5-1 on page 141 shows the final chatbot application. It receives a request from the user to change the background color of the smart phone from gray to green. By integrating with the Watson Conversation service the chatbot is able to understand the user’s request in natural language and respond in the user’s language. By integrating with the Watson IoT Platform service the chatbot application sends commands to the smart phone to change the background color.

 [image:]

 Figure 5-1 Using the chatbot to change the background color of a smart phone

 5.2 Architecture

 Figure 5-2 shows the components of the application and how the components interact with each other.

 [image:]

 Figure 5-2 Architecture

 The numbers in the diagram represent the following steps:

 1.	The user sends a message to the chatbot through the chat service (Slack in this example).

 2.	The chat service checks whether the message is for the chatbot. If it is, the service sends the message to the chatbot application (Node-RED).

 3.	The application parses the message and sends the filtered message to the Watson Conversation service for processing.

 4.	The Watson Conversation service processes the message and provides a response.

 5.	The Node-RED application determines whether an action is required. If an action is required, the application sends a command to the Watson IoT platform to perform the requested action.

 6.	The Watson IoT service sends a request to the smartphone to perform the action requested.

 7.	The Node-RED application sends the response from the Conversation service to the chatbot service (Slack).

 8.	The chatbot service receives the message and displays the message to the user.

 5.3 Step-by-step deployment of application

 Implementing this use case involves the following steps:

 1.	Creating the Watson IoT Platform service.

 2.	Configuring the Android mobile device as an IoT device.

 3.	Modifying the Chatbot Conversation workspace.

 4.	Connecting the chatbot application to the IoT platform.

 5.	Testing the application.

 5.3.1 Creating the Watson IoT Platform service

 To create the Watson IoT Platform service instance, follow these steps:

 1.	Go to your Bluemix Dashboard and click Create Service.

 2.	Select the Internet of Things Platform service (Figure 5-3).

 [image:]

 Figure 5-3 Internet of Things Platform service

 3.	Enter a unique name in the Service name field, and click Create (Figure 5-4).

 [image:]

 Figure 5-4 create IoT Platform service

 4.	On the Welcome page, click Launch to access the service dashboard.

 The IoT dashboard includes much useful information. For example, you can launch the Watson IoT Platform documentation and Quickstart from the dashboard (Figure 5-5).

 [image:]

 Figure 5-5 IoT dashboard

 5.	From the menu on the right, click the devices icon. Then, in the Devices window, click Add Device (Figure 5-6).

).[image:]

 Figure 5-6 Watson IoT Platform dashboard: Add Device

 6.	Each device must have a device type associated, which is a way to categorize similar devices. So, before creating a device, you must create a device type.

 Click Create device type (twice), Enter Android as the device type name, add a description, and then click Next. If you want, you can use the same information as shown in Figure 5-7.

 The remainder of the information is optional, so you can click Next until you see the option to click Create.

 	
 Important: The device type name must be Android because this is the value that is hardcoded in the mobile app example that is used in 5.3.2, “Configuring the Android mobile device as an IoT device” on page 147.

 [image:]

 Figure 5-7 Create Device Type

 7.	The Add Device window is displayed again, but this time a device type is available to choose (Android). Make sure the device type is selected, and then click Next at the lower right corner.

 8.	Add an ID for the device. The device ID should be unique within your organization. The suggestion is to use something that will identify the device (such as the MAC Address, a phone number, and so on). Enter a device ID value (Figure 5-8), and then click Next.

 [image:]

 Figure 5-8 Adding the device ID

 9.	The metadata is optional; click Next.

 10.	Next, you add security. You can generate your own token or allow the system to generate one for you. For this example, click Next so that the system automatically generates the token.

 11.	A summary of all submitted information is displayed. Click Add to complete the process.

 12.	Note all the information on the page (Figure 5-9 on page 146), including the following items, because you will use this information later:

  –	Organization ID

  –	Device type

  –	Device ID

  –	Authentication method

  –	Authentication token

 	
 Remember: The authentication token is non-recoverable; therefore, if you miss it, you must register the device again.

 [image:]

 Figure 5-9 IoT device credentials

 The device is now added to the Watson IoT Platform service instance.

 13.	Go to the Bluemix Dashboard and find the IoT Platform service instance that you just created. Select it by clicking it. This action opens the Bluemix IoT Service landing window. In this window, go to the Connections tab and click Create Connection (Figure 5-10).

 [image:]

 Figure 5-10 Create connection

 14.	Find the Node-RED application (conv-201-xxx-nodered) that you created in 4.4.6, “Creating the Help Desk Assistant chatbot application in Node-RED” on page 122. Click Connect.

 15.	To apply the changes, the application must be restaged. So, click Restage. Keep in mind that if you make any mistake while staging, you can stop the application and restage.

 16.	After these steps are complete, you will be able to see the Node-RED application under the Connections tab of the IoT Platform service instance, which means that both are successfully connected.

 5.3.2 Configuring the Android mobile device as an IoT device

 To establish the communication between the Watson IoT platform and a smartphone, you need to install an application.

 If you are an Android developer, the code is on the IoT starter for Android page in GitHub:

 https://github.com/ibm-watson-iot/iot-starter-for-android

 This section describes the options to configure and install the application for an Android device. However, if you want to run the application on iOS, see the IoT starter application for IBM Watson IoT on iOS in GitHub:

 https://github.com/ibm-watson-iot/iot-starter-for-ios

 Use these steps to complete the installation:

 1.	Set up the phone to enable the installation of applications (.apk) outside of the Google Play Store. Go to Settings/Security, and under Device Administration, enable Unknown Sources.

 	
 Important: Remember to revert this setting after you install the application.

 The instructions to enable this setting vary in different Android versions. Refer to your device documentation as needed.

 2.	On your phone, open a browser and go to the following address:

 http://ibm.biz/mobile-app

 	
 Case-sensitive: This URL is case-sensitive.

 3.	Click Open binary file. Accept any warning notifications and click Download.

 	
 Note: Depending on your Android phone model and operating system level, warning messages can differ.

 After the download is complete, click over the file to install it. If you missed this option, find the downloads folder using any file manager for Android, and then click to install it.

 4.	After the app is installed, open it. Add the values from step 12 on page 145 (Organization ID, device ID, and authentication token) and click Activate Sensor at the bottom of the screen (Figure 5-11).

 [image:]

 Figure 5-11 Adding the Watson IoT Platform service values to the smartphone app

 5.	If nothing happens, you probably miss-typed a value. Otherwise, it displays the accelerometer data that is being read by the device (Figure 5-12).

 [image:]

 Figure 5-12 Reading from the accelerometer sensor

 The smartphone is now connected to the Watson IoT Platform service instance that you created in 5.3.1, “Creating the Watson IoT Platform service” on page 142.

 5.3.3 Modifying the Chatbot Conversation workspace

 In this section, you modify the Chatbot Conversation workspace created in 4.4.1, “Creating a new Conversation workspace” on page 113. You will add the intents, entities, and dialog to handle a chat with a user submitting requests through the chatbot to change the color of the phone background. The steps in this section assume you start with the previously created Chatbot workspace. Alternatively, you can create a new Conversation workspace for this use case. For information about creating Conversation workspaces, see Chapter 2, “Conversation service workspace” on page 13.

 Complete the following steps:

 1.	Find the Conversation service instance created in 2.1.1, “Creating a Watson Conversation service instance” on page 14 and click to open it.

 2.	Click Launch tool to open Conversation tooling. Previously created workspaces are listed.

 3.	Find the Chatbot workspace created in 4.4.1, “Creating a new Conversation workspace” on page 113.

 4.	Add the intent #Change-color and the examples shown in Figure 5-13.

 [image:]

 Figure 5-13 Adding the new intent

 5.	Add the @colors entity shown in Figure 5-14. Notice that you can add synonyms to describe colors that are not available.

 [image:]

 Figure 5-14 Adding the new entity

 6.	 Add the dialog as shown in Figure 5-15.

 [image:]

 Figure 5-15 Adding the new dialog

 7.	Test the dialog. Click the Ask Watson icon (green bubble on the upper right corner) to test the dialog. Type change color and then green to get the results shown in Figure 5-16 on page 152. If you have different results, make the corrections by selecting the correct intent or entity.

 Notice that in this step you are only testing the conversation with the user, not sending commands to the device to change the color of the background of the cellphone.

 [image:]

 Figure 5-16 Testing the dialog

 5.3.4 Connecting the chatbot application to the IoT platform

 Next, open the Node-RED application created in 4.4.6, “Creating the Help Desk Assistant chatbot application in Node-RED” on page 122. Modify the application by making the following changes:

 1.	Add a function node (named Color change) and one IBM IoT output node and then connect them to the conversation node (Figure 5-17).

 [image:]

 Figure 5-17 New nodes

 2.	Edit the Color change function node. Add lines of code to specify the codes of the colors to use. To do that, add the lines of code shown in Example 5-1 to the function node (Figure 5-18 on page 154). The code in the example creates three variables (one for each color), and then depending on the message received by the chatbot, it will pass the color data to the IBM IoT node to send it to the smartphone. You can change the code of the colors (Example 5-1) to display different backgrounds on your smartphone.

 Example 5-1 Code for the function node

 [image:]

 var r = 0.0;

 var b = 0.0;

 var g = 0.0;

 if (typeof (msg.payload.output.text) == "string"){

 	msg.payload = msg.payload.output.text + "";

 } else {

 	msg.payload = msg.payload.output.text[0] + "";

 }

 if (msg.payload == "green") {

 	g = 255;

 } else if (msg.payload == "blue") {

 	b = 200.0;

 } else {

 	r = 100;

 	g = 100;

 	b = 100;

 }

 a = 1.0;

 msg.eventOrCommandType = "color";

 msg.payload = JSON.stringify({"d":{"r":r,"b":b,"g":g,"alpha":a}});

 return msg;

 [image:]

 [image:]

 Figure 5-18 Testing the responses; lines of code added

 3.	Edit the IBM IoT out node: enter the values of your IBM IoT Platform service to finish the setup (Figure 5-19).

 [image:]

 Figure 5-19 Configuring the IBM IoT node

 4.	Click DEPLOY (upper right corner) and then close the Node-RED workspace.

 5.3.5 Testing the application

 Return to the chat service (Slack) that you set up in 4.4.7, “Setting up the chat service (Slack)” on page 131. Enter a request for the chatbot to change the background color of the smartphone. Remember that for this example to work, the application that you installed in 5.3.2, “Configuring the Android mobile device as an IoT device” on page 147 must be open in the smartphone. Figure 5-20 shows the result.

 [image:]

 Figure 5-20 Testing the application

 5.4 References

 For more information, see the following resources:

 •Watson IoT Platform documentation:

 https://console.ng.bluemix.net/docs/services/IoT/index.html

 •Watson IoT Platform Quickstart:

 https://quickstart.internetofthings.ibmcloud.com

[image:]
[image:]

Chatting about the weather: Integrating Weather Company Data with the Conversation service

 The Weather Company® Data for Bluemix service lets you integrate weather data from The Weather Company into your IBM Bluemix application. You can retrieve weather data for an area specified by a geolocation.

 This chapter guides you through the creation of a sample chatbot application, the Cognitive Weather Forecast chatbot, that integrates with the Watson Conversation and Weather Company Data services. The application demonstrates the use of both services to get the forecasted weather for a city through chatting with the user.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 6.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 6.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Integrate the Watson Conversation service and Weather Company Data service with your application.

 •Develop a cognitive conversation application to retrieve the weather forecast for a specific city.

 6.1.2 Prerequisites

 To complete the steps in this chapter, be sure these prerequisites are met:

 •Review Chapter 1, “Basics of Conversation service” on page 1.

 •Review Chapter 2, “Conversation service workspace” on page 13 and create a conversation service instance and a Conversation workspace as described in this chapter.

 •Use any web browser (Chrome, Firefox, or Internet Explorer).

 •Have basic JavaScript skills.

 •Have basic knowledge of Git.

 •Install Cloud Foundry tool on your workstation.

 •Install Git tool on your workstation.

 6.1.3 Expected results

 Figure 6-1 on page 159 shows the application. The user requests tomorrow’s weather forecast, and the application asks for the name of a city. The user responds with a name, in this case London, and the application responds that only Cairo and NYC are supported. The user chooses a supported city and the application responds with the weather forecast that it receives from Weather Company Data.

 [image:]

 Figure 6-1 Cognitive Weather Forecast chatbot

 6.2 Architecture

 Figure 6-2 shows the components involved in this use case and the runtime flow.

 [image:]

 Figure 6-2 Architecture

 The flow for this use case is as follows:

 1.	The user engages in a conversation with the application, requesting the weather forecast for a city; for example, Cairo.

 2.	The request is passed from the web browser to the Cognitive Weather Forecast application that runs on Node.js.

 3.	The application passes the user’s request in natural language to the Conversation service.

 4.	The Conversation service understands the intent and entities in the user’s message passed by the application. Then it returns a response to the application based on the dialog configured in the Conversation workspace. It returns '[REPLACE WITH WEATHER DATA]' and the entities to the calling application (for example: Cairo).

 5.	The Node.js application queries the Weather Company Data service for the weather forecast for the requested city, passing to it the latitude and longitude of the entity.

 6.	The Weather Company Data service responds with the weather forecast.

 7.	The Node.js application replaces '[REPLACE WITH WEATHER DATA]' with the result received from the Weather Company Data service and sends it to the web browser.

 8.	The user sees the response on the web browser. For example Sunny. Highs in the low 70s and lows in the low 50s.

 6.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step deployment (incomplete) version of the application

 This repository contains an incomplete version of the application and is used in all sections of 6.4, “Step-by-step implementation” on page 160. This version takes you through the key steps to integrate the IBM Watson service with the application logic.

 •Quick deployment (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 6.5, “Quick deployment of application” on page 182.

 6.4 Step-by-step implementation

 Implementing this use case involves the following steps:

 1.	Configuring Conversation workspace for Cognitive Weather Forecast chatbot.

 2.	Creating the Weather Company Data service instance.

 3.	Developing the Cognitive Weather Forecast chatbot application.

 4.	Testing the application.

 6.4.1 Configuring Conversation workspace for Cognitive Weather Forecast chatbot

 	
 Note: If you created a Conversation workspace by following the instructions in Chapter 2, “Conversation service workspace” on page 13, skip to “Get the Workspace ID” on page 163.

 In this section, you create the Conversation workspace that will be used by the Cognitive Weather Forecast chatbot to understand the user’s request regarding to weather conditions in a city. This workspace includes entities, intents, and dialog specific to the application.

 To simplify the creation of the Conversation workspace for this use case, import the workspace from the GitHub location:

 https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json

 To import the workspace, follow these steps:

 1.	Log in to Bluemix.

 2.	In the Services section of the dashboard, click Conversation which is the Conversation service instance that you created in Chapter 2, “Conversation service workspace” on page 13 (Figure 6-3).

 [image:]

 Figure 6-3 Conversation service instance for this use case in the Bluemix dashboard

 3.	Click Launch tool to open the Conversation tool (Figure 6-4).

 [image:]

 Figure 6-4 Launching the Conversation tool

 4.	Click the Import workspace icon to import the workspace (Figure 6-5).

 [image:]

 Figure 6-5 Importing a workspace

 5.	Click Choose a file and select the 1.4-conv-101-createservice.json file that you downloaded at the start of this section. You should choose to import everything (intents, entities and dialog).

 6.	Click Import.

 The Car Chat-bot workspace is imported. It will be used for this use case.

 Get the Workspace ID

 Get the Workspace ID that you will need in order to configure the application to point to the workspace:

 1.	Click the Menu icon, which is the three horizontal bars at the upper left corner (Figure 6-6).

 [image:]

 Figure 6-6 Car Chat-bot workspace: Menu

 2.	Click Back to workspaces (Figure 6-7).

 [image:]

 Figure 6-7 Car Chat-bot Conversation workspace: Back to workspaces

 3.	Click the Actions icon (three vertical dots on the top-right corner of the Car Chat-bot workspace) then choose View Details.

 4.	Copy the Workspace ID value and save it in any local text file (Figure 6-8). You will need this value in step 5 on page 179.

 [image:]

 Figure 6-8 Workspace ID

 6.4.2 Creating the Weather Company Data service instance

 To create a Weather Company Data service instance, follow these steps:

 1.	Open the Bluemix Catalog by clicking Catalog at the top bar.

 2.	Scroll to Services and select Data & Analytics → Weather Company Data (Figure 6-9).

 [image:]

 Figure 6-9 Bluemix Catalog: Weather Company Data

 3.	For the Service name, use weather-company-data, and then click Create (Figure 6-10).

 [image:]

 Figure 6-10 Create Weather Company Data service instance

 4.	Click the Service Credentials tab (Figure 6-11).

 [image:]

 Figure 6-11 Weather Company Data: Service Credentials tab

 5.	Under ACTIONS column and in the Credentials-1 row, click View Credentials (Figure 6-12) to display the username and password for the service instance. You use this information to test Weather Company Data API in step e on page 170.

 [image:]

 Figure 6-12 Weather Company Data: Service Credentials details

 Try the Weather Company Data APIs before you use them

 Browse through the API documentation and try the APIs before you use them. Complete these steps:

 1.	Click the Manage tab, scroll to Get Started, and click APIs (Figure 6-13).

 [image:]

 Figure 6-13 Weather Company Data service: Get started

 A new tab opens. The Weather Company Data For IBM Bluemix APIs for Bluemix APIs is listed (Figure 6-14).

 [image:]

 Figure 6-14 Weather Company Data APIs

 2.	In these steps, use Daily Forecast for 3 days to get the forecast of the weather for tomorrow:

 a.	Click Daily Forecast.

 b.	Click GET /v1/geocode/{latitude}/{longitude}/forecast/daily/3day.json (Figure 6-15).

 [image:]

 Figure 6-15 Three-day forecast Weather Company Data API

 c.	In the latitude, and longitude text boxes, type the latitude and longitude of any city. For example, Cairo’s latitude is 30.0444, and longitude is 31.2357.

 d.	Scroll to the bottom and click on Try it out (Figure 6-16).

 [image:]

 Figure 6-16 Testing three-day forecast Weather Company Data API

 e.	Authentication is required; you are prompted for the user name and password of the Weather Company Data service instance credentials that you obtained in step 5 on page 166. Provide your service credentials to log in (Figure 6-17).

 [image:]

 Figure 6-17 Testing three-day forecast Weather Company Data API - Authentication

 f.	The three-day forecast API returns the geocode weather forecasts for the current day and up to three days. The response of the service call is displayed in Response Body section (Figure 6-18).

 [image:]

 Figure 6-18 Weather Company Data Response

 Example 6-1 shows the weather forecast for tomorrow is under forecasts[1].narrative.

 Example 6-1 Response body snippet

 [image:]

 "forecasts": [

 {

 "class": "fod_long_range_daily",

 "expire_time_gmt": 1492289627,

 "fcst_valid": 1492232400,

 "fcst_valid_local": "2017-04-15T07:00:00+0200",

 "num": 1,

 "max_temp": null,

 "min_temp": 54,

 "torcon": null,

 "stormcon": null,

 "blurb": null,

 "blurb_author": null,

 "lunar_phase_day": 18,

 "dow": "Saturday",

 "lunar_phase": "Waning Gibbous",

 "lunar_phase_code": "WNG",

 "sunrise": "2017-04-15T05:32:08+0200",

 "sunset": "2017-04-15T18:28:06+0200",

 "moonrise": "2017-04-15T22:13:12+0200",

 "moonset": "2017-04-15T08:17:53+0200",

 "qualifier_code": null,

 "qualifier": null,

 "narrative": "Partly cloudy. Lows overnight in the mid 50s.",

 "qpf": 0,

 "snow_qpf": 0,

 "snow_range": "",

 "snow_phrase": "",

 "snow_code": "",

 "night": {

 [image:]

 6.4.3 Developing the Cognitive Weather Forecast chatbot application

 This section describes how to develop the application logic by creating a Node.js application that integrates with the Conversation service and the Weather Company Data service. You start by cloning a sample Node.js app, which is a simple chatbot, and deploy it to your Bluemix workspace.

 The steps are summarized in the following list:

 1.	“Clone the Conversation sample app” on page 172

 2.	“Integrate the application with the Conversation and Weather Company Data services” on page 173

 3.	“Push the application to Bluemix” on page 177

 Clone the Conversation sample app

 Clone the incomplete repository:

 1.	Create a new C:\redbook directory.

 2.	Open a command prompt (cmd.exe).

 3.	Open that directory by using the cd C:\redbook command (Figure 6-19).

 [image:]

 Figure 6-19 Command to open the directory

 4.	Clone the incomplete repository (Figure 6-20). Run the following Git command:

 git clone https://github.com/watson-developer-cloud/conversation-simple

 [image:]

 Figure 6-20 Clone the repository with the incomplete code

 Integrate the application with the Conversation and Weather Company Data services

 Modify the code to integrate the application with the Conversation and Weather Company Data services:

 1.	Update the manifest.yml file with the host name and the details of the Conversation service and the Weather Company Data service:

 a.	Open C:\redbook\conversation-simple\manifest.yml (Figure 6-21) with your favorite text editor (Figure 6-21).

 [image:]

 Figure 6-21 The manifest.yml file before the update

 b.	Update declared-services section (Example 6-4 on page 174). In this section, replace lines with the name and details of your Conversation and Weather Company Data service instances (Example 6-2).

 Example 6-2 Name and details

 [image:]

 Conversation:

 label: conversation

 plan: free

 weather-company-data:

 label: weather

 plan: free

 [image:]

 c.	In the applications section, change the application name to conv-201-xxx-weather. Replace xxx by a random number because this name will also be used as the hostname for your application so it needs to be unique.

 d.	In the services section, add an application dependency on the declared services (Example 6-3).

 Example 6-3 Add application dependency

 [image:]

 - Conversation

 - weather-company-data

 [image:]

 e.	For memory, increase the memory to 512M.

 f.	Save the file. It should look like Example 6-4 on page 174.

 Example 6-4 The manifest.yml file after the update with the values for this use case

 [image:]

 declared-services:

 Conversation:

 label: conversation

 plan: free

 weather-company-data:

 label: weather

 plan: free

 applications:

 - name: conv-201-xxx-weather

 command: npm start

 path: .

 memory: 512M

 instances: 1

 services:

 - Conversation

 - weather-company-data

 env:

 NPM_CONFIG_PRODUCTION: false

 [image:]

 2.	Add the request module to package.json. The request module is a third-party module that allows making HTTP calls. Here it is used for interaction with REST APIs exposed by the Weather Company Data service.

 a.	Open C:\redbook\conversation-simple\package.json (Figure 6-22).

 [image:]

 Figure 6-22 The package.json file

 b.	Add the latest version of the "is-property" and "request" modules (Example 6-5) as a dependency on the dependencies tag (Figure 6-23 on page 175).

 Example 6-5 Add request and is-property

 [image:]

 "is-property":"*",

 "request":"*"

 [image:]

 Figure 6-23 shows dependencies.

 [image:]

 Figure 6-23 The package.json: dependencies

 c.	Save the file.

 3.	Edit the application logic to integrate with the Conversation and Weather Company Data services:

 a.	Open the C:\redbook\conversation-simple\app.js file.

 b.	After the updateMessage function, add the function getLocationCoordinatesForCity (Example 6-6) to get the latitude and longitude for cities.

 Example 6-6 Get latitude and longitude for cities

 [image:]

 /**

 * Get the latitude and longitude of city

 * @param {Object} city The target city

 * @return {Object} The latitude and longitude of the city

 */

 function getLocationCoordinatesForCity(city) {

 var location = {};

 if (city === 'Cairo') {

 location.latitude = '30.0444';

 location.longitude = '31.2357';

 } else if (city === 'NYC') {

 location.latitude = '40.7128';

 location.longitude = '74.0059';

 }

 return location;

 }

 [image:]

 c.	After the last function, add the functiongetWeatherForecastForCity (Example 6-7) that gets tomorrow's weather forecast for a city by calling a Weather Company Data API.

 Example 6-7 Get tomorrows weather

 [image:]

 var request = require('request'); // request module

 //Weather Company Endpoint

 var vcap = JSON.parse(process.env.VCAP_SERVICES);

 var weatherCompanyEndpoint = vcap.weatherinsights[0].credentials.url;

 /**

 * Get the weather forecast for a city through calling Weather Company Data

 * @param {Object} city The target city

 * @return {Object} Weather Forecast for the specified city.

 */

 function getWeatherForecastForCity(location, callback) {

 var options = {

 url: weatherCompanyEndpoint + '/api/weather/v1/geocode/' + location.latitude + '/' + location.longitude + '/forecast/daily/3day.json'

 };

 request(

 options,

 function(error, response, body) {

 try {

 var json = JSON.parse(body);

 var weatherOutput = json.forecasts[1].narrative;

 callback(null, weatherOutput);

 } catch (e) {

 callback(e, null);

 }

 }

);

 };

 [image:]

 d.	Replace the updateMessage function with the function in Example 6-8. If the entity is city, then get the location coordinates for the city and call a Weather Company Data API to get the forecast for this city.

 Example 6-8 Replacement for updateMessage function

 [image:]

 /**

 * Updates the response text using the intent confidence

 * @param {Object} input The request to the Conversation service

 * @param {Object} response The response from the Conversation service

 * @param {Object} callback The response from Weather Company Data

 * @return {Object} The response with the updated message

 */

 function updateMessage(input, response, callback) {

 var responseText = null;

 if (!response.output) {

 response.output = {};

 callback(response);

 }

 // In case the entity is city, then get the location coordinates for the city and call // Weather Company Data to get the forecast for this city.

 else if (response.entities.length > 0 && response.entities[0].entity === 'city') {

 var location = getLocationCoordinatesForCity(response.entities[0].value);

 getWeatherForecastForCity(location, function(e, weatherOutput) {

 response.output.text[0] = weatherOutput;

 callback(response);

 });

 } else {

 callback(response);

 }

 }

 [image:]

 e.	Call the updated updateMessage function. In line 61, replace the message call as in Example 6-9.

 Example 6-9 Replace message call

 [image:]

 updateMessage(payload, data, function(response) {

 		return res.json(response);

 });

 [image:]

 f.	Save the file.

 	
 Note: You can find the full listing of the app.js code at this GitHub location:

 https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/app.js

 Push the application to Bluemix

 Push the modified code to Bluemix:

 1.	At the command prompt, change to the C:\redbook\conversation-simple directory:

 cd C:\redbook\conversation-simple

 2.	Log in to Cloud Foundry by using the cf login command (Figure 6-24). When prompted enter the email and password that you use to log in to your Bluemix account.

 [image:]

 Figure 6-24 Log in to Cloud Foundry (cf login)

 3.	Push the application to Bluemix by using the cf push command (Figure 6-25).

 [image:]

 Figure 6-25 Pushing the application to Bluemix

 4.	Wait until the build and deployment are completed (Figure 6-26).

 [image:]

 Figure 6-26 Pushing application completed

 5.	Set the WORKSPACE_ID environment variable to point to the Weather Forecast Conversation Workspace ID that you obtained in “Get the Workspace ID” on page 163 (Figure 6-27):

 cf set-env conv-201-<xxx>-weather WORKSPACE_ID <WORKSPACE_ID>

 [image:]

 Figure 6-27 Set the environment variable

 6.	Restage the application so that your environment variable changes take effect (Figure 6-28):

 cf restage conv-201-<xxx>-weather

 [image:]

 Figure 6-28 Restage the application

 7.	Wait until the application is running (Figure 6-29).

 [image:]

 Figure 6-29 Restaging completed

 6.4.4 Testing the application

 To test the application, follow these steps:

 1.	Open your application route (URL to access your application) in a web browser; xxx is the number you use to make your application name unique:

 http://conv-201-xxx-weather.mybluemix.net/

 Your application opens in the browser (Figure 6-30).

 [image:]

 Figure 6-30 Cognitive Weather Forecast chatbot

 2.	Get the weather for one of the two supported cities (Figure 6-31 on page 181).

 [image:]

 Figure 6-31 Getting the weather for Cairo on the Cognitive Weather Forecast chatbot

 3.	Try different scenarios (Figure 6-32). If the chatbot fails, more training is necessary. To provide more training, add more user examples to the intents in the Car Chat-bot Workspace, or edit the entities. Also you can add support for more cities.

 [image:]

 Figure 6-32 Scenarios for Cognitive Weather Forecast chatbot; more training is needed

 6.5 Quick deployment of application

 A second Git repository is provided so that you can build and deploy the full Cognitive Weather Forecast chatbot even if you did not perform the steps described in 6.4, “Step-by-step implementation” on page 160. This section is independent from the rest of the chapter and it contains instructions to run the app more quickly.

 The full version of the code is in the Git repository:

 https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

 The workspace that was created for this chapter is in the following GitHub location:

 https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json

 To deploy the full application directly and more quickly, use these steps:

 1.	Open this location:

 https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

 2.	Log in with your Bluemix ID and password.

 3.	Enter the application name conv-201-xxx-weather where xxx is any random number to make your application and host name unique.

 4.	Click Deploy (Figure 6-33).

 [image:]

 Figure 6-33 Quick deployment of the application

 5.	Follow the steps in 6.4.1, “Configuring Conversation workspace for Cognitive Weather Forecast chatbot” on page 161, to import the Car Chat-bot Workspace into your Conversation service. Record the workspace ID.

 6.	Configure your application to point to the Calculator Workspace by following these three steps:

  –	5 on page 179

  –	6 on page 179

  –	7 on page 179

 7.	Test the application as described in 6.4.4, “Testing the application” on page 180.

 6.6 References

 For helpful information, see the following resources:

 •Explore Weather Company Data documentation and learn from examples:

 https://console.ng.bluemix.net/docs/services/Weather/index.html

 •Explore the REST API documentation for Weather Company Data:

 https://twcservice.mybluemix.net/rest-api/

[image:]
[image:]

Improving chatbot understanding

 One of the major challenges in developing a conversational interface is anticipating every possible way in which your users will try to communicate with your chatbot.

 The Improve component of the Conversation service provides a history of conversations with users. You can use this history to improve your chatbot’s understanding of user input.

 This chapter has an example of how to use the Improve interface to access user conversation logs and identify intents and entities that are not recognized by the sample workspace. The example in this chapter shows how you can improve the workspace understanding.

 The following topics are covered in this chapter:

 •Getting started

 •Use case implementation

 •References

 7.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 7.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Review past interactions and train the Conversation service with intent examples.

 •Review past interactions and train the Conversation service with new entity synonyms.

 7.1.2 Prerequisites

 To complete the steps in this chapter, be sure these prerequisites are met:

 •Have basic knowledge of Watson Conversation service concepts: intents, entities and dialog. Review Chapter 1, “Basics of Conversation service” on page 1.

 •Complete the use case by following the example in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157. In this chapter you will use the Conversation workspace and application created in Chapter 6.

 7.1.3 Expected results

 In this chapter, you modify the Car Chat-bot workspace to recognize these items:

 •The Big Apple entity synonym for Manhattan, NYC

 •The Will it rain? intent as a weather-related question

 Before this modification, your workspace does not recognize this intent and the entity synonym (Figure 7-1 on page 187).

 [image:]

 Figure 7-1 Before modification: The workspace does not understand some user’s terms

 After modification, the workspace can recognize both user inputs (Figure 7-2).

 [image:]

 Figure 7-2 After modification: The workspace recognizes the user’s terms

 7.2 Use case implementation

 Implementing this use case involves the following steps:

 •Identifying the additional training that the Conversation workspace requires.

 •Using the Improve component to train the Conversation workspace.

 •Testing the improved Conversation workspace.

 7.2.1 Identifying the additional training that the Conversation workspace requires

 When the user tries to get the weather information by asking Will it rain? (as shown in Figure 7-3 on page 189), the workspace does not understand this question. Next, try again by changing your question to Is it going to be rainy? When the chatbot asks for the city, the user replies The Big Apple (another name for Manhattan). The workspace is not trained to recognize this entity.

 Complete these steps:

 1.	In a web browser, open the application URL. If you followed the naming convention in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157, the URL is as follows, where xxx is a random number you selected to make the hostname unique:

 http://conv-201-xxx-weather.mybluemix.net/

 2.	Invoke the service by chatting with the application. In this example, you will input the following intents and entities to the application (Figure 7-3 on page 189):

  –	Will it rain?

 The Conversation service does not understand this intent.

  –	Is it going to be rainy?

 The Conversation service understands this intent and asks which city you are interested in, to get your entity.

  –	The Big Apple

 The Conversation service doe not understand this entity.

  –	NYC

 After training, the Conversation service understands this entity and completes the flow with the #weather_inquiry intent and the @NYC entity.

 [image:]

 Figure 7-3 Trying out user interactions

 7.2.2 Using the Improve component to train the Conversation workspace

 The Improve component of the Conversation service provides a history of conversations with users. You can use this history to improve your chatbot’s understanding of user inputs.

 While you develop your workspace, you use the Try it out panel to verify that it recognizes the correct intents and entities in test inputs, and make corrections as needed. In the Improve panel, you can view actual conversations with your users and make similar corrections to improve the accuracy with which intents and entities are recognized.

 In this example, you use the sample Car Chat-bot workspace to conduct a simple dialog with the user, and try to get information by communicating your intents and entities in unexpected ways.

 Access the Improve component and open the chat logs

 To access the Improve component and open the chat logs for the Car Chat-bot workspace:

 1.	Open the Car Chat-bot workspace.

 2.	Click the Menu icon [image:] (three horizontal lines). Then, select Improve → User conversations (Figure 7-4).

 [image:]

 Figure 7-4 Improve component

 The chat logs saved represent the user interactions through the API (not the interactions through the Try it out panel in the workspace). The Improve feature shows you the most recent user interactions. The top intent and any entities used in the message, the message text, and the chatbot's reply are available.

 You see each user interaction, starting with the most recent (Figure 7-5).

 [image:]

 Figure 7-5 User conversations history

 Find the unrecognized entity synonym and train the workspace to recognize it

 You will edit the input where you referred to Manhattan as The Big Apple (Figure 7-6). You will see that no entities are found, and the #greeting intent is identified. You correct both of these issues by first disassociating the phrase with the #greeting intent. Then, you train the workspace to recognize that NYC and Big Apple are synonyms. Complete these steps:

 1.	Click the Edit icon (pencil).

 [image:]

 Figure 7-6 Editing an interaction

 The window now looks like the one in Figure 7-7.

 [image:]

 Figure 7-7 Editing the user interaction

 2.	Select the intent from the drop-down menu, and replace #greeting with Mark as irrelevant (Figure 7-8). This ensures that next time The Big Apple will not be recognized as a greeting.

 [image:]

 Figure 7-8 Marking the phrase as not matching any intent.

 3.	Select the part of the phrase that is a synonym of your entity. In this case, use the mouse to highlight Big Apple (Figure 7-9). A pull-down menu opens under Entity values (where you will select the matching entity value).

 [image:]

 Figure 7-9 Menu opens so you can select a matching entity value

 4.	Select the entity value that corresponds to Big Apple: @city:NYC (Figure 7-10). Then, click Save.

 [image:]

 Figure 7-10 Selecting the corresponding entity and value

 The result is shown in Figure 7-11.

 [image:]

 Figure 7-11 After saving your changes

 A phrase that includes Big Apple can now be recognized as a synonym of the NYC value for the entity @city.

 Find the unrecognized intent and train the workspace to recognize it

 Complete the following steps:

 1.	Edit this interaction: Will it rain? (Figure 7-12).

 [image:]

 Figure 7-12 Editing intent interaction: will it rain?

 2.	Add an intent for this interaction. Select the correct #weather_inquiry intent (Figure 7-13).

 [image:]

 Figure 7-13 Selecting the correct intent

 3.	Click Save to save your intent changes (Figure 7-14).

 [image:]

 Figure 7-14 Saving intent changes

 The interaction (will it rain?) is added as another example for the #weather_inquiry intent.

 The result is shown in Figure 7-15 on page 201.

 [image:]

 Figure 7-15 After saving intent changes

 7.2.3 Testing the improved Conversation workspace

 To test the improved Car Chat-bot workspace, complete these steps:

 1.	Open the application URL again in order to test the newly trained intents and entities. If you followed the naming convention in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157, the URL is as follows, where xxx is a random number you selected to make the hostname unique:

 http://conv-201-xxx-weather.mybluemix.net/

 2.	Inquire about the weather forecast by using the following lines:

  –	Will it rain?

  –	The Big Apple

 You can see that it works correctly now (Figure 7-16).

 [image:]

 Figure 7-16 The application now recognizes intent and entity

 7.3 References

 For more information, see the following resource:

 •Improving understanding:

 https://www.ibm.com/watson/developercloud/doc/conversation/logs.html

[image:]
[image:]

Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service

 This chapter guides you through the process of updating the Cognitive Weather chatbot application created Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157 to integrate it with the Watson Speech to Text (STT) and Text to Speech (TTS) services.

 The scenario in this chapter enables the user to send speech queries about weather forecast to the application by integrating with the Speech-to-Text service. The application responds to the user by integrating with the Text to Speech service.

 The application demonstrates the use of Text to Speech, Speech to Text, Conversation and Weather Company Data services to get the forecasted weather for a city through talking with the user.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 8.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 8.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create Speech to Text (STT) and Text to Speech (TTS) services in Bluemix.

 •Integrate a Conversation service with STT and TTS services in a Node.js application to provide weather information responding to spoken requests from the user.

 8.1.2 Prerequisites

 To complete the steps in this chapter, be sure these prerequisites are met:

 •Finish the Cognitive Weather Forecast chatbot application implementation as described in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157.

 •Use only Chrome or Firefox web browser; these browsers are required for Speech to Text and Text to Speech to work correctly.

 •Understand basic JavaScript concepts.

 •Have the Git command line installed on local workstation.

 •Have the Cloud Foundry (CF) command line installed on the local workstation.

 •Ensure that the microphone and speaker are working correctly on the local workstation.

 In addition, if you see the word snippet before example code, then use the example to complete the code.

 8.1.3 Expected results

 Figure 8-1 on page 205 shows the expected results of the running application. It illustrates how the user can talk to the application to request information about tomorrow’s temperature. In addition, it illustrates how the application responds in speech to specify the city to get the weather information about. Then, the user specifies the city as Cairo, and the application replies with the specific weather information for that city.

 [image:]

 Figure 8-1 Cognitive Weather Forecast Application

 8.2 Architecture

 Figure 8-2 shows the components involved in this use case and the runtime flow.

 [image:]

 Figure 8-2 Architecture

 The flow for this use case is as follows:

 1.	The user speaks to the application to ask for weather information for a city.

 2.	The request is passed from the web browser to the Node.js application on Bluemix.

 3.	The Node.js application passes the speech request to the Speech to Text service.

 4.	The Speech to Text service converts the speech request to text and sends it back to the Node.js application.

 5.	The Node.js application passes the text to the Conversation service.

 6.	The Conversation service understands the intent and entities passed by the application. Then it returns a response to the application based on the dialog configuration in the workspace of the Conversation service.

 7.	The Node.js application receives the response from the Conversation service and passes it to the Weather Company Data service to query the city weather.

 8.	The Weather Company Data service responds to the Node.js application with the weather information in text.

 9.	The Node.js application passes the response text to the Text to Speech service.

 10.	The Text to Speech service converts the text into audio and returns the audio to the Node.js application.

 11.	The Node.js application passes the audio to the web browser to play it to the user.

 12.	The user listens to the weather information for the city requested.

 8.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step deployment (incomplete) version of the application

 This repository contains an incomplete version of the application and is used in all sections of 8.4, “Step-by-step implementation” on page 207. This version takes you through the key steps to integrate the IBM Watson APIs with the application logic.

 •Quick deployment (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 8.5, “Quick deployment of application” on page 219.

 8.4 Step-by-step implementation

 This section shows how to integrate the Cognitive Weather Forecast chatbot application (created in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157) with the Speech-to-Text and Text-to-Speech services.

 Implementing this use case involves the following steps:

 1.	Creating the Speech to Text service

 2.	Creating the Text to Speech service

 3.	Developing the Cognitive Weather Forecast chatbot application

 4.	Testing the application

 8.4.1 Creating the Speech to Text service

 To create the Speech to Text service, complete these steps:

 1.	In IBM Bluemix Catalog, scroll to Services select Watson, and then click Speech to Text.

 2.	In the Service name field, enter speech-to-text-student (Figure 8-3), then click Create.

 [image:]

 Figure 8-3 Create STT service

 8.4.2 Creating the Text to Speech service

 To create the TTS service, follow these steps:

 1.	In IBM Bluemix Catalog, scroll to Services select Watson, and then click Text to Speech.

 2.	In the Service name field enter text-to-speech-student (Figure 8-4), then click Create.

 [image:]

 Figure 8-4 Create TTS service

 8.4.3 Developing the Cognitive Weather Forecast chatbot application

 In this section, you modify the application to add integration with the Speech to Text and Text to Speech services.

 Clone the application code from the Git repository to your local workstation

 Clone the incomplete code for the Cognitive Weather Forecast application to your local workstation by using the Git command line. You will then add the integration code to STT and TTS services to it.

 Use the following steps:

 1.	Create a new folder under the C:\ directory and name it Bluemix.

 2.	Open a command prompt (cmd.exe), and change the working directory to the new folder that you created:

 cd C:\Bluemix

 3.	Type the following command to clone the incomplete repository to your local workstation:

 git clone https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

 Figure 8-5 shows the command prompt result messages when cloning the code.

 [image:]

 Figure 8-5 Git clone result in command prompt

 Complete the code

 To modify the code so it is ready to be deployed, you update these files as follows:

 1.	Complete the manifest.yml file.

 2.	Complete the app.js file.

 3.	Complete the index.html file.

 The sections that follow explain these steps in detail.

 Complete the manifest.yml file

 Completing the manifest.yml file involves renaming the application and renaming the services to match your Conversation, Weather Company Data, Speech to Text, and Text to Speech services instances in Bluemix:

 1.	Open the manifest.yml file in a text editor. The file is in the following path:

 C:\BlueMix\conv-201-stt-tts-nodejs-student\manifest.yml

 The file opens as shown in Figure 8-6.

 [image:]

 Figure 8-6 The manifest.yml file before the update

 2.	Change the application name and names of the services in the file to match those on Bluemix:

  –	Line 3: Change my conversation to Conversation.

  –	Line 6: Change my weather company data to weather-company-data.

  –	Line 9: Change my speech to text to speech-to-text-student.

  –	Line 12: Change my text to speech to text-to-speech-student.

  –	Line 22: Add the following lines:

  •	Conversation

  •	weather-company-data

  •	speech-to-text-student

  •	text-to-speech-student

  –	Line 16: Add a suffix to the application name to ensure uniqueness (for example, weather-conv-stt-tts-XXX, where XXX is your favorite word).

 The completed manifest.yml file is shown in Figure 8-7.

 [image:]

 Figure 8-7 The manifest.yml file after the update

 Complete the app.js file

 Completing the app.js file involves adding the integration code to the Speech to Text and Text to Speech services:

 1.	Open the app.js file in a text editor. The file is in the following path:

 C:\BlueMix\conv-201-stt-tts-nodejs-student\app.js

 The app.js file contains the application logic and integrations.

 2.	Add the STT and TTS integration code to the file:

 a.	Replace the "// ADD SPEECH TO TEXT INTEGRATION CODE HERE" comment with the code snippet (Example 8-1) to integrate the STT service with the application logic.

 Example 8-1 Code snippet - STT integration code

 [image:]

 // Speech to Text Integration Code

 var sttEndpoint = vcap.speech_to_text[0].credentials.url;

 var stt_credentials = Object.assign({

 username: process.env.SPEECH_TO_TEXT_USERNAME || '<username>',

 password: process.env.SPEECH_TO_TEXT_PASSWORD || '<password>',

 url: process.env.SPEECH_TO_TEXT_URL || 'https://stream.watsonplatform.net/speech-to-text/api',

 version: 'v1',},vcap.speech_to_text[0].credentials);

 [image:]

 b.	Replace the "// ADD TEXT TO SPEECH INTEGRATION CODE HERE" comment with the code snippet (Example 8-2) to integrate the TTS service with the application logic.

 Example 8-2 Code snippet - TTS integration code

 [image:]

 // Text to Speech Integration Code

 var ttsEndpoint = vcap.text_to_speech[0].credentials.url;

 var tts_credentials = Object.assign({

 username: process.env.TEXT_TO_SPEECH_USERNAME || '<username>',

 password: process.env.TEXT_TO_SPEECH_PASSWORD || '<password>',

 url: process.env.TEXT_TO_SPEECH_URL || 'https://stream.watsonplatform.net/text-to-speech/api',

 version: 'v1',

 },vcap.text_to_speech[0].credentials);

 [image:]

 Figure 8-8 shows the app.js file after adding the previous integration code.

 [image:]

 Figure 8-8 The app.js file after adding integration code

 c.	Replace the "//ADD TEXT TO SPEECH GET TOKEN ENDPOINT HERE" comment with the code snippet (Example 8-3) to add the TTS get token endpoint. This endpoint is used to get the authorization token of the service that is needed to access the service’s APIs.

 Example 8-3 Code snippet - TTS get token endpoint

 [image:]

 // Text-to-Speech Get Token Endpoint

 app.get('/api/text-to-speech/token', function(req, res, next){

 watson.authorization(tts_credentials).getToken({ url: tts_credentials.url }, function(error, token){

 if (error) {

 if (error.code !== 401)

 return next(error);

 } else {

 res.send(token);

 }

 });

 });

 [image:]

 d.	Replace the "//ADD SPEECH TO TEXT GET TOKEN ENDPOINT HERE" comment with the code snippet (Example 8-4) to add the STT get token endpoint. This endpoint is used to get the authorization token of the service that is needed in order to access the service’s APIs.

 Example 8-4 Code snippet - STT get token endpoint

 [image:]

 //Speech-to_text Get Token Endpoint

 app.get('/api/speech-to-text/token', function(req, res, next){

 watson.authorization(stt_credentials).getToken({ url: stt_credentials.url }, function(error, token){

 if (error) {

 if (error.code !== 401)

 return next(error);

 } else {

 res.send(token);

 }

 });

 });

 [image:]

 Figure 8-9 shows the app.js file after adding the endpoint code for the STT and TTS.

 [image:]

 Figure 8-9 The app.js file after adding the endpoints

 Complete the index.html file

 Completing the index.html file involves adding the user interface changes needed in order to integrate the STT and TTS features:

 1.	Open the index.html file in a text editor. The file is in the following path:

 C:\BlueMix\conv-201-stt-tts-nodejs-student\public\index.html

 The index.html file contains the user interface of the application.

 2.	Add the STT and TTS features to the user interface:

 a.	Replace the "<!-- ADD AUDIO ELEMENT HERE -->" comment with the code snippet (Example 8-5) to integrate the Audio Element to show the user the TTS feature.

 Example 8-5 Code snippet - Integrate the Audio Element

 [image:]

 <div id="output-audio" class="audio-on" onclick="TTSModule.toggle()" value="ON"></div>

 [image:]

 b.	Replace the "<!-- ADD MIC ELEMENT HERE -->" comment with the code snippet (Example 8-6) to integrate the Microphone Element to show the STT feature.

 Example 8-6 Code snippet - Integrate the Microphone Element

 [image:]

 <div id="input-mic-holder">

 <div id="input-mic" class="inactive-mic" onclick="STTModule.micON()">

 </div>

 </div>

 [image:]

 Figure 8-10 shows the index.html file after adding user interface HTML elements for integrating the STT and TTS features.

 [image:]

 Figure 8-10 The completed index.html file

 Deploy the application to Bluemix

 After completing the code as described in the previous section, deploy the application to Bluemix, using the CF command line, by completing the following steps:

 1.	Log in to the Bluemix region, organization and space.

 2.	Push the application.

 3.	Set the WORKSPACE_ID environment variable.

 4.	Restage the application.

 The sections that follow explain these steps in detail.

 Log in to the Bluemix region, organization and space

 To log in to the Bluemix organization and space:

 1.	At the command prompt (cmd.exe), change from the working directory to the directory that contains the application code:

 cd C:\Bluemix\conv-201-stt-tts-nodejs-student

 2.	Type the following command to log in to the Bluemix region:

 cf api https://api.ng.bluemix.net

 In this example, you log in to the US South Region.

 3.	Connect to your organization and space by using the following command:

 cf login -u <USERNAME> -o <ORG_NAME> -s <SPACE_NAME>

 The command has the following values:

  –	<USERNAME> is your Bluemix user name.

  –	<ORG_NAME> is the organization name that you want to push the application to.

  –	<SPACE_NAME> is the space name that you want to push the application to.

 4.	When prompted, enter your password.

 Push the application

 To push the application:

 1.	Type the following command:

 cf push

 2.	Wait until the application deploys and a message indicating that the application is running is logged on the command line, as shown in Figure 8-11.

 [image:]

 Figure 8-11 Successful application deployment message

 	
 Note: Deploying the application to Bluemix and starting it might take some time.

 Set the WORKSPACE_ID environment variable

 To set the WORKSPACE_ID environment variable:

 1.	Copy the Workspace ID of the Car Chat-bot workspace, as described in “Copy the Car Chat-bot workspace ID” on page 223.

 2.	To set the WORKSPACE_ID environment variable to the application to use the Car Chat-bot workspace in the Conversation service, use the following command:

 cf set-env weather-conv-stt-tts-XXX WORKSPACE_ID $WORKSPACE_ID

 The command has the following values:

  –	XXX is a suffix that you added to the application name to make the name unique.

  –	$WORKSPACE_ID is the Car Chat-bot Workspace ID that you copy as describe in “Copy the Car Chat-bot workspace ID” on page 223.

 Figure 8-12 illustrates how to set the environment variable using the command line.

 [image:]

 Figure 8-12 Set the environment variable using CF command line

 Restage the application

 For the setting of the environment to take effect, restage the application by using this command:

 cf restage weather-conv-stt-tts-XXX

 Wait for the application to restage and for the message indicating that the application is running in the log. After you deploy the application, proceed to the next section for information about how to use the application and test it.

 8.4.4 Testing the application

 After deploying the application, using either the full version (from 8.5, “Quick deployment of application” on page 219) or the incomplete code (which you just completed in 8.4.1, “Creating the Speech to Text service” on page 207), you must run the application and test it.

 	
 Speaker and microphone: Make sure that the speaker and microphone are turned on for the workstation.

 Support: Only Chrome and Firefox are supported for testing the application.

 The following steps describe how the application works:

 1.	Open the application’s URL in your web browser:

 https://weather-conv-sst-tts-XXX.mybluemix.net/

 The application opens (Figure 8-13); the audio greeting starts by saying:

 Welcome to Car chat bot!

 [image:]

 Figure 8-13 Cognitive Weather Forecast application opens

 2.	Click the microphone at the bottom of the page to enable the browser microphone so that you can talk to the application. As shown in Figure 8-14, a message displays to Accept the microphone prompt in your browser. Watson will listen soon. The audio greeting says, Welcome to Car Chat bot!

 [image:]

 Figure 8-14 Enable the microphone on the application

 3.	Speak into the microphone. Try saying, “Hi.” The application responds in voice and text by saying, Hi! What can I do for you?

 4.	You can speak to the application by asking for the temperature. For example, ask What is the temperature tomorrow, please? The application prompts you with both voice and text: What’s the city that you’d like to forecast the weather?

 5.	Choose a city. For example, you can choose New York.

 6.	The application responds with the expected weather for tomorrow for that city. For example, the application responds with both voice and text: A few clouds. Highs in the low teens and lows -12 to -8F.

 Figure 8-15 shows the complete exchange between the application and the user.

 [image:]

 Figure 8-15 Complete exchange asking for the temperature of New York

 	
 Note: Try different scenarios to test the application. If the application fails to respond to some scenarios, it needs more training by adding more user examples to the intents in the Car Chat-bot Workspace or by editing the entities.

 8.5 Quick deployment of application

 A second GitHub repository is provided so that you can run the application in this use case even if you did not perform the steps described in 8.4, “Step-by-step implementation” on page 207. This section is independent from those steps, and it includes instructions to run the application more quickly.

 Use the GitHub repository that contains the complete code:

 https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

 8.5.1 Deploy the application to Bluemix

 To deploy the completed code, follow these steps:

 1.	Click the following link to begin deployment of the application to Bluemix:

 https://bluemix.net/deploy?repository=https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

 2.	Log in with your account on Bluemix (Figure 8-16 on page 220).

 [image:]

 Figure 8-16 Log in for click to deploy

 3.	You can leave the default APP NAME, or change it. Change the REGION, ORGANIZATION, and SPACE to match the one used in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157 to use the same Conversation Service and Weather Company Data service, as shown in Figure 8-17.

 [image:]

 Figure 8-17 Click to deploy application details

 4.	Click DEPLOY.

 5.	The application begins to deploy as it goes through the following actions:

  –	Creates a private DevOps Service project for the app.

  –	Clones the code from the GitHub URL to the new project created.

  –	Configures the pipeline to build and deploy automatically.

  –	Creates the Node.js application.

  –	Binds the Conversation and Weather Company Data service instances created in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157 to the new application.

  –	Creates new Speech to Text and Text to Speech instances and binds them to the new application.

 6.	The status of the deployment is shown in Figure 8-18.

 [image:]

 Figure 8-18 Click to deploy status

 	
 Note: The deployment can take some time.

 When deployment is finished, a deployment success message displays (Figure 8-19).

 [image:]

 Figure 8-19 Click to deploy success message

 	
 Important: Do not view the application now.

 Copy the Car Chat-bot workspace ID

 To copy the Car Chat-bot workspace ID, follow these steps:

 1.	Open your Bluemix Dashboard.

 2.	Click the Conversation service created in Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157.

 3.	Launch Conversation Tooling by clicking Launch tool.

 4.	The Workspaces page opens. On the Car Chat-bot workspace, click the Actions icon (top left of the Workspaces box) and select View details (Figure 8-20).

 [image:]

 Figure 8-20 Car Chat-bot workspace view details

 5.	Copy the Workspace ID, as shown in Figure 8-21.

 [image:]

 Figure 8-21 Workspace ID example

 Add the WORKSPACE_ID environment variable

 To add the WORKSPACE_ID environment variable, follow these steps:

 1.	Return to Bluemix Dashboard.

 2.	Click the application deployed previously. (in this example it is named conv-201-stt-tts-nodejs-1138). The application details are displayed.

 3.	Click Runtime from the navigation bar (Figure 8-22).

 [image:]

 Figure 8-22 Application Runtime details

 4.	Select the Environment variables tab (Figure 8-23).

 [image:]

 Figure 8-23 Environment variables tab

 5.	Scroll to the user-defined section, and click Add.

 6.	Enter WORKSPACE_ID as the NAME, and paste the Workspace ID copied from “Copy the Car Chat-bot workspace ID” on page 223) as the VALUE (Figure 8-24).

 [image:]

 Figure 8-24 WORKSPACE_ID environment variable

 7.	Click Save. Wait for the application to restart and the status to show as Running (Figure 8-25).

 [image:]

 Figure 8-25 Application running status

 8.	Click the View app button to run the application.

 For more information about the expected behavior of the application, see 8.4.4, “Testing the application” on page 217.

 8.6 References

 For more information about this topic, see the following resources:

 •IBM Watson Conversation service documentation and tutorial:

 https://www.ibm.com/watson/developercloud/doc/conversation/index.html

 •Speech to Text service documentation and tutorial:

 https://www.ibm.com/watson/developercloud/doc/speech-to-text/index.html

 •Text to Speech service documentation and tutorial:

 https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.html

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the Internet.

 Locating the web material

 The following Git repositories and files are available to help you with examples in this book:

 •Chapter 2, “Conversation service workspace” on page 13

  –	https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice-incomplete.json

 •Chapter 3, “Cognitive Calculator chatbot” on page 55

  –	https://github.com/snippet-java/redbooks-conv-201-calc-nodejs

  –	https://github.com/snippet-java/redbooks-conv-201-calc-nodejs/blob/master/training/calculator_workspace.json

  –	https://github.com/watson-developer-cloud/conversation-simple

 •Chapter 4, “Help Desk Assistant chatbot” on page 109

  –	https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

  –	https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json

 •Chapter 5, “Using a cognitive chatbot to manage IoT devices” on page 139

  –	https://github.com/ibm-watson-iot/iot-starter-for-android

  –	https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

  –	https://github.com/snippet-java/redbooks-conv-201-iot-nodered/blob/master/conv-201-iot-nodered-flow.json

 •Chapter 6, “Chatting about the weather: Integrating Weather Company Data with the Conversation service” on page 157

  –	https://github.com/watson-developer-cloud/conversation-simple

  –	https://github.com/snippet-java/redbooks-conv-201-weather-nodejs/blob/master/training/1.4-conv-101-createservice.json

  –	https://github.com/snippet-java/redbooks-conv-201-weather-nodejs

 •Chapter 8, “Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service” on page 203

  –	https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs-student.git

  –	https://github.com/snippet-java/redbooks-conv-201-stt-tts-nodejs

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 The volumes in the Building Cognitive Applications with IBM Watson Services series:

 •Volume 1 Getting Started, SG24-8387

 •Volume 2 Conversation, SG24-8394

 •Volume 3 Visual Recognition, SG24-8393

 •Volume 4 Natural Language Classifier, SG24-8391

 •Volume 5 Language Translator, SG24-8392

 •Volume 6 Speech to Text and Text to Speech, SG24-8388

 •Volume 7 Natural Language Understanding, SG24-8398

 You can search for, view, download or order these documents and other Redbooks, IBM Redpapers™, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Online resources

 These websites are also relevant as further information sources:

 •Spring Expression Language (SpEL):

 http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

 •IBM Bluemix, log in or create an account:

 https://console.ng.bluemix.net

 •Node-RED programming tool:

 https://nodered.org/

 •JS Foundation:

 https://js.foundation/

 •Slack:

 http://slack.com

 •Create a new Slack team:

 https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-team

 •Node-RED Bluemix Starter Application:

 https://github.com/snippet-java/Node-RED-bluemix-conversation-starter.git-1487332833126

 •IoT starter app for Android phone:

 https://ibm.ent.box.com/v/iotstarterapp

 Also see the list of online resources for the following chapters in this book:

 •Basics of Conversation service: 1.5, “References” on page 12

 •Conversation service workspace: 2.3, “References” on page 54

 •Cognitive Calculator chatbot: 3.6, “References” on page 107

 •Help Desk Assistant chatbot: 4.7, “References” on page 138

 •Using a cognitive chatbot to manage IoT devices: 5.4, “References” on page 156

 •Chatting about the weather: Integrating Weather Company Data with the Conversation service: 6.6, “References” on page 183

 •Improving chatbot understanding: 7.3, “References” on page 202

 •Talking about the weather: Integrating Speech to Text and Text to Speech with the Conversation service: 8.6, “References” on page 225

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation

 Back cover

 Acrobat bookmark

 ISBN 0738442569

 SG24-8394-00

 ®

 OPS/images/8394-conv-calc-nodejs.07.1.50.jpg
1BM Bluemix Catalog Support Account

 Fe Bt vew Tos | (CEIENEISIITAN =

v Conv-201 xxx.cale A4B6207022447 - | manitestym
» lsunenConfuratons

i | e r—

D chanore
D enveanpie e — |

[esintgnore

[sy
[otarore I
D vy

B woois

B casper-unneris
D) CONTRIBUTING ma
[ucense

D packagelson

OPS/images/8394-conv-calc-nodejs.07.1.52.jpg

OPS/images/ifBrandsAcer.jpg
HW Brands

Trigger ©

i @Brands

Responses @

1 i @Brandsiacer

™ 1 For support with Acer hardware, please go to the following shop.

‘Add a variation to this response.

(® Add another response:

OPS/images/8394-conv-calc-nodejs.07.1.51.jpg

OPS/images/8394-conv-nodered.08.1.22.jpg
Harcvare lssuss Afrmative HW HW Brands

— [——— it

Passagoro et

4 4

OPS/images/8394-conv-calc-nodejs.07.1.54.jpg

OPS/images/8394-conv-calc-nodejs.07.1.53.jpg
e e ver oo | CRTEITCTITTITONGD > ¢

 com. 201 .ol 148620702 35015
[—— w

S o H
P Ge— =
st H

» vaining %

O dn 4

[smveranpe 5

D ssintgnre

D ssineeym 0

D stgnore e
i

D e 107

0

o

® camernmeris

[coTRBUTNG 0 o

[ueense b

[mantestymt

o

B saciagejson Frd
R =

[RerDHE NS e
K b

i

b

i

fr

it

=

b esse o
FesponseText « 1 gid not understand your intent’
)
3
Pesponse.cutout text = responseText;

Feturn, response;
)

+ Get. the operands, perforn the calculation and update the response <o
* @paran (Ooject) response Tne response from the Conversation service
+ @return (0sject) The response with the updated nessage

function getCalculationdesult (response)(
73 areay holding the operants
o mummersace - (13

//FL11 the content of the array with the entities of type
for (v 1 = 0; 1 ¢ response.ntities. lengeh; f)
1 (response.entities(i) entity -ux "sys-number) {
nusbersarr push(response.entities(1) value)

)
3

17 1n case the user inten
77 1n case tne intent is mu
Vo resunt = 6;
i (Pesponse. intents[0] intent == “osa")

Fesult - parselnt (numbersarr(]) + parseInt(numbersarrlil);
} else it (response.intents[o).intent ~e= ‘mitisly’) {

Fesult - parselnt(numbersare(o]) * parseInt(nmbersirr(i]);

3

1/ Replace _result_ in Conversation Service response, with the ac-tual cal
Vo output = response.output <ext[0];

output - outout. replace("_result_, result);

Fesponse. output text[0] = outaut;

1/ Return the updated response text based on the calcs
return ressonse;

3

module.exports = app;

OPS/images/8394-conv-nodered.08.1.20.jpg
Trigger ©

P,

Responses O

[—

OPS/images/8394-conv-calc-nodejs.07.1.45.jpg

OPS/images/8394-conv-nodered.08.1.14.jpg
My entities

@Security

h

DataLoss

Privacy
sPAM
Spyware

Vius

oNoNoNoNO)

OPS/images/8394-conv-calc-nodejs.07.1.44.jpg
Connect existing service °

OPS/images/image022.png
Myentities System entities

x

@os
Value Synonyms
|Add a value, for example, Cat
HPUX
RedHat
Linux

Windows

[ONONONONO]

UNIX

OPS/images/8394-conv-calc-nodejs.07.1.47.jpg
18M Biuormix Cotog Support Acoount

Configurable Integrations

R —

s Ectipee Oron Web
Q) @) o

OPS/images/8394-conv-nodered.08.1.12.jpg
- x

#Hello

GoodHomng ©
Goodvering ©
Good Atamoon ©
o ©

"o

e ©

OPS/images/8394-conv-calc-nodejs.07.1.46.jpg
1BM Biuermix Cotsog Support Accoum

is) conv-201-xxx-calc .

« e EEEEEA

Actviy foed
PR —

pdated com-201xxxcao .

[—

OPS/images/image018.png
Intent name

#Affirmative

User example

Add a user example. ®

correct (O
right)
exacty
s ©
v O

youareright ()

OPS/images/8394-conv-calc-nodejs.07.1.49.jpg
1BM Bluemix Catslog Support Account

& FeoER vew Toos

. v come-201amx cole BR0TOHT | ittt
JEC——— '

[oo
D envearpie
D sstonore
D eyt =y-conrsation
D st fatse
D
R owen
D cosperrumner s

REBUTINGa

D REsDUEm:
B s

OPS/images/image028.png
Conversation starts

~ Hello

Triggered by
#Hello

Watson responses o
Hi, I'm Watson, how can | help you?

&

OPS/images/8394-conv-calc-nodejs.07.1.48.jpg
1BM Bluer

Toolchains

o

conv-2!

2

2

Gt

Eclioss rion Web IDE

Deivery Ppeine

OPS/images/Nodes-1.jpg
W -

Hardware Issues

#Hardware-lssues

Affirmative HW

Looks like you're having some

hardware issues.

OPS/images/image024.png
Myentities System entities

Entiy

@Printers

Value Synonyms

Golorjet
Golor Stylus
Inkjet
Laserjet

Full color

[ONONONONO]

OPS/images/8394-conv-nodered.08.1.17.jpg
My enities

@Brands

Acer
Asus
e
Toshiba
Apple

Lenovo

Ent

[cHoNoNoN0oNO)

OPS/images/8394-conv-improve.11.1.09.jpg
16 results: Last 90 days ¥ show fitters

Original Understanding The Big Apple
@ #greeting 027201 8 AM
|1am trained only for Cairo and NYC I
cities

What's the city that you'd like to
forecast the weather?

®

Original Understanding is it going to be rainy?
® #weather_inquiry 0212017 @ 1:28 AM

| What's the city that you'd like to
forecast the weather?

® ersation

Original Understanding will it rain? |

OPS/images/conv-workspace-id-env-var.png
User defined

NAME VALUE ACTION

NPM_CONFIG_PRODUCTION false ®

WORKSPACE_ID €7073d4b-adea-4607-a921-76a82788d1d7 ®

OPS/images/8394-conv-stt-tts-nodejs.12.1.37.jpg
ssH

OPS/images/8394spec.03.1.1.jpg

OPS/images/8394-conv-improve.11.1.07.jpg
Intents.

I Intents

OPS/images/conv-Runtime-details.png
4 Dashboard

Getting started

Runtime

Connections

Monitoring

OPS/images/8394-conv-improve.11.1.08.jpg
conversatior

Q.

€]

Showing 1 through 16 of 16 results

Original Understanding

#greeting
@city:NYC

Original Understanding
#greeting

¥ show fitters

Newest fist I

| REPLACE WITH WEATHER DATA]
Itis my pleasure to help you. Bye

@ Vi ersation

|1 am trained only for Cairo and NYC
cities
What's the city that you'd like to
forecast the weather? L

OPS/images/conv-workspace-id-example.png
Workspace ID: e155b1fc-dce9-4fe7-91e6-bbaeb5050d1b

OPS/images/8394-conv-calc-nodejs.07.1.41.jpg
Dislog

Conversation starts

: @ Tryitout O Gor

| Hi Welcome to Watson Calculator
‘What would ke to calculate tocay
(addion or multipication)?

Fd ik to multiply two numbers.

wltip @sys-rumber2
| What would you fike

anythin fourtimes five:

@sys-number4
Gsys-numbers

| The resuit of multiplying the two
Pumberss_resu What else
would you ke o do (addition or
multpication)?

addition

OPS/images/8394-conv-nodered.08.1.10.jpg
#Software-Issues

Appication lsve ()
Issues with Offce ©

Problems with automatic updates ()
My emaiis not working)

Appiication not unning (O

OPS/images/conv-201-improve-0001.png
Welcome to Car chat bot!

I can't understand your question. Please try
again

is it going to be rainy?

What's the city that you'd like to forecast the
weather?

I'am trained only for Cairo and NYC cities

What's the city that you'd like to forecast the
weather?

| Afternoon snow showers. Highs in the low
single digits and lows -6 to -2F.

Itis my pleasure to help you. Bye

[rype something

OPS/images/conv-carchatbot-view-details.png
Car Chat-bot

Car Chat-bot workspace

English (US)
Get started

Last modified: 2 minutes ago

View details

Edit

Duplicate

Download as JSON

Delete

OPS/images/39.png
Dialog

Conversation starts

conversation_start

> #add_operation

#muttiply_operation

> anything_else

Show help

OPS/images/8394-conv-nodered.08.1.11.jpg
#Hardware-Issues

}

My computer s ot tuming on)
My hard dikis notworking ©)
My laptop s not charging | ©
Mypoisolt O

My prte s ot werkng. @)

OPS/images/conv-MenuIcon.png

OPS/images/conv-click-to-deploy-success.png
© © 06

Success!

You've added an instance of this app to your organization in Bluemix.

Created project successfully

Cloned repository successfully

Configured pipeline successfully

Deployed to Bluemix successfully

VIEW YOUR APP

EDIT CODE

OPS/images/8394-conv-calc-nodejs.07.1.43.jpg
s) conv-201-xxx-calc

VoAP SERVCES

Use dtiosd

Suppert Aecount

OPS/images/8394-conv-improve.11.1.03.jpg
Welcome to Gar chat bot!

1 can't understand your question. Please try

again.

What's the city that you'd ke to forecast the
weather?
1 am trained only for Cairo and NYC cities

What's the city that you'd fike to forecast the

1 Attormoon snow snowers. High in the ow
single digits and lows -6 to -2F.

Itis my pleasure to help you. Bye

Irvpe something

OPS/images/conv-click-to-deploy-status-UPDATED.png
Deploy this application to Bluemix

Deploying this app will create a private DevOps Services project for you. Learn more.

4 CONV-201-STT-TTS-NODEJS

< (GIT URL: htipsfgithub comisnippet-javalredbooks-conv-201-stt-tts-n.1
GIT BRANCH: master

@ Created project successfully
@ Cloned repository successfully
@ Configured pipeline successfully

Deploying to Bluemix...

OPS/images/8394-conv-calc-nodejs.07.1.42.jpg
Create a Cloud Foundry App

SDK for Nodejs™ *»m=™

convantonmccac

convantonoccac e~ -

Pricing Plans Moren

OPS/images/8394-conv-improve.11.1.04.jpg
Car chat bot!

1 Atternoon snow showers. High in the ow
single digits and lows -6 to -2F.

Itis my pleasure to help you. Bye

OPS/images/8394-conv-stt-tts-nodejs.12.1.31.jpg
Deploy this application to Bluemix

Deploying ths app wil create a private DevOps Services project for you. Learn more

P2 REDBOOKS-CONV-201-STT-TTS-NODEJS

BB i une s sinus commioetavaredbooks <onv 201 st 5.
S

AP NAME

redbooks-conv-201-stt-tts-nodejs-1138

REGION RGANZATION spAcE

1BM Buemix US Sot ~ [P—— = ~

DEPLOY

OPS/images/conv-app-running-status.png
Status: @ Running

OPS/images/conv-export-workspace.png
Workspaces Create @ 1,

Car Chat-bot

Car Chat-bot workspace

Engiish (US)

Last modified: 3 hours ago

OPS/images/33.png
Dialog

Conversation starts |

g

i}

Untitied Node

miggeredby
conversaton_start

Watson responses

o

H, Welcome to Watson Calculator.

What would k..

&b B

Untitied Node

miggeredby
#add_operation

Watson responses

o conditon et
What would you ke 1o adl?

B

anything_else

&

~ Untitled Node

Tiggeredby
#add
watson responses

“The result of caleuating the two
Pumbersis_resu..

w -+

X

(©]

Triggered by @
if #add

Fulfill with a response ® B dumpto.
@ Add response condition

‘The result of calculating the two numbers is _result_. What else would you like
The resultis _result_. What else would you like to do (addition or multiplicatior

I've added the two numbers for you ;) The resutis _result_. What else would y.

Response variations are sequential. Set to random (O

@ Create ancherresponse

OPS/images/8394-conv-improve.11.1.01.jpg

OPS/images/conv-weather-test-dialog.png
Try it out &) Clear
[——

Hey

#greeting v

| Hil What can | do for you?

Please tell me the temperature tomorrow

#weather_inquiry v

| What's thecitythatyou'd ke toforecast the weather?

New York

#greeting v

@city:NYC

| REPLACE WITH WEATHER DATA]

| itis my pleasure to help you. Bye

OPS/images/8394-conv-calc-nodejs.07.1.33.jpg

OPS/images/8394-conv-improve.11.1.02.jpg

OPS/images/35.png
Dialog

'Hi, Welcome to Watson Calculator.
What would ke .. X
mw < @ Vi
Triggered by @
. Untitled Node « Untitled Node if #add_missing_number
f— gperedy
#add operaton sadd
Vatsonrsponses o Watsonrespnses ° Fulfl with a response © —
T Theresut ofcalcuatng th tuo

Pumbersis_resu..

w -+ @ 4

What would you ke to add? .
@® Add response condition

w @ 4

Please specify the two numbers

®

v Untitled Node

igersaby
#add missing rumber @ Createancther response

Watsonesponses)
Please spectythe oo rumbers

W | = X

OPS/images/34.png
Dialog

'Hi, Welcome to Watson Calculator.
What would ke .. X
mw < @ Vi
Triggered by @
. Untitled Node « Untitled Node if #add_missing_number
f— gperedy
#add operaton sadd
Vatsonrsponses o Watsonrespnses ° Fulfl with a response © —
T Theresut ofcalcuatng th tuo

Pumbersis_resu..

w -+ @ 4

What would you ke to add? .
@® Add response condition

w @ 4

Please specify the two numbers

®

v Untitled Node

igersaby
#add missing rumber @ Createancther response

Watsonesponses)
Please spectythe oo rumbers

w < =& X

OPS/images/37.png
Untitled Node

Tigger
‘#multiply_operation

Watson responses o
What wouid you ke fo multiply?

o -+ @ &

€]

v Untitled Node

igger
smutiply
Watso responses o

e resitof mutplying s e
P
[T resit of muliplying s <suf Wiat dse would you ke to o (sddiion ormufipication’? }

o -+ @ &

v Untitled Node Jump to... &
‘What wouid you like to multply?

Tigger
#multiply_missing_number

Watso responses o
Please specity the two numbers

o -+ @ &

‘Show help

OPS/images/8394-conv-calc-nodejs.07.1.37.jpg
s esornes °
Hi Wecome to Watson Calultor
st v ke
Untitisd Node Untitied Node:
= —
#add_operaton saa
e o [R—— o
2 o JE— Theresut of cacsatng he o

Wihat woui you ke 10 247

Untitied Node

OPS/images/38.png
Dialog

Conversation starts |

conversation_start

#add_operation

#multiply_operation

Untitied Node

miggeredby
anyting else
Watson responses)

Ican't understand what you say. You
can say thing..

o) X

Triggered by ®

if anything_else

Fulfill with a response ©® B dumpto.
@ Add response condition

1 can't understand what you say. You can say thing

@ Create anctherresponse

OPS/images/8394-conv-nodered.08.1.40.jpg
Edit nitp response node

® tame ame

OPS/images/image068.png
©slack | appirectory

[

OPS/images/conv-IoT-DeviceInfo.png
Device 2244668800

Bz Refresh

Your Device Credentials (i)

You have registered your device to the organization. To get it connected, you need to add these credentials to
your device. Once you've added these, you should see the messages sent from your device in the "Sensor
Information’ section on this page.

Organization ID ey
Device Type Android

Device ID 2244668800
Authentication Method token

Authentication Token AN R

Authentication tokens are non-recoverable. f you misplace this token, you will need to ro-register the device to generate
now authentication token.

OPS/images/image071.jpg
Build

internal tools [:I

for just your team, or Slack's millions of users

OPS/images/conv-IoT-createConnection.png
@, IBM Bluemix Catalog Support Manage

& Allitems

Internet of Things Platform-ep

Manage Plan Connections

« [y

OPS/images/image061-NEW.png
o

OPS/images/image064.png
Watson API v

Profile & account

Preferences
Setyourself to away
Help & feedback

Invite people
Manage team members

Team settings
Api
Customize Slack

OPS/images/conv-IoT-add-device-id.png
Add Device

Device Info

Device IDis the only required information, however other fields are populated according to the attributes set
inthe selected device type. These values can be overridden, and attributes ot set in the device type can be
added,

Device ID 2244668800

OPS/images/8394-conv-nodered.08.1.36.jpg
Edit conversation node

Deiete Cancel

&Usemame | Conversation ID Userame

@ password
® ame Conversation

® workspace

© Bluemix Workspace ID

@ Save context

Multple Users

OPS/images/8394-conv-nodered.08.1.37.jpg
Conversation

Mg v e

P ——

0 xerwane

0 ot

OPS/images/8394-conv-nodered.08.1.34.jpg
chcting s

LY o —"

st on opery oves

nen 3 mssage s
nesomcesproary &
vaaed ganst ech o
e s rcesng £

OPS/images/8394-conv-nodered.08.1.35.jpg
Edit function node.

® ame text fter

Function
T1 meg.payload
2 zeturn mag;
3

mag.payload. text.

o

OPS/images/image054.png
Chatbot .

Ghatbot application

Engish (US)

Last modifed: 6 hours ago.

OPS/images/8394-conv-nodered.08.1.39.jpg
Edit function node
Delete conce | [

@ Name output text fiter 4

Function

T asg.payiond = weqpayIond-output-Te ¥
25 return msg]

OPS/images/8394-conv-calc-nodejs.07.1.61.jpg
1BM Bluemi

& Toolchain

conv-201-xxx-calc-1486207022447 |
Delivery Pipeline

Build Stage o >

Deploy Stage

Lastcomm by Armec
£t e sopica

i & Buidt

@ B P @ Deploy Pasad

& Buid1

3 com-2Dixacac

Catalog Support Account

OPS/images/6.png
#greeting
Good aftemoon

#out_of_scope

Please close the music

#traffic
How crowded s it now?

Sintents

Sortby:

Newest v

OPS/images/8394-conv-calc-nodejs.07.1.60.jpg
§ 1BM Bluemix

« Tookhains

Oversiew

Catslog Support Account

conv-201-xxx-cale-1486207.. [KR :

© Feeanacy

OPS/images/7_2.png
< Backto

u

=

< Dialog

Sintents

Sortby

OPS/images/58.png
Let's try your mul
capabilities

User input

€

s

i

2,

%

OPS/images/8394-conv-nodered.08.1.32.jpg
Canap e
uera | rost i
o [wasoncranm

» tame input

OPS/images/8394-conv-weather-nodejs.10.1.06.jpg
1BM Bluemi

& Watson

Conversation

Add a natural language
interface to your
application to automate
interactions with your end
users. Common

Catalog Support Account

® Conversation

Developer
resources.

+ Documentation
. Demo

OPS/images/57.png
What

come to
uld like to

son Calculator.
lcula

tion or multiplication)?

/atson understands

€
.
.
o,
€
.
t
5
r
1
T
€
t
t
t
¥
1

1,
1,

OPS/images/8394-conv-nodered.08.1.33.jpg
Eait debug node
mouput |+ msg payiosa
i debug tab B

® tame ame

OPS/images/5.png
= Watson Conversation

Workspaces Geme @ 1,

Calculator

Galcuator Conversation workspace that allows addition and
muttiplication operation using Natural Language.

Engish (US)

Last modfied: 4 davs aqo

OPS/images/image043.png
Node-RED in Bluemix

‘A visual tool for wiring the Internet of Things

Node-RED provdes bowser based oo hat makes f easy
10w togethe s tht can ba eployed o the ntime n & Gotoyour
singlo-cck

The vorsion g hors has boen customss for o Bomix
cloud environment.

Leam how o passwors prtect your mstance.

OPS/images/8394-conv-weather-nodejs.10.1.04.jpg
Public Netwark ‘Bluamix Network

et oot

[—

e
ss| £
o}
§§§

it
(]

OPS/images/59.png
User input

€

s

Let's try your muttipiication
capabilties ;)

5

If | give you two numbers, will you be »
able to add them for me? -

1
Here you go..532and 4 t
o
1
L
o
'd like to calculate the result of D .
adding two numbers togemev i
1
L
"multip e

OPS/images/8394-conv-nodered.08.1.31.jpg

OPS/images/8394-conv-weather-nodejs.10.1.05.jpg
IBM Bluemix

All Services (6)

Services 32/40 Usad

NAME SERVICE OFFERING ACTIONS

Conversation Conversation

OPS/images/8394-conv-calc-nodejs.07.1.56.jpg
Fle Edt View Tools

<«
» vaining

toors

&

%

D
D e Updates the response text using the intent confidence

SR * Gparam (Ouject) dnput The reduest to the Comersation service
[k {Ov3ect) retponse The response fron the Conversation service
D ssinveymi : Eretin (ovjec The response with the pdated messate
D stonere Tunction updatenessage (input, response) ¢

Lar responseTet = und;

[ravisym if (iresponse.output) {

response.output - (13
) else ¢
77 Chcic 3¢ the datent returned from Conversation service 1 add or mitip
iF (response. intents.lengtn > 0 38 (response.incents(0].intent ~=r ‘333" |
Fesponse = getCaiculationtesule(response);

B casper-umneris
[CONTRIBUTING md

3

OPS/images/image034.png
Ghatbot)X

Try it out &) Clear

| Looks like you are having some Hardware
Issues, s that correct?

Enter something to test your bot

OPS/images/8394-conv-weather-nodejs.10.1.02.jpg

OPS/images/8394-conv-calc-nodejs.07.1.55.jpg

OPS/images/image035.png
Node-RED Starter

‘This application demonstrates how to run the
Node-RED open-source project within [BM Bluemix.

OPS/images/8394-conv-weather-nodejs.10.1.03.jpg
R —
forecast please «

OPS/images/8394-conv-calc-nodejs.07.1.58.jpg
1BM Bluemix DevOp: Catalog Support Account

OPS/images/8394-conv-nodered.08.1.23.jpg
4

&

OPS/images/8394-conv-calc-nodejs.07.1.57.jpg
<

Fle

1BM Bluemix

Eat

e

[ssinignore
[ssinveymi

D

Support

conv-201 o cale 1486207022447 >

avpis

ents Lengtn
Eecaiutatis

Account

OPS/images/conv-Ask_Watson-icon.png

OPS/images/8394-conv-weather-nodejs.10.1.01.jpg

OPS/images/8394-conv-nodered.08.1.29.jpg

OPS/images/8394-conv-calc-nodejs.07.1.59.jpg
IBM Bluemix Catalog Support Account
R oo | com 20t k12702247 v | Rotrrce: | masr = oigminase v |
anch (e v ¢ [*
ST——
09 0 commi.

”

e appicaton ogic o perfom e

Jaton

(s T am

OPS/images/8394-conv-nodered.08.1.27.jpg
Create a Cloud Foundry App

Node-RED Starter

Th spptcanon semarstas o
o1 th Node FED cpen-scrce

Domain:
profctwithn B B
mybloemixnet

—
ViewDoss

Selected Plan:
veRsoN o8 SO for Nodeja™ Gloudant NoSL 0B
Tiee Boterpiae

REGON USSoun Detoun . e

OPS/images/Link-to-Bluemix-Account.png
@2, |IBM Bluemix Catalog Support Manage

¢ Dashboard conv-201-xxx-nodered

C Starting

Getting started

Overview

Runtime

Ctart ~radinn with NlnAa-RFEFN

OPS/images/conv-greeting-response.png
greeting

Triggered by ©®

if #greeting

Fulfill with a response ® 3 Jump to..
(@ Add response condition 3

1. Hil What can | do for you?

Add a variation to this response

(@ Create another response

OPS/images/conv-create-traffic-node-02.png
v greeting

Triggered by
greeting
Watson responses.

Hi! What can | do for you?

w < @

@

Create altemative conversation i

OPS/images/9.png
Entiies Dialog ulator

<spaces

Build
| Intents

Entities

ntents yet.

- of the user's input. Adding examples to
d different ways in which people would
Log out fay them

OPS/images/conv-goodbye-node.png
goodbye

Triggered by ©®

if #goodbye
Fulfill with a response ® 3 Jump to..
(@ Add response condition 3

1. Itis my pleasure to help you. Bye

LAdd a variation to this response

@ Create another response

OPS/images/conv-create-dialog.png
No dialog yet

A dialog uses intents, entities, and context from your application to define a response to each user's
input. Creating a dialog defines how your bot will respond to what your users are saying.

OPS/images/conv-sys-entities-list.png
@sys-time
Extracts time mentions (at 10)

OPS/images/conv-dialog-start.png
conversation_start

Triggered by ©®

if welcome
Fulfill with a response ©® 3 Jump to...
(@ Add response condition 3
1 Welcome to Car chat bot] ©

Add a variation to this response

@ Create another response

OPS/images/conv-untitled-node.png
Conversationstarts |
' Untitled Node

Triggered by
anything_else

Watson responses
No response yet

mw 4 =

OPS/images/conv-dialog-two-nodes.png
Conversation starts
v conversation_start

Triggered by
welcome

T)

Welcome to Car chat bot!

w < @ &

V' Untitled Node

Triggered by
anything_else
Watson responses o

I can't understand your question.
Please try again...

w - B X

OPS/images/conv-anything-else-node.png
Triggered by ©®

if anything_else

Fulfill with a response ® 3 Jump to..
@ Add response condition 1S

1. I can't understand your question. Ple

Add a variation to this response

@ Create another response

OPS/images/conv-create-greeting-node-02.png
Conversation starts '——

' conversation_start

Triggered by
welcome

Watson responses.

Welcome to Car chat bot!

m < =

@

Create alternative conversation ‘
v Untitled Node

Triggered by

OPS/images/conv-node-minimize-02.png
©}

~_|Untitled Node

Toggle node.

iogered b
anything_else

T)

I can't understand your question.
Please try again...

w < @ &

OPS/images/conv-entities-list.png
@destination
Home, Work

@city
Cairo, NYC

OPS/images/8394addm.13.1.1.jpg

OPS/images/conv-sys-time-entity.png
My entities System entities

These are common entities created by IBM that could be used

across any use case. They are ready to use as soon as you add All: .
them to your workspace. *System entities cannot be edited. Learn

more

@sys-time
Extracts time mentions (at 10)

@sys-date . o
Extracts date mentions (Friday)

@sys-currency o
Extracts currency values from user examples including the amount and the unit. (20 cents)

OPS/images/8394addm.13.1.2.jpg

OPS/images/8394-conv-createservice.06.1.29.jpg
« @destination

My Address

1BM Office

(1Synonym)

(2.Synonyms)

OPS/images/conv-IoT-device-type.png
Create Device Type

Name Android

The device type name is used to identify the device type uniquely, using a restricted set of characters to
make it suitable for APl use.

Description Mobile loT Device

The device type description can be used for a more descriptive way of identifying the device type.

OPS/images/8394-conv-iot.09.1.08.jpg
1BM Watson loT Pratform

Devices

Browse | D

Devos 0

OPS/images/conv-IoT-Dashboard.png
cesarrod@riom.com V'
1D: iog9ap)

+ Create New Board

|IBM Watson loT Platform QUICKSTART SERVICE STATUS ~ DOCUMENTATION BLOG

o
22
Your boards
A
"r USAGE OVERVIEW RULE-CENTRIC ANALYTICS DEVICE-CENTRIC

ANALYTICS

OPS/images/conv-IoT-crtiotsrv.png
@, IBM Bluemix Catalog

This service is the hub for IBM Watson
10T and lets you communicate with and
consume data from connected devices
and gateways. Use the buit-in web
console dashboards to monitor your loT
data and analyze it in real time. Then,
enhance and customize your IBM
Watson 0T Platform experience by
buiding and connecting your own apps
by using messaging and REST APls.

Service name:

Internet of Things Platform-ep

Features

« Connect

Quickly and securely register and connect
your devices and gateways. You can find
simple step-by-step instructions for

Catalog

Support Manage

« Information Management

Gontrol what happens to the data that s
received from your connected devices. Manage
data storage, configure data transformation

B connecting popular devices, sensors, and actions, and integrate with other data services
gateways in our recipes site. and device platforms.

Connect to: = Analyze in real time « Risk and Security management
Monitor your real-time device data through Our secure-by-design control capabiliies

Leave unbound - rules, analytics, and dashboards. Define protect the integrity of your loT solution through

rules to monitor conditions and trigger secure connectivity and access control for
automatic actions that include alerts, email, users and applications. Extend the base
IFTTT, Node-RED flows, and external security with threat intelligence for IoT to

View Docs ‘services to react quickly to critical visualize critical risks and automate operational
changes. responses with policy-driven mitigation actions.

AUTHOR BM

PUBLISHED 03/17/2017

Images

TYPE Service

Need Help? Estimate Monthly Cost

Contact Bluemix Sales Cost Calculator

OPS/images/LP_Add-Greeting-intent.png
Intent name

#greeting

User example

Add a user example...

Hi e
Hey e
How are you? e
Good morning @

Good afternoon @

Hello @

OPS/images/conv-IoT-service.png
Internet of Things Platform

‘This service s the hub of all things IBM loT,
itis where you can set up and ma.

1BM

OPS/images/conv-create-intent.png
o 2intents Sortby: Newest v

S #out_of scope 5
Good Morning
S #weather_inquiry 5

is it going to be raining tomorrow?

OPS/images/8394-conv-iot.09.1.04.jpg
Bluomix

Public network.

OPS/images/conv-add-goodbye-intent.png
Intent name

#goodbye

User example

Add a user example...

bye @

farewell @
goodbye e
I'm done e

Thanks for your help e

see you later e

OPS/images/8394-conv-iot.09.1.03.jpg
Hi, T Watson, how can | help you?

(Could you plesse change t

Sure, 1 can change the gay color of the background
i vous celphone. Pless el me shich colo do you
prfer Blve or Green?

OPS/images/conv-add-traffic-intent.png
Intent name

#traffic

User example

Add a user example...

What is the traffic today? e

Please tell me if it's crowded now e
What's traffic like? e

How crowded is it now? e

Is it ok to go to my destination now? e

OPS/images/8394-conv-iot.09.1.02.jpg

OPS/images/conv-elipses-icon.png

OPS/images/8394-conv-iot.09.1.01.jpg

OPS/images/conv-all-intents.png
#goodbye
bye

#traffic
How crowded is it now?

#greeting

Good afternoon

#out_of scope

Please close the music

#weather_inquiry

is it going to be raining tomorrow?

OPS/images/conv-entities-imported.png
@city
Cairo, NYC

OPS/images/LP_TryItOut.png
Try it out) Clear

Hello

#greeting v
Please tell me the temperature now

#weather_inquiry v
What about the traffic now?

#traffic v
Thank you

#goodbye v

OPS/images/8394-conv-createservice.06.1.60.jpg
v weather vV city

Triggered by Triggered by
#weather_inquiry @city
Watson responses [1] Watson responses

What's the city that you'd like to | [REPLACE WITH WE|

OPS/images/8394-conv-createservice.06.1.62.jpg
greeting

OPS/images/29.png
~ Untitled Node

Tiggered by
No condition yet

Watson responses.

Noresponse yet

Triggered by @
if conversation_start

conversation_start (create new condition)

#conversation_start (create new intent)

Fi @conversation_start (create new entity)

Add response condition

mp o,

&4

OPS/images/8394-conv-createservice.06.1.64.jpg
Try it out
Welcom o Carchat ot

N

| it Wht can do foryou?

1want o know information about thetraffc, please.

SR —

tothe

| Forwhati

e do you need to know the trafc informat

The trafc i igh at this e of the day

s my pleasure 1o help you. Bye

OPS/images/31.png
~ Untitled Node

Tiggered by
conversation_start

Watson responses.

Hi, Welcome to Watson Caleulator

What wouid like ...

> anything_else

X

Triggered by @

if conversation_start

Fulfill with a response © B Jump to.

Add response condition S

Hi, Welcome to Watson Calculator. What w

@ Create ancther resporse

OPS/images/conv-watson-training.png
Try it out &) Clear

Watson is training on your recent changes.

OPS/images/30.png
Comversation starts |——

Untitled Node

Tiggered by
conversation_start

Watson responses.

Hi, Welcome to Watson Calulator
What wouid like ...

e X

> anything_else

Triggered by @

if conversation_start

Fulfill with a response © B Jump to.

Add response condition S

Hi, Welcome to Watson Calculator. What w_©

@ Create ancther resporse

OPS/images/conv-city-fallback.png
v anything_else Jump to...
weather

Triggered by
anything_else
Watson responses (1]

I'am trained only for Cairo and NYC
cities

w < @ &

OPS/images/22.png
Intents

-« x

Intent name

#multiply_missing_number

User example

2X
3
5x
9x

multiply 6

Show help

OPS/images/8394-conv-createservice.06.1.54.jpg
v dty

Tragersaty
acity

Wasenrespones ()
[REPLACE WITH WEATHER DATA]

e

&

OPS/images/8394-conv-calc-nodejs.07.1.22.jpg
#multiply

jate 69°54

vty multply ity

OPS/images/conv-move-goodbye-02.png
v weather

Triggered by
#weather_inquiry
Watson responses (1]

What's the city that you'd like to
forecast the we...

m < = X

OPS/images/24.png
Intents

2, s

2

#multiply_missing_number
2X

#multiply
276

#add_missing_number
3+

#add
342

#multiply_operation

I have two numbers and I'd like to multiply them

#add_operation
Add

Sortby:

Newest

OPS/images/8394-conv-createservice.06.1.56.jpg
~ goodbye

Tiggered by
#goodbye
Wateon responses.

Itis my pleasure to help you. Bye

W[+ e

&

OPS/images/8394-conv-calc-nodejs.07.1.24.jpg
#multiply_missing_number

L, #maltiply

5 tadd missing number
o
#add

9 32

#multiply_operation
e two numbers and 1k to multply them

. #add operation

OPS/images/8394-conv-createservice.06.1.59.jpg
wstraten

> sy s

OPS/images/26.png
Myentities System entities

These are common entities created by IBM that could be used
across any use case. They are ready to use as soon as you add them All: .
1o your workspace. “System entities cannot be edited. Learn more

@sys-time . o
Extracts time mentions (at 10)

@sys-date . o
Extracts date mentions (Friday)
@sys-currency . o

Extracts currency values from user examples including the amount and the unit. (20 cents)

@sys-percentage . o

Extracts amounts from user examples including the number and the % sign. (15%)

@sys-number @

Extracts numbers mentioned from user examples as digits or written as numbers. (21)

OPS/images/8394-conv-createservice.06.1.58.jpg
Conversation starts
> conversation_start

> greeting

> traffic

> weather

> goodbye

> anything_else

OPS/images/25.png
Entities

My entities | System entities

No entities yet

An entity is a portion of the user's input that you can use to provide a different
response to a particular intent. Adding values and synonyms to entities helps your bot
learn and understand important details that your users mention.

Create new

I!

Use system entities

& Import

OPS/images/28.png
p

Gomersationstarts | ®
v Untitled Node

fr—
Noconditon yet
Wetso responses o
Noresponse yet

w < @ X

Triggered by @
if |

Fulfill with a response ©

® Add response condition

[Jump o

&4

OPS/images/27.png
No dialog yet

A dialog uses intents, entities, and context from your
application to define a response to each user's input.
Creating a dialog defines how your bot will respond to what
your users are saying.

Show help

OPS/images/conv-manifest-file.png
U e w Nk

11
12
13
14
15
16
17
18
19
20
21
22
23
24

declared-services:
my conversation:
label: conversation
plan: free
my weather company data:
label: weather
plan: free
my speech to text:
label: speech to_text
plan: standard
my text to speech:
label: text_to_speech
plan: standard
applications:

command: npm start
path: .

memory: 512M
instances:
services:

env:
NEM_CONFIG_PRODUCTION:

Hl- name: weather-conv-stt-tts

false

OPS/images/8394-conv-stt-tts-nodejs.12.1.09.jpg
]

Conversation:
label: conversation
plan: free

weather-company-data:
label: weather
plan: free

speech-to-text-student:
label: speech_to_text
plan: standard

text-to-speech-student:
label: text_to_speech
plan: standard

applications:
Ei- name: weather-conv-stt-tts-XXx

command: npm start
path:
memory: 5124
instances:
services
- Conversation
- weather-company-data
- speech-to-text-student
- text-to-speech-student
env:
NEM_CONFIG_PRODUCTION: false

OPS/images/conv-tts-name.png
< Viewall

Text to Speech

The Text to Speech service Service name:
processes text and natural

language to generate text-to-speech-student
synthesized audio output)

complete with appropriate Credential name:

ccadence and intonation. It is
available in several voices:

Credentials-1

OPS/images/8394-conv-stt-tts-nodejs.12.1.07.jpg
lane; bttpes//github.con/enlppet-Jaua/radboska conu-20 2t ttaal

oning inco. fedbooks-cony 201 stt-tes-nodejs-student’ .
ronoto? Gounting objects: 163, done.

enote: Compressing objects: 1007 (33,93 done.
omote: Total 183 {delia 53, rewsed 103 Cslta §). pack-reused B
locoving ahjocts: 108 <103/1835, 1.43 Hib {0 btesss. done.
iocolying doltas: 100 <5/5>. done.

hecking connsct ivity... dand.

\bluenix>

OPS/images/conv-jump-to-goodbye-02.png
Vv time

Triggered by
@sys-time
Watson responses

The traffic is low at this time

w <@

OPS/images/8394-conv-stt-tts-nodejs.12.1.04.jpg
Punli Network Blusmix Network

[Y
e

© v
e
=5

J—
C=rhg @

O i i
[r——
s

OPS/images/conv-time-node-details.png
time

Triggered by ©®

if @sys-time

Fulfill with a response ® 3 Jump to...
(@ Add response condition 3

The traffic is low at this time
The traffic is high at this time of the da

Add a variation to this response

Response variations are set to random. o)
Set to sequential

@ Create another response

OPS/images/conv-stt-name.png
< Viewall

Speech to Text

The Speech to Text service
converts the human voice into
the written word. It can be used
anywhere there is aneed to
bridge the gap between the
spoken word and their written
form, including voice control of
embedded systems,

Service name:
speech-to-text-student
Credential name:

Credentials-1

OPS/images/conv-weather-node.png
v weather

Triggered by
#weather_inquiry
Watson responses (1]

What's the city that you'd like to
forecast the we...

w < @ &

OPS/images/20.png
Intents

-« x

Intent name

#add_missing_number

User example

3+
calculate 4+
calculate adding 76
I'dliketoadd 8
what's the sum of 22

would you please calculate adding six to the result?

Show help

OPS/images/8394-conv-stt-tts-nodejs.12.1.02.jpg

OPS/images/conv-time-fallback.png
v anything_else

Triggered by
anything_else

Watson responses

Please enter a valid time.

w < @

@

Jump to...
destination

OPS/images/19.png
Intents

-« x

Intent name

#add

User example

342
42534452

calculate 4+6

five plus six equals?

I'dlike to add 3 and 4

tell me the results of adding eight and two
three plus eleven

what's the result of adding ten to fifteen?

what's the sum of 1and 5?7

Show help

OPS/images/8394-conv-stt-tts-nodejs.12.1.03.jpg

OPS/images/17.png
Intents

-« x

Intent name

#multiply_operation

‘ er xample o

Muttiply

Muttiplication
Muttiply Operation
Ihave two numbers and I'd like to multiply them

Please help me multiply two numbers

Show help

OPS/images/image010.png
Nointents yet.

Anintent s the goal or purpose of the user's input. Adding
examples to intents helps your bot understand different ways in
‘which people would say them.

2, Import

OPS/images/image009.png
Create a workspace x

‘Workspaces enable you o maintai separate inents, user examples, enities, and dalogs for each use or application.
Cratbot

escrpin
‘Chatbot appiication

Engisn(US) v

OPS/images/image008.png
‘Calcuator Conversation workspace that alows adition and
‘multiphcation operation using Natural Lanquade.

g us)

OPS/images/conv-create-location-node-02.png
V. traffic

Triggered by
#traffic

No response yet

w < =

©)

©}

> anything_else

OPS/images/11.png
Watson Conversation

Workspaces Ceate @ 1,

Greated: 1/31/2017, 6:14:15 AM (G)
Last modified: 2/4/2017, :48:07 PM

Documentation

Bluemix

Workspace ID: 44202034-4ati-4e2f-8c8b-b86defc92alc

6 1 <)

Intents Entities Dialog nodes

OPS/images/8394-conv-nodered.08.1.06.jpg
1BM Bluemix

) Conversation

Add a natural lanquage

OPS/images/conv-traffic-node-details.png
traffic

Triggered by ©®

if #traffic

Fulfill with a response ® 3 Jump to..
(@ Add response condition 3

1. Where is your destination?

Add a variation to this response

(@ Create another response

OPS/images/10.png
= Watson Conversation

Workspaces Create. @

53

Calculator

Galcuator Gonversation workspace that 2
mutiplication operation using Natural Lan|

Engish (US)

Last modfied: 40 minutes ago

OPS/images/8394-conv-nodered.08.1.05.jpg
Al Services (6)

Services 3240 Used

Comrsston

OPS/images/8394-conv-stt-tts-nodejs.12.1.01.jpg

OPS/images/conv-location-fallback.png
anything_else

Triggered by ©®

if anything_else
Fulfill with a response ® 3 Jump to...
(@ Add response condition 3

. I'm not trained on this destination. Pk ©

Add a variation to this response

@ Create another response

OPS/images/12.png
= Watson Conversation
Workspaces | Cete @ 2,

Calculator

Calculator Conversation workspace that allows addition and
multiplication operation using Natural L anguage.

Engish (US)

Last modified: 23 hours ago.

OPS/images/8394-conv-nodered.08.1.04.jpg
Public network Bluemix network

Usernputiowen ontens Recuestia oo RED crot e -
[————— [————]

s spicaton

§
H
i
g
g
H
H
i

Request

OPS/images/conv-location-node-details.png
destination

Triggered by ©®

if @destination
Fulfill with a response ® 3 Jump to...
(@ Add response condition 3

1. For what time do you need to know t

Add a variation to this response

@ Create another response

OPS/images/8394-conv-calc-nodejs.07.1.13.jpg
~stalog rode": r
1
gsalog_request_counter

nade_output_sep™:

#multply_operaton

I can't understar
things like "addition" or “multiplicatio

OPS/images/8394-conv-nodered.08.1.03.jpg
Watson o
Wt non oyt @)

s R
or s Lol g 1256567 @)

© Hiwatson

© 1 have some issues with my printer
© Yes, that is correct

@ ttislenovo

OPS/images/conv-jump-to-response.png
v traffic

Triggered by
#traffic

Go to response

Watson responses.

Where is your destination?

<> @

OPS/images/8394-conv-calc-nodejs.07.1.16.jpg
intents yet.

Anintent s ths ol or purpose ofthe user's npu
Ackding examples t tents helpe your bot understand

OPS/images/8394-conv-nodered.08.1.02.jpg

OPS/images/conv-location-fallback-2-02.png
v anything_else

Triggered by
anything_else
Watson responses (1]

I'm not trained on this destination.
Please select...

w < |@ &

OPS/images/13.png
Watson unders

€

(addition or

ntents™: [1,
ntities™: [1,
nput: {1,

utput™: {
“1og_m

“text®: [

)

OPS/images/8394-conv-nodered.08.1.01.jpg

OPS/images/16.png
Intents

-« x

Intent name

#add_operation

‘ er xample o

Add

Addition
Add Operation
sum

Summation

Show help

OPS/images/child_node_destination_NEW.png
Conversation starts

> conversation_start

> greeting
Ly LeH
traffic \ destination
Tiager Trager
#traffic @destination
Watson resparses o Watson esponses o
Where is your destination? For what time do you need to know
the traficrfo..
w 4 & &
N L3
o -+ @ &

® «<»

OPS/images/15.png
Intents

-« x

Intent name

#add_operation|

User example

Show help

OPS/images/8394-conv-weather-nodejs.10.1.24.jpg
ALL rights reserved.

/githuh.con/vatson-developer-c loud conversat don-:

foning into *conversation sinple’ ...
Counting objects: 595, dons.
Gonpressing objects: 1087 <39 done.
§ Toral 595 Cdelta 23, raused 0 (olta @), pack-reused 504
Coiving ohjecta: 108 <5a6 83857 2 18 Hib 1 2910 Kibse, dane-

iesoluing deltas: 108% (259,593, done.
“\redbook>

OPS/images/FIG_X21.png
declared-services:
my-conversation-service:
label: conversation
plan: free
applications:
- name: conversation-simple

13 - my-conversation-service
1a env:
15 NEM_CONFIG_PRODUCTIO!

false

OPS/images/8394-conv-weather-nodejs.10.1.22.jpg

OPS/images/8394-conv-weather-nodejs.10.1.23.jpg
‘23on 6-1-7001)
Coporiant oy 2089 Microsoft Corporation. AL ris

“\Users\IBN_ADNIN>GA C:\redhook

“\redbook)_

OPS/images/Figure_18_Weather_Company_Data_Response.png
Response Body

"moonset”: "2017-04-15T08:17:53:0200",
null,

‘qualifier_code’
null,
“Partly cloudy. Lous overnight in the mid 50s.",

"qualifier

Snow_phrase”

"snow_code

OPS/images/8394-conv-weather-nodejs.10.1.21.jpg

OPS/images/8394-conv-weather-nodejs.10.1.28.jpg

OPS/images/8394-conv-weather-nodejs.10.1.29.jpg

OPS/images/8394-conv-weather-nodejs.10.1.26.jpg

OPS/images/8394-conv-weather-nodejs.10.1.27.jpg

OPS/images/8394-conv-weather-nodejs.10.1.13.jpg
IBM Bluemix

< Data & Analytios

weather-company-data

Manage Servics Credertials Connections

Servioe Credenti

Service Credenti

Credentials are provided in JSON [xev name
format. The JSON snippet sts

credentas,such as the AP key O Credentias1
i el sownsiili

New Credent

DATE GREATED

AcTions

OPS/images/8394-conv-weather-nodejs.10.1.14.jpg
IBM Bluemix

(Credetias e provided i JSON
format. The JSON snipp sts
crecentas,such as the AP ke O Gredensa P

ame": "096a765¢-5992- 4b89-a594- 2230617815

password™: "ROVOUSWD1",
host™: "tucservice aybluenix.net”,

port™: 483,

url”: "https://0963765F -8992-4b80-a504-22306bf7e

154:ROVOUSHRDIgtucservice mybluemix.net”

OPS/images/8394-conv-weather-nodejs.10.1.11.jpg
1BM Blvemix

Al Categories

L J

Infrastructure

Streaming Ansiytis YeterGampary

OPS/images/8394-conv-weather-nodejs.10.1.12.jpg
IBM Bluemix Catalog Gatsiog Support

& Viewal

Weather Company Data

This servics ets you itegrate
weather data from The Weather
Gompany nto your IBM Bluemix
applcation. You can retrieve
westher dataforan area
speciiedby a geolocation The
data alows you o create
applcations that sove real

weather-company.data

Credantial name:

Credentials-1

Need Help?
Contact Blucmix Sales

Estmate Monthly Cost
Gost Caloulator

OPS/images/8.png
Watson Conversation

Workspaces Ceate @ 1,

Greated: 1/31/2017, 6:14:15 AM (G)
Last modified: 2/4/2017, :48:07 PM

Documentation

Bluemix

Workspace ID: 44202034-4ati-4e2f-8c8b-b86defc92alc

6 1 <)

Intents Entities Dialog nodes

OPS/images/Figure_17_Testing_three-day_forecast_Weather_Company_Data_API_-_Authentication.png
403

Authentication Required

hitps:/twcservice.mybluemixnet requires a usemame and
password.

User Name:

Password:

Logln Cancel

Forbidden request Limit

Headers

OPS/images/Figure_15_Three-day_forecast_Weather_Company_Data_API.png
I1/geocode/{atitude}/{longitude}/forecastdaily/3dayjson 3.Day Daily Forecast by Geocode

Implementation Notes
The three-day forecast API returns the geocode weather forecasts for the current day up to three days.

Response Class (Status 200)
0K

Example Value

“version™: "string’
“transaction_id"
“expire_time_gnt’

“location_id": "string”,
“countrycode”: "string",
“latitude": o,
“longitude™: o,

“language": "string”,

Response Content Type | applicationjson ¥

Parameters

Parameter Data
Parameter Value Description = =3
latitude [33.40 The latitude for the ~ path stiing

requested forecast.
For example, 33.40.

longitude [83.42 path string

OPS/images/Figure_16_Testing_three-day_forecast_Weather_Company_Data_API.png
Intemal server error. The
server encountered an
unexpected condition that
prevented it from fulfiling
the request

OPS/images/8394-conv-weather-nodejs.10.1.15.jpg
1BM Bluemi

Catalog Support

Get Started

o
® 5
% e
eam Discover APIs

Browse Weather Check out our forums Browse our AP|

Company Data o see what other documentation and try
documentation and people are doing with the APIS before you
learn from examples. Weatner Company use them

Data

OPS/images/8394-conv-weather-nodejs.10.1.16.jpg
Weather Company Data API

Weather Company Data For IBM Bluemix APIs

T product ncludes sofvware orginaly developed by 1BM Corporation Copyrioht 2016 18M Cor

OPS/8394cover.jpg
(& Redbooks
Building Cognitive Applications with
IBM Watson Services: Volume 2
Conversation

Ahmed Azrag
Hala Aziz
Nicolas Nappe R

Cesar Rodriguez Bravo
Lak Sri

@ Cloud

In partnership with
1BM Skills Academy Program

OPS/images/8394-conv-calc-nodejs.07.1.09.jpg
Nointents yet

Anintentis the goal or purpose of the user's input. Adding examples to
intents helps your bot understand different ways in which people would
say them.

OPS/images/7.png
Create a workspace

Workspaces enable you to maintain separate intents, user examples, en
application,

ies, and dialogs for each use or

Name
Calculator
Description

Calculator Conversation workspace that allows addition and multplicati

n operation using Natural Language.

Language

English (US) v

OPS/images/8394-conv-calc-nodejs.07.1.07.jpg
= Watson Conversation

Bk
Goas
=

Create workspace

Workspaces enable you to maintain separate
intents, user examples, entities, and dialogs
for each use or appication.

O < o

OPS/images/8394-conv-overview.05.1.10.jpg
Display respon
in active node

Select next Get user input and

active node application context

Evaluate conditior Extract entities
using context + and intents from
entities + intents user Input

OPS/images/8394-conv-calc-nodejs.07.1.06.jpg
= &} IBM Bluemix

Conversation

@ conversation [et |

Add a natural lar

OPS/images/8394-conv-overview.05.1.11.jpg
Base nodes

Child nodes

OPS/images/8394-conv-calc-nodejs.07.1.05.jpg
1BM Bluemix

All Services (6) Create Service ®

Services 32/40 Used

NAME SERVICE OFFERING ACTIONS

Conversation Gonversation

OPS/images/Architecture.png
Public network

User

Bluemix network

Request simple calculationin a dialog

Receive answers

o

&

Web Browser

Send the user input

Receive answer

Cognitive Calculator chatbot
application logic
onNode js runtime

Receiving answer
Send the user input

Watson Conversation
service

OPS/images/8394-conv-calc-nodejs.07.1.03.jpg
ings ke

adk

ke to add three and four

at yo
o “multplcation

OPS/images/8394-conv-calc-nodejs.07.1.02.jpg

OPS/images/8394-conv-calc-nodejs.07.1.01.jpg

OPS/images/Figure_25_Pushing_Application_Completed.png
of 1 instances running, 1 starting
of 1 instances running

App conu-201-0c-ueather was started using this command ‘npm start®

fshowing health and status for app conu-281-xcc-veather in org aazraq@eg.ib.com
Space Conversation as aazrag@eg.ibm.com.

brequested state: started
instances: 171

sage: 512M x 1 instances

151 conu-281-oo-weather .nyhluenix.net

[1as¢ uploaded: Mon Feb 20 00:36:41 UIC 2817

fotack: of Linuxfs2

fouildpack: SDK For Node.jsCTM> Cibm-node.js—4.7.2, buildpack-v3.10-28176119-1146|

state since cpu memory disk details
10 running 2017-82-20 03:39:83 AM 0.0z O of S12M O of 1G

- \redbook\conversation=sinpled.

OPS/images/8394-conv-improve.11.1.15.jpg
r conversations

16 results: Last 90 days ¥ Show fitters

Orignal Understanding will it rain?
@ #out_of_scope 3 8 AM

|1 can't understand your question. Please
z try again.

® Original Understanding o 128AM

| Welcome to Car chat bot!

Original Understanding Cairo
® | syeum 030272017 @ 128 AM

@citv-Caira

\ttps:/www.ibmwatsonconversa...a-860f bfe6dé19dcbe/userdataz | | [REPLACE WITH WEATHER DATA]

OPS/images/Figure_26_Set_Environment_Variable.png
[z redbooksconversation=sinpleyet set—env conu—281-xxx-weather WORKSPACE_ID Sceal
38986 427-426F-hebi-3ae365505a3f

Jsetting env”variable * P ’ to * * fof
| app in org 7 space

to ensure your env variable changes ¢

fc: \redbookiconversation—sinple>

OPS/images/8394-conv-improve.11.1.14.jpg
User conversations

16 results: Last 90 days ¥ Show fitters
® .
Updated Understanding The Big Apple I
@ Irelevant L2 AN,
Bcity:NYC
1 am trained only for Cairo and NYC
cities
What's the city that you'd like to
’ forecast the weather?
Orginal Understanding is it going to be rainy?

@ | pwssther incuiry e

| What's the city that you'd like to
forecast the weather?

OPS/images/Figure_23_CF_Login.png
Cor press enter to skip:
usanaaBeq.

aazragleg .

aazraq

Y381 00

vy381-932

ata_jobury

tunis_prep

CK101 U1

aazrag
SUP-DEU
redbooks
apic
lockehain
Conversation

argeted space Conversation

https://api.ng.bluemix.net API version: 2.54.8)
aazrag@eg. ibn.com

aazragleg: ibn com

Conversation

OPS/images/8394-conv-improve.11.1.13.jpg
16 results: Last 90 days ¥ show fitter

The Big Apple
Select an entity o entityvaue below to add “Big Apple* as a value or synonym.

rolovant J) (4) cancel
(i, |

save Cancel
@cityNYC

Original Understanding 2%

@ pweather inquiry

destination:Hor .

OPS/images/Figure_24_Pushing_the_application_to_Bluemix.png
:\redbook\conversation-sinple>cf push
sing manifest file Ci\redbookconversation-simpleNmanifest.ynl

reating app conu—281-xxx-weather in org aazragPeg.ibm.com / space Conversation
s aazragleg. ibn.con.

reating route conu-281-xxx-weather.mybluemix.net. ..

[Binding conu-201-x0cc-ueather.mybluemix.net to conv-201-xxx-weather. ..

ploading conu—281-xxx-weather. . .
ploading app Files from: C:redbook\conversation-simple

ploading 1.1M, 73 files
Pone” uploading’

K
[Binding service Conversation to app conv-201-xxx-weather in org aazraqleg.ibn.col
7 space Conversation as aazrageg.ibm.com...

nding service ueather—conpany-data to app conu-261-xcx-weather in org aazraq@el
ibm.con / space Conversation as aazrag@eg.ibm.com...

Jstarting app conu-201-xcc-veather in org aazragleg.ibn.con / space Conversation
s aazragleg . ibn.con .

Dounloading swift_buildpack v2_B_3-20161217-1748.. .
Pounloading python_buildpacl

Dounloading java_buildpack.

Dounloading ruby buildpack:

pounloading nodejs huildpack: ..

Pounloading go_buildpack. ..

Dounloaded swift_buildpack v2_8_3-20161217-1748
Dounloaded nodejs_buildpack

Dounloading Liberty-for—java...

Dounloaded ruby_buildpack

Pounloading xpages bhuildpack...

Dounloaded go_buildpack

Dounloading php_buildpack. ..

Dounloaded sdk-For—nodejs

Dounloading statictile buildpack. ..

OPS/images/conv-0006.png
User conversations

16 results: Last 90 days V Show filters
Highlight a word from the utterance below to add as an entity value]
The Big Apple

I
ntent classffication Entity values
((nelevant v ((select entiy.) Cancel
Save Cancel
Original Understanding is it going to be rainy?

® #weather_inquiry 03/02/2017 @ 1:28 AM

|What‘s the city that you'd like to
forecast the weather?

® View conversation

OPS/images/8394-conv-weather-nodejs.10.1.42.jpg

OPS/images/8394-conv-improve.11.1.11.jpg
16 results: Last 90 days ¥ Show fite

The Big Apple

#igoodbye
#igreeting
#out_of_scope

#traffic nding is it going to be rainy?
#weather_inquiry 030212017 @ 128 AM

| What's the city that you'd like to
Mark as irrefevant (@) forecast the weather?

OPS/images/8394-conv-weather-nodejs.10.1.43.jpg

OPS/images/8394-conv-improve.11.1.10.jpg
16 results: Last 90 days ¥ show fiters

The Big Apple

Cancel

Original Understanding going to be rainy?

® | pweather inauiy 8 AM
| What's the city that you'd like to
» forecast the weather?
@ v aton

Original Understanding ‘will it rain? §

OPS/images/8394-conv-createservice.06.1.20.jpg
Car Chat-bot

Car Chat-bot workspace|

Done

OPS/images/8394-conv-weather-nodejs.10.1.40.jpg

OPS/images/8394-conv-weather-nodejs.10.1.41.jpg

OPS/images/8394-conv-improve.11.1.19.jpg
Welcome to Car chat bot!

1 Attornoon anow showers. High in the ow
single digits and lows -6 to -2F.

Itis my pleasure to help you. Bye

OPS/images/conv-0012.png
User conversations

16 results: Last 90 days V Show filters
Updated Understanding will it rain?
©) #weather_inquiry 03/02/2017 @ 1:28 AM
| can't understand your question. Please
N try again.
’ Y ag I

® View conversation

©) Original Understanding 03/02/2017 @ 1:28 AM

Welcome to Car chat bot!

® View conversation

Original Understanding
@ #greeting
Scity:Cairo) [REPLACE WITH WEATHER DATA] |

1:28 AM

OPS/images/Figure_27_Restage_the_application.png
Jc:\redbooknconversation=sinple>ct restage conu—281-xxx-weather

[Restaging app in org 7 space

pounloading swift buildpack v2_B_3-20161217-1748. ..
Dounloading hinary huildpac!

OPS/images/8394-conv-improve.11.1.17.jpg
Ut nversations

16 results: Last 90 days

will it rain?

03/02/2017 @ 1:28 AM
| Welcome to Car chat bot!

@ View conver

¥ show fiters

OPS/images/Figure_28_Restaging_Completed.png
fpp conu-201-oc-ueather was started using this command ‘npm start®

Jshowing health and status for app conu-281-xcc-veather in org aazraq@eg.ib.com
Space Conversation as aazrag@eg.ibm.com.

frequested state: started
instances: 171

sage: 512M x 1 instances

151 conu-281-oo-weather .nyhluenix.net

[1ast uploaded: Mon Feb 20 00:36:41 UIC 2817

fotack: of Linuxfs2

fuildpack: SDK For Node.jsCTM> Cibm-node.js—4.7.2, buildpack-v3.18-28176119-1146|

state since cpu memory disk
running 2017-02-20 ©3:49:55 AN 0.8x 996K of 512M 1.3M of 1G

- \redbook\conversation=sinpled.

OPS/images/8394-conv-improve.11.1.16.jpg
16 results: Last 90 days

will it rain?

#igoodbye
#greeting

#out_of_scope

raffic cing
#weather_inquiry

Mark as irrelevant

viginal Understandin

| Welcome to Car chat bot!

Cairo

®

¥ show fitter

OPS/images/8394-conv-createservice.06.1.19.jpg
Workspaces Create @ 1

Weather Forecast

Weather Forecasting Workspace View deta

Englsh (US)

Last modified: just now

OPS/images/8394-conv-createservice.06.1.18.jpg
tentity Sortby: Newest v/

OPS/images/8394-conv-createservice.06.1.11.jpg

OPS/images/8394-conv-createservice.06.1.10.jpg

OPS/images/Figure_29_Cognitive_Weather_Chatbot.png
hat bot!

Vatson understands

€
.
.
o,
€
.
3
5
[
1
T
€
t
t
t
¥
1

1,
1

OPS/images/conv-delete-ws-3-NEW.png
You are about to ck

te conv-lab-workspace
workspace.

s workspace contains 0 intents, 0 enities, and 0 dialog
This action cannot be undone. To procesd, type
delete" belon

OPS/images/8394-conv-createservice.06.1.12.jpg
Watsor

Gotstarted

OPS/images/conv-import-button-02.png
Workspaces (cexe @

OPS/images/conv-first-import-button-02.png
Create workspace

Workspaces enable you to maintain separate intents, user examples, entities, and
dialogs for each use or application.

G ® @ ion

OPS/images/conv-workspace-imported.png
o 2intents Sortby: Newest v

S #out_of scope 5
Good Morning
S #weather_inquiry 5

is it going to be raining tomorrow?

OPS/images/8394-conv-createservice.06.1.16.jpg
Import a workspace x

Select a JSON file then choose which elements from the workspace to import.

Chooseafile | workspace-5cead898-6427-4261-bcb1-3ae365505a3f (1) json

Import
O Everything (intents, Entites, and Dialog)
Intents and Entities

OPS/images/Figure_22_Package.json.png
21
22
23
20
25
26
27
28
29
30
51
52
33
3q
35
36
37

"dependencies":

{

"body-parser”: ""1.1s.

mdotenyn: "°2.0.07,
mexpress": "h4.14.07,

watson-developer-cloud”

"is-property":"e",
nrequestninen

1,

"devbependencies”: (

"babel-eslint": "%6.0.

"casperjsm: "°1.1.37,
ncodecov™: "t1.0.17,
meslincr: "2.8.07,

mistanbul: "e0.4.27,
"mocha": "t2.4.5m,

"phantomjs-prebuile”:
msupercest™: "~1.2.07

2n,

an,

me2.1.13m,

me2.g.an,

OPS/images/8394-conv-weather-nodejs.10.1.36.jpg

OPS/images/8394-conv-weather-nodejs.10.1.33.jpg

OPS/images/8394-conv-weather-nodejs.10.1.34.jpg

OPS/images/8394-conv-weather-nodejs.10.1.31.jpg

OPS/images/Figure_21_Package.json.png
B Bckageson B

ERN=T
2 "namen: "conversation-simple
"description”: "A simple Node.3s based web app which shows
now to use the Conversation API to recognize user intents
mo.1.1m,
"mainn: "server.js",
i
"node server.js",
mtest-integration™: "casperjs test
./test/integration/test.*.35",
B "test-integration-runner”: "NODE_ENV=test node
casper-runner.js”,
10 "test™: "npm run lint & npm run test-unit && npm run
test-integration-runner”,
1 mtest-unit": "istanbul cover
/node_modules/mocha/bin/_mocha test/unit”,
12 "linctt "eslint

PR

OPS/images/8394-conv-weather-nodejs.10.1.30.jpg

OPS/images/8394-conv-weather-nodejs.10.1.39.jpg

OPS/images/8394-conv-weather-nodejs.10.1.37.jpg

OPS/images/8394-conv-weather-nodejs.10.1.38.jpg

OPS/images/8394-conv-createservice.06.1.09.jpg
Create a workspace

Workspaces enable youto mainain separat terts,userexarmyles,entie, and dalogs oreach use o applcation.

conv-sb-nerkepaca

ErgienUS) v

X

OPS/images/conv-create-workspace.png
Create workspace
'Workspaces enable you to maintain separate intents,

user examples, entities, and dialogs for each use or
application.

Create @ & Import

OPS/images/8394-conv-createservice.06.1.07.jpg
Watson Conversation

Login with IBM ID

OPS/images/conv-launch-tool.png
Conversation

Manage Service credentials Connections

Conversation tooling

Train bots with the Watson Conversation service through an easy-to-use web application. Designed so you can quickly build
natural conversation flows between your apps and users, and deploy scalable, cost effective solutions.

Intended Use

Use Watson Conversation wherever you want to add conversational capability to your apps to engage with end-users on their
platforms of choice, such as mobile, web, messaging channels, loT, and robots.

OPS/images/conv-launchtolling-1.png
@ conversation

Add a natural language interface to your

application to automate interactions with your Developer resources:
end users. Common applications include « Documentation

virtual agents and chat bots that can integrate * Demo

and communicate on any channel or device.

Conversation tooling

“Train bots with the Watson Gonversation service through an easy-1o-use web application. Designed s0 you can quickly buid
natural conversation lows between your apps and users, and deploy scalable, cost effective solutions.

Intended Use

Use Watson Conversation wherever you want to add conversational capabilty to your apgs to engage with end-users on their
platforms of choice, such as mobie, web, messaging channess, T, and fobos.

OPS/images/8394-conv-createservice.06.1.04.jpg
€ Viewan

Conversation

Akt anaursanguage
1o your sppicaton o avom

‘Common appications inchude

o any channe ordavice. T
Wetson Comversation sr

Servios name:

Comersaton

Gredential name:

Credertas

‘Contact Bluemix Saes

Estinate Monthy Cost
ot Calsiator

OPS/images/8394-conv-createservice.06.1.03.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/8394-conv-createservice.06.1.02.jpg

OPS/images/8394-conv-createservice.06.1.01.jpg

OPS/images/conv-IoT-final-results.png
© o7 surer -
hi watson © TS

Hi, T'm Watson, how can T help you? Devee 0,

Could you please change the color of my
brackground

Sure, I can change the gray color of the background
in your cellphone. Please tell me which color do you
prefer: Blue or Green?

let's make it green

ges Received 0

green

OPS/images/8394-conv-overview.05.1.01.jpg

OPS/images/Test-app.png
conv-201

+ Invite people

#general & (B | Qsearct

| 21| %0 | Company.

You created this channel today. This is the very be
the channel. Purpose: This channel is for 1
communication and announcements. All team memt
channel. (edit)

Commands matching “/watso’

' sample-conv-chatbot

<+ | /watso

“bold* _ita

OPS/images/image083.png
info debug

msg payosd : Object

»{ text: "nit, token:
‘VHBYX1kA9FKs 30ENANrou™ }
32472017, 11:38:35 AM node: 3s70eféc.8e5tE
msg payosd : Object

~object

Toan_id: " ——
tean_donzin: "asm—.
channel_id: "o
Channel_nane: "peimeteEy "
user_id: RS-

comand: /estt
texts i

response_url
“nttps: //hooks . s1ack. con/ conmands /W

OPS/images/conv-IoT-testing-the-responses.png
@ Name change color 8-

Function
Tvar r = 0.0;
2 var b =0.0;
3 var g = 0.0;
2
5+ if (typeof (msg.payload.output.text) == "string"){
6 msg.payload = msg.payload.output. text + "*;
7~} else {
8 msg.payload = msg.payload.output.text[0] + *";
9+ }
10
11+ if (msg.payload == "green’) {
12 q = 255;
13+ } else if (msg.payload == "blue’) {
14 b = 200.0;
15~ } else {
16 r = 100;
17 q = 100;
18 b = 100;
19+ }
20 a=1.0;
21

22 msg.eventorCommandType = "color’;
23 msg.payload = JSON.stringify({"d":{"r":r,"b":b,"g":q, "alpha:a}});
24

25 return msg;

2%

OPS/images/click-to-deploy-NEW.png
Q 1BM Bluemix

DASHBOARD ~ SOLUTIONS ~ CATALOG ~ PRICING ~ DOCS ~ COMMUNITY

(@ Newl The Continuous Delivery feature is now available. Use Continuous Delivery to deploy this example instead?

Deploy to Bluemix

1.Sign Up /Log In

2. App Details

Deploy this application to Bluemix

Deploying this app will create a private DevOps Services project for you. Learn more.

REDBOOKS-CONV-201-WEATHER-NODEJS

v (GIT URL: hitpsJ/github.comisnippetjavalredbooks-conv-201-weathe.
‘GIT BRANCH: master

APP NAME
conv-201-xxx-weather|
REGION ORGANZATION SPACE

1BM Bluemix US Sot naag@es b U ~

DEPLOY

OPS/images/conv-IoT-node-red.png
Edit ibmiot out node

Delete Cancel
* Authentication | Bluemix Service:

o Output Type Device Command

f Device Type Android

4 Device ld 2244668800

4 Command Type | text

i Format json
EData [d{value™textyy
®aos o [+

S Name 1BM loT

OPS/images/image084.png
©5 Deploy to Bluemix

OPS/images/8394-conv-iot.09.1.20.jpg

OPS/images/8394-conv-weather-nodejs.10.1.51.jpg
ine. Highs inthe

OPS/images/image085.jpg
=<2, Node-RED Deploy = =

View
Clipboard JeoH;
< Library
e Search flows
status Configuration nodes
Flows
link
Subflows.

matt
Manage palette

hitp

Keyboard shortcuts
Show tips.
Node-RED website
v0.16.2

OPS/images/8394-conv-iot.09.1.21.jpg

OPS/images/Figure_31_Different_Scenarios_at_Cognitive_Weather_Forecast_Chatbot_that_shows_that_it_needs_more_training.png
User input

«
€
b
s
{
t
{
)
1
s,
s
{
t

°

1
t

o

1
t
loudy. Highs in the mid single digits 0
3 to -OF. & .

Itis my pleasure to help y .

1
1

OPS/images/8394-conv-overview.05.1.09.jpg
right_moment_and_place

if @city:NYC and

Fulfill with a response ©® B Jump to...
® Add response condition)

1. Try not to miss the New Year's Eve countdown!

Add a variation to this response

(@ Croaie another rosporss

OPS/images/image076-NEW.png
Create New Command X

Command | /watson o |

Request URL ‘ dered.mybluemix.net/watson-chitbot () ‘

Short Description ‘ watson chatbot ‘

Usage Hint ‘ [which rocket to launch] ‘

Optionally lst any parameters that can be passed.

e ESEE

OPS/images/conv-IoT-add-intents.png
- #Change-color

@ Addanew user example...

() change color smartphone

(] change the background

(] change the color caliphone

("] change the color of the background

[] Please change the color

OPS/images/conv-context-006.png
“context’: {
“coordinates”: {
“latitude": 40785091,
"longitude": -73.968285
}

3
“output": {
“text": {
"values"; [
“[REPLACE WITH WEATHER DATA]"
1

*selection_policy": "sequential®

OPS/images/image078.jpg
W smseconcchan.. ~ [nstall App to Your Team

Settings

- Installyour 3010 your Slack €310 st your 3pp and generse thetokens you eed o erct

iththe Sock AP, You il be sk 1o suthocize tis 30p e cickin Istall A9p o Team.
o fad st

Marage Dstibaion

Features

ncoming ook
BRI

OPS/images/conv-IoT-entities.png
() blue azul (18ynonym)
[green verde (1Synonym)
black orange pink red white (6 Synonyms)

OPS/images/conv-node-005.png
ask_for_city

Triggered by ©®
if #weather_inquiry

Fulfill with a response © B Jump to...

® Add response condition 3]

1. What's the city that you'd like to forecast tr

Add a variation to this response

© Create ancther response

OPS/images/image072.png
Create an App

App Name

sample-conv-chatbot

Don't worry; you'll be able to change this later.

Development Slack Team

73 sampleteam -

Your app belongs to this team—leaving this team will remove your ability to
manage this app. Unfortunately, this can't be changed later.

By creating a Web API Application, you agree to the Slack API Terms of
Service.

[GUSSIE Create App

OPS/images/conv-IoT-mobile-app-1.png
Organization:
iog9qp @
Device ID:
2244668800

Auth Token:

Show Auth Token

Connected to [oT: No

OPS/images/conv-dialog-004.png
> greet

©}

v ask_for_city > reply_with_weather

Triggered by
#weather_inquiry

Watson responses o > city_not_recognized

What's the city that you'd like to
forecast the we.

mw < @ &
®

OPS/images/image074.jpg
Building Apps for Slack

oot 120 o s et o e by)y i

‘Add features and functionality .
S ——
Incoming Webhooks Interactive
St Commands Event Subscriptions.
e se smbyogee | | Bk ot
Bots Permissions
B tons o s o o et

OPS/images/conv-IoT-mobile-app-2.png
@ loT Starter

LOGIN 107 106

Device ID: 2244668800

Accelerometer Data
x:-0.325
y: 5.305
2:8.236

Messages Published: 107
Messages Received: 0

OPS/images/8394-conv-overview.05.1.05.jpg
Nelson: - Hil Do you know where is the train station?

Marie: - Excuse me?

#iind_a_place

[@ansp.andmar

Nelson: - Oh, | asked you how to get to the train station

#find_a_place

@transp_landmark

OPS/images/conv-IoT-flow-Node-red.png
'® connected

OPS/images/8394-conv-overview.05.1.04.jpg
#INTENT

Reprasens the purpose of a user's nput.

What the users want o achiove.
‘Actve, a gol, an acton, verbs

@ENTITY

How the usar's goal s 1o be achioved.
Passive, quaifes the ntants. Noun, things,objacs, trms

OPS/images/8394-conv-overview.05.1.03.jpg
Other Watson Conversation
services service Back-end

Interface = p
oEL

Users

Application

3
cunieoB
SO0 »

OPS/images/8394-conv-nodered.08.1.49.jpg
-w = B3

sample-conv-chatbot would like access to zac-ki

OPS/images/conv-IoT-dialog.png
~ Colors v Select Color

Triggered by Triggered by
#Change-color @colors
Watson responses) Watson responses
Sure, | can change the gray color of @colors:blue
the backgroun... =
D @colors:green
w - @ & green
@colors:others.

Sorry but my super powers just
allows me to change...

OPS/images/8394-conv-overview.05.1.02.jpg

OPS/images/conv-IoT-testing-conversation.png
Try it out &) Clear

green

#Change-color

@colors:green

| green

change color

#Change-color

| sure, 1 can change the color of the background
in your cellphone. Please tell me which color do
you prefer: Black, Blue or Green?

blue

#Change-color

@colors:blue

| blue

OPS/images/8394-conv-stt-tts-nodejs.12.1.27.jpg

OPS/images/conv-cmd-set-env.png
C:\BlueMix\conu-201-stt-tts-nodejs-student>cf set-enu weather-conu-sst-tts-xxx |
ORKSPACE_ID c¢7073d4b-a4ea-4607-a921-76a82788d1d7

Setting enu variable 'WORKSPACE_ID' to 'c7073d4b-atea-4607-a921-76a82788d1d7" fo
I app weather-conu-sst-tts-xxx in org aazraq@eg.ibm.com / space Conversation as
haziz@eg. ibm.com. . .

ok

TIP: Use 'cf restage weather-conu-sst-tts-xxx' to ensure your enu variable chang
es take effect

OPS/images/8394-conv-stt-tts-nodejs.12.1.25.jpg
App Weather-conu-sst-tts-xxx as started using this comsand npm start’

Showing health and status for app weather-conu-sst-tts-xxx in org aszraq@eg. ibm.
con / space Conversation as hazizaeg. ibm.con..
ok

requested state: started
instances: 1/1

usage: S12H x 1 instance
urls: ueather-conu-gst-tte-xxx mybluomix.not

last uploaded: Wed Feb 22 11:02:19 UTC 2017

stack: cflinuxfs2

buildpack: SOK for Node.js(TH) (ibm-node.js-4.7.2, buildpack-u3.10-20170119-1148
)

state since cpu memory disk dotail

0 running

22 01:04:23 PH 0.0% T3 of SIZH 165H of 16

OPS/images/conv-index-html-file.png
<div id="contentParent" class="responsive-columns-wrapper">

chat-column-holder" class="responsive-column content-column">

<div i

<div id-"output-audio" class="audio-on" onclick="TTSModule.toggle ()" value="ON"
></div>

<div class="chat-column">
<div id="scrollingChat"></div>
<div_id="input-wrapper" class="responsive-columns-wrapper"s

<div id="input-mic-holder">
<div id="input-mic" class="inactive-mic" onclick="STTModule.micON()"
></div>

</div>

<label for="textInput" class="inputOutline">
<input id="textInput" class="input responsive-column"
placeholder="Type something" type="text"
onkeydown="ConversationPanel .inputKeyDown (event, this)">
</1abel>
</div>
</div>
</div>

OPS/images/8394-conv-stt-tts-nodejs.12.1.23.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.22.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.21.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.20.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.29.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.28.jpg

OPS/images/conv-click-to-deploy-login-UPDATED.png
Deploy this application to Bluemix

Deploying this app will create a private DevOps Services project for you. Learn more.

REDBOOKS-CONV-201-STT-TTS-NODEJS

v (GIT URL: httpsJ/github comisnippetavalredbooks-conv-201-stttts-n
‘GIT BRANCH: masier

A Bluemix account is required. Log in or sign up to activate your free Bluemix trial.

SIGN UP

OPS/images/8394-conv-stt-tts-nodejs.12.1.16.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.15.jpg

OPS/images/conv-app-file-1.png
// Speech to Text Integration Code
var sttEndpoint = vcap.speech_to_text[0].credentials.url;

var stt_credentials = Object.assign({
username: process.env.SPEECH_TO_TEXT USERNAME || '<username>',
password: process.env.SPEECH_TO_TEXT PASSWORD || '<password>',

url: process.env.SPEECH_TO_TEXT URL || 'https://stream.watsonplatform.net/speech-to-text/api

version: 'vi',
},vcap.speech_to_text[0].credentials) ;

// Text to Speech Integration Code
var ttsEndpoint = vcap.text_to_speech[0].credentials.url;

var tts_credentials = Object.assign({
username: process.env.TEXT_TO_SPEECH USERNAME || '<username>',
password: process.env.TEXT_TO_SPEECH PASSWORD || '<password>',

url: process.env.TEXT TO_SPEECH URL || 'https://stream.watsonplatform.net/text-to-speech/api',

version: 'vi',
},veap. text_to_speech[0] .credentials) ;|

OPS/images/8394-conv-stt-tts-nodejs.12.1.13.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.12.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.11.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.10.jpg

OPS/images/conv-app-file-2.png
// Text-to-Speech Get Token Endpoint
app.get ('/api/text-to-speech/token', function(req, res, next){
| watson.authorization(tts_credentials).getToken({ url: tts_credentials.url }, function(error, token){
| if (error) {

if (error.code !== 401)

return next (error) ;
} else {
res.send (token) ;

}
n;
n;

//Speech-to_text Get Token Endpoint
| app.get ('/api/speech-to-text/token', function(req, res, next){
| watson.authorization(stt_credentials).getToken({ url: stt_credentials.url }, function(error, token){
| if (error) {

if (error.code !== 401)

return next (error) ;
} else {
res.send (token) ;

n;
i

OPS/images/8394-conv-stt-tts-nodejs.12.1.18.jpg

OPS/images/8394-conv-stt-tts-nodejs.12.1.17.jpg

