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SDUMP using CTRACE

    This chapter describes the changes to SDUMP CTRACE that were implemented in the z/OS SYSDUMP (SDUMP) component with z/OS V2R2. 

    This chapter includes the following topics:

    •1.1, “SDUMP CTRACE Enhancements” on page 2

    •1.2, “SDUMP CTRACE set up” on page 2

    •1.3, “TRACE CT command” on page 4

    •1.4, “Viewing SDUMP CTRACE data” on page 5

    1.1  SDUMP CTRACE Enhancements 

    z/OS components can collect data about problem-related data and various events that occur within the component by using the Component Trace (CTRACE) service. The component must set up its own trace and use the appropriate options that are available to generate the trace records that are most applicable to the situation.

    Each z/OS component that uses the CTRACE service has options available that vary from component to component.

    In z/OS V2R2, SDUMP is enhanced to use CTRACE services to enrich serviceability by providing diagnostic data about SDUMP. 

    1.2  SDUMP CTRACE set up

    SDUMP CTRACE uses the default parmlib member CTIDMP00. You can set up your own member or override the default member. You also can to Start, Stop, or Modify the options by using the TRACE CT command. After the data is captured, IPCS is available to view the SDUMP trace data, as shown in Figure 1-1.
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    Figure 1-1   SDUMP CTRACE overview

    1.2.1  CTIDMP00 parmlib member

    A default CTIDMP00 member is supplied. Tracing is started by using the CTIDMP00 during the DUMPSRV address space initialization. 

    The following parameters are available to the SDUMP CTRACE parmlib member:

    •ON or OFF: Determines whether the trace is on or off. The default is ON.

    •BUFSIZE: Determines the size of the buffers for writing the trace records.

    •OPTIONS: Determines the activity levels of tracing.

    •WTR: Connects or disconnects the external writer for the trace.

    •WTRSTART or WTRSTOP: Identifies the External Writer Started Task JCL and whether to open or close the data sets that are holding the trace data.

    There are several considerations when you decide on your setup and configuration.

    Collecting trace records

    Trace records always are captured in a SVC dump if TRACE is set to ON. In addition, it can be written to data sets via an External Writer.

    SDUMP CTRACE is captured at the end of the SDUMP capture phase and dumped at the end of the memory dump. If the trace data is needed at other times, you must request a new memory dump to collect the SDUMP CTRACE.

    Buffer size

    The buffer size determines the historical time spam of SDUMP events. When the buffer is full, CTRACE wraps the buffers and overwrites the oldest event records. Not all z/OS components can have the buffer size changed after the IPL; however, SDUMP is one of the components with which you can change the buffer size after the IPL. This change can be made by specifying another CTIDMPxx member or via the TRACE CT command. The CTRACE buffers include the following attributes: 

    •Location: 64-bit Common Storage Area 

    •Default size: 4 MB

    •Range: 4 MB – 32 MB

    OPTIONS parameter

    The OPTIONS parameter can include the following possible values:

    •ALL: Traces everything; that is, all the SDUMP events. This option is preferred because most SDUMP errors are difficult to reproduce. This option is the default.

    •MINIMUM: Traces some SDUMP error events only. 

     

    
      
        	
          Note: Trace events are reverted to minimum when the trace is set Off (by a user or the CTIDMPxx member).

        
      

    

    External writers

    The following parameters apply to the External Writer options:

    •WTR(membername|DISCONNECT): 

     –	Connects or disconnects the component trace external writer and the trace.

     –	The membername parameter identifies the member that contains the source JCL that starts the external writer.

     –	WTR(DISCONNECT) disconnects the writer and the trace.

     

    •WTRSTART (membername) identifies a member that contains source JCL for a started task, which the CTRACE uses to start the SDUMP component trace external writer and to open the data sets that the writer uses.

     

    
      
        	
          Note: The membername in the WTR parameter must match the membername in the WTRSTART parameter.

        
      

    

    •WTRSTOP(membername) identifies the member that contains source JCL for a started task that the system used to start the SDUMP component trace external writer. The system also closes the data sets that the writer used.

    Default CTIDMP00 member

    The default CTIDMP00 member contains the parameters and values that are shown in Figure 1-2.

    
      
        	
          TRACEOPTS

          ON

          OPTIONS('ALL')

          BUFSIZE(4M)

        
      

    

    Figure 1-2   Default CTIDMP00 member

    No CTIDMP00 member

    If no CTDMP00 member is found, a default buffer size of 4 M is used and the trace options is set to MINIMUM.

    1.3  TRACE CT command

    The TRACE CT command can be used to display and modify options and to start and stop the SYSDUMP trace.

    Displaying options

    You can run the DISPLAY TRACE command before running a TRACE CT command to verify the supported options, as shown in Figure 1-3.
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    Figure 1-3   Display Trace command

    You can override tracing options that are specified in the CTIDMP00 parmlib member by another CTIDMPxx parmlib member that is identified on a TRACE CT command by using PARM parameter.

    Example 1-1 shows the TRACE CT command in a COMMNDxx parmlib member. The command uses the PARMLIB member CTIDMP99, which might be set up to use different options than the default member CTIDMP00

    Example 1-1   TRACE CT command in a COMMNDxx parmlib member
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    COM='TRACE CT,ON,COMP=SYSDUMP,PARM=CTIDMP99'
[image: ]

     

    You can use the TRACE CT command to start, stop, or modify the SDUMP CTRACE. The syntax of the TRACE CT command is shown in Figure 1-4.
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    Figure 1-4   Syntax of the TRACE CT command

    In response to a TRACE CT command without the PARM parameter, the system prompts you to specify the component trace options that you want with a ITT006A message.

    Example 1-2 shows more uses of the TRACE CT command.

    Example 1-2   TRACE CT command examples
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    Change buffer size to 32M:

    TRACE CT,32M,COMP=SYSDUMP

     

    Change options using PARM=

    TRACE CT,ON,COMP=SYSDUMP,PARM=CTIDMPxx

     

    Change the OPTION to 'ALL'

    TRACE CT,ON,COMP=SYSDUMP

    *08 ITT006A SPECIFY OPERAND(S) FOR TRACE CT COMMAND.

    R 8,OPTIONS=(ALL),END

     

    Turn off SDUMP CTRACE:

    TRACE CT,OFF,COMP=SYSDUMP

     

    Start Ctrace External Writer

    TRACE CT,WTRSTART=WWWTR1
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    1.4  Viewing SDUMP CTRACE data

    You can use the IPCS subcommand CTRACE to view the SDUMP component trace data. Four options are available: FULL, SHORT, SUMMARY, and TALLY

    Samples of the SHORT and FULL options are described next.

    SYSDUMP trace short version

    To view the short version of the trace data, enter the following command:

    IPCS CTRACE COMP(SYSDUMP) SHORT

    The IPCS command produces the data report that is shown in Figure 1-5 on page 6.
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    Figure 1-5   IPCS CTRACE Short format

    SYSDUMP trace full version

    To view the short version of the trace data, enter the following command:

    IPCS CTRACE COMP(SYSDUMP) FULL

    The IPCS command produces the data report that is shown in Figure 1-6 on page 7.
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    Figure 1-6   IPCS CTRACE Full format

    1.4.1  Messages

    The following messages were introduced to include support for the SYSDUMP CTRACE:

    •IEA053I function_name: Service service_name failed with RC:return_code RSN:rsn_code

    A service was invoked that could not process the request.   In the message text the function_name  is the name of the function that invoked the service. The service_name is the name of the service that failed.

    A service was started that did not process the request. This message records this error. In the message, the text the name of the one is the name that started the service, and the name of the service is the service that failed.

    •IEA054I SDUMP CTRACE definition failed using CTIDMP00. RC=rc, RSN=rsn

    The system cannot define the SDUMP component trace by using the CTIDMP00 parmlib member in the message text.

    •IEA055I Component trace option optname is not valid

    The system encountered an incorrect option in the CTIDMPxx parmlib member or the TRACE CT command.
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SLIP traps

    This chapter describes the enhancements that were made in the Serviceability Level Indication Processing (SLIP) for z/OS V2R2 and includes the following topics:

    •2.1, “CMD parameter enhancement” on page 10

    •2.2, “DESC optional parameter” on page 11

    •2.3, “For more information” on page 12

    The new enhancements might be of interest to operational staff who are responsible for automation because automation tracking can extend the effectiveness of SLIP trap processing.

    2.1  CMD parameter enhancement

    z/OS V2R2 SLIP enhancements include the CMD parameter on the ACTION parameter for a SLIP trap event. The option is available to all types of SLIP traps. You can include ACTION=CMD in a SLIP SET command, as shown in Figure 2-1.

    
      
        	
          SLIP SET,...,ACTION=CMD,CMD=('command1','command2',...),END

        
      

    

    Figure 2-1   Using the ACTION=CMD command option

    The CMD parameter is a required parameter when the ACTION=CMD option is specified. Use the format that is shown in Figure 2-2.

    
      
        	
          CMD='MVS COMMAND'

          COMMAND='MVS COMMAND'

          CMD=('MVS COMMAND')

          CMD=('MVS COMMAND','MVS COMMAND')

          CMD=('MVS COMMAND',('MVS ','COMMAND'))

        
      

    

    Figure 2-2   Specifying the operations command

    The ACTION=CMD option can be specified so that you can run a command. In Example 2-1, two display commands are to be issued when the slip trap’s criteria are met.

    Example 2-1   Issuing commands
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    SLIP SET,...,ACTION=CMD,CMD=('D CF','D GRS',),ML=1,END
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    Consider the following key points:

    •CMD is allowed on all types of traps, including PER and error events.

    •CMD is allowed with other actions, except WAIT and IGNORE.

    •CMD is not allowed as a REMOTE option; however, ROUTE can be used as a command.

    •Up to eight commands can be specified as such.

    •Commands can be up to 126 characters long. Consoles might restrict the number of characters to less than 126. Therefore, you might have to use the SET SLIP=xx command to enter longer commands.

    •Commands can be broken into parts with a second set of parenthesis.

    SLIP message IEE836D has a new error description when more than eight commands are entered, as shown in Figure 2-3.

    
      
        	
          IEE836D SLIP {ID=xxxx|COMMAND} ERROR - keywd - err, COL nnn.

          ENTER 1 KEYWORD, NULL LINE, OR ‘CANCEL’.

        
      

    

    Figure 2-3   Message IEE836D error description

    You can respond manually to this error message or use automation to respond to the message and alert and report this error to the appropriate parties.

    The user that is running the SLIP command must have authority to issue embedded commands. Consider the following points:

    •The user that is entering an enabled SLIP command with A=CMD or the user that is enabling a disabled SLIP command that was created with A=CMD must have the authority to issue the entered command.

    •The SLIP command issues an MGCRE macro and passes the SLIP issuer’s authorization. The MGCRE macro allows a program to issue commands without operator intervention.

    •Authorization is copied from the SLIP trap enabler.

    •There is no guarantee in the order of completion of commands because command processing is asynchronous after a SLIP event. However, you can choose another option to issue a command that the automation subsystem recognizes and perhaps issue a REXX based script to control the command and message flow in the appropriate manner.

    If multiple matches for a SLIP command with A=CMD are encountered, commands cannot be issued for every match but are issued at least once.

    There is no default MATCHLIM value when the A=CMD is chosen.

    z/OS V2R2 also introduces a Job Group function. Consider aligning this function with the CMD enhancements. Also, consider setting up a job group in a member. Multiple jobs perform various activities around the Sysplex that are based on the SLIP trap and issue a command (or multiple commands) to start an internal reader (or more) to submit job groups.

    Migration and coexistence considerations

    Consider the following points: 

    •SLIP commands that are routed to all consoles that contain ACTION=CMD fail syntax checking on pre-V2R2 systems.

    •SLIP commands in IEASLPxx or COMMNDxx with ACTION=CMD fail syntax checking when processed on pre-V2R2 systems.

    2.2  DESC optional parameter

    The SLIP SET DESC optional parameter allows you to add a textual description to the dump title or wait state. The text can be 1 - 65 characters.

    The DESC optional parameter is available for the following actions:

    •WAIT

    •SVCD

    •SYNCSVCD

    •STDUMP

    •TRDUMP

    It provides a better understanding of where and why these actions occurred.

    The DESC keyword syntax is shown in the following example: 

    SLIP SET,...,ACTION=SVCD,DESC='dump description',END

    Consider the following points regarding this example:

    •DESC is optional

    •DESC can be up to 65 characters in length

    Example 2-2 shows setting a SLIP trap WAIT with a DESC keyword and forcing an abend X’0C1’.

    Example 2-2   SET a SLIP trap WAIT
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    SLIP SET,C=0C1,ID=0001,A=WAIT,DESC='Catch 0C1',END

     

    IEE844W SLIP TRAP 0001 MATCHED. ACTION=WAIT TYPE=RTM2

    DESC: Catch 0C1

    RTM2WA ADDR: 7F53CCF0 BEAR: 00000000_08288EA2

    PSW: 07042000 80000000 00000000 08288ECE

    CR 3-4: 00C00037 00000037

    AR/GR 0: 00000000/00000000_01000000 1: 00000001/0A5CD588_01111111

    2: 00000001/FFFFFFFF_01222222 3: 00000001/FFFFFFFF_01333333

    4: 00000001/FFFFFFFF_01444444 5: 00000001/FFFFFFFF_01555555

    6: 00000001/FFFFFFFF_01666666 7: 00000001/FFFFFFFF_01777777

    8: 00000001/FFFFFFFF_01888888 9: 00000001/00000000_01999999

    A: 00000001/00000000_0A5CD350 B: 00000001/00000000_0A5CD588

    C: 00000001/00000000_0828AB78 D: 00000001/00000000_01DDDDDD

    E: 00000001/00000000_01EEEEEE F: 00000001/FFFFFFFF_01FFFFFF

    RESTART THE SYSTEM TO CONTINUE
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    Example 2-3 shows the use of the CMD and DESC keywords. 

    Example 2-3   Setting a SLIP trap and displaying it
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    ■ SLIP SET,C=0C1,ID=0001,A=(SVCD,CMD),CMD=('D SLIP','D GRS'),DESC='Command Action and Dump',END

     

    ■ D SLIP=0001

    IEE735I 15.15.04 SLIP DISPLAY 523

    ID=0001,NONPER,ENABLED

    ACTION=SVCD,CMD,SET BY CONS CON3E0Y1,RBLEVEL=ERROR

    MATCHLIM=1,0,COMP=0C1

    CMD=('D SLIP', 'D GRS')

    DESC=Command Action and Dump
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    Migration and coexistence considerations

    Consider the following points: 

    •SLIP commands that contain the DESC keyword that are routed to all consoles fail syntax checking on pre-V2R2 systems.

    •SLIP commands in IEASLPxx or COMMNDxx with the DESC keyword fail syntax checking when processed on pre-V2R2 systems.

    2.3  For more information

    For more information about SLIP traps, see the following resources:

    •For information about operator commands to create, modify, or delete slip traps and information about the required parameters and general considerations, see z/OS MVS System commands, SA38-0666-03.

    SLIP traps can dramatically affect system performance. Consult with technicians who are experienced and skilled in the use of SLIP to set effective SLIP traps and to use the minimum system resources to achieve your goal. These technicians can help to ensure that your SLIP traps are sufficiently accurate to capture first failure data capture or can set in motion the actions to increase the mean time between failures.

    Always consider the use of the following parameters:

     –	MATCHLIM sets the maximum number of SLIP matches for this trap. When exceeded, the trap is disabled automatically. This parameter prevents unlimited recursive instances of the same SLIP trap processing-specific event.

     –	PRCNTLIM specifies a limit for PER processing by indicating the maximum percentage of CPU time that can be devoted to processing that is caused by PER interrupts.

    •For an understanding of how to specify SLIP commands automatically at initial load time and other related options, avoid the restrictions that are found in other PARMLIB members (such as COMMNDxx and IEACMDxx) and use the IEASLPxx PARMLIB member as a single point of defining your SLIP traps. In addition, by adopting this policy, you can establish a more organized structure and process for your SLIP operational deployments. For more information, see z/OS MVS Initialization and Tuning Reference, SA23-1380-05.

    •For more information about how to use SLIP traps with other tools as part of a problem determination process, see z/OS MVS Diagnostics:Tools and Service Aids, GA32-0905-03.

    You also can research and review the authority levels that are needed to use SLIP processing and related entities. There might be operational standards to which you must adhere within your organization. It is also advisable to be aware of the related security policies to ensure that you are operating within your organization’s guidelines.
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Log recording data set

    Log recording data set (LOGREC) is a set of records (stored in a data set or in a log stream) that contain hardware and software error descriptions that relate to specific events.

    z/OS V2R2 introduces updates for LOGREC. 

    This chapter includes the following topics:

    •3.1, “LOGREC overview” on page 16

    •3.2, “Changing the LOGREC specification” on page 16

    •3.3, “New messages” on page 18

    3.1  LOGREC overview

    When errors occur, the system records information about the error in the LOGREC data set or the LOGREC log stream. The records can describe hardware or software errors. 

    If you have a small single system, you can select a data set as the repository for the error records. However, if you have a sysplex, it is advantageous to reference a single source of error records that are appertaining to each system in the sysplex. In this case, you might prefer to chose one coupling facility log stream. 

    The following typical maintenance activities require an initial program load (IPL):

    •Performing hardware, software, or operational maintenance on the DASD device on which the LOGREC data set is allocated.

    •Switch from the LOGSTREAM option to the DATASET option after a System Logger outage, without having the LOGREC data set pre-allocated.

    •Resize the SYS1.Logrec data set.

    •Save an old Sys1.Logrec data set and switch to a new data set.

    A more flexible solution is required to alleviate potential threats to availability. The following typical scenarios are the drivers for the enhancements that are introduced with z/OS V2R2:

    •Enhance the SETLOGRC command to allow the following uses:

     –	When switching to the DATASET option, allocate the data set. This action occurs even if your system is restarted with the LOGSTREAM or IGNORE options specified.

     –	When switching from the DATASET option, deallocate the data set.

     –	Allow specification of the DATASET or LOGSTREAM options resource.

    •Enhance the IEASYSxx LOGREC= keyword to specify the log stream name.

    The goal is to reduce the risk of maintenance activities by lowering availability levels and to provide a more flexible approach in the operational management of LOGREC. Ideally, new automation procedures might be introduced to use this flexibility to provide smoother operational running.

    3.2  Changing the LOGREC specification

    z/OS V2R2 introduces more functionality to the SETLOGRC command, as shown in Figure 3-1.

    
      
        	
          SETLOGRC {LOGSTREAM|DATASET|IGNORE|LOGSTREAM=lsname|DATASET=dsname}

        
      

    

    Figure 3-1   SETLOGRC command syntax

    The SETLOGRC command cannot be abbreviated. The LOGSTREAM option can be abbreviated to LS. In addition, the DATASET option can be abbreviated to DS.

    You might want to issue this command to change the medium or to retain the same medium but use a different location by specifying a new name in the DATASET= or LOGSTREAM= parameters.

    After the command is processed, one of the following results occur:

    •If the change of medium is successful, the system issues an IFB097I message to indicate the change and the new medium to the requesting console.

    •If the change is to the DATASET parameter:

     –	If the change of medium is to DATASET and the system was not originally initialized with a data set specified, the system now dynamically allocates and opens the specified data set. If no data set name is provided, LOGREC defaults to the use of SYS1.LOGREC. If the system fails to open on the LOGREC data set, it issues the IFB110I, IFB112I, and IFB099I messages.

     –	If the current medium is DATASET and DATASET is requested with a new data set name, LOGREC closes and deallocates the old data set. It then allocates and opens the new data set for LOGREC recording.

     –	If the current medium is LOGSTREAM and DATASET is requested, LOGREC disconnects from the log stream. It then allocates and opens the data set for LOGREC recording. If problems arise when allocating the data set, LOGREC attempts to revert to log stream recording.

    •If the change is to the IGNORE parameter:

     –	If the current setting is IGNORE and IGNORE is requested, LOGREC issues the IFB096I message to the starting console to indicate that the wanted medium is the current setting.

     –	If the wanted setting is to IGNORE, LOGREC error and environmental records are not recorded and are not provided in an ENF 36 signal.

     –	If the current medium is DATASET and IGNORE is requested, LOGREC closes and deallocates the LOGREC data set.

     –	If the current medium is LOGSTREAM and IGNORE is requested, LOGREC disconnects from the log stream.

     

    
      
        	
          Suggestion: Use the IGNORE setting only in non-critical environments.

        
      

    

    •If the change is to the LOGSTREAM parameter:

     –	If the wanted setting is to LOGSTREAM and the connection to the log stream succeeds, the system issues the IFB097I message to indicate the successful change of medium from LOGSTREAM to LOGSTREAM. 

    If the change of medium is unsuccessful, the system issues the IFB099I message. The system also issues the IFB100E message to indicate that the system logger is unavailable. LOGREC error and environmental records are buffered internally until the system logger becomes available. The buffer wraps around when the buffers are full.

     –	If the connection is successful or when system logger and the log stream are available for writing, LOGREC writes records (including any buffered records) to the log stream.

     –	If the current medium is DATASET and LOGSTREAM is requested, LOGREC closes and deallocates the LOGREC data set, then connects to the log stream.

     –	If the current medium is LOGSTREAM and LOGSTREAM is requested, LOGREC disconnects from and then reconnects to the log stream. If a new log stream name is requested, LOGREC disconnects from the old log stream and connects to the new log stream.

    Example 3-1 shows samples of the SETLOGRC command. 

    Example 3-1   Example of SETLOGRC commands

    [image: ]

    SETLOGRC LOGSTREAM=LOGREC.SYSPLEX1

    SETLOGRC DATASET=MVSA.LOGREC

    [image: ]

    Example 3-2 shows the IEASYSxx LOGREC= parameter that is used at initial load to specify the option.

    Example 3-2   Example of LOGREC parameter at IEASYSxx

    [image: ]

    LOGREC=LOGSTREAM=LOGREC.GROUP2

    LOGREC=LS=SYS1.LOGREC.MVSX

    [image: ]

    The values for the dsname and lsname options can contain system symbols. When the dsname option is used, only one data set can be specified.

    3.3  New messages

    z/OS V2R2 introduces the following messages:

    •IFB110I (as shown in Figure 3-2)

    Explanation: When you issued the SETLOGRC command to change the LOGREC recording medium to DATASET, the system encountered a problem.

    
      
        	
          IFB110I UNABLE TO function LOGREC DATASET, NAME: data-set-name, RETCODE: retcode RSNCODE rsncode

        
      

    

    Figure 3-2   Message IFB11OI 

    •IFB112I (as shown in Figure 3-3)

    Explanation: This message contains dynamic allocation messages when the allocation of the LOGREC data set has problems after you use a SETLOGRC command.

    
      
        	
          IFB112I dynamic allocation messages

        
      

    

    Figure 3-3   Message IFB112I

    For more information, about the message fields, see z/OS MVS System Messages, Vol 8 (IEF-IGD), SA38-0675-03.

  
[image: ]
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DBX SIMD Support

    The dbx utility is a source-level debugger for z/OS UNIX System Services. It provides an environment to debug and run C and C++ programs and to perform machine-level debug.

    This chapter describes the new dbx functions and includes the following topics:

    •4.1, “New support for dbx” on page 20

    •4.2, “Vector variables and registers display and change” on page 20

    •4.3, “Conditional stops and tracing” on page 25

    4.1  New support for dbx

    z/OS V2R1 and z/OS V2R2 support the vector extension facility, single-instruction, multiple-data (SIMD), instructions that are available on IBM z13™ servers.

    SIMD provides a powerful framework for developing new business analytics workloads, porting math-intensive workloads from other platforms, and accelerating business analytics workloads on IBM z13. 

    z/OS support includes enablement of vector registers on IBM z13, Mathematical Acceleration Subsystem (MASS), and Automatically Tuned Linear Algebra Software (ATLAS) support, and Language Environment enabled for C runtime functions.

    In z/OS V2R2, dbx is enhanced to use SIMD capacity on UNIX System Services and provide the following functions:

    •Display vector variables, registers, and instructions in debugging.

    •Use vector variables and registers as a condition of breakpoints and trace.

    •Compile code by using the following option to get SIMD support:

    -qvector -qarch=11 -Wc,'FLOAT(IEEE)'

    4.2  Vector variables and registers display and change

    This section provides an example of the use of the dbx utility to debug a sample program. Figure 4-1 shows the sample program in a dbx session.

    
      
        	
           1 void main()

           2 {

           3   vector signed int int_1={1,2,3,4};

           4   vector signed int int_2;

           5   vector unsigned short short_1={11,12,13,14,15,16,17,18};

           6   vector bool long long long_1={22,23};

           7   vector unsigned char char_1={'a','b','c','d'};

           8   vector signed long long array_1[2]={{31,32},{33,34}};

           9   vector double z={0.1314, 897655.9};

          10   vector unsigned char* pChar;

          11   vector signed long long* pLong;

          12

          13   int c=2014;

          14

          15   c++;

          16   int_2[3]=c;

          17   pChar = &char_1;

          18   pLong = &array_1[1];

          19

          20   return;

          21 }

        
      

    

    Figure 4-1   Sample program example

    Example 4-1 shows the use of the dbx session for debugging the example program.

    Example 4-1   Use of dbx for debugging the example program

    [image: ]

    $> c99 -go bin/example -qvector -qarch=11 -Wc,'FLOAT(IEEE)' example.c

    $> dbx64

    FDBX1111: dbx args: dbx64

    FDBX1112: Current Directory: /u/hering

    FDBX0089: dbx for z/OS with 64-bit support.

    FDBX0399: Compiled: May 26 2015 at 02:43:13 (v2.2) (PROD)

    FDBX0400: OS level: 02.00 02; LE level: 4.2.2; (Local)

    ...
FDBX0252: enter object file name (default is 'a.out', ^D to exit): bin/example

    FDBX6432: Processing load module "bin/example"

    ...

    FDBX6421: Loaded debug data from "/u/hering/example.dbg"

    FDBX0150: Debug target is 31-bit.

     

    (dbx64) stop in main

    [1] stop in 'void main()'       File WTSC74:/u/hering/example.c, Line 3.

    (dbx64) c

    [1] stopped in main at line 3 in file "example.c"  ($t1)

        3     vector signed int int_1={1,2,3,4};

    (dbx64) list

        4     vector signed int int_2;

        5     vector unsigned short short_1={11,12,13,14,15,16,17,18};

        6     vector bool long long long_1={22,23};

        7     vector unsigned char char_1={'a','b','c','d'};

        8     vector signed long long array_1[2]={{31,32},{33,34}};

        9     vector double z={0.1314, 897655.9};

       10     vector unsigned char* pChar;

       11     vector signed long long* pLong;

       12

       13     int c=2014;

    (dbx64) st at 20

    [2] stop at "example.c":20

    (dbx64) c

    [2] stopped in main at line 20 in file "example.c"  ($t1)

       20     return;

    (dbx64) print int_1

    (1, 2, 3, 4)

    (dbx64) print long_1,char_1

    (22, 23) "abcd"

    (dbx64) print array_1

    ((31, 32), (33, 34))

    (dbx64) whatis short_1

    vector unsigned short short_1;

    (dbx64) p *pChar

    "abcd"

    (dbx64) p *pLong

    (33, 34)

    (dbx64) unset $novregs

    (dbx64) registers

    $r0: 0x0000000014dea388   $r1: 0x0000000014dea344   $r2: 0x00000000890ef310

      $r3: 0x0000000000000002   $r4: 0x000000008930f23a   $r5: 0x00000000139dba48

      $r6: 0x00000000139dbbd4   $r7: 0x00000000139db098   $r8: 0x0000000000000030

      $r9: 0x0000000080000000  $r10: 0x00000000890ef242  $r11: 0x000000008930f148

     $r12: 0x0000000014de5188   $sp: 0x0000000014dea248  $r14: 0x0000000014dea248

     $r15: 0x00000000939db928

    $psw0: 0x00000000078d2400 $psw1: 0x00000000939dba26   $pc: 0x00000000139dba26

     

       PSW: 078d2400 939dba26

            Instruction address: 0x139dba26

            Condition code: 2

     

    FDBX0552: unset $noflregs to view floating point registers.

    FDBX0553: unset $noflbregs to view IEEE floating point registers.

    FDBX0557: unset $nofldregs to view decimal floating point registers.

     

      vreg   value in hex

       $vr0: 0x3fc0d1b7 1758e219 412b64ef cccccccd

       $vr1: 0x41120dd7 50429b6d 00000000 00000000

       $vr2: 0x40c90fda a22168c2 00000000 00000000

       $vr3: 0x4116a09e 667f3bcd 00000000 00000000

       $vr4: 0x40517cc1 b727220b 00000000 00000000

       $vr5: 0x40b504f3 33f9de65 00000000 00000000

       $vr6: 0x40a2f983 6e4e4415 00000000 00000000

       $vr7: 0x00000000 00000000 00000000 00000000

       $vr8: 0x00000000 00000000 00000000 00000000

       $vr9: 0x00000000 00000000 00000000 00000000

      $vr10: 0x00000000 00000000 00000000 00000000

      $vr11: 0x00000000 00000000 00000000 00000000

      $vr12: 0x00000000 00000000 00000000 00000000

      $vr13: 0x00000000 00000000 00000000 00000000

      $vr14: 0x00000000 00000000 00000000 00000000

      $vr15: 0x00000000 00000000 00000000 00000000

      $vr16: 0x00000000 00000000 00000000 00000000

      $vr17: 0x00000000 00000000 00000000 00000000

      $vr18: 0x00000000 00000000 00000000 00000000

      $vr19: 0x00000000 00000000 00000000 00000000

      $vr20: 0x00000000 00000000 00000000 00000000

      $vr21: 0x00000000 00000000 00000000 00000000

      $vr22: 0x00000000 00000000 00000000 00000000

      $vr23: 0x00000000 00000000 00000000 00000000

      $vr24: 0x00000000 00000000 00000000 00000000

      $vr25: 0x00000000 00000000 00000000 00000000

      $vr26: 0x00000000 00000000 00000000 00000000

      $vr27: 0x00000000 00000000 00000000 00000000

      $vr28: 0x00000000 00000000 00000000 00000000

      $vr29: 0x00000000 00000000 00000000 00000000

      $vr30: 0x00000000 00000000 00000000 00000000

      $vr31: 0x00000000 00000000 00000000 00000000

     

    in main at line 20 in file "example.c"  ($t1)

    0x139dba26 (main+0xfe)  4400c1ac     EX      0,428(,R12)

    (dbx64) print $vr0

    (1069601207,391701017,1093362927,-858993459)

    (dbx64) print $vr0s

    (16320,-11849,5976,-7655,16683,25839,-13108,-13107)

    (dbx64) print $vr0c

    ('^?','{','J','^?','^?','^?','S','^?','^?','^?','^?','^?','^?','^?','^?','^?')

    (dbx64) print $vr0c[6]

    'S'

    (dbx64) print $vr0c[1..2]

    [1] = '{'

    [2] = 'J'

    (dbx64) assign int_2=int_1

    (dbx64) print int_2

    (1, 2, 3, 4)

    (dbx64) assign z[0]=0

    (dbx64) p z

    (0.000000, 897655.900000)

    (dbx64) assign short_1=int_1

    (dbx64) p short_1

    (0, 1, 0, 2, 0, 3, 0, 4)

    (dbx64) assign long_1=short_1

    (dbx64) set $hexints

    (dbx64) p long_1

    (0x100000002, 0x300000004)

    (dbx64) unset $hexints

    (dbx64) assign pLong=&long_1

    (dbx64) p *pLong

    (4294967298, 12884901892)

    (dbx64) assign (*pChar)[0]='f'

    (dbx64) p char_1

    "fbcd"

    (dbx64) assign array_1[0]=long_1

    (dbx64) p array_1

    ((4294967298, 12884901892), (33, 34))

    (dbx64) assign int_1={0,0,0,0}

    assign int_1={0,0,0,0}

                 ^ syntax error

    (dbx64) assign int_1=0

    FDBX0056: assign non-composite to composite

    (dbx64) set $hexints

    (dbx64) p $vr2

    (0x40c90fda,0xa22168c2,0x00000000,0x00000000)

    (dbx64) assign $vr2[0]=0x10

    (dbx64) assign $vr2[1]=0x11

    (dbx64) assign $vr2[2]=0x12

    (dbx64) assign $vr2[3]=0x13

    (dbx64) p $vr2

    (0x00000010,0x00000011,0x00000012,0x00000013)

    (dbx64) assign $vr1=$vr2

    (dbx64) p $vr1

    (0x00000010,0x00000011,0x00000012,0x00000013)

    (dbx64) assign $vr0[0]=1024*2+1

    (dbx64) p $vr0[0]

    0x00000801

    (dbx64) assign $vr31c[0]='a'

    (dbx64) assign $vr31c[1]='g'

    (dbx64) assign $vr31c[2]=0x88

    (dbx64) p $vr31c

    ('a','g','h','\0','\0','\0','\0','\0','\0','\0','\0','\0','\0','\0','\0','\0')

    (dbx64) assign $vr29s[1]=0xffff

    (dbx64) p $vr29s

    (0x0000,0xffff,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000)

    (dbx64) assign $vr2x[0]=1

    FDBX0614: "$vr2x" is not defined

    (dbx64) c

    FDBX0114: program exited

    (dbx64) quit

    $> 
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    Table 4-1 lists the dbx subcommands that are used in Example 4-1 on page 21. For more information, see z/OS UNIX System Services Command Reference, SA23-2280-02.

    Table 4-1   dbx subcommands

    
      
        	
          Subcommand

        
        	
          Description

        
      

      
        	
          assign

        
        	
          Assign a value to a variable.

        
      

      
        	
          cont

        
        	
          Continue program execution.

        
      

      
        	
          list

        
        	
          Display lines of the current source file.

        
      

      
        	
          print

        
        	
          Print the value of an expression.

        
      

      
        	
          quit

        
        	
          End the dbx debugging session.

        
      

      
        	
          registers

        
        	
          Display the value of registers.

        
      

      
        	
          set

        
        	
          Define a value for a dbx variable.

        
      

      
        	
          stop

        
        	
          Stop execution of a program.

        
      

      
        	
          unset

        
        	
          Delete a variable.

        
      

      
        	
          whatis

        
        	
          Display the type of program components.

        
      

    

    4.3  Conditional stops and tracing

    Figure 4-2 shows an example that demonstrates the use of the dbx utility to debug a sample program.

    
      
        	
           1  void subFunc1(vector unsigned short input);

           2  vector signed int subFunc2();

           3

           4  void main()

           5  {

           6    vector signed int mainVar_1={1,1,1,1};

           7    vector unsigned short mainVar_2={2,2,2,2};

           8    vector unsigned long long mainVar_3[2]={{30,31},{56,57}};

           9

          10    mainVar_2[1]++;

          11    subFunc1(mainVar_2);

          12    mainVar_1 = subFunc2();

          13    mainVar_3[0][0]--;

          14    mainVar_3[1][1] = 99;

          15    return;

          16  }

          17

          18  void subFunc1(vector unsigned short input)

          19  {

          20    input[7]=7;

          21    return;

          22  }

          23

          24  vector signed int subFunc2()

          25  {

          26    vector signed int rt={5,6,7,8};

          27    return rt;

          28  }

        
      

    

    Figure 4-2   Sample program example2.c

    Example 4-2 shows the use of the dbx session for debugging the second example program.

    Example 4-2   Using dbx for debugging the example2 program

    [image: ]

    $> c99 -go bin/example2 -qphsinfo -qvector -qarch=11 -Wc,'FLOAT(IEEE)' \

    > example2.c

    CCN0000(I) Product(5650-ZOS) Phase(CCNEOPTP) Level(D150318.1512)

    CCN0000(I) Product(5650-ZOS) Phase(CCNDRVR ) Level(D150318.1512)

    CCN0000(I) Product(5650-ZOS) Phase(CCNEP   ) Level(D150318.1512)

    CCN0000(I) Product(5650-ZOS) Phase(CCNETBY ) Level(D150318.1512)

    CCN0000(I) Product(5650-ZOS) Phase(CCNECWI ) Level(D150318.1512)

    CCN0000(I) Product(5650-ZOS) Phase(CCNEDWRT) Level(D150318.1512)

    CCN0000(I) Library(elf     ) Phase(CCNEDWRT) Level(D150318.1512)

    CCN0000(I) Library(dwarf   ) Phase(CCNEDWRT) Level(D150318.1512)

    CCN0000(I) Library(ddpi    ) Phase(CCNEDWRT) Level(D150318.1512)

    $> dbx64

    ...

    FDBX0252: enter object file name (default is 'a.out', ^D to exit): bin/example2

    FDBX6432: Processing load module "bin/example2"

    ...

    FDBX6421: Loaded debug data from "/u/hering/example2.dbg"

    FDBX0150: Debug target is 31-bit.

    (dbx64) st at 11

    [1] stop at "example2.c":11

    (dbx64) trace if mainVar_1[0]>0

    [2] trace if mainVar_1[0] > 0

    (dbx64) c

    FDBX0304: trace in example2.c ($t1):    7     vector unsigned short mainVar_2={2,2,2,2};

    FDBX0304: trace in example2.c ($t1):    8     vector unsigned long long mainVar_3[2]={{30,31},{56,57}};

    FDBX0304: trace in example2.c ($t1):   10     mainVar_2[1]++;

    FDBX0304: trace in example2.c ($t1):   11     subFunc1(mainVar_2);

    [1] stopped in main at line 11 in file "example2.c"  ($t1)

       11     subFunc1(mainVar_2);

    (dbx64) stop in subFunc1 if mainVar_2[3]==2

    [3] stop if mainVar_2[3] = 2 in 'void subFunc1(vector unsigned short input)'

    File WTSC74:/u/hering/example2.c, Line 20.

    (dbx64) c

    FDBX0304: trace in example2.c ($t1):   20     input[7]=7;

    [3] stopped in subFunc1 at line 20 in file "example2.c"  ($t1)

       20     input[7]=7;

    (dbx64) stopi if $vr0[1]<>100

    [4] stopi if $vr0[1] <> 100

    (dbx64) c

    stopped in subFunc1 at 0x139db980 ($t1)

    0x139db980 (subFunc1+0x58)  5810d0e0     L       R1,224(,R13)

    (dbx64) p $vr0[1]

    131074

    (dbx64) delete all

    (dbx64) stop if mainVar_3[0][0]!=30

    [5] stop if mainVar_3[0][0] <> 30

    (dbx64) c

    stopped in main at line 14 in file "example2.c"  ($t1)

       14     mainVar_3[1][1] = 99;

    (dbx64) tracei if mainVar_2[4]=0

    FDBX0305: tracei ($t1): 0x139dbb6e (main+0x136)  4400c1ac     EX      0,428(,R12)

    [6] tracei if mainVar_2[0x4] = 0x0

    (dbx64) c

    FDBX0305: tracei ($t1): 0x13a1ab5e (main+0x126)  4110d128     LA      R1,296(,R13)

    FDBX0305: tracei ($t1): 0x13a1ab62 (main+0x12a)  e54c10000000 MVHI    0(R1),0

    FDBX0305: tracei ($t1): 0x13a1ab68 (main+0x130)  e54c10040063 MVHI    4(R1),99

    FDBX0305: tracei ($t1): 0x13a1ab6e (main+0x136)  4400c1ac     EX      0,428(,R12)

    stopped in main at line 15 in file "example2.c"  ($t1)

       15     return;

    (dbx64) c

    FDBX0305: tracei ($t1): 0x13a1ab76 (main+0x13e)  4400c1b8     EX      0,440(,R12)

    FDBX0114: program exited

    (dbx64) quit

    $> 

    [image: ]

    Table 4-2 lists the dbx subcommands that are used in Example 4-2 on page 25 that are not listed in Table 4-1 on page 24. For more information, see z/OS UNIX System Services Command Reference, SA23-2280-02.

    Table 4-2   dbx subcommands

    
      
        	
          Subcommand

        
        	
          Description

        
      

      
        	
          delete

        
        	
          Remove traces and stops.

        
      

      
        	
          stopi

        
        	
          Stop at a specified location.

        
      

      
        	
          trace

        
        	
          Print tracing information.

        
      

      
        	
          tracei

        
        	
          Print tracing information.

        
      

    

  
    Related publications

    The publications that are listed in this section are particularly suitable for a more detailed discussion of the topics that are covered in this book.

    IBM Redbooks publications

    The following IBM Redbooks publications provide more information that is related to the z/OS V2R2 updates. Note that some publications that are referenced in this list might be available in softcopy only:

    •z/OS V2R2: JES2, JES3, and SDSF, SG24-8287

    •z/OS V2R2: Security, SG24-8287

    •z/OS V2R2: Storage Management and Utilities, SG24-8289

    •z/OS V2R2: Availability Management, SG24-8290

    •z/OS V2R2: Performance, SG24-8292

    •z/OS V2R2: Operations, SG24-8305

    •z/OS V2R2: Diagnostics, SG24-8306

    •z/OS V2R2: Sysplex, SG24-8307

    •z/OS V2R2: UNIX System Services SG24-8310

    •z/OS V2R2: User Interfaces, SG24-8311

    •z/OS V2R2: ServerPac SG24-8500

    You can search for, view, download, or order these documents and other Redbooks, Redpapers, Web Docs, draft, and other materials at the following website: 

    ibm.com/redbooks

    Other publications

    The following publications are also relevant as further information sources:

    •z/OS V2R2 MVS Diagnosis: Tools and Service Aids, GA32-0905

    •z/OS V2R2 MVS Diagnosis: Reference, GA32-0904

    •z/OS V2R2 MVS Initialization and Tuning Reference, SA23-1380

    •z/OS V2R2 MVS System Commands, SA38-0666

    •z/OS V2R2 MVS System Messages, Vol 6 (GOS-IEA), SA38-0673

    •z/OS V2R2 MVS System Messages, Vol 8 (IEF-IGD), SA38-0675

    Help from IBM

    IBM Support and downloads:

    ibm.com/support

    IBM Global Services:

    ibm.com/services
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ASID..... 0029 IssueMod. IEAVTSDX TCB.d.... 004F5240

RetnAddr. 81224590
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