
Redbooks

Front cover

Virtualization Cookbook for
IBM Z Volume 5
Kernel-based Virtual Machine

Octavian Lascu

Diogo Jose Basso Pigossi

Eduardo Simoes Franco

Eric Marins

Ewerson Palacio

Sergio Chang Mariselli

Second Edition (October 2022)

This edition applies to Red Hat REL 8.4, SUSE SLES 15 SP1, and Ubuntu 21.10 LTS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.
© Copyright International Business Machines Corporation 2022. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii Virtualization Cookbook for IBM Z Volume 5: KVM

Contents

Notices . ix
Trademarks .x

Preface . xi
Authors. xi
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks . xiii

Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 1
1.1 Kernel-based Virtual Machine on IBM Z . 2

1.1.1 Why on IBM Z . 2
1.1.2 KVM as a hypervisor on IBM Z . 5
1.1.3 KVM on IBM Z running in a private cloud . 5

1.2 KVM working on IBM Z . 9
1.3 Managing and monitoring KVM on IBM Z . 10

1.3.1 Libvirt . 11
1.3.2 OpenStack . 11
1.3.3 Virt-install . 11
1.3.4 Virsh . 12
1.3.5 Virt-manager . 12
1.3.6 Cockpit . 13
1.3.7 IBM Cloud Infrastructure Center . 14
1.3.8 Platform management. 15
1.3.9 Managing the KVM guest lifecycle . 15
1.3.10 KVM host and guest monitoring . 15

1.4 Securing KVM on IBM Z . 16
1.4.1 Access control. 16
1.4.2 IBM Secure Execution on IBM z15 and newer IBM Z systems. 16
1.4.3 Authentication solutions . 17
1.4.4 Multi-factor authentication. 18
1.4.5 Audit . 18

1.5 Availability with KVM on IBM Z . 18
1.6 KVM on IBM Z backup and recovery . 19

Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 21
2.1 Basic requirements for KVM hosts and guests . 22

2.1.1 Hardware requirements. 22
2.1.2 Software requirements . 23
2.1.3 Availability requirements . 23
2.1.4 Deployment architecture . 25

2.2 Planning resources for KVM guests . 26
2.2.1 Compute considerations . 27
2.2.2 Storage considerations . 27
2.2.3 Network considerations. 32
2.2.4 Encryption considerations. 33
2.2.5 KVM guest domain considerations . 34
2.2.6 Methods for installing Linux into a guest domain . 35
2.2.7 Linux virtual machine live migration . 36
© Copyright IBM Corp. 2022. All rights reserved. iii

2.3 Planning for management and monitoring . 37
2.3.1 KVM host management . 37
2.3.2 KVM host monitoring. 38
2.3.3 KVM guest management . 38
2.3.4 KVM guest monitoring. 40

2.4 Planning for security . 40
2.4.1 Access controls . 40
2.4.2 Authentication solutions . 41
2.4.3 Audit . 41
2.4.4 Firewalls . 42
2.4.5 Cryptography . 42
2.4.6 Multi-factor authentication. 43

2.5 Planning for backup and recovery. 43
2.5.1 KVM host backups and recovery . 44
2.5.2 KVM guest backup and recovery . 45

Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine
environment for virtual machine use . 47

3.1 Defining the target configuration . 48
3.1.1 Logical View . 48
3.1.2 Physical resources . 49
3.1.3 Software resources . 50

3.2 Preparing the infrastructure. 50
3.2.1 Configuring the resources in Z platform . 50
3.2.2 Configure the storage resources. 50

3.3 Collecting information . 53
3.3.1 Installing RHEL on an LPAR installation. 54
3.3.2 Virtual machine installation information. 55

3.4 Installing RHEL on an LPAR as KVM host . 57
3.4.1 Preparing the installation . 57
3.4.2 Installing RHEL on an LPAR. 59
3.4.3 Preparing the host for virtualization. 59

3.5 Configuring the KVM host . 61
3.5.1 Defining NICs . 61
3.5.2 Defining the bond interface . 63
3.5.3 Defining HiperSocket interfaces . 65
3.5.4 Defining HiperSocket interface to support VM guest network. 66
3.5.5 Defining HiperSocket KVM host interface. 67
3.5.6 Defining HiperSocket Converged interface. 68
3.5.7 Defining SMC interfaces . 69
3.5.8 Defining the MacVTap network . 74
3.5.9 Defining crypto adapters and domains . 75

3.6 Deploying virtual machines on KVM . 80
3.6.1 Creating QCOW2 disk image file . 80
3.6.2 Installing a new guest by using virt-install . 80
3.6.3 Cloning a guest by using Virsh . 82
3.6.4 Adding HiperSockets to the VM guest . 83
3.6.5 Adding space to guest from ECKD DASD . 84
3.6.6 Adding DASD space to guest as a VFIO device. 86
3.6.7 Adding LUNs if FCP SCSI storage is used . 89
3.6.8 Adding cryptography support to the VM guest . 91
3.6.9 Using the Integrated Accelerator for zEnterprise Data Compression 92
iv Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual
machine use . 95

4.1 Defining the target configuration . 96
4.1.1 Logical View . 96
4.1.2 Physical resources . 97
4.1.3 Software resources . 98

4.2 Preparing the infrastructure. 98
4.3 Collecting information . 102

4.3.1 Required information for SLES on an LPAR installation 103
4.3.2 Required information for VM installations . 104

4.4 Installing SUSE on an LPAR as a KVM host . 106
4.4.1 Preparing the installation . 106
4.4.2 Installing SLES on an LPAR . 107

4.5 Preparing the host for virtualization. 108
4.6 Configuring the KVM host . 111

4.6.1 Defining NICs . 111
4.6.2 Defining the bond interface . 112
4.6.3 Defining HiperSockets interfaces . 114
4.6.4 Defining the HiperSocket interface to support VM guest network. 115
4.6.5 Defining the HiperSocket interface of the KVM host . 115
4.6.6 Defining HiperSocket Converged Interface. 116
4.6.7 Defining SMC interfaces . 117
4.6.8 Defining the MacVTap network . 122
4.6.9 Defining the MacVTap network . 122
4.6.10 Defining crypto adapters and domain . 123

4.7 Deploying VMs on KVM . 127
4.7.1 Creating QCOW2 disk image file . 127
4.7.2 Installing a new guest by using virt-install . 127
4.7.3 Cloning a guest by using Virsh . 129
4.7.4 Adding HiperSockets to the VM guest . 130
4.7.5 Adding space to guest from ECKD DASD . 131
4.7.6 Adding DASD space to guest as a VFIO device. 133
4.7.7 Adding LUNs when FCP SCSI storage is used . 135
4.7.8 Adding cryptography support to the VM guest . 136
4.7.9 Using the Integrated Accelerator for zEnterprise Data Compression 138

Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual
machine use . 141

5.1 Defining the target configuration . 142
5.1.1 Logical View . 142
5.1.2 Physical resources . 143
5.1.3 Software resources . 144

5.2 Preparing the infrastructure. 144
5.2.1 Configuring resources. 144
5.2.2 Configuring storage resources . 144
5.2.3 Setting up the FTP server for the installation . 146

5.3 Collecting information . 146
5.3.1 Required information for Ubuntu on an LPAR installation. 147
5.3.2 Required information for virtual machine installations. 148

5.4 Installing Ubuntu on an LPAR as a KVM host. 151
5.4.1 Preparing the installation . 151
5.4.2 Installing Ubuntu on an LPAR. 151

5.5 Preparing the host for virtualization. 152
 Contents v

5.6 Configuring the KVM host . 154
5.6.1 Defining NICs . 154
5.6.2 Defining the bond interface . 156
5.6.3 Defining HiperSockets interfaces . 158
5.6.4 Defining HiperSocket interface to support VM guest network. 158
5.6.5 Define HiperSocket Converged Interface . 161
5.6.6 Defining SMC interfaces . 162
5.6.7 Defining the MacVTap network . 167
5.6.8 Defining crypto adapters and domain . 168

5.7 Deploying virtual machines on KVM . 173
5.7.1 Creating QCOW2 disk image file . 173
5.7.2 Installing a new guest by using virt-install . 173
5.7.3 Cloning a guest using Virsh . 175
5.7.4 Adding HiperSockets to the VM guest . 176
5.7.5 Adding space to guest from ECKD DASD . 177
5.7.6 Adding DASD space to a guest as a VFIO device . 179
5.7.7 Adding LUNs if you have FCP Storage. 182
5.7.8 Adding cryptography support to the VM guest . 184
5.7.9 Using the Integrated Accelerator for zEnterprise Data Compression 185

Chapter 6. Managing the Kernel-based Virtual Machine environment. 187
6.1 Managing resources . 188

6.1.1 Virsh . 188
6.1.2 Virtual Machine Manager . 190
6.1.3 Cockpit . 192
6.1.4 OpenStack . 194
6.1.5 Choosing the correct tool . 196

6.2 Recovery management . 197
6.2.1 Snapshot . 198
6.2.2 Compressing data and backup . 198
6.2.3 IBM FlashCopy . 199

6.3 Security management . 201
6.3.1 FreeIPA. 201
6.3.2 sVirt . 205
6.3.3 AppArmor . 206
6.3.4 Linux Audit . 207

Chapter 7. High Availability for IBM General Parallel File System 211
7.1 Environment overview. 213
7.2 Zoning and LUN masking . 214
7.3 Downloading IBM Spectrum Scale from IBM Fix Central . 219
7.4 Installing IBM Spectrum Scale . 221

7.4.1 Working with clusters and deploying protocols . 223
7.4.2 Configuring IBM Spectrum Scale . 224

7.5 Building the GPFS portability layer . 225
7.6 Handling Linux kernel updates . 226
7.7 GPFS general configuration . 228

7.7.1 Installing the licensing. 229
7.7.2 Validating or listing the cluster configuration. 229
7.7.3 Displaying the state of GPFS cluster . 230
7.7.4 Changing the range ports that are used for command execution 230
7.7.5 Configuring FCP Channels to all KVM Compute (GPFS cluster) servers. 230
7.7.6 Using tiebreaker disks. 240
vi Virtualization Cookbook for IBM Z Volume 5: KVM

7.7.7 Displaying the NSD information . 241
7.8 Working with the General Parallel File System . 241

7.8.1 Creating and configuring GPFS . 241
7.8.2 Mounting and validating the GPFS . 242
7.8.3 Configuring the SELinux file’s context. 242
7.8.4 Starting GPFS automatically . 243
7.8.5 Tiebreaker disk recommendations . 243
7.8.6 Setting up a tiebreaker disk . 249
7.8.7 Enabling Persistent Reserve. 249

Chapter 8. Using IBM Secure Execution . 253
8.1 Introduction to IBM Secure Execution. 254
8.2 How IBM Secure Execution works . 255
8.3 Enabling and verifying that the CPC is Secure Execution ready 255

8.3.1 Importing a key bundle into LinuxONE . 255
8.4 KVM host and guest software requirements . 256
8.5 Enabling an Ubuntu 20.04 LTS KVM host for IBM Secure Execution. 257
8.6 Enabling an SLES 15 SP2 KVM host for IBM Secure Execution 258
8.7 Enabling an Ubuntu 20.04 KVM Guest for IBM Secure Execution 261

8.7.1 Installing a standard Linux guest on encrypted disk storage 261
8.7.2 Updating KVM guest /etc/crypttab to avoid entering a password at start 262
8.7.3 Editing the domain.xml to include iommu=’on’ . 268
8.7.4 Obtaining the host key documents for the CEC . 269
8.7.5 Validating the key material . 269
8.7.6 Building a secured initrd image file by using genprotimg on KVM guest 271
8.7.7 Updating guest zipl to boot with secured image in IBM Secure Execution mode 272
8.7.8 Removing any boot option that is not in Secure Execution mode. 276
8.7.9 Further Ubuntu guest hardening . 276
8.7.10 Removing older unencrypted artifacts from the /boot partition 278

8.8 Enabling a SLES 15 SP2 KVM Guest for IBM Secure Execution 279
8.8.1 Installing a standard Linux guest on encrypted disk storage 280
8.8.2 Updating KVM guest /etc/crypttab to avoid entering a password at start 286
8.8.3 Editing the domain.xml to include iommu=’on’ . 292
8.8.4 Obtaining the host key documents for the CEC . 293
8.8.5 Validating the key material . 293
8.8.6 Building a secured initrd image file by using genprotimg on KVM guest 293
8.8.7 Updating guest zipl to boot with secured image in IBM Secure Execution mode 294
8.8.8 Updating guest grub2 to boot with secured image in IBM Secure Execution mode .

297
8.8.9 Removing any start option that is not Secure Execution mode. 300
8.8.10 Further SLES 15 guest hardening . 301
8.8.11 Removing unencrypted older artifacts from /boot/zipl and encrypted artifacts from

/boot . 302
8.9 Enabling a RHEL KVM Guest for Secure Execution. 304

8.9.1 Installing a standard Linux guest on encrypted disk storage 305
8.9.2 Updating KVM guest /etc/crypttab to avoid entering password at boot. 308
8.9.3 Editing the domain.xml to include iommu=’on’ . 312
8.9.4 Obtaining the host key documents from the CEC. 313
8.9.5 Validating the key material . 314
8.9.6 Building a secured initrd image file using gemproting on KVM guest 316
8.9.7 Updating guest zipl to boot with secured image in Secure Execution mode. . . . 317
8.9.8 Securely removing the original unprotected kernel, initrd, and parmfile files . . . 319
8.9.9 Further RHEL guest hardening . 319
 Contents vii

8.9.10 Removing unencrypted, older artifacts from /boot . 320

Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines . . . 321
9.1 Installing IBM Cloud Infrastructure Center . 322

9.1.1 Before you install IBM Cloud Infrastructure Center. 330
9.2 Configuring IBM Cloud Infrastructure Center . 335

9.2.1 Other tasks . 336
9.2.2 Creating and adding images . 344
9.2.3 Adding storage providers . 349
9.2.4 Extending the root file system. 352
9.2.5 User tasks . 353

9.3 Creating a bond for KVM administration network interfaces . 365

Appendix A. Live Virtual Server Migration . 369
Introduction . 370
Live migration phases . 370
Provisioning two servers . 371
Performing a live migration . 375

Procedure . 375
Restriction . 376

Appendix B. Kernel-based Virtual Machine LPAR live migration. 379
Overview . 380

Appendix C. Scripts for SLES guest installation . 385
Preparing and setting up for AutoYAST installation . 386
AutoYAST configuration file for KVM guest . 387
viii Virtualization Cookbook for IBM Z Volume 5: KVM

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2022. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Db2®
DS8000®
FICON®
FlashCopy®
GDPS®
IBM®
IBM Spectrum®

IBM Z®
IBM z15™
Parallel Sysplex®
QRadar®
Redbooks®
Redbooks (logo) ®
Storwize®

Tivoli®
WebSphere®
z/Architecture®
z/OS®
z/VM®
z15™

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Ansible, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United
States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Virtualization Cookbook for IBM Z Volume 5: KVM

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication provides a broad explanation of the kernel-based virtual
machine (KVM) on IBM Z® and how it can use the z/Architecture®. It focuses on the planning
of the environment and provides installation and configuration definitions that are necessary
to build, manage, and monitor a KVM on Z environment.

This publication applies to the supported Linux on Z distributions (Red Hat, SUSE, and
Ubuntu).

This IBM Redbooks publication is useful to IT architects, system administrators, and users
who plan for and install KVM on IBM Z. The reader is expected to have an understanding of
IBM Z hardware, KVM, Linux on Z, and virtualization concepts.

Authors

This book was produced by a team of specialists from around the world working at IBM
Redbooks, Poughkeepsie Center:

Octavian Lascu is an IBM Redbooks Project Leader and Senior IT Infrastructure Specialist
at IBM Redbooks, Poughkeepsie Center.

Diogo Jose Basso Pigossi is a Mainframe Infrastructure Architect and Technical IT
Specialist working with IBM since 2008. He holds a degree in Computer Science and an MBA
in Information Security Management. His areas of expertise are Mainframe Configuration
Management and zVM Base. For the last few years, Diogo and his team led the
modernization of CIO data centers and the efforts to offer cloud solutions to Z hypervisors as
IBM Cloud Infrastructure Center and KVM. Today, he works for Kyndryl CIO.

Eduardo Simoes Franco is an IT Specialist and Technology Consultant at IBM. He has more
than 20 years of experience with IT Solutions, projects, and infrastructure support. He has
held technical and management positions at several large corporations in servers support as
a network analyst, security officer, IT coordinator, and consultant. Currently, he supports large
IBM clients worldwide on Docker, virtualization, and Linux on IBM Z platform.

Eric Marins is a Senior IT Architect in Brazil, focused on hybrid cloud solutions, Infrastructure
and Platform solutions, and competencies, including High Availability, Disaster Recovery,
Networking, Linux, and Cloud. He has many years of experience working with and writing
about IBM Z, Linux, and Open Source topics. He has co-authored more than seven IBM
Redbooks publications.

Ewerson Palacio is an IBM Redbooks Project Leader. He holds Bachelors degree in Math
and Computer Science. Ewerson worked for IBM Brazil for over 40 years and retired in 2017
as an IBM Distinguished Engineer. Ewerson co-authored many z Systems IBM Redbooks
publications, and created and presented ITSO seminars around the globe.

Sergio Chang Mariselli is an IT Specialist at Kyndryl. He has more than 10 years of
experience with IT infrastructure projects. He worked in IBM for 9 years and now is working in
Kyndryl, leading IBM Z-related projects. In last 6 years, Sergio has been working with IBM
z/VM® and Linux on Z. Currently, he leads projects, manages platforms, advises clients, and
supports Peruvian clients on IBM Z.
© Copyright IBM Corp. 2022. All rights reserved. xi

Thanks to the following people for their contributions to this project:

IBM Redbooks, Poughkeepsie Center
Lydia Parziale
Robert Haimowitz

IBM
Richard Young
Viktor Mihajlovski
Boris Fiuczynski
Matthew Rosato
Bill Lamastro
Tom Ambrosio
Melissa Carlson
Dorothea Matthaeus
Stefan Raspl

SUSE
Mike Friesenegger

Special thanks to the authors of the first edition:

Bill White, Sergio Chang Mariselli, David Borges de Sousa, Eduardo Simoes Franco, Pablo
Paniagua, Richard Ruppel and Richard Young.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:
xii Virtualization Cookbook for IBM Z Volume 5: KVM

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xiii

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xiv Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 1. Understanding the Kernel-based
Virtual Machine on IBM Z

This chapter introduces the Kernel-based Virtual Machine (KVM) concepts and the key
capabilities of IBM Z that KVM can use.

This chapter includes the following topics:

� 1.1, “Kernel-based Virtual Machine on IBM Z” on page 2
� 1.2, “KVM working on IBM Z” on page 9
� 1.3, “Managing and monitoring KVM on IBM Z” on page 10
� 1.4, “Securing KVM on IBM Z” on page 16
� 1.5, “Availability with KVM on IBM Z” on page 18
� 1.6, “KVM on IBM Z backup and recovery” on page 19

1

Terminology: The terms guest, virtual server, and virtual machine (VM) are
interchangeable. These terms are used throughout this book, depending on the
component that is described.
© Copyright IBM Corp. 2022. All rights reserved. 1

1.1 Kernel-based Virtual Machine on IBM Z

Virtualization allows businesses to address scale and performance demands while providing
better use of compute resources. Businesses also came to rely on open source options to
give standardized, cost-effective virtualization solutions.

The KVM is the open source virtualization option that is built into Linux distributions, such as
Red Hat Enterprise Linux Server, SUSE Linux Enterprise Server, and Ubuntu, and supported
on IBM Z. KVM running on a Linux operating system image1 acts as a hypervisor, offering the
ability to run many VMs or guests under a single host machine.

KVM includes the various operating system components that are needed to run guests, such
as a memory manager, a process scheduler, I/O capabilities, device drivers, a network stack,
and a security manager.

As a hypervisor, KVM can share and manage memory, CPUs, and I/O (storage and networks)
between the VMs that are running on the host operating system (hypervisor).
Over-committing of shared memory and CPU resources is possible to enable greater
scalability.

Also, KVM includes live guest migration (LGM), which is the ability to move a running VM
between hosts with minimal effect. The ability to dynamically add and remove CPU, memory,
and virtual I/O devices also exist. These functions fit well with the overall high availability and
resiliency capabilities of IBM Z.

From a Linux administrator perspective, KVM provides a standard set of Linux tools and
interfaces, which feature a common user experience across various hardware platforms. This
ability makes managing the IBM Z similar to any other compute resource (hardware platform).

Also, the use of standard open source interfaces provides the key to the integration of Linux
on IBM Z, which helps optimize modern applications and accommodate scale-out clusters
and scalable clouds. This use of standard open source interfaces includes access to a wide
range of software packages that provide the suitable tools for building, testing, and deploying
applications and services.

In addition to the common user experience, KVM can use the exceptional capabilities and
qualities of service of the IBM Z platform in the areas of security and data protection.

1.1.1 Why on IBM Z

Linux on Mainframe environment dramatically reduces the IBM Z specific and expensive skills
and permits Linux environments to gain all benefits of this platform, such as vertical
scalability, resiliency, security, and interoperability.

For more than two decades, Linux workloads were supported on IBM Z. Over those years,
IBM Z platforms continuously improved and enhanced performance, security, resiliency, and
virtualization at all levels, from the hardware, through the firmware, to the software stack.

IBM z13 and higher offer large cache sizes, along with the Simultaneous Multi-Threading
(SMT2) and Single Instruction Multiple Data (SIMD) instruction set. These features enable
more efficient processing of large volumes of data while providing high-performance
transaction processing and more analytics capabilities.
1 The Linux operating system is installed in a logical partition (LPAR) that is running on an IBM Z / IBM LinuxONE

Central Processing Complex (CPC).
2 SMT available on z13 and newer IBM Z generations.
2 Virtualization Cookbook for IBM Z Volume 5: KVM

Also, superior I/O throughput is achieved with high-performance Fibre Channel connections.
High-speed network capabilities provide exceptional performance with various options.
External network connectivity is possible by using OSA-Express, and RoCE Express features
as regular TCP/IP devices. Low latency communication also is possible with
memory-to-memory options, such as HiperSockets or Shared Memory Communication
(SMC) through Remote Direct Memory Access over Converged Ethernet (RoCE).

Security was always built into the IBM z/Architecture. In addition to high-performance,
specialized encryption facilities on each processor chip by using Central Processor Assist
Crypto Function (CPACF), separate tamper-resistant Crypto Express features can also be
used for greater protection of encryption keys and sparing CPU cycles.

Virtualization and IBM Z capabilities help you meet the demanding security, availability, and
scalability requirements of today’s workloads. Along with the large number of logical partitions
and VMs, IBM Z goes one step further, optimizing throughput with the use of Simultaneous
Multithreading (SMT). This optimization allows more than one thread to run at the same time
on the same core. SMT is supported by the Integrate Facility for Linux (IFL) processors on
IBM Z that Linux and KVM use.

The IBM Z (IBM z15) included a new feature that the KVM hypervisor can use to bring an
even higher level of protection and isolation to VM guests. This feature is known as IBM
Secure Execution for Linux®. It provides the ability to protect a KVM guest’s memory, boot
image, and state information from the KVM hypervisor and other guests that are sharing this
KVM host. This capability enables you to populate large KVM hosts with different guests from
different departments or clients, which allows a more robust multi-tenant environment that
helps reduce costs and increase resource use.

To improve performance and reduce CPU consumption, IBM z14 introduced the IBM
Integrated Accelerator for zEnterprise® Data Compression (zEDC). This hardware feature
accelerates the data compression process in the Linux machine and consequently reduces
the cost of storing, processing, and transporting data.

IBM Z is known for its reliability, availability, and serviceability (RAS) capabilities. RAS is built
into the architecture’s hardware and software stacks, where the mean time between failures is
measured in decades, making the availability of 99.999% possible.

The Linux operating system that is running in an IBM Z platform can consolidate hundreds of
scaled-out distributed servers onto one machine. Because of IBM Z hardware architecture, it
is possible to run thousands of VMs within a single system, which enables achieving some
peaks of 100% system utilization.

With its extended hardware capabilities, IBM Z can handle 1 million Docker containers without
slowing down. When Node.js and MongoDB are used, it can handle over 30 billion web
events.

The IBM Z hardware is prepared to scale up and scale out, which fits the needs of the
business and optimizes the infrastructure costs. It has a compelling total cost of ownership
(TCO) and total cost of acquisition (TCA) metrics that show considerable cost savings over
the x86 at comparable workloads. For more information, see this web page.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 3

https://www.ibm.com/it-infrastructure/services/it-economics

Linux running on IBM Z reduces costs in the following ways:

� Reduced licensing fees:

Databases, operating systems, application servers, and management software in a
current distributed server farm can be licensed cost-effectively by using the powerful IBM
Z Integrated Facility for Linux (IFL). Because licensing fees are charged by core (similar to
the distributed environment), the cost savings arise because IBM Z hardware can use
processor time more efficiently than x86, and do the same amount of work on fewer cores.

� Reduced risk of downtime

The IBM Z and LinuxONE hardware merges the reliability, availability, and serviceability
(RAS) characteristics from the previous performance-optimized servers and provides
advanced features, such as the following examples:

– IBM Z servers operate with two sets of redundant power supplies. Each set of the
power supplies has its individual power cords or pair of power cords.

– Processor and memory PU refresh, RAIM memory, and cache symbol ECC provide a
robust computing platform.

– PU sparing, array macro sparing, and micro-array masking integrated sparing allow
error detection, isolation, and reassignment of the faulty component without affecting
the system.

– Dynamic oscillator switch-hover capability allows a backup oscillator to transparently
detect a failure, switch-over and then, continue to provide the clock signal to the
system.

– The wide use of redundancy in the power, cooling, and service network. A “power
redundancy test” is provided so you can verify that the server is power redundant.

� Save energy and be green3

It can consolidate hundreds or thousands of servers in a single box. An IBM z15 T01
single system performance enables reduced overall system power consumption by 50%
versus the equivalent 86 configuration. An IBM z15 single frame system requires 75% less
floor space than compared x86 that is running the same workloads and throughput.

� Save labor costs

The complexity of maintenance of the environment is decreased because many servers
can be virtualized in a single box.

� Optimize the storage and save storage costs

The IBM Integrated Accelerator for zEnterprise® Data Compression (zEDC) that is
available on Linux on IBM z15™ can enable high-speed compression, which saves the
amount of storage use, and reduces the CPU consumption and elapsed time.

Today, VMs are the core of cloud infrastructure as a service (Yeas). The new version of IBM Z
continuously brings improvements, including several new features, which support the hybrid
cloud infrastructure in a single box through high scalability, resilience, and security to host
several types of workloads while maintaining the high availability and high performance of the
entire IT environment.

For more information about all IBM Z platform capabilities, see this IBM Z web page.

3 Refer to this IBM web page.
4 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/it-infrastructure/z
https://www.ibm.com/downloads/cas/G3QK9D8V
https://www.ibm.com/downloads/cas/G3QK9D8V

1.1.2 KVM as a hypervisor on IBM Z

Hypervisors can be implemented in hardware or software and the IBM Z platform allows for
both. All IBM Z platforms are delivered with the hardware hypervisor, which is known as
Processor Resource/Systems Manager (PR/SM). PR/SM is implemented in the firmware and
can virtualize and share system resources without extra software.

PR/SM also enables and requires defining and managing subsets of resources into logical
partitions (LPARs). LPAR definitions include the number of logical processor units, the
amount of memory, and the shared or dedicated I/O resources for storage and networks. The
LPAR definitions can be changed dynamically to add or remove resources through the
Hardware Management Console (HMC). A high-level overview of KVM on IBM Z is shown in
Figure 1-1.

Figure 1-1 KVM running in IBM Z LPARs

1.1.3 KVM on IBM Z running in a private cloud

One of the strengths of KVM is the flexibility to adapt to multiple platforms. It has native
hardware virtualization, allows open patterns, and meets all cloud requirements.

Combined with the huge hardware capacity that is available in the IBM Z, companies
worldwide might not use only on-premises enterprise infrastructure. They still evolve to a
modern private cloud model that is compliant with most cloud requirements with more robust
security and reliability.

The Linux/KVM ecosystem is the entry portal of many modern applications in the cloud. Since
the first version of IBM Z, the hardware resources virtualization (which is the core of cloud
computing) was present natively on this platform.

KVM running in an IBM Z LPAR integrates seamlessly with PR/SM. KVM views the virtualized
CPUs, memory, and I/O devices that are managed by PR/SM as real resources. VMs that
request processing time is first handled by KVM and then passed to PR/SM for dispatching of
the work to the physical CPU.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 5

Storage connectivity
Two storage types (Small Computer System Interface [SCSI] and IBM Extended Count Key
Data [ECKD]), are supported by KVM and Linux on IBM Z. Both types of storage are
connected through IBM Fibre Connection (FICON®) features, which follow Fibre Channel
(FC) technology standards. Internal NVMe storage also is supported on the IBM LinuxONE.

The FICON features support the following protocols:

� FICON

An enhanced protocol over FC that supports ECKD devices, including disks, tapes, and
printers.

� Fibre Channel Protocol (FCP)

A standard protocol that supports SCSI devices (disk and tape).

Linux and KVM on IBM Z also supports other storage-related protocols, such as the following
examples:

� Internet Small Computer Systems Interface (iSCSI)

This protocol allows client initiators to send SCSI commands to SCSI storage device
targets on remote servers over TCP/IP.

� Spectrum Scale - GPFS

GPFS is a cluster file system. It provides concurrent access to a single file system or set of
file systems from multiple nodes. These nodes can all be SAN attached or a mix of SAN
and network attached, which enables high-performance access to this common set of data
to support a scale-out solution or provide a high availability platform.

� Network File System (NFS) client

An NFS allows remote hosts to mount file systems over a network and interact with those
file systems as though they are mounted locally.

Network connectivity
Network connectivity covers the interfaces between the IBM Z platform and external networks
with Open Systems Adapter-Express (OSA-Express) and RoCE Express features and
specialized internal interfaces for intra-system communication through IBM HiperSockets and
Internal Shared Memory (ISM).

OSA-Express features
OSA-Express features provide industry-standard Ethernet local area network (LAN)
connectivity and communication in a networking infrastructure. OSA-Express features use the
IBM Z I/O architecture, called queued direct input/output (QDIO). QDIO is a highly efficient
data transfer mechanism that uses system memory queues and a signaling protocol to
exchange data directly between the OSA-Express microprocessor in the feature and the
network stack that is running in the operating system.

To improve the network availability and bandwidth on IBM Z that uses a pair of physical
OSA-Express ports, you can use the Link Aggregation Control Protocol (LACP), bonding
mode 4. This LACP combines multiple network interfaces into a single logical interface that is
called a bond interface.

The network interfaces that are aggregated together are called slave devices, and the bonded
logical interface is called the master device. By using channel bonding, the multiple slave
devices act as though only one master device works with more bandwidth and network
redundancy.
6 Virtualization Cookbook for IBM Z Volume 5: KVM

Adding cards can result in increased throughput, particularly when the OSA card is being fully
used. Measurement results show an increase in throughput from 6% to 15% for a
low-utilization OSA card to an increase in throughput from 84% to 100% for a high-utilization
OSA card and reductions in CPU time ranging from 0% to 22%.

Other forms of bonding exist, such as Transmit Load Balancing (TLB), bonding mode 5,
where the current slave receives incoming traffic. If the receiving slave fails, another slave
takes over the MAC address of the failed slave, and Adaptive Load Balancing (ALB), bonding
mode 6, where, unlike LACP, ALB does not require any specific switch configuration.

The receiving packets are load balanced through ARP negotiation. TLB and ALB can achieve
similar bandwidth without the LACP restrictions. For more information, see this LIBM
Documentation web page.

Remote Direct Memory Access protocol over Converged Ethernet
In addition to the OSA-Express features, IBM Z offers Remote Direct Memory Access
protocol over Converged Ethernet (RoCE) features. The RoCE supports the Shared Memory
Communication-Remote (SMC-Rv2) protocol, which allows operating systems to
communicate through shared memory across platforms. SMC-Rv2 offers high performance,
low latency network options.

As with OSA-Express, the RoCE-Express features provide 25 GbE and 10 GbE options.
RoCE also can be used as a normal TCP/IP device, not just for RDMA and SMC-R. The
difference is that OSA 10/25 GbE has one port per feature, while RoCE cards have two ports
per feature.

Internal Shared Memory
Internal Shared Memory (ISM) is a virtual PCI network adapter that enables direct access to
shared virtual memory, which provides a highly optimized network interconnect for IBM Z
platform intra-communications. Shared Memory Communications-Direct Memory Access
(SMC-D) uses ISM.

SMC-D v2 optimizes operating systems communications in a way that is not apparent to
socket applications. It also reduces the CPU cost of TCP/IP processing in the data path,
which enables highly efficient and application-transparent communications.

SMC-D v2 requires no extra physical resources (such as RoCE Express features, PCIe
bandwidth, ports, I/O slots, network resources, or Ethernet switches). SMC-Dv2 does not
communicate through HiperSockets OSA. Instead, SMC-D v2 performs an initial handshake
over these communication paths and then, no longer uses them. Also, this handshake can
occur over a RoCE TCP/IP connection.

HiperSockets
HiperSockets is another memory-to-memory communication option that is available between
LPARs within the IBM Z platform. HiperSockets is an integrated firmware function that uses
an internal QDIO (iQDIO) architecture to provide an efficient and secure internal network.

Because it is an internal network, HiperSockets avoids the cost of the physical network
infrastructure. The Converged HiperSockets capability combines the existing
high-performance attributes of HiperSocket for intra-CPC communications with your external
LAN to provide a single IP network administrative model.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 7

https://www.ibm.com/docs/en/linux-on-systems?topic=availability-linux-channel-bonding-best-practices-recommendations
https://www.ibm.com/docs/en/linux-on-systems?topic=availability-linux-channel-bonding-best-practices-recommendations

From a KVM perspective, these network interfaces, are available to the hosts, guests, or both.
ISM and SMC-D are not available to KVM guests; only to hosts. The network interfaces can
also communicate through Open Virtual Switch, MacVTap, or by using PCI Pass-through.

For more information about options and considerations, see Chapter 2, “Planning for the
Kernel-based Virtual Machine host and guest” on page 21.

Cryptography
Extensive use of encryption is one of the most effective ways to help reduce potential risks
and financial losses that are caused by data breaches. Encrypting data can also help meet
the needs of complex compliance mandates and security best practices.

With IBM Z, the term pervasive encryption is used to describe the notion that all data must be
encrypted, not only what is considered to be important. Pervasive encryption is enabled
through tight platform integration that spans the entire IBM Z stack (hardware, software,
operating systems, middleware, and even tooling).

IBM Z provides the following unique capabilities that help achieve pervasive encryption in a
cost-effective way:

� On-chip crypto acceleration is performed with CP Assist for Cryptographic Function
(CPACF). This hardware acceleration is provided on every processor core. It is well suited
to high-speed, bulk encryption with lower latency and no CPU overhead. CPACF is
included as part of the Z base system at no extra cost.

� The IBM Z platform offers a Hardware Security Module (HSM) with tamper-responding
cryptographic hardware in the Crypto Express feature. The HSM protects the encryption
keys. CPACF can encrypt and decrypt data by using protected keys. Protected keys are
created as part of a process that includes a master key that is stored in the HSM.

The IBM Z platform uses the concept of a cryptographic domain to virtualize the physical
coprocessor of the Crypto Express feature. Multiple LPARs and different operating systems
can share a Crypto Express coprocessor.

IBM Z firmware enforces domain usage. The Crypto Express coprocessor manages the
assignment of master keys to cryptographic domains. Cryptographic key material for one
domain is not usable by another domain with a distinct master key. The Crypto Express7S
meets the Federal Information Processing Standard (FIPS) 140-2 at Level 4 for cryptographic
modules.

KVM supports these encryption options through standard interfaces, such as dm-crypt, which
provides a transparent encryption of block devices. A passphrase or a key file is used with
CPACF or by using pass-through of the Crypto Express adapter domains to the KVM guests
to encrypt and decrypt the volume.

For more information about pervasive encryption for Linux on IBM Z, see Getting Started with
Linux on Z Encryption for Data At-Rest, SG24-8436.

Hardware Management Console
The Hardware Management Console (HMC) runs a set of management applications that
interface with the IBM Z hardware by using a Support Element (SE) console, which acts as
the single point of control. The HMC is a closed system; that is, no other applications can be
installed on it.
8 Virtualization Cookbook for IBM Z Volume 5: KVM

http://www.redbooks.ibm.com/abstracts/sg248436.html?Open

The HMC is used to set up, manage, monitor, and operate one or more IBM Z platforms. It
manages and provides support utilities for the hardware and its LPARs. The HMC also is used
to add and remove processors, memory, network adapters, and storage groups to LPARs.

The HMC is used to install Linux in an LPAR on the Z platform. That Linux image can then be
enabled as a KVM hypervisor.

For more information about the HMC, see IBM Support’s Hardware Management Console
Operations Guide.

1.2 KVM working on IBM Z

KVM technology is a virtualization technology that is supported on many platforms. It turns
the Linux kernel into an enterprise-class hypervisor by extending the hardware virtualization
support that is built into the IBM Z platform. KVM can perform various functions, such as
scheduling tasks, dispatching CPUs, managing memory, and interacting with I/O resources
(storage and network) through PR/SM.

KVM on IBM Z creates VMs as Linux processes that run images by using a platform-adapted
version of another open source package, which is known as a quick emulator (QEMU).
QEMU provides I/O device emulation and device virtualization inside the VM.

The KVM kernel module provides the core for the virtualized infrastructure. It can schedule
VMs on real CPUs and manage their access to real memory through PR/SM. QEMU runs in a
user space and implements VMs BY using KVM module functions.

QEMU virtualizes real storage and network resources for a VM, which in turn uses virtio
drivers to access these virtualized resources, as shown in Figure 1-2.

Figure 1-2 Open-source virtualization with KVM on IBM Z

QEMU also provides management and monitoring functions for VMs that are running on
KVM. For more information, see the QEMU.org wiki.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 9

http://www-01.ibm.com/support/docview.wss?uid=isg23e9d1b6de8c163f985258195006801cc
https://www.ibm.com/support/pages/hardware-management-console-operations-guide-version-2150
https://www.ibm.com/support/pages/hardware-management-console-operations-guide-version-2150
http://wiki.qemu.org

The network interface in Linux on IBM Z is a virtual Ethernet interface. The interface name is
eth. Multiple Ethernet interfaces can be defined to Linux and are handled by the virtio_net
device driver module.

Other network virtualization functions are provided by way of the following components:

� Open vSwitch (OVS), which is open source software that allows for network
communication between VMs and the external networks that are hosted by the KVM
hypervisor (OVS is a type of bridge). Non-OVS bridges are another networking option that
is available. The KVM default network is a bridge and BONDs and VLAN subinterfaces are
added constructs. For more information, see this website.

� MacVTap, which is a device driver that is used to simplify virtualized bridged networks. It is
based on the mcvlan device driver. MacVTap enables direct connects between a KVM
host, guests, and network interfaces. It also supports Virtual Ethernet Port Aggregator
(VEPA).

For more information, see this web page.

In Linux on IBM Z, virtual block devices are used rather than real devices, such as ECKD or
SCSI devices. The virtual block devices are handled by the virtio_blk (or virtio_SCSI) device
driver module. New capabilities include pass-thru block storage.

For more information about KVM on IBM Z, see IBM Documentation.

1.3 Managing and monitoring KVM on IBM Z

Effective management of a hypervisor environment requires a set of tools that address
administration, monitoring, deployment, and day-to-day operations. KVM includes a standard
set of tools as part of the package. These tools include drivers, APIs, system emulation
support, and virtualization management.

Figure 1-3 shows a high-level view of various interfaces and tools that are available for KVM
and guest VMs.

Figure 1-3 Management and monitoring interfaces
10 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en
http://virt.kernelnewbies.org/MacVTap
http://www.openvswitch.org
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en/linux-on-systems?topic=virtualization-kvm

https://www.ibm.com/docs/en/linux-on-systems?topic=virtualization-kvm

1.3.1 Libvirt

Libvirt, the virtualization API, features a common layer of abstraction and control for VMs that
are deployed within many different hypervisors, including KVM. The main components of
libvirt are the control daemon, a stable C language API, a corresponding set of Python
language bindings, and a simple shell environment.

As of this writing, all KVM management tools (including Virt-install, virsh, and OpenStack) use
libvirt as the underlying VM control mechanism. Libvirt stores information, such as the disk
image and networking configuration, in an .xml file. This file is independent of the hypervisor
in use.

For more information about libvirt, see the libvirt website.

1.3.2 OpenStack

OpenStack is an open source framework that can manage a pool of virtualized compute,
storage, and network resources through libvirt and present them to the user as a service in a
secure and organized way.

OpenStack administrators can use one of the following options to manage their infrastructure:

� Command-line interface (CLI)
� Dashboard
� REST APIs

OpenStack also provides a self-service user interface that enables users to manage their own
VMs, request new VMs, manage permissions, and so on.

An OpenStack environment is composed of the following node classes (see Figure 1-3 on
page 10):

� The controller node manages the virtual resources of the compute nodes in the cloud
environment. Every cloud features one controller node, and each controller node can
manage more than one cloud.

� The compute node represents the nodes that can be managed by the controller

A node can have both the controller and compute services.

For more information about OpenStack, see the official OpenStack Documentation.

1.3.3 Virt-install

Virt-install is a command-line tool for creating KVM guests and uses the libvirt hypervisor
management library. You can create a VM and start an installation from the command line. A
VM guest can be configured to use one or more virtual disks, network interfaces, and other
devices.

Virt-install fetches the minimal files that are necessary to start the installation process, which
allows the VM guest to fetch the rest of the operating system distribution, as needed.
Virt-install also can run unattended for automated guest installations.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 11

https://docs.openstack.org/yoga/
http://libvirt.org
http://docs.openstack.org/

1.3.4 Virsh

Virsh provides an easy-to-use console shell interface to the libvirt library for controlling guest
instances. Each of the commands that are available in virsh can be used from the virsh
environment or called from a standard Linux console. Consider the following points:

� To start a virsh environment, run the virsh shell program with no options. This process
opens a new console-like environment on which you can run any of the built-in commands
for virsh.

� To use the virsh commands from a Linux terminal, run virsh followed by the command
name and command options.

For more information about virsh, see Chapter 7, “High Availability for IBM General Parallel
File System” on page 211.

1.3.5 Virt-manager

The virt-manager application is a desktop user interface for managing VMs through libvirt. It
primarily targets KVM VMs, but also manages Xen and LXC (linux containers). It presents a
summary view of running domains, and their live performance and resource utilization
statistics.

Wizards enable the creation of domains, and the configuration and adjustment of a domain’s
resource allocation and virtual hardware. An embedded VNC and SPICE client viewer
presents a full graphical console to the guest domain.

The following Virt-Manager supporting command-line tools are available:

� virt-install: Provides an easy way to provision operating systems into VMs.

� virt-clone: Used cloning inactive guests. It copies the disk images, and defines a
configuration with new name, UUID, and MAC address that points to the copied disks.

� virt-xml: Used for easily editing libvirt domain XML by using virt-installation command
line options.

� virt-bootstrap: Provides an easy way to set up the root file system for libvirt-based
containers.
12 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 1-4 shows the virsh interface with libvirt for virtual server management.

Figure 1-4 Libvirt interface with virsh

1.3.6 Cockpit

Cockpit is an open source project that provides a web browser interface to manage many
system functions, including the KVM hosts and guests management. It simplifies the
management of large environments and collects data through standard APIs and
components, such as QEMU and Libvirt (see Figure 1-5 on page 14).

Cockpit is one of many possible tools for managing and monitoring VM hosts and guests. The
cockpit is an excellent alternative to commercial software. It can be customized according to
the business needs and evolves with the new versions.

For more information about cockpit features, see 6.1.3, “Cockpit” on page 192.

virsh

libvirt

QEMU

U
s
e
r

S
p
a
c
e

Linux - Kernel

VM
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 13

Figure 1-5 Cockpit VM Module

1.3.7 IBM Cloud Infrastructure Center

The IBM Cloud Infrastructure Center is an Infrastructure as a Service (IaaS) solution that
provides an industry-standard user experience for cloud infrastructure management. It
provides KVM-based virtual infrastructure management and allows for the automation of
services.

The IBM Cloud Infrastructure Center enables the integration between different areas of the
enterprise, which simplifies the management of the virtual environment. As a result, costs in
the IT infrastructure are optimized.

Also, it provides the capability to integrate IBM Z® and IBM LinuxONE into a hybrid cloud
model across the enterprise and a foundation for a scalable infrastructure cloud management
solution. ICC includes the following key features:

� Industry-standard user experience
� Efficient infrastructure management and provisioning
� Image provisioning for fast deployments
� Self-service portal for users
� Integration by using OpenStack compatible APIs
� Accelerate cloud deployments

For more information about IBM Cloud Infrastructure Center capabilities, see Chapter 9, “IBM
Cloud Infrastructure Center on Kernel-based Virtual Machines” on page 321.
14 Virtualization Cookbook for IBM Z Volume 5: KVM

1.3.8 Platform management

Various levels of management exist with KVM on IBM Z, and the function is built into different
levels. The management functions include the following examples:

� Unattended installation of the KVM hypervisor simplifies administration. The mechanism
for automation varies depending on the Linux distribution:

– Kickstart with Red Hat
– AutoYast with SUSE
– Preseed with Ubuntu

� Hypervisor management GUI tools

Open-source management tools that provide an intuitive graphical user interface (GUI) for
the following host configuration management tasks:

– Networking configuration for RoCE and OSA-based NICs
– Storage configuration for ECKD, SCSI devices, Network based storage and NVMe
– System basic information and statistics
– Debug reports
– Hypervisor shutdown/restart

1.3.9 Managing the KVM guest lifecycle

Several tools are available to manage the various lifecycle functions of the VM guests,
including the following examples:

� IBM Cloud Infrastructure Center
� VM Manager
� oVirt
� OpenStack
� Cockpit
� virsh CLI
� QEMU guest agent

Some of the tasks that are handled by these tools include start and shutdown, cloning a
guest, removing a guest, taking snapshots (point-in-time copies) of a guest, saving and
restoring, and suspending and resuming a guest.

1.3.10 KVM host and guest monitoring

Monitoring availability, utilization, and performance are an important part of the daily
operation of the virtualized environment. Open source and commercial solutions use
standard tools and interfaces to achieve this task.

Tools, such as Nagios and Icinga, can perform various checks, while analytic tools, such as
Elastic Search, Logstash, Kibana (ELK), Graphite, Grafana, Prometheus, and Collectd,
provide visualization of monitoring and performance data. Many other tools (such as systat,
virt-top, and sar) are available for monitoring, most of which can monitor the KVM host and
the guest.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 15

1.4 Securing KVM on IBM Z

IBM Z often is described as being a highly secure platform. Security is built into the foundation
of the IBM Z platform, but it still requires careful planning and configuration.

Extra effort is required to protect your business data by planning and enabling the system's
features. The necessity of this effort is especially true in a virtualized environment, such as
KVM on IBM Z where thousands of guests and their data can be at risk, and poor security
practices might be easily replicated throughout an environment.

1.4.1 Access control

Security through access control is most often thought of in Linux as the ability to control read,
write, and run for owners, groups, and everyone else. Also, access control lists can be used
with the Linux commands: Set File Access Control Lists (setfacl) and Get File Access
Control Lists (getfacl).

Red Hat Identity Manager (IdM) provides an integrated identity management service for
Linux4. At its core, IdM combines LDAP, Kerberos, DNS, and PKI with a rich management
framework. Frequently, IdM is described as “Active Directory for Linux”.

For more information, see this Red Hat web page.

Other levels of security are possible with various Linux kernel security modules and
components, such as AppArmor, Security-Enhanced Linux (SELinux), Polkit (PolicyKit), and
Linux Pluggable Authentication Modules (PAMs). These extra levels of security provide for the
use of profiles and policies that can control access and usage for different resources.

1.4.2 IBM Secure Execution on IBM z15 and newer IBM Z systems

IBM Secure Execution for Linux is a technology that was introduced with IBM z15 and
LinuxONE III. It was created to protect the data of workloads that run in a KVM guest from
being inspected or modified by the host environment.

Specifically, no hardware administrator, KVM code, or KVM administrator can access the data
in a guest that was started as an IBM Secure Execution guest.

Therefore, IBM Secure Execution for Linux continues and expands well-known security
features of IBM Z and LinuxONE. It supplements pervasive encryption, which protects data at
rest and data in-flight and protects data in-use. With IBM Secure Execution for Linux, it is
possible to securely deploy workloads in the cloud. The data of the workload can be protected
everywhere, as shown in the following examples:

� In flight with secure network protocols, such as TLS, SSH, or IPsec. At rest, with volume
encryption (such as dm-crypt) or file system encryption (such as with IBM Spectrum
Scale).

� In use in the memory of a running guest with IBM Secure Execution protection when a
KVM guest runs in a cloud, whether it is in-house or third-party, security risks to the
workload include:

– Intruders who might gain root privileges because of some error in the security
administration of the hypervisor.

4 IdM provides an integrated identity management for various platforms, including MAC and Windows.
16 Virtualization Cookbook for IBM Z Volume 5: KVM

https://developers.redhat.com/blog/2016/04/29/red-hat-identity-manager-part-1-overview-and-getting-started#:~:text=Red%20Hat%20Identity%20Manager%20(IdM,%22Active%20Directory%20for%20Linux%22

– Malicious hypervisor code that might be introduced by uses, including zero-day users
or intruders.

– Malicious VMs that, hypothetically, can escape the control of the hypervisor, and gain
hypervisor privileges.

– Intruders, malicious hypervisors, or malicious VMs are risks for the cloud provider and
the cloud customer.

To provide a secure hosting environment, a cloud provider might log every key stroke and
conduct expensive audits to log any management action and deter any malicious actor.

With IBM Secure Execution, data is protected during processing. As a workload owner, your
data in your KVM guest that is deployed in a cloud (which runs on IBM Z servers with IBM
Secure Execution) are as safe as though you run it in your own data center. In fact, it is safer.
It is also protected from insider attacks. Only the workload owner can access the data.

Benefits of IBM Secure Execution
IBM Secure Execution provides the following benefits:

� Instead of relying on deterrence by using extensive audit tracks, IBM Secure Execution
provides technology-enforced security rather than process or audit-based security.

� As a cloud provider that uses IBM Secure Execution, you can attract sensitive workloads
that, used to be restricted to the workload owner’s system.

� As a secure workload owner, you know that your workload is run securely, even outside
your data center.

� As a secure workload owner, you can choose where to run your workload, independently
of the required security level.

1.4.3 Authentication solutions

Solutions for authentication range from basic, built-in solutions to more complex open source
projects to commercial solutions.

At the most basic level, /etc/passwd can be used for authentication, but this solution does not
scale well in a complex, multi-server environment.

Lightweight Directory Access Protocol (LDAP) is another option, which provides more
capabilities and better scalability. However, administration of LDAP can be a challenge.

The Open Source project FreeIPA provides centralized authentication, authorization, and
account information by storing data about users, groups, hosts, and other objects that are
necessary to manage the security aspects of a network of computers. FreeIPA is built on top
of well-known, open-source components and standard protocols with a strong focus on ease
of management and automation of installation and configuration tasks.

Commercial authentication solution, such as Red Hat IdM (see 1.4.1, “Access control” on
page 16) also are available. In some cases, these solutions can provide the added value of
integrating security policies across heterogeneous platforms.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 17

1.4.4 Multi-factor authentication

Increased security requirements and regulations are leading businesses to move toward
multi-factor authentication (MFA) solutions. These solutions are based on the One Time
Password (OTP) standard, which includes HOTP and TOTP.

HOTP solutions use Hash-based Message Authentication Code (HMAC) OTP to generate a
password and is valid based on an event. TOTP solutions use Time-based OTP, which
provides a password that continually changes based on the time since it was generated. In
both cases, the passwords are valid only for a short time.

Open Source and commercial options are available for implementing MFA. Some examples
are Red Hat IdM and Google Authenticator.

1.4.5 Audit

An important aspect of security is the ability to audit the system activity. The Linux Audit
package provides auditing capabilities, including providing sample policies. Commercial
solutions also are available, such as IBM QRadar, which adds value through the log data
analysis.

1.5 Availability with KVM on IBM Z

Availability on the IBM Z platform begins at the lowest level with the reliability of the hardware.
IBM Z platforms feature a mean time between failure (MTBF) that is measured in decades,
with redundancy that is built-in, which makes services and application availability 99.999%
possible. As business requirements demand higher levels of availability, it is important to plan
for and choose options that support these requirements.

Looking outside the KVM hypervisor, decisions (such as configuring more than one network
and storage interface) must be considered to avoid a single point of failure. Planning ahead to
support disk subsystem changes can help avoid downtime.

Running KVM on IBM Z adds to the value of the platform. For planned events, such as
maintenance, KVM provides for live guest migration that allows for a VM guest to be moved
between KVM hosts while workloads are running. This function is built into KVM, and the
correct configuration is required to avoid issues.

For unplanned events, relying on the resiliency capabilities of the middleware or application is
a good approach. The ability to recover from a failure is based on the capabilities of each
individual application, middleware, and program to determine the following information:

� How a failure can be handled and how a failure can be avoided when a failure occurs.
� The severity of a failure to its operation and whether processing must be stopped.
� What data is required to expedite failure diagnosis.

Also, workloads that are running in a VM guest can have their own high availability solution.
Middleware products from IBM, such as Db2, IBM MQ, and IBM WebSphere all provide their
own recovery and clustering technology to support high availability.

Commercial and open source solutions also are available. For example, IBM System
Automation can automate the restart of a failed guest or movement of workload to another
guest if a failure occurs.
18 Virtualization Cookbook for IBM Z Volume 5: KVM

https://developers.redhat.com/blog/2016/04/29/red-hat-identity-manager-part-1-overview-and-getting-started#:~:text=Red%20Hat%20Identity%20Manager%20(IdM,%22Active%20Directory%20for%20Linux%22.
https://www.redhat.com/sysadmin/mfa-linux
https://developers.redhat.com/blog/2016/04/29/red-hat-identity-manager-part-1-overview-and-getting-started#:~:text=Red%20Hat%20Identity%20Manager%20(IdM,%22Active%20Directory%20for%20Linux%22.

The Linux-HA open source project provides clustering solutions that are based on standard
Linux packages (that is, Corosync and pacemaker) and cluster file system solutions (such as
IBM Spectrum Scale) to handle unplanned events.

For more information about considerations for planned and unplanned outages, see
Chapter 2, “Planning for the Kernel-based Virtual Machine host and guest” on page 21.

1.6 KVM on IBM Z backup and recovery

Backup and recovery of KVM hosts and guests are important to the overall operations of the
environment. They must be planned for and more importantly, tested. File backups and
volume backups are conducted at a high level.

This process includes backing up the various KVM hypervisor components, such as the
operating system disk, storage that is used for host image files, system logs, and key
configuration files. At the VM guest level, the options can vary based on the workload that is
running in the guest. For example, a database that is running in the guest might backup and
recovery utilities that operate independent of the guest.

At the most basic level, full volume backup solutions, such as IBM FlashCopy, are available
for IBM storage technology. IBM FlashCopy provides a point-in-time copy that works with
ECKD and SCSI devices. In this case, a disk is copied at the block level to another disk or
tape. Other commercial (that is, IBM Spectrum Protect TSM) and open source solutions (that
is, Amanda, Bacula, and rsync) are available, which provide for volume and file-level backup
and recovery.

For file system and databases backups, several open source and commercial options are
available. Choosing the best solution is part of the architecture study and depend on many
factors, including software features, team skills, and software licensing costs. As always, you
know the best backup solution for your environment.

Also, disk devices from other vendors provide disk-level backup options. The many options
must be considered during the planning phase for implementing KVM.

Backup and recovery can be included as part of a large disaster recovery strategy, which also
can consist of replicated disk options. Again, backup and recovery and disaster recovery are
key to any IT operation that reaches beyond a KVM on IBM Z discussion.

To support many characteristics that provide redundancy for Disaster Recovery and storage
backup, the IBM GDPS implements solution clustering technology for IBM Z, which includes
server and storage replication and automation5.

5 GDPS does not provide much value in the Linux space; it is primarily designed for z/OS. Storage replication in
Linux environments can often occur without GDPS.
Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z 19

IBM GDPS is a collection of system recovery offerings on the IBM Z platform, each of which
uses services, clustering technologies, and server and storage replication and automation.
This technology features the following benefits:

� Resiliency to support multiple disk replication architectures, high availability, and disaster
recovery at any distance from a single point of control in seconds.

� Flexibility to gain data consistency across Linux hosts and guests. GDPS also uses open
architecture and is application-independent.

� Automation of operational tasks for availability and recovery with scripts.

� Monitoring of your environment from a single point and in real time to detect any deviation
that might affect resiliency.

For more information about IBM GDPS, see IBM GDPS: An Introduction to Concepts and
Capabilities, SG24-6374.

For more information about backup and recovery and IBM GDPS in the KVM environment,
see Chapter 2, “Planning for the Kernel-based Virtual Machine host and guest” on page 21.
20 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.redbooks.ibm.com/abstracts/sg246374.html?Open

Chapter 2. Planning for the Kernel-based
Virtual Machine host and guest

When building an IT infrastructure with the highest quality of service, comprehensive planning
is critical to long-term success. Aspects that you might not consider when first deploying
hardware and software resources can have a significant effect on the IT infrastructure later
on.

For example, when you plan the deployment of Kernel-based Virtual Machine (KVM) hosts
and guests, anticipate adding and replacing resources as environments that typically evolve
over time. This planning might include migrating nondisruptively to a new storage server.

How you initially provision your storage can affect your ability to perform such a nondisruptive
migration.

Similarly, successful live guest relocation depends on device addressing and naming
conventions. If you configure device names and addresses without careful thought, that
process can translate to a different device in another KVM host, which can cause the guest
relocation to fail.

This chapter provides guidance and best practices for KVM hosts and guests, including
guidance for planning deployment, usage of hardware resources, and use of IBM Z
capabilities. Considerations for management and monitoring, back up and recovery,
availability, and security are also included.

This chapter includes the following topics:

� 2.1, “Basic requirements for KVM hosts and guests” on page 22
� 2.2, “Planning resources for KVM guests” on page 26
� 2.3, “Planning for management and monitoring” on page 37
� 2.4, “Planning for security” on page 40
� 2.5, “Planning for backup and recovery” on page 43

2

© Copyright IBM Corp. 2022. All rights reserved. 21

2.1 Basic requirements for KVM hosts and guests

Requirements are ultimately driven by business needs. These needs determine the
availability, scalability, and function essentials of your IT environment. Business requirements
also influence how the IBM Z platform, storage resources, network resources, and
connectivity are designed and configured to deliver the expected levels and quality of service.

2.1.1 Hardware requirements

KVM guest hardware requirements are the same as the KVM host. For more information
about these requirements, see the Linux on IBM Z Tested Platforms web page and your Linux
distributor’s installations documentation.

System capacity requirements are based on the size and number of guests that you plan to
host. These requirements include the prerequisites of the middleware and applications that
you chose to run in them. It is important to define the logical partition (LPAR), KVM host, and
KVM guests in a manner that allows you to dynamically add and remove resources as
needed.

Basic hardware requirements include at least one virtual CPU, enough processor memory to
install or start an image, enough disk storage to store at least the operating system and
optionally a network device. The KVM host might use general-purpose central processors
(CPs) or Integrated Facility for Linux (IFLs) processors.

A KVM guest includes the following minimum requirements:

� One or more virtual CPUs (an IFL or a CP)

� A total of 512 MB - 2 GB of memory (the Linux installer might require more than the
minimum)

� A total of 500 MB - 1 GB of storage per image (20 GB is more of an ideal starting point)

The storage disk typically is an image file on the KVM host or a block device that is defined to
the guest. Check with your storage vendor for support with IBM Z hardware. For more
information about IBM Storage, see the IBM Systems Storage Interoperation Center
(SSIC) web page.

No network interface is needed for installing a guest image. If network connectivity is required
for your environment, it can be achieved by using one of the following methods:

� The KVM “Default Network” that uses KVM host connectivity. This selection is the most
commonly used selection during installation.

� A RoCE Express feature that uses the SMC-R protocol. The connection is made by way of
PCI pass-through.

� An OSA-Express feature. Each interface (port) can be shared through an Open Virtual
Switch or MacVTap by using the virtio driver in the guest.

� A HiperSockets LAN. The virtual interface can be accessed by the guest by way of
MacVTap by using the virtio driver.

Note: Simultaneous multithreading (SMT) is available on IFLs only. When SMT is used,
remember that a virtual processor is a thread and not a full core CPU.
22 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www-03.ibm.com/systems/support/storage/ssic/interoperability.wss
https://www-03.ibm.com/systems/support/storage/ssic/interoperability.wss
https://www.ibm.com/it-infrastructure/z/os/linux-tested-platforms

2.1.2 Software requirements

A basic installation (or use) of Linux on IBM Z as a KVM guest does not include any special
requirements. What is included in the Linux distributions is fully ready to be virtualized.
Drivers, such as virtio, are included and automatically used at installation time.

The Linux on IBM Z Tested Platforms web page maintains information about vendor
certifications and hardware levels. It also provides more information about specific kernel
levels that are required for compatibility with new hardware. In addition to including the
certified levels for general operations, it includes support for cryptography.

Refer to your Linux distribution for more information about requirements that pertain to the
following installations of your guest Linux images:

� Red Hat
� SUSE
� Ubuntu

To add enhancements or add functions, packages might be available that must be added to
guests, including the following examples:

� OpenStack: In this environment, you want to be sure to have cloud-init installed in the
image that is to be deployed.

� QEMU guest agent: Adds interoperability between KVM hosts and guests. It allows the
KVM host to query and manage resources in the guest operating system. Use cases can
include taking offline a virtual CPU in a guest or freezing a guest file system for a
Snapshot.

� Monitoring agents: You might want to include agents, such as ITM, Prometheus, Collectd,
or Nagios, to gather usage and availability data. You might also want to ensure
performance data collection from tools, such as systat and sar, are in place.

� Management agents: Many tools use the KVM host libvirt interfaces to manage or operate
a guest. Tools, such as Virtualization Manager, use these interfaces. Other management
tools, such as CockPit, can be in the KVM host and KVM guest, each listening on their
own TCP port.

2.1.3 Availability requirements

Critical IT components must have available backup (redundant) capacity, power sources, and
connections across critical paths to storage, networks, and other systems, and multiple
instances of software.

However, redundancy alone does not necessarily provide higher availability. It is essential to
design and configure your IT infrastructure by using techniques technology that can use
redundancy and respond to failures with minimal effect on service availability.

Note: As of this writing, the Internal Shared Memory (ISM) interface that uses the SMC-D
protocol is not supported by KVM guests. However, ISM is supported in KVM hosts.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 23

https://www.ibm.com/it-infrastructure/z/os/linux-tested-platforms
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#planning-for-installation-on-ibm-z_preparing-for-installation-on-ibm-z
https://help.ubuntu.com/18.04/installation-guide/s390x/ch03s05.html
https://help.ubuntu.com/18.04/installation-guide/s390x/ch03s05.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#planning-for-installation-on-ibm-z_preparing-for-installation-on-ibm-z
https://www.suse.com/products/systemz/

For guest virtual machines (VMs) that require enhanced availability beyond the availability
that is provided by a single guest in a single KVM host, the following events should be
considered:

� Planned events: Live guest migration is an option to move a guest from a KVM host in one
partition to another KVM host on a different partition or IBM Z platform. Network
connectivity is required. The use of live guest migration can have implications in how you
design your network connectivity and the names and addresses that are used to reference
block device storage.

� Unplanned events: If you require high availability (HA) for unplanned events, review the
middleware or application that the VM hosts. Many middleware programs feature their own
HA capabilities. These capabilities generally are used first because they might be tuned
for the application or include some application-specific tailoring ability, testing and
certifications, or specific environment requirements.

For example, Oracle RAC, IBM Db2 HADR, IBM WebSphere Application Server cluster,
and even IBM MQ all include their own HA features and requirements. For middleware or
applications that lack built-in HA, consider Open Source Linux HA (for a commercial
solution, consider IBM Systems Automation).

Linux HA uses several different packages, including pacemaker, corosync, drbd, and clvm.
You can use clustered or shared file systems, such as Spectrum Scale (gpfs), gfs, ocfs2,
ceph, glusterfs, and nfs. Linux HA also can work with KVM/libvirt to move KVM guests to
other KVM host instances.

� Storage server moves: Consider the use of LVM at all layers and the pvmove command to
dynamically exchange individual volumes. Another possible method can be to use
software RAID mirroring to move volumes from one storage server to another.

� Network availability and redundancy: Use network interface bonding or link aggregation.
Both options are the most common methods to add enhanced availability and capacity to
network connectivity.

Link aggregation requires OSA-Express ports to be dedicated to a partition (not dedicated
in HCD). Dedicating multiple OSA-Express ports to a single partition is not an efficient use
of resources.

Bonding can provide a sort of similar availability enhancement without the restriction of
dedicating an OSA-Express port to a single LPAR. KVM guest connectivity generally
requires more availability and capacity than the KVM host.

The HMC ASCII console can always be used as a backup method to administer the KVM
host if a temporary network connectivity loss occurs.

� Storage server connectivity: It is standard practice to always include multiple Fibre
Channel connections from the IBM Z connected to a minimum of two SAN fabrics. A
minimum of two Fibre Channel ports also can be used on your storage server.

� Securing data: To perform pervasive encryption and use protected and secure keys a pair
of Crypto Express features must be used, at a minimum. Crypto Express domains can be
configured to only a single KVM guest.

Because a maximum of 85 domains per Crypto Express adapter is available, plan for a
pair of features for every 85 KVM guests. If the KVM host uses encryption, you must
account for the extra domain usage when planning. The CPACF is a part of every
processor and generally no configuration is required beyond the enabling microcode
feature.
24 Virtualization Cookbook for IBM Z Volume 5: KVM

� Internal NVMe storage availability: Although this SSD storage is internal and has few parts
that can fail, the storage must be configured in RAID configuration if a solid-state drive
(SSD) fails.

� Compression/decompression acceleration: The accelerator unit for these operations is
part of every processor. No special guest configuration is required for use beyond being at
the required Linux software levels.

The following Data Compression with Linux on IBM z15 videos are now available on the
IBM Media Center Channel:

– Accelerated Data Compression with Linux on IBM z15 - Managing Data Growth

Manage your data growth by reducing your storage requirements and your data
transfer by up to 80% without changing your I/O infrastructure.

– Accelerated Data Compression for Linux Databases on IBM z15

Learn how you can boost the performance of your Linux databases by using
accelerated data compression with Linux on LinuxONE III.

2.1.4 Deployment architecture

From your requirements, you arrive at a deployment architecture. No one architecture is for
every use because requirements are unique in each instance.

Major influencers to the deployment architecture might be software licensing or support,
availability and scalability requirements, architectural limitations, and security requirements.

In addition, naming and addressing resources, such as network interfaces and block storage
devices, also are important if live migration is used. Naming and addressing conventions must
be well-defined and implemented into the deployment architecture.

For the purposes of this IBM Redbooks publication, we use a simple configuration with basic
redundancy to show how the key IBM Z capabilities are deployed.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 25

https://mediacenter.ibm.com/media/t/1_m50pl5lx
https://mediacenter.ibm.com/media/t/1_n8rnkcdj
https://mediacenter.ibm.com/media/t/1_m50pl5lx

Our deployment architecture is shown in Figure 2-1.

Figure 2-1 Partition infrastructure of deployment architecture

2.2 Planning resources for KVM guests

Each KVM guest requires CPU, memory, storage, and network resources. Other devices and
issues you might not immediately think about are important, such as the following examples:

� Text console device
� Graphical console
� Cryptographic resources
� Virtual CDs and DVDs
� Watchdog devices
� Start details (device order, interactive menu, timeout, and kernel command-line data)
� Crash actions
� Time zone data

When you make the initial resource allocation, it is important to recognize that resource needs
change over time. Where possible, make definitions in a manner so that you can dynamically
adjust allocations of your resources.

It is also important to understand how you can prioritize or cap your KVM guest CPU
allocations. Adding or removing disk storage from a guest domain can be a common request.
Consistent and unique naming and addressing of these resources is key for live guest
migration purposes.
26 Virtualization Cookbook for IBM Z Volume 5: KVM

2.2.1 Compute considerations

The basic compute resource aspect is straightforward. You can and should define an initial
and maximum number of virtual CPUs for the guest domain. By default, you are running in
SMT mode with IFLs. Each virtual CPU in SMT mode is half of a core and not a full core.

You can set relative shares by editing the VM domain definition in XML format by using the
following tag:

<shares>2048</shares>

You can tailor the relative share CPU between the different guests. You also can use the
period (interval in microseconds) and quota (bandwidth in microseconds) tags
(<period>1000000</period>, <quota>1000</quota>) to provide a cap on CPU consumption for
a guest domain.

KVM supports CPU and memory over-commitment. To maximize performance, define the
minimum number of virtual CPUs and memory that are necessary for each guest. If you
allocate more virtual CPUs to the guests than are needed, the system works, but a level of
overhead occurs in doing so.

Consider the following preferred practices:

� CPU: Do not define more virtual CPUs to a guest than the number of logical PUs or
threads that are assigned to the KVM host.

� Memory: Try to avoid an over-commit ratio of memory of more than 2:1 (virtual:real). Any
paging operations are slower than processor cache or main memory.

From a performance perspective, one other aspect you must evaluate tailoring is the I/O
threads. Rather than a single thread in the QEMU event loop, you can allocate multiple
threads and assign different threads to different I/O devices. Make this allocation if I/O
performance was of concern and multiple virtual CPUs were assigned to the guest.

Consider the following rules for I/O threads usage:

� The number of I/O threads must not exceed the number of host CPUs.

� Over-provisioning of I/O threads must be avoided. A good starting point is to have one I/O
thread for every two to three virtual disks.

� Even a single I/O thread instantly improves the overall I/O performance compared to
default behavior; therefore, it always must be configured.

2.2.2 Storage considerations

Linux on IBM Z and KVM can work with various storage types. The two most common types
that are supported on this platform are FCP attached SCSI LUNs or Extended Count Key
Data (ECKD) devices. Various network-based storage access methods also are available, but
the operating system typically is installed on either of these two types.

Which to use? Both types of storage can get the job done, but it might be best to stick with
what you know whether you use one type and know how to administer that type. You might
have backup and recovery tools that work with that type of storage.

If you require high-performing I/O, such as for a database, we tend to see FCP-attached SCSI
LUNs used more. They can achieve slightly better performance. ECKD storage can obtain
similar performance if Parallel Access Volumes (PAV) are used. PAVs do require another level
of administration that might not always be available.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 27

Linux on IBM Z and KVM does support the use of multiple channel subsystems and different
subchannel sets. This concern is most often for clients with many smaller ECKD devices and
might even be part of a disaster recovery solution to use different subchannel sets at different
sites.

A common question is: How many Fibre Channel paths are required to the storage server?

At a minimum, two paths are needed for a basic level of redundancy. More paths are possible
based on I/O performance or capacity requirements.

Several options are available beyond what the KVM host can use to what is presented to a
KVM guest. Ignoring network-attached storage again for the moment, block devices and
image files are available.

Image files are typically qcow2 files. These images files support snapshotting. As the name
implies, they provide Copy On Write support. For example, you can clone a base image to
some number of new virtual servers, and each new server records only the “deltas” in a
unique file.

The qcow2 files also are sparse files. You designate a maximum size, but the space is not
used until they are written to. The qcow2 files can be compressed, and they also support
being encrypted.

Because the image file is in the file system of the KVM host, they often do not facilitate live
migration. The use of a shared file system with another KVM host can facilitate it. Technically,
KVM migration support can copy an image file over the network; however, this ability is rarely
practical for servers, such as large database servers.

The following example is a sample XML for raw type image file guest definition:

<disk type='file' device='disk' cache="none" iothread="2" >
<driver name='qemu' type='raw'/>
<source file='/var/lib/libvirt/images/guest1-OSdisk.img'/>
<backingStore/>
<target dev='vda' bus='virtio'/>
</disk>

The following example is a sample XML for qcow2 type image file guest definition:

<disk type='file' device='disk' cache="none" iothread="3" >
<driver name='qemu' type='qcow2'/>
<source file='/var/lib/libvirt/images/guest1-OSdisk.qcow2'/>
<target dev='vda' bus='virtio'/>
</disk>

Note: It is important to follow the best practice of single initiator zoning. Among other
reasons for the practice are that it helps to keep the number of logical paths to a minimum.
An excessive number of logical paths can cause Linux installation failures, delays during
start, and when working with storage management tools.

Note: The source file suffix for a qcow2 image file is not required to be qcow2. This issue
can cause confusion if the administrator does not name the files consistently.
28 Virtualization Cookbook for IBM Z Volume 5: KVM

Block devices end up being /dev files in Linux that represent a real device in a
device-independent manner. Block devices tend to achieve lower-latency and higher
throughput than image files because they minimize the number of software layers through
which it passes.

Figure 2-2 shows the SCSI and ECKD options for KVM guest.

Figure 2-2 Block devices for KVM VMs

When you read/write to the /dev file for a block device, you are reading or writing to the
device. From these files, you can partition disk storage, make them part of volume groups and
logical volumes, place file systems on them, or in some instances reference them as raw
devices without a file system.

For a KVM guest, you can partition an entire disk or only a portion of a disk and supply that
partition as a block device to the guest. The use of a block device that is shared between two
KVM hosts tends to be the simplest way to support live migrations. The data on disk does not
need to be copied between the two KVM hosts. It is read/written directly on the storage
server.

The one aspect to focus on is the name that you use to reference the shared block device.
Ensure that you use a name that consistently represents the same device. Also, this name
must be multipathed, which often means that the name includes the UUID of the device.

The following example is a sample XML for full block device in guest definition:

<disk type='block' device='disk' cache="none" io="native" iothread="2">
<driver name='qemu' type='raw'/>
<source dev='/dev/disk/by-id/dm-uuid-mpath-36005076307ffd1220000000000004203'/>
<target dev='vda' bus='virtio'/>
</disk>
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 29

The following example is a sample XML for partition of block device in guest definition:

<disk type='block' device='disk' cache="none" io="native" iothread="3">
<driver name='qemu' type='raw'/>
<source
dev='/dev/disk/by-id/dm-uuid-part1-mpath-36005076307ffd1220000000000004202'/>
<target dev='vdb' bus='virtio'/>
</disk>

You also can create LVM-based storage pools for the guest domains to use. The benefit of
LVM-based solutions is that they provide a layer of abstraction between the device and guest
resource definition. LVMs typically allow you to add, move, and remove the underlying
devices.

The following example is a sample XML for LVM-based block device in guest definition:

<disk type='block' device='disk'cache="none" io="native" iothread="1">
<driver name='qemu' type='raw'/>
<source dev='/dev/VolGroup00/LogVol00'/>
<target dev='vda' bus='virtio'/>
</disk>

Image files and block devices can be dynamically added. They also can be dynamically
removed if they are no longer used by the guest.

One key planning aspect is to never have LVM or volume group names between the KVM host
and KVM guest that are duplicated. The KVM host administrator might not control what LVM
names are used by the guests.

The guest administrator can add a volume group or logical volume name that can collide with
the host. These naming collisions are not visible to the guest because the guest sees only its
own storage and not the storage of the KVM host.

Two approaches are available to tell the KVM host, Logical Volume Manager to ignore the
KVM guest logical volumes and volume groups:

� Use the filter keyword in the lvm.conf to accept or reject specific names. Allow only the
names that are used by the KVM host to be processed.

� Use “system id” with LVM. By using this approach, you assign a system ID name to a
volume group. Also, you specify the system_id_source name in the lvm.conf. In this way,
all volume groups without a matching system ID are ignored.

Image files and block devices are typically accessed by way of the virtio device driver in the
guest. Pass-through support also is available for ECKD block devices.

Note: We recommend the use of multipath volumes. However, the KVM guest never sees
this multipathing because it is addressed at the hypervisor layer.
30 Virtualization Cookbook for IBM Z Volume 5: KVM

Virtual CD-ROMs are available. You reference a .iso image file on the host and they are
presented to the guest as a CD-ROM. On s390, the CD-ROM appear as virtio-scsi-ccw to
the guest and contains the following components:

� Host file systems: If you use image files, consider the use of LVM or a shared/clustered file
system for /var/lib/libvirt images. LVM offers storage flexibility. You can add, remove,
or migrate out storage that is not apparent to the guest. The shared/clustered file system
often features the same ability, but also can allow for sharing and live migration. Some file
systems also allow for compression and encryption.

� Guest file systems: The guest file system can be whatever your Linux distribution
supports.

Beyond image files, block devices, and virtual CD-ROMs, consider the following other storage
resource types that are provided to a KVM guest:

� dir: A host directory to use as a pool for guest image files
� netfs: Using CIFS, NFS, gluster-based storage
� logical: A pool that is based on LVM volume groups
� gluster: A pool that is based on native gluster access to storage
� iscsi: Provides a pool based on an iscsi target

Storage server migration considerations
Planning ahead for storage server migration is a must. Storage servers never exist forever
and are often replaced with new technology or perhaps to a new storage vendor. This issue
presents the storage administrator with the challenge of moving large amounts of data
without affecting the operating hosts and guests.

The following options are available:

� One approach to address this requirement can be to always use logical volumes. With
logical volumes, you can add the new disk to the server, define it as a physical volume,
and add it to a volume group.

Next, you can use pvmove to empty an older volume and then, remove that older volume
from the volume group and any system definitions. This process works for data logical
volumes and the root file system logical volume.

When working with the root file system logical volume, you must take care to rebuild the
initrd. This process often is accomplished by using a single command, such as dracut.

� If you do not want to use root LVM, one other possible solution is a raid 1 software mirror
with mdadm. Install Linux on to this mirror device. Then, you can add storage devices as
part of the raid 1 mirror, allow them to sync and then, break the mirror and remove the
older device.

However, /boot might not support either or both of these methods in your distribution. In this
case, you must manually copy the /boot partition to the new disk.

Note: Because a mistake in the process means that you render your system unable to
start, be sure to test the process in a sandbox environment and be meticulous about
the steps. The use of this approach means that you install your Linux systems with LVM
from the beginning. Converting to LVM later is time-consuming.

Important: The key is to plan ahead and test.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 31

2.2.3 Network considerations

From a KVM host perspective, you can choose from the following physical and virtual network
devices:

� OSA-Express features (1 GbE, 10 GbE, 25 GbE, and 1000Base-T). They can be shared
to guests through MacVTap or with an Open Virtual Switch (OVS).

� RoCE Express: RoCE is RDMA over Converged Ethernet. These cards can operate in
three different protocol modes (TCP/IP, RDMA, or SMC-R). They are available in 10 GbE
and 25 GbE options.

Open Virtual switch is not an option with these cards, but they can be virtualized to the
guest with PCI pass-through. SMC-R operating mode includes restrictions, such as no
routing and TCP is the only protocol that is supported. SMC-R can be used by a KVM host
and a KVM guest. RoCE can be attached by way of MacVTap and PCI pass-through.
(MacVTap offers better performance as of this writing).

From a host perspective, you might use it for live migrations or for a network shared file
system. From a guest perspective, many more use cases might be available.

Databases connections, large file movement, and network shared file systems might be
examples of RoCE use cases.

� HiperSockets: A virtual hardware device for high-speed, low-latency transfers with large
MTU sizes possible. These HiperSockets are restricted to “in the box” communications
between partitions.

Although KVM does not virtualize a HiperSockets device, they can be accessed by a KVM
guest by way of MacVTap. Open Virtual Switch (OVS) also is an option for HiperSockets if
the system supports VNIC characteristics.

� Internal Shared Memory (ISM): This virtual hardware device can be used directly by the
KVM host. Virtualization to the KVM guest is not available as of this writing. Some possible
use cases for a KVM host with SMC-D exist.

Live migration of guest systems or network shared file system might be ISM within a KVM
host user.

The KVM hosts and guests can use connections in trunk mode with multiple VLAN IDs or an
access port connection with only a single VLAN ID. Linux and KVM also can virtualize further
with VXLAN support. VLAN support at most 4096 unique values or virtual LANs. VxLAN
support 16 million logical networks.

The following networking constructs in the KVM host are available that can be used to
connect the guest to a network:

� The default network

The KVM default network is in place with every KVM installation. It uses a nonroutable IP
address range and is DHCP assigned by the KVM host.

It adds a layer of simplicity and isolation for KVM host and guest communications.
Theoretically, a guest can have this one network and use NAT in the KVM host firewall.

However, users have no way to access this guest who is not on the KVM host. It also can
be useful in Disaster Recovery situations where a known IP and access method is
available.

Note: SMC-Rv2 defines the updates to the SMC-R protocol, which allows
SMC-Rv2-enabled hosts to connect and communicate over multiple IP subnets.
SMC-Rv2 uses the RoCEv2 protocol that also is known as routable RoCE.
32 Virtualization Cookbook for IBM Z Volume 5: KVM

� Open Virtual Switch

This production quality virtual switch supports KVM host and guest connections, tunneling
between switches, trunking, bonding, link aggregation, VLANs, VxLANs, and access. It
also is programmable. OVSs can have one or more OSA-Express connections, but do not
require any network adapter if an isolated network is required.

� MacVTap

This construct provides the virtualization of a network device to a guest. It often features
fewer layers of code than a virtual switch so that it might be better performing, but few
functions are offered. MacVTap can be combined with other technologies, such as VLANs,
VxLANs, or bonding.

� Bonding

The bonding construct combines multiple network adapters to provide enhanced
availability, capacity, or both. Many bonding modes are available, and it also can
incorporate link aggregation.

� Teaming

This construct is newer than bonding and is similar to bonding in some ways but uses a
different implementation. OSA-Express or RoCE features can use bonding or teaming.

� Link Aggregation

This construct combines multiple network interfaces for enhanced availability and
bandwidth. OSA-Express features that are used for link aggregation must be dedicated to
a single logical partition (LPAR). For this reason, link aggregation is an expensive choice.
Bonding mode 6 can provide some similar functions without dedicating OSA-Express
ports to LPARs.

� Bridges

Bridges connect to different networks in a protocol-independent way. The KVM default
network is a form of a bridge.

2.2.4 Encryption considerations

If you are planning to pervasively encrypt KVM hosts and guests, plan for at least one pair of
Crypto Express features and a usage domain per guest. A Crypto Express feature that acts
as a hardware security module (HSM) cannot share its domains between guests.

The master keys must be set for a Crypto Express adapter that is running in EP11 or CCA
modes. For the EP11 mode, a trusted key entry (TKE) workstation must be used.

A TKE is optional for CCA mode, but recommended. The alternative is to use the panel.exe
program from the Linux command shell to set the master keys.

Support is available for pervasive encryption of swap devices with Ephemeral keys. Because
the swap data never lives across restarts, a persistent key is not needed.

ECKD and FCP attached SCSI LUNs can be used with dm-crypt. They both support the use
of protected keys for encryption. Clear keys also are possible, but you run the risk of exposing
the key.

The default mode of any Linux is to deploy with SSH, which is encrypted. Applications, such
as telnet or FTP with unencrypted protocols (“in the clear”), must never be installed to avoid
any accidental exposure.

VM Manager operates over an SSH connection so that communication also is encrypted.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 33

When planning to move a large amount of data over an encrypted connection, such as a
guest live migration over SSH, ensure that you use ciphers that are accelerated by CPACF.
Doing so reduces CPU consumption and reduces the time that is required for the encryption
operations.

For more information about encryption, see Getting Started with Linux on Z Encryption for
Data At-Rest, SG24-8436.

2.2.5 KVM guest domain considerations

Consider the following points before you start your deployment of KVM guests:

� Initial and maximum number of virtual CPUs.

� Relative share amount of CPU if you do not want the default.

� Any caps on CPU consumption.

� Initial and maximum amount of virtual memory.

� Default 4 K pages or huge pages. For maximum benefit, enable in the KVM host, KVM
guest, and any using middleware, such as IBM Db2 or Java.

� Installation source: Virtual CD-ROM, network based, or cloned disk.

� Type, number, size of disks for storage: Image files, Block devices, Partitions of block
devices or LVMs.

� Use of multiple I/O threads, for example:

<domain>
 <iothreads>2</iothreads>
 ...
 </domain>

allocates two I/O threads for the QEMU process, and

<devices>
 <disk type='block' device='disk>
 <driver name='qemu' type='raw' iothread='2'/>
 ...
 </disk>
 ...
 <devices>

� Number and size of swap devices (full device, partition, file, or LVM).

� Multipathing: No disk multipathing is required or needed when it is provided by the KVM
host or IBM Z hardware configuration.

� Networking: KVM default network, MacVTap, or Open Virtual Switch, bonding, VLANs.
The use of a HiperSockets LAN, SMC-R by way of RoCE, or TCP/IP by way of
OSA-Express.

� vfio-ap: Crypto Express adapter AP queue.

� Virtual consoles: How many virtual serial consoles? Graphical or text based?

� CPU mode/model support. Setting the CPU mode or model support can be important to
successful live migration where you have different model of s390x processors as source
and target, particularly when you must migrate to an older generation of technology.
34 Virtualization Cookbook for IBM Z Volume 5: KVM

http://www.redbooks.ibm.com/abstracts/sg248436.html?Open

� Start menu, start order, and load parameter support, as shown in the following example:

<cpu mode='host-model'/>
Boot menu, boot order, and load parameter support
<bootmenu enable='yes' timeout='3000'/>
<disk>
...
<boot order='1' loadparm='2'>
</disk>

� On crash actions to take a memory dump, for example.

� Any time of day clock offset on the initial time that is used when the domain starts.
Important when hosting servers in multiple time zones.

� Watchdog (Diag288) and trigger action: If you need to ensure that a guest domain is reset
or dumped if the Linux inside is unresponsive.

� QEMU guest agent: This agent can provide enhanced management of a guest.

How to set the QEMU guest agent is shown in the following example:

<channel type='unix'>
 <target type='virtio' name='org.qemu.guest_agent.0'/>
</channel>

Software consideration for Linux guests
In general, no special software considerations exist for a KVM guest. The Linux distribution
includes all of the required drivers, such as virtio. Optional packages, such as the guest
agent, are available but not required. From a separation of duties and isolation perspective,
the package is not suitable where the KVM host administrator should not see into a KVM
guest.

You can plan to use a FreeIPA client or an LDAP client for authentication or identity
management, but that aspect is not unique to KVM.

2.2.6 Methods for installing Linux into a guest domain

Installing Linux as a guest can be achieved by using one of the following methods:

� You can copy Linux image (a block device or image file). Bring that copy up and tailor the
hostname, IP address, and regenerate the SSH keys. The copy can be from a VM
Manager “Clone” operation, an OpenStack instance request, or a lower-level Linux file cp
command or dd command for a block device.

� You can install a fresh copy of Linux from scratch, which can be done by using several
methods, including the following examples:

– Graphically by using a VM Manager request for a new VM. Virt Manager prompts you if
you want to install from local media (ISO image or CD-ROM), a Network Install (HTTP,
HTTPS, or FTP), or Network Boot (PXE).

– virsh from the command line. By using this method, an ISO image most likely is being
used as a virtual CD-ROM for the installation. With virsh, the --console option gives
you a text console that is used for installation.

By using this method, the domain or guest must be defined in advance, which indicates
that you want to start from the virtual CD-ROM. Other installation source methods are
possible.

– virt-install is single command-line installation method that like virsh, this approach
defines the domain or guest and starts the installation by using one command.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 35

Depending on your Linux distribution, the answers to the installation questions can be fully
automated. Whether preseed, kickstart, or autoyast, you can describe the software packages,
disk and file systems, network configuration, and remaining questions in an automated
manner.

After the basic Linux operating system is installed, you can automate more tailoring by using
tooling, such as Chef, Ansible, Puppet, and SaltStack. These options might tailor the
configuration file in /etc/ to meet shop standards, and perform a silent installation of
middleware installation, such as IBM WebSphere Application Server or IBM Db2.

2.2.7 Linux virtual machine live migration

Planning for live migration involves the following key items:

� If different processor technology generations are used, you must configure the guest on
the newest generation to operate only at the generation to which you might want to
migrate them. If you fail to make this configuration, you see that the guest is migrated, but
is unresponsive and shows a crashed state.

� Coding the correct processor generation is simple but must be done before you start the
guest domain. Ensure that source and target KVM hosts can access the same network
and storage resources and are named and addressed consistently. Naming and
addressing conventions must be well defined and in place.

For example, if two machines used different devices numbers for OSA-Express ports,
such as device 100 on machine A and 600 on machine B, direct references to these
OSA-Express ports by device number are problematic during integration.

The same is true for accessing disk storage. You always want to use a name that
represents a multipathed device, such as mpatha or mpathb, and not individual paths, such
as sda or sdb.

For purposes of live migration, you also want a name that includes the disk UUID. The
idea is that this UUID always is consistently named across KVM hosts. Although a name,
such as mpatha, can be persistent regarding the underlying device across restarts,
mpatha on Hypervisor 1 can be a different device than that of Hypervisor 2.

Consider the following points:

� If you use MacVTap, you cannot live migrate to another LPAR and use the same
OSA-Express port. Migration to a partition on a different machine or a different
OSA-Express port on the same machine supports live migration.

� If you use Crypto Express features to protect keys with a master key in an HSM, you must
have Crypto Express features with the same master keys and domains on the target of the
migration.

The general assumption with live migration is that the disk is shared, and you do not copy the
disk because of the time and resources that are required for a copy operation. For this
reason, block devices and not image files are generally considered for live migration.

However, image files can be used regarding live migration and not copying to them. You need
a shared file system across the source and target KVM hosts for the image files in question.
IBM Spectrum Scale (GPFS) is one such file system.

Note: If the system supports VNIC characteristics for OSA, it is possible to migrate with
a shared port even for MacVTap.
36 Virtualization Cookbook for IBM Z Volume 5: KVM

Another file system that you might use is NFS v4; however, it is often preferred to have direct
Fibre Channel connectivity to a TCP/IP-based network connection for storage.

KVM live migration does not require any IBM Z channel-to-channel connections. It requires
only a network connection. The fastest low latency connection that you can find is ideal.
Therefore, you might consider the use of an Internal Share Memory (ISM), RoCE Express
adapter, or a HiperSockets LAN for the live migration. Connections that are over
OSA-Express features also work.

2.3 Planning for management and monitoring

You can manage KVM hosts and guests by using various methods. Not all environments
operate in a cloud model. Your scalability demands and security requirements for KVM hosts
and guests might also dictate how you manage the environment.

2.3.1 KVM host management

Common KVM host system administration tasks include the following examples:

� Stopping and starting the KVM host
� Patching the KVM host with updates
� Obtaining a console for the KVM host
� Adding or removing hardware resources from a KVM host

Stopping a host can be started within Linux by using a shutdown command; or, if Linux is
configured to accept the signal, a STOP operation in the partition on a DPM enabled HMC
shuts down Linux. By using the Linux shutdown command with the -r (Reboot) option
eliminates the need to use the HMC to start the KVM host.

A KVM host always is started from the HMC. It also uses the Operating System Message
dialog for the initial console messages.

Patching a KVM host to a newer level is handled much like any other Linux. Ideally, you take
backups and shut down or relocate all running guests to other KVM hosts before you begin.
Some Linux distributions incorporate file system snapshot technology to allow you to start
from or roll back to a previous snapshot if the updates become problematic. The act of
updating is typically accomplished by using zypper up, dnf upgrade, or apt update and apt
upgrade.

Obtaining a console to the KVM host is done by using the Integrated ASCII Console from the
HMC.

Adding resources to a KVM host often involves adding logical processors, memory, network
interfaces, or storage groups to the partition from the HMC. To add memory dynamically, an
amount must be configured that is a maximum amount greater than the initial amount.

After the extra resource is configured to the logical partition, that resource must be brought
online in Linux. In the case of logical processes, CPUs must be rescanned and configured
online. In the case of memory, the chmem command is used.

In the case of network or storage resources, new CHPIDs or devices might need to be varied
online. Then, the resources must be configured to the system. This process might include
defining a network interface with an IP address, or partition a disk, adding it to a volume group
and LVM, or even installing a new file system on the device.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 37

Just as they can be added, resources can be dynamically removed. Storage and network
interfaces must be shut down and unconfigured before they are removed. Memory and CPU
resources must be taken offline before they are unconfigured from the partition also. After
Linux removes the resource, that resource can be unconfigured from the partition at the HMC.

You can also use tools, such as Cockpit, to manage a Linux guest, and that Linux can a KVM
host. Cockpit features a simple to use web UI so it is accessible from any desktop platform.

2.3.2 KVM host monitoring

Several types of monitoring exist, and it is likely that more than one is implemented. You might
use operational monitoring to determine whether a resource is up or down, near full or empty.
You might use intrusion detection monitoring. Performance monitoring and a variation of
performance monitoring are available for longer-term data for capacity planning purposes.
Commercial and open source versions of these tools also are available to help you monitor
the KVM host.

Tools, such as Nagios and Icinga, can perform several different checks of your Linux and
KVM environment. A “check” does not exist, and tools are available that can be easily
updated to include new ones.

You can opt for analytics suites, such as Elastic Search, Logstash, Kibana (ELK) or Graphite,
and Prometheus and Collectd. Both stacks are well suited for visualizing time series data.

For a point-in-time look at KVM performance. virt-top and kvm_stat might be the best tools
to use. Both tools look at real-time data and log data for longer term trend analysis or for
graphing. Standard Linux performance tools, such as top and vmstat, are also relevant. You
also can monitor key metrics by using the Cockpit web UI.

Long-term detailed performance data can be gathered from systat/sar for later analysis. It is
ideal for system-level resource usage analysis.

You can use IBM Tivoli® Monitoring (ITM) to monitor a KVM host because it can monitor any
other Linux system.

2.3.3 KVM guest management

Several tools are available to manage KVM guests. The following tools can manage the
lifecycle functions and tuning, snapshots, and migration of servers:

� VM Manager
� oVirt
� OpenStack
� Cockpit
� virsh CLI
� QEMU guest agent

Start and shutdown operations
KVM guest can be marked to autostart when the KVM host is brought up. No specific
sequencing is used with this method. If you want your database server brought up first, it
might be the last. You can choose not to mark the guest domain for autostart and build a
script to issue individual virsh start commands in a sequence with specific delay periods.
38 Virtualization Cookbook for IBM Z Volume 5: KVM

KVM guests can be shut down from the KVM host. If the sequence is of concern, you can
script issuing individual virsh shut down commands in the wanted sequence. If necessary, a
KVM domain can be destroyed, which simulates a power off.

Using a console
Most tools provide access to a guest console. You can use the virsh console command to
obtain a console from a specific domain anytime the guest is running. Virt-Manager, Cockpit,
and OpenStack all provide console access as well, including graphical consoles.

QEMU guest agent
This agent can provide enhanced management of a guest. For example, it can enhance virsh
shutdown and allow virsh setvcpus to take virtual CPUs offline in the guest. It can also query
guest file systems, IP address details, and more. Include the agent and enhance the
manageability.

Cloning or removing a guest
Guests can be cloned by using the virt-clone command or from tools, such as Virt-Manager.
Take care in setting a new hostname, IP configuration, and SSH keys. Your Linux distributor
might have specific documented advice about reenabling “first start” processes.

Removing a guest is as simple as using the virsh undefine command or clicking any of the
graphical tools.

Guest snapshots
Guest snapshots can be used to have a point-in-time copy of a guest. They can be reverted to
their original state after some testing, or they can be used for backup purposes.

The following types of snapshots are available:

� Internal

These snapshots keep the snapshot inside the original qcow2. Internal snapshots are used
by Virt-Manager.

� External

These snapshots are newer. They create a separate file to hold updates that occur after
the snapshot. Although not managed by Virt-Manager, these CLI-based snapshots are
newer than the internal version and are often preferred over their predecessor.

Guest save/restore
A running guest can save its state (memory, but not disk) and later be restored to resume
execution. After a guest is saved, it no longer is running, which frees the memory on the
system.

Guest suspend/resume
You can suspend a running KVM guest by using the virsh CLI or other tools, such as
Virt-Manager. Although this process does not free memory, it does stop the scheduling of the
guest domain until it is resumed.

Note: The QEMU guest agent code is used to perform a file system freeze.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 39

2.3.4 KVM guest monitoring

Many of the guest management tools include facilities to monitor the guest in some capacity.
All of the tools you use to monitor a KVM host are relevant to a KVM guest, including the
following examples:

� VM Manager
� oVirt
� OpenStack
� Cockpit
� virsh CLI
� QEMU guest agent
� ELK stack
� Grafana
� IBM Tivoli Monitoring (ITM)
� Perf
� Sysstat/SAR
� top, vmstat, virt-top, and kvm_stat

2.4 Planning for security

Security too often can be an afterthought on a deployment project. More security often is
associated with added complexity. However, this presumption is not always accurate.

Failing to implement centralized identity management or authentication solution can add
complexity. Imagine dozens or hundreds of virtual servers, each that uses only their own
/etc/passwd for authentication.

Also, your security policy requires frequent password changes. Whether your own
authentication credentials, that of a DBA team, or an application support team, the situation
quickly becomes unmanageable, not only in terms of password management, but also
suitable handling of user IDs with staff turnover.

Centralized Identity management helps to better secure and to simplify this situation.

2.4.1 Access controls

Access control in Linux can be accomplished in several ways. The most common aspect that
is thought of is file system access controls of Read, Write, Execute for Owner, Group, and
everyone else, which also can be augmented by Access Control Lists (ACLs) and
setfacl/getfacl.

The next layer of access control is Security Enhanced (SE) Linux and AppArmor. You
implement one or another, and it places more controls on users, groups, programs, and files.
Policy Kit (polkit) also can help you implement more granular controls.

PAM is another access control point that you can tailor to restrict access to Linux capabilities.
Often, individual programs or applications, such SSH, feature their own configuration files in
which you can tailor more access control, such as require public key or MFA controls instead
of password usage, disabling root SSH, or only allow SSH from a specific IP address or
range.
40 Virtualization Cookbook for IBM Z Volume 5: KVM

2.4.2 Authentication solutions

The most basic authentication is handled by using /etc/passwd. However, /etc/passwd is not
the best choice when multiple servers are used and UIDs and GUIDs must be coordinated for
shared file systems. Solutions, such as NFS and IBM Spectrum Scale (GPFS), require this
UID and GID consistency across servers.

The most basic component of centralized authentication for Linux is LDAP. LDAP supports
defining your users, groups, and their credentials, and stores sudo configurations.

One of the challenges is administering LDAP. Working with shell scripts and LDIF files can be
more than some administrators can take on. FreeIPA can help to simplify this burden. FreeIPA
is a solution that uses well-known open source projects, such as 389 Directory Server, MIT
Kerberos, NTP, DNS, and Dogtag.

FreeIPA provides a scriptable command-line interface and a web UI. Both are key to the
simplification of administering LDAP. FreeIPA also controls user access to individual hosts
and services on those hosts.

FreeIPA also provides an elegant multi-factor authentication (MFA) solution, centralized sudo
administration, a centralized public key repository for key-based authentication, and
centralized user administration. With a mouse click, you can create password policies and
apply them to groups of users.

FreeIPA includes a client and a server component. The client installation script downloads
and installs the server’s public certificate and configures Kerberos, sssd, pam, and nsswitch
to use the FreeIPA server. Even if you use a Linux distribution that does not have a FreeIPA
client, the client components can be configured to use the FreeIPA server.

You also can choose from commercial solutions for authentication and authorization.
Solutions, such as Centrify, provide a commercially supported way to integrate with non-Linux
authentication repositories.

2.4.3 Audit

Linux audit provides the means to audit almost every aspect of Linux. You can configure it in a
manner that complies with your installation’s security policy. Sample security policies often
are provided with the Linux audit package.

You might also want to consider the amount, size, and duration of Linux audit data to retain.
You can also send your audit data to a centralized audit repository in real time. Commercial
products, such as IBM QRadar, are available to analyze audit and log data.

At a minimum, you expect to gather and retain system logs for audit purposes. Although they
might not contain everything that you need, they do include a significant amount of
information.

The rsyslogd can be configured to transmit log data in real time to a centralized log
repository and send them over a TLS encrypted connection.

If you use other products or commercial middleware, they also must create logs that are
retained for audit purposes.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 41

2.4.4 Firewalls

Firewalls play a key role in Network security. Combining a firewall with Host-Based Intrusion
Detection tools allows you to respond quickly and precisely to a network-based threat.

Fail2ban is an example of an application that scans your logs to look for abnormal conditions
and blocks the offending IP from the application it is probing. The old way of thinking of “If a
firewall is in the DMZ, I am protected,” is not good enough.

Because today’s network communications are encrypted, those external firewalls are
unaware of the requests are being made to the application on your virtual server. However,
the application logs do indicate security events, such as invalid user ID or password. They
also can show the user ID that is being attempted and that a brute force attack is in progress.

Several other intrusion detection tools also are available in addition to fail2ban, including
OSSEC, AIDE Snort, Sagan, Suricata, and Samhain. Consider the use of these open-source
network and host-based intrusion detection tools.

2.4.5 Cryptography

Cryptography adds the data privacy and protection aspect to security. It generally
encompasses network traffic (data in-flight) and storage (data at-rest). IBM Z cryptographic
hardware can reduce CPU consumption, accelerate cryptographic operations, and provide a
tamper resistant master keystore.

IBM Z hardware offers two key security components: the CPACF and the Crypto Express
adapter. Virtualization of the CPACF takes no special planning beyond ensuring that the
enabling microcode feature is in place. A Crypto Express adapter features multiple domains
that can be assigned by the KVM host to a guest. These Crypto Express adapters are
referred to as Adjunct Processor (AP) queues.

KVM guests access AP queues through an AP Virtual Function I/O (VFIO) mediated device.
Configuring the mediated device defines the AP configuration of the KVM guest to which it is
assigned.

For more information, see Configuring Crypto Express Adapters for KVM Guests,
SC34-7717.

When operating as an HSM in CCA or EP11, the Crypto Express adapter domains or AP
queues cannot be shared between virtual servers. This point is key to planning. If you have
more than 85 Linux instances that need crypto domains, you need another pair of Crypto
Express adapters. A minimum number of two adapters are recommended for redundancy if a
feature must be serviced so that an outage can be avoided.

The Crypto Express adapter must have each domain initialized with unique master keys. This
process can be done in Linux by using a command-line program or by using a Trusted Key
Entry (TKE) workstation. A TKE is required for EP11 mode, and optional for CCA mode. The
use of a TKE is recommended for production environments.
42 Virtualization Cookbook for IBM Z Volume 5: KVM

http://public.dhe.ibm.com/software/dw/linux390/docu/l198hq00.pdf

You also must plan to include software libraries on your Linux systems to use the
cryptographic hardware. OpenCryptoki and libica are two of the common libraries. The
selection of the cipher that is used by software (such as OpenSSH or OpenSSL) can affect
whether the CPACF or Crypto Express adapter is used. Many, but not all, Cipher or Hash are
implemented in the hardware.

You can use this safeguard for data that your store on FICON ECKD and FCP SCSI disk
storage. Also, plan to use this protection for your swap devices if security is of any concern.

For more information about implementing pervasive encryption with Linux on IBM Z, see the
following publications:

� Pervasive Encryption for Data Volumes, SG24-2782
� Getting Started with Linux on Z Encryption for Data At-Rest, SG24-8436

2.4.6 Multi-factor authentication

Enabling technology for MFA was around for years and included published RFC standards
HOTP and TOTP. Evolving security requirements and regulations are rapidly driving MFA to a
standard authentication model for any professional and credible IT organization.

Many open-source solutions are available in this space. These solutions include Basic MFA
deployments that use Google Authenticator and google-authenticator-libpam or more
robust solutions that incorporate MFA into the overall identity management solution, such as
FreeIPA.

You also can choose from commercial solutions, such as Centrify. Commercial solutions
might provide their own modules, perhaps for the PAM layer, or plug into other standard
access points in Linux, such as with Radius.

2.5 Planning for backup and recovery

It also is important to periodically test the backup and restore processes. Each layer
(hypervisor, Linux guest, middleware, and applications) might require its own backup/restore
processes, and they are likely different.

At the hypervisor and guest layers, you often find file-level backups or full block device
backups. The use of point-in-time copy technology, such as FlashCopy or KVM snapshots, is
critical to having a viable backup.

The alternative is to shut down the systems to obtain the required consistency to be sure that
a viable backup exists. File-level backups are useful for restoring a single or group of files, but
not an entire block device. They are not helpful when your server does not start.

At the middleware layer, you might have transaction logs and database backups, which are
preferred for things such as databases. Although less frequently required, an application
might need its own backup process. This need might be more true for purchased applications
that implement their own backup/recovery process. These backups must be held on an
independent storage device and ideally, retained at a different physical location.

Keeping backups inside the same storage server cannot be considered safe or acceptable
practice.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 43

http://www.redbooks.ibm.com/abstracts/sg248436.html?Open
http://www.redbooks.ibm.com/abstracts/sg248436.html?Open
http://www.redbooks.ibm.com/abstracts/sg248436.html?Open
http://public.dhe.ibm.com/software/dw/linux390/docu/l5n1dc03.pdf
http://public.dhe.ibm.com/software/dw/linux390/docu/l5n1dc03.pdf
http://www.redbooks.ibm.com/abstracts/sg248436.html?Open

2.5.1 KVM host backups and recovery

The KVM host backup can be broken down into the following main categories:

� The core operating system disk that is needed to start
� The extra storage that is used to host image files and system logs
� Key configuration files, such as for networking and virtual server definitions

At a minimum, the KVM host includes point-in-time copy backups of its block devices so it can
start if it is damaged. File-level backups of configuration files and logs are helpful, but cannot
always be used to resurrect a KVM host that cannot be started.

Each of these components can be backed up by using several methods. The core operating
system disk in its most basic form can be backed up by running the Linux dd command from
another system. You might want to run this command immediately after installation.

You also can use FlashCopy or disk mirroring technologies to create a consistent
point-in-time copy without taking down the KVM host. To use FlashCopy or similar technology,
it might be required that a CLI program (for the IBM DS8000® family) is installed to direct the
FlashCopy operation, and to enable network connectivity to the console of the storage
subsystem.

The extra storage that is used to host image files also can use FlashCopy or disk mirroring,
but other options also exist. A QCOW2 snapshot or an LVM snapshot are examples of other
options that might help you minimize downtime.

Key configuration files, such as the KVM host network definitions, OVS definitions, zipl.conf,
zfcp.conf, and others, can be backed up through file-based tools, such as rsync or
commercial products (for example, IBM Spectrum Protect). The amount of storage these
configuration files use is relatively small.

In addition to backing up the block devices that the hypervisor requires, regularly gather
metadata that is helpful to a recovery process. This data can be easily gathered by using a
shell script.

The df -h command can provide needed file system details. The pvs, vgs, and lvs
commands can provide needed information about Logical Volume configuration. The
multipath -l command can show disk UUID and naming information.

Understanding the contents of zipl and the last IPL command-line arguments also are
important. Other metadata that is related to TCP/IP configuration also might be helpful.
Gather in advance all of the data that you might ever want to perform a recovery.

Concerning the point-in-time copy, operations “consistency” across the multiple disks that the
server is composed of is important. A copy of each disk from an LVM at slightly different times
can lead to corruption on a restored system. It is important to place all of the disks into a
consistency group so that the copy of all of the disks is from the same time. Then, back up
those copies to another location.

FlashCopy commands can be issued by using a shell script and cron. Plan to have another
server dump the block devices by using the dd command. They can be gziped and
transmitted to another location by using SSH over the network.

Naming and logging the backups can be important. Keeping multiple generations of those
backups also is necessary. With only a single backup, you risk having a backup that can be
corrupted from which you cannot recover.
44 Virtualization Cookbook for IBM Z Volume 5: KVM

Restore simplicity also is important. Restoring an individual file or group of files often is not an
issue. Restoring full block devices also can be simple. However, if you partition a large block
device and give different partitions to multiple different guests, this process adds complexity
to a restore of that one large block device.

You might find it helpful to use a virtual server that is dedicated to handling backups if you
want to transmit copies of the FlashCopy targets to another location over the network. You
also might want to configure this server to ignore the volume groups and LVMs names from
the other servers.

Finally, take the time to test recover the system from backups. It is important to perform this
test periodically. Environments, the configuration, and even the programs that are used to
back up and recover change over time. Testing the recovery validates the tools and processes
from end-to-end.

If the recovery is not tested, you cannot depend on it to work when you need it.

2.5.2 KVM guest backup and recovery

The KVM guest can be backed up in different ways. These methods can allow the guest to be
running or require it to be shut down for data integrity purposes.

The KVM guest does include similarities to the KVM host in how you might backup and
recover it. One key difference is the KVM guest might use image files. If it uses only image
files and no block devices, KVM Snapshots can help to simplify taking point-in-time copies of
the virtual server.

If the server uses all or some block devices, having a point-in-time copy of them also is
important. For IBM DS8000 family of storage, this point-in-time copy uses FlashCopy. IBM
FlashCopy works with ECKD and SCSI LUNs. For an IBM DS8000 family device, use the
DSCLI; for IBM Storwize® family devices, use a shell script with SSH.

For file-level backups, you can use open-source tools, such as rsync or commercial tools (for
example, IBM Spectrum Protect). If a KVM guest is destroyed, one approach might be to
reprovision the guest from a Linux image and restore all the files from the most recent backup
rather than the use of disk image-level backups and restores.

From a metadata perspective, you might need to have a copy of the domain XML for recovery.
As with the KVM host, the other details, such as the file systems, LVMs, disk UUID, boot
loader configuration, and network details, also must be collected.

Part of the planning for backup and recovery also must consider the middleware. For
example, a database typically uses its own utilities to provide backups without any or minimal
downtime.

A comprehensive backup and recovery strategy often involves multiple backup methods and
the recovery from those backups must be regularly tested.
Chapter 2. Planning for the Kernel-based Virtual Machine host and guest 45

46 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 3. Preparing the Red Hat Enterprise
Linux Kernel-based Virtual
Machine environment for virtual
machine use

This chapter provides instructions to perform an installation of Red Hat Enterprise Linux
(RHEL) on a logical partition (LPAR), prepare it as a Kernel-based Virtual Machine (KVM)
host, and deploy KVM guests.

This chapter includes the following topics:

� 3.1, “Defining the target configuration” on page 48
� 3.2, “Preparing the infrastructure” on page 50
� 3.3, “Collecting information” on page 53
� 3.4, “Installing RHEL on an LPAR as KVM host” on page 57
� 3.5, “Configuring the KVM host” on page 61
� 3.6, “Deploying virtual machines on KVM” on page 80

3

© Copyright IBM Corp. 2022. All rights reserved. 47

3.1 Defining the target configuration

To prepare the environment for the workloads that run in the virtual machines (VMs), it is
recommended to build an installation plan. For more information, see Chapter 2, “Planning for
the Kernel-based Virtual Machine host and guest” on page 21.

This chapter provides the instructions to configure and deploy a basic KVM environment on
RHEL.

3.1.1 Logical View

The Logical View of our lab environment that is used in this book is shown in Figure 3-1. This
view provides an overall view of the entire environment and can be built during the planning
phase. For more information, see Chapter 2, “Planning for the Kernel-based Virtual Machine
host and guest” on page 21.

The following networks are available for guests, as described in 3.5.8, “Defining the MacVTap
network” on page 74:

� External network through two MacVTap networks
� Internal Z platform network through the HiperSocket MacVTap network

Figure 3-1 RHEL logical view

The KVM hosts access the following networks:

� HiperSockets network through an HSI0 interface.

� Internal Shared Memory (ISM) or (SMC-D), as described in Chapter 2, “Planning for the
Kernel-based Virtual Machine host and guest” on page 21.

� RoCE network (SMC-R), as described in Chapter 2, “Planning for the Kernel-based Virtual
Machine host and guest” on page 21.

� External network through an Open Systems Adapter (OSA) network interface card (NIC).
48 Virtualization Cookbook for IBM Z Volume 5: KVM

3.1.2 Physical resources

In this section, we describe the hardware and connectivity setup, as shown in Figure 3-2.

Figure 3-2 RHEL LPAR resources

The hardware and configuration setup consists of the following components:

� One IBM z15 platform with four logical partitions (LPARs)

� Two OSA cards that are connected to a LAN network

� Two Fibre Connection (FICON) cards for connectivity to storage: Small Computer System
Interface (SCSI) devices (FICON as FCP adapter)

� Four FICON Express16SA+ for connection to the ECKD DASD on IBM DS8900F storage
box

� One FTP server

� One HiperSocket CHIPD

� One ISM defined as SMC-D

� Two RoCE cards that are defined as SMC-R

� Four Crypto Express cards

All LPARs can access all resources. This lab includes the following LPARs:

� ARIES35: For RHEL
� ARIES36: For RHEL
� ARIES37: For SLES
� ARIES38: For Ubuntu
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

This chapter focuses on the RHEL implementation.

3.1.3 Software resources

For our configuration, we chose RHEL 8.4.

For more information about RHEL supported versions on IBM Z and Z platform, see this IBM
Documentation web page.

For KVM virtualization (beyond the operating system, the virtualization package is required
for a KVM host. For more information, see the Red Hat documentation.

3.2 Preparing the infrastructure

The IT infrastructure planning depends on many factors, as discussed in Chapter 2, “Planning
for the Kernel-based Virtual Machine host and guest” on page 21.

During the planning phase, we made some decisions regarding the IT resources that are
needed for our lab environment. The following sections are based on those decisions.

3.2.1 Configuring the resources in Z platform

For this book, we used the traditional tool, Hardware Management Console (HMC) and
Input/Output Configuration Data Set (IOCDS) to set up the resources.

For more information about IOCDS, see I/O Configuration Using z/OS HCD and HCM,
SG24-7804.

3.2.2 Configure the storage resources

In our lab configuration (see Table 3-1), we used the ECKD DASD configuration as storage
devices for the KVM and the guest storages. You also can use SCSI LUNs by using Fibre
Channel Protocol (FCP) configuration, as described in 2.2.2, “Storage considerations” on
page 27. On IBM Z, the ECKD disk is accessed through its device address. After we
formatted the device under Linux, the disk shows a name that starts with a dasdx prefix
where x can vary from a - z.

Table 3-1 Lab environment ECKD DASD details

Note: The operating system architecture of the Z platform is s390x and the Linux packages
must be based on this architecture.

Device address Volume name Capacity Description

90DD dasda 400 GB rdbkkvm1 start and
root disk

91A8 dasdb 54 GB Volume group for KVM
guest qcow2 files

91A9 dasdc 54 GB VFIO DASD for
kvm1guest3
50 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_rh.html
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_rh.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8-on-ibm-z_configuring-and-managing-virtualization
http://www.redbooks.ibm.com/redbooks/pdfs/sg247804.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247804.pdf

If you use the FCP SCSI LUN environment, you must work with the storage team to prepare
the disks. The worldwide port name (WWPN) must be provided to the storage team for the
correct SAN zoning configuration. An example of WWPN information that is needed for the
zoning is WWPN of the IBM Z FCP channels and the storage target ports, as shown in
Example 3-1.

Example 3-1 SCSI storage example

o FCP subchannels WWPN:
 C05076D08001D9A0 is the WWPN for B908 device.
 C05076D080009220 is the WWPN for C908 device.
o Storage target PORTS:
 5005076309141145 is the WWPN for P1 storage device port.
 5005076309149145 is the WWPN for P2 storage device port.
 50050763091b1145 is the WWPN for P3 storage device port.
 50050763091b9145 is the WWPN for P4 storage device port.

Figure 3-3 shows an FCP/SCSI storage area network (SAN) configuration example.

Figure 3-3 RHEL SAN configuration example
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Setting up the FTP server for the installation
In this example, by following the Red Hat that are instructions that are found in the Red Hat
documentation, Installing in an LPAR, we create a directory in our FTP server with an IP
address of 9.76.56.32, download the .ISO from the RHEL portal and then, upload the content
to the FTP server.

Under the directory RHEL-8.4, after the .ISO is available and the FTP server is accessible by
the target (HMC or DPM consoles), the host operating system can be installed by choosing
the FTP method of installation.

FTP can provide a secondary function, which is a local packages repository. The following
files in the RHEL-8.4/ directory structure are required for the packages installation:

� /AppStream

� /BaseOS

� images/:

– TRANS.TBL
– cdboot.img
– cdboot.prm
– generic.prm
– genericdvd.prm
– initrd.addrsize
– initrd.img
– install.img
– kernel.img
– rdbkkvm1.prm
– redhat.exec

� boot.catalog

� extra_files.json

� generic.ins

� media.repo

� rdbkkvm1.ins

� EULA

� GPL

� RPM-GPG-KEY-redhat-beta

� RPM-GPG-KEY-redhat-release

� TRANS.TBL
52 Virtualization Cookbook for IBM Z Volume 5: KVM

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/installing-in-an-lpar_installing-rhel

3.3 Collecting information

Based on the instructions that are provided in the planning stage as described in Chapter 2,
“Planning for the Kernel-based Virtual Machine host and guest” on page 21, it is
recommended that you save the information you use during the installation process.

A good practice is to create a checklist table (see Table 3-2) that includes the component’s
information. This information is useful during the installation process and for future
consultations.

Table 3-2 Sample KVM host installation checklist

Name Type Description More information

Host IP/Subnet TCP/IP 129.40.23.90 KVM Host

VLAN 8

Hostname domain DNS rdbkkvm1.pbm.ihost.com DNS Server
120.40.106.1

Gateway Default GW 129.40.23.254

FTP Server FTP port 20/21 rdbkftp1.pbm.ihost.com Check firewall rules

FTP folder install folder /RHEL-8.4 Check Permission

FTP Access Credentials User: lnxadmin pw xxx

LPAR Logical Partition ARIES35

Memory RAIM Memory 256 GB HostOS, GuestsOS, and
Workloads

Physical Processors IFL (shared) 16 IFLs SMT enabled

Virtual Processors Virtual Processors Two for each guest Can be expanded later,
recommended vCPU number
<=max of physical CPUs

Storage ECKD DASD 0.0.90DD
0.0.91A8
0.0.91A9

400 Gb
54 Gb
54 Gb

SCSI WWPN1 FCP HBA B908 C05076D08001D9A0 PORT1:
5005076309141145
PORT2 : 5005076309149145

SCSI WWPN2 C908 C05076D080009220 PORT3: 50050763091b1145
PORT4:
50050763091b9145

OSA1 Network card 1 CHP E8 Devices 1E80-1E82

Crypto Domain / Card CARDS
0x03
0x06

DOMAINS
0x25
0x2F
0x39N
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

3.3.1 Installing RHEL on an LPAR installation

In this section, we provide information about our lab environment. You can use this
information as a reference to create your own environment.

Installing by using FTP
RHEL can be installed from a DVD in the HMC or from an FTP server. In this example, we
decided to install RHEL from an FTP server. Be sure to have the FTP port open in the firewall.
The following FTP server information was needed in our lab environment:

� IP address: rdbkftp1.pbm.ihost.com
� Credentials: User lnxadmin and password ftppass
� Directory: /RHEL-8.4

OSA device addresses
On the IBM Z platform, the network interface cards (NIC) are represented by OSA express
adapters. Each OSA card can manage a range of devices. The use of a specific OSA requires
three consecutive addresses: one device for control reads, one for control writes, and another
for data.

For this example, we chose the first triplet from OSA CHPID E8 (1E80-1E82).

Networking information
Contact your network administrator to obtain the correct networking information for the host.

Our lab environment included the following networking information:

� Hostname: rdbkkvm1
� IP address: 129.40.23.89
� Subnet prefix: 24
� Default gateway: 129.40.23.254
� Layer 2 or 3: 2
� VLAN: 8
� DNS: 129.40.106.1 and 129.40.106.2

Storage
As described in 2.2.2, “Storage considerations” on page 27, two options are available for
storage on the Linux on IBM Z platform: ECKD DASD disk or FCP LUN disk. In this example,
we used ECKD DASD.

Our example features the following storage information:

� ECKD device address: 90dd
� Volume serial: 0X90DD
� Space: 400

The operating system installation uses a single DASD under Logical Volume Manager (LVM).

Note: IP address 100.150.233.40 was used for HiperSockets network access.
54 Virtualization Cookbook for IBM Z Volume 5: KVM

3.3.2 Virtual machine installation information

In this section, we review the following required information for VM installations:

� Compute
� Memory
� Disk
� Network
� Cryptography

Compute
For VM deployment, all the guests use two virtual CPUs (vCPU) to take advantage of the
Simultaneous Multi-Threading (SMT) on an IBM Integrated Facility for Linux (IFL) processor.

Memory
The amount of memory is related to the type of workload that a machine is going to host;
each VM has 2 GB of RAM.

For the Linux guest operating system, we recommend starting with 512 MB of memory (see
Chapter 2, “Planning for the Kernel-based Virtual Machine host and guest” on page 21).

To avoid memory constraints, it is good practice to perform an accurate workload and
capacity study to correctly define the amount of memory that you need.

Disk
QEMU Copy On Write (QCOW2) is a file format for disk image files that are used by Quick
Emulator (QEMU), which is a hosted VM monitor. QCOW2 uses a disk storage optimization
strategy that delays allocation of storage until it is needed.

Files that are in QCOW2 format can include disk images that are associated with specific
guest operating systems. QCOW2 supports multiple VM snapshots through a flexible model
for storing snapshots.

A QCOW2 image file was used for the operating system disk in our example.

The files were stored in the LVM to create more flexible storage migrations. For more
information, see 2.2.2, “Storage considerations” on page 27.

The ECKD DASD used for the Volume Group (VG) that is used for images (rdbkkvm1-images),
is the 0X91A8 volume.

A maximum of 10 GB of space was specified in our lab environment for the image files, but
can be extended. We created the following four disk images to use as storage for the VM
guests:

� kvm1guest01: /var/lib/libvirt/images/kvm1guest1_vol001.img
� kvm1guest02: /var/lib/libvirt/images/kvm1guest2_vol001.img
� kvm1guest03: /var/lib/libvirt/images/kvm1guest3_vol001.img
� kvm1guest04: /var/lib/libvirt/images/kvm1guest4_vol001.img
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Network
As described in “OSA device addresses” on page 54, contact your network support team to
obtain the proper networking information.

The external network access setup that was used in our lab environment included the
following parameters:

� Hostname: kvm1guest01

� IP address: 129.40.23.200

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� Hostname: kvm1guest02

� IP address: 129.40.23.201

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� Hostname: kvm1guest03

� IP address: 129.40.23.202

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� Hostname: kvm1guest04

� IP address: 129.40.23.203

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� For HiperSockets access:

– Hostname: rdbkkvm1
– IP address: 100.150.233.40
– Hostname: kvm1guest01
– IP address: 100.150.233.21
– Hostname: kvm1guest02
– IP address: 100.150.233.22
– Hostname: kvm1guest03
– IP address: 100.150.233.23
– Hostname: kvm1guest04
– IP address: 100.150.233.24
56 Virtualization Cookbook for IBM Z Volume 5: KVM

Cryptography
In our lab environment, we assigned four crypto adapters and three domains to the ARIES35
LPAR. For more information about the z15 Crypto Express adapters, see section 2.4.5,
“Cryptography” on page 42.

The Adjunct Processor (AP) queues that we used in our lab environment as our virtual
cryptographic resources are listed in Table 3-3.

Table 3-3 AP queues assignment

As described 2.4.5, “Cryptography” on page 42, the AP queues are a combination of <crypto
card>.<crypto domain> (both expressed in hexadecimal form).

Consider the following points:

� Domain 24 was used for KVM host
� Domain 73 was used for KVMRVM01
� Domain 74 was used for KVMRVM02

3.4 Installing RHEL on an LPAR as KVM host

In this section, we describe how to complete the following tasks:

� Prepare for the installation
� Install RHEL on an LPAR
� Prepare the host for virtualization

3.4.1 Preparing the installation

For more information about using an FTP server to install RHEL on an LPAR, see “Installing
by using FTP” on page 54

In this example, we created a directory structure containing the .ins and .prm files that are
needed for the installer for RHEL on an LPAR.

Example 3-2 shows the contents of the rdbkkvmr.ins file, which is a copy of the generic.ins
file that is provided in the root of the RHEL ISO installer. Only change the line
images/generic.prm, replacing generic.prm with rdbkkvmr.prm.

Example 3-2 rdbkkvmr.ins

* minimal lpar ins file
images/kernel.img 0x00000000
images/initrd.img 0x02000000
images/rdbkkvmr.prm 0x00010480
images/initrd.addrsize 0x00010408

Crypto domains/ Crypto adapters 03 (0x03) 06 (0x6)

37 (0x25) 03.0025 06.0025

47 (0x2F) 03.002F 06.002F

57 (0x39) 03.0039 06.0039
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Example 3-3 shows the contents of the rdbkkvm1.prm file. It defines DASD for the target
installation (or the SCSI information if you have FCP SAN disk), network properties, and the
location of the FTP repository.

Example 3-3 rdbkkvm1.prm for ECKD DASD1

ro ramdisk_size=40000 rd.dasd= 0.0.90dd
rd.znet=qeth,0.0.1e80,0.0.1e81,0.0.1e82,layer2=1,portno=0,portname=DUMMY
ip=129.40.23.89::129.40.23.254:255.255.255.0:rdbkkvm1:enc1e80.008:none
inst.repo=http://lnxadmin:lnx4rdbk@129.40.23.88/rhel84
inst.vnc inst.vncpasswd=lnx4rdbk vlan=enc1e80.008:enc1e80

Statements in Example 3-4 define two different paths to the LUN.

Example 3-4 rdbkkvm1.prm for SCSI LUNS example

ro ramdisk_size=30000000 zfcp.allow_lun_scan=0
rd.zfcp=0.0.b908,0x5005076309141145,0x4000400500000000
rd.zfcp=0.0.c908,0x5005076309149145,0x4000400500000000
rd.znet=qeth,0.0.1e80,0.0.1e81,0.0.1e82,layer2=1,portno=0,portname=DUMMY
ip=129.40.23.89::129.40.23.254:255.255.255.0:rdbkkvm1:enc1e80.008:none
inst.repo=http://lnxadmin:lnx4rdbk@129.40.23.88/rhel84
inst.vnc inst.vncpasswd=lnx4rdbk vlan=enc1e80.008:enc1e80

Consider the following points if you have SCSI implementation:

� Each rd.zfcp statement contains three parameters, which together define a path to a
LUN:

– The first parameter defines the FCP device on the IBM Z side.

– The second parameter defines the target worldwide port name (WWPN), which is a
WWPN of disk storage.

– The third parameter provides a LUN number, which means that the rd.zfcp statements
that are shown in Example 3-4 define two different paths to the LUN.

� The rd.znet statement defines which device triplet is used as the NIC for an installer.

� The ip statement defines the IP properties for the NIC or the VLAN interface if you use
trunk switchport.

� The inst.vnc and inst.vncpasswd statements indicate that the installation process is
done through VNC.

For more information, see this Red Hat Customer Portal web page.

1 The rd.dasd statement points to our storage ECKD disk device.
58 Virtualization Cookbook for IBM Z Volume 5: KVM

https://urldefense.proofpoint.com/v2/url?u=http-3A__lnxadmin-3Alnx4rdbk-40129.40.23.88_rhel84&d=D
https:/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/index

3.4.2 Installing RHEL on an LPAR

After all of the prerequisites were met, we started from FTP by using the information as
described in “Installing by using FTP” on page 54 (see Figure 3-4).

Figure 3-4 Loading from an FTP server

In the DPM or HMC, when you receive the prompt with the list of .ins files, choose the file
that you created, such as rdbkkvmr.ins.

Continue with the installation process and use the Red Hat Customer Portal as guidance.

3.4.3 Preparing the host for virtualization

Complete the following steps to enable RHEL on IBM Z as a KVM host:

1. Subscribe the server to the RHEL network.

To access the packages and support, it is recommended to subscribe your system to the
Red Hat Network. For more information, see this Red Hat web page.

You also can install packages from a local repository. Create a file for each local repository
under a repository directory, which usually is /etc/yum.repos.d (see Example 3-5).

Example 3-5 Local repository file

[root@rdbkkvmr yum.repos.d]# cat rhel8-dvd.repo
[rhel8-dvd]
name=Red Hat Enterprise Linux $releasever - $basearch - DVD
baseurl=ftp://itso:itso1cpo@9.76.56.32/RHEL-8.4/BaseOS/
enabled=1
gpgcheck=0

2. Check whether the LPAR supports virtualization functions, as shown in Example 3-6.

The LPAR must support Start Interpretive Execution (SIE) instructions.

Example 3-6 Checking virtualization support

[root@rdbkkvmr ~]# lscpu | grep sie
Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te
vx vxd vxe gs vxe2 vxp sort dflt sie
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/installing-in-an-lpar_installing-rhel
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/installing-in-an-lpar_installing-rhel
https://access.redhat.com/solutions/253273

3. Load the KVM module and verify that it is loaded by following Example 3-7, which shows
issuing the Linux command to load the KVM module and then, validate that the KVM
module is loaded by using the lsmod command.

Example 3-7 Loading KVM module

[root@rdbkkvmr ~]# modprobe kvm
[root@rdbkkvmr ~]# lsmod | grep kvm
kvm 376832 20 vfio_ap

4. Install virtualization packages and modules.

It is important to install the virtualization modules during the LPAR installation, as shown in
Figure 3-5, by selecting the virtualization hypervisor option in the RHEL installation
process. Alternatively, you can install it later by running the yum module install virt
command.

Figure 3-5 Virtualization Hypervisor option

5. After Linux is running, install the virt-install package, as described in 3.1, “Defining the
target configuration” on page 48. This package provides new VMs by using the command
line (see Example 3-8).

Example 3-8 Installing virt-install package

[root@rdbkkvmr ~]# yum install virt-install
60 Virtualization Cookbook for IBM Z Volume 5: KVM

6. Validate that the host is ready for virtualization.

Before starting to work with KVM, run the virt-host-validate command, as shown in
Example 3-9.

Example 3-9 Virtualization verification

[root@rdbkkvmr ~]# virt-host-validate
 QEMU: Checking for hardware virtualization : PASS
 QEMU: Checking if device /dev/kvm exists : PASS
 QEMU: Checking if device /dev/kvm is accessible : PASS
 QEMU: Checking if device /dev/vhost-net exists : PASS
 QEMU: Checking if device /dev/net/tun exists : PASS
 QEMU: Checking for cgroup 'cpu' controller support : PASS
 QEMU: Checking for cgroup 'cpuacct' controller support : PASS
 QEMU: Checking for cgroup 'cpuset' controller support : PASS
 QEMU: Checking for cgroup 'memory' controller support : PASS
 QEMU: Checking for cgroup 'devices' controller support : PASS
 QEMU: Checking for cgroup 'blkio' controller support : PASS
WARN (Unknown if this platform has IOMMU support)

You can ignore the “WARN” message that is highlighted at the bottom of Example 3-9. This
message is expected and normal when installing on the Z platform.

The I/O memory management unit (IOMMU) is a way to support device pass-through.

On IBM Z, device pass-through is accomplished by using the virtual function I/O (VFIO)
device driver, which reserves the pass-through device for KVM guests and accesses the
corresponding host resource on behalf of the guest.

3.5 Configuring the KVM host

This section describes how to enable RHEL as a KVM host and set up the devices to be
ready for VM guest use.

3.5.1 Defining NICs

As described in 3.1, “Defining the target configuration” on page 48, in our lab environment, we
use one NIC through the 1e20-1e22 triplet OSA devices, which is defined in the E2 OSA
channel for management purposes. For the VM guest network, we used the MacVTap
network that uses a bond interface with two NICs (OSA E2 and OSA E4).

As shown in Example 3-10, the only NIC configured is the one that we used for the RHEL
installation.

Example 3-10 Configured networks

[root@rdbkkvmr ~]# znetconf -c
Device IDs Type Card Type CHPID Drv. Name State

0.0.1e80,0.0.1e81,0.0.1e82 1731/01 OSD_10GIG E8 qeth enc1e80 online
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

By following the architecture that is proposed for this lab, we need to add for the guest
network two NICs (OSA triplets) with different OSA cards that access the same network
through different switches.

Example 3-11 shows two unconfigured NICs that were added with different OSA cards and
CHPIDs, which provide redundancy for the virtual environment.

Example 3-11 Checking NICs availability

[root@rdbkkvm1 network-scripts]# znetconf -u | grep e8
Scanning for network devices...
0.0.1e83,0.0.1e84,0.0.1e85 1731/01 OSA (QDIO) e8 qeth
0.0.1ee3,0.0.1ee4,0.0.1ee5 1731/01 OSA (QDIO) ee qeth

As shown in Example 3-12, we configure the 0.0.1e83-0.0.1e85 device as interface eth0 and
the 0.0.1ee3-0.0.0.1ee5 device as interface eth1.

Example 3-12 Configuring the NICs

[root@rdbkkvm1 network-scripts]# znetconf -a 1e83 -o layer2=1 -o
buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.1e83 (enc1e83)
[root@rdbkkvm1 network-scripts]# znetconf -a 1ee3 -o layer2=1 -o
buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.1ee3
(enc1ee3)

To check whether the configuration is correct, run the command for each NIC that is shown in
Example 3-13.

Example 3-13 Validating NICs configuration

[root@rdbkkvm1 network-scripts]# lsqeth enc1e83
Device name : enc1e83

 card_type : OSD_10GIG
 cdev0 : 0.0.1e83
 cdev1 : 0.0.1e84
 cdev2 : 0.0.1e85
 chpid : E8
 online : 1
 portname : no portname required
 portno : 0
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 buffer_count : 128
 layer2 : 1
 isolation : none
 bridge_role : none
62 Virtualization Cookbook for IBM Z Volume 5: KVM

 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 switch_attrs : unknown
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 0
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0

3.5.2 Defining the bond interface

To have network high availability (HA), we define a bond interface named bond1 (master). This
interface accesses the physical network through two NIC subordinate interfaces: enc1e83 and
enc1ee3. Those interfaces were created in the previous section.

Example 3-14 shows how to define a bond interface and set enc1e83.008 and enc1ee3.008 as
subordinate interfaces of the bond1 interface. To change the properties of the NICs, these
interfaces must be down.

Example 3-14 Defining a bond interface

root@rdbkkvm1 network-scripts]# nmcli con add type bond ifname bond1 bond.options
"mode=balance-tlb,miimon=100"
Connection 'bond-bond1' (c5ef5400-04e4-4fb9-bd64-49215c37f227)successfully added

If you dedicated OSAs for the subordinates and the suitable configuration for the switches,
you can configure the bonding option as mode=802.3ad miimon=100, which allows you to
create LACP aggregation groups that share the same speed and duplex settings.

If two OSA Express7s 10 Gb are used, you can aggregate two 10 Gb per second (Gbps)
ports into a 20 Gbps trunk port. This configuration is equivalent of having one interface with
20 Gbps speed. It provides fault tolerance and load balancing.

As shown in Example 3-14, we verify that the definition of the bond0 interface is correct.

Example 3-15 Adding subordinates to the master bond bond1

[root@rdbkkvm1 ~]# nmcli con add type ethernet ifname enc1e83 master bond1
Connection 'bond-slave-enc1e83' (0ca5a7d1-7787-4876-9664-796defd507ba)
successfully added.
[root@rdbkkvm1 ~]# nmcli con add type ethernet ifname enc1ee3 master bond1
Connection 'bond-slave-enc1ee3' (8ddaef88-f7f3-4d3c-96af-d2d36aebcae3)
successfully added.
[root@rdbkkvm1 ~]# nmcli con mod bond-bond1 ipv4.method disabled
[root@rdbkkvm1 ~]# nmcli con mod bond-bond1 ipv6.method disabled
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

After the subordinate interfaces are added (see Example 3-15), some 802-3-ethernet.s390
parameters of the OSA subordinate interfaces (nettype, subchannels, and options) must be
updated (see Example 3-16).

Example 3-16 Updating the slave BOND interface parameters related to s390

[root@rdbkkvm1 ~]# nmcli con mod bond-slave-enc1e83 802-3-ethernet.s390-nettype qeth
[root@rdbkkvm1 ~]# nmcli con mod bond-slave-enc1e83 802-3-ethernet.s390-subchannels
0.0.1e83,0.0.1e84,0.0.1e85
[root@rdbkkvm1 ~]# nmcli con mod bond-slave-enc1e83 802-3-ethernet.s390-options "layer2=1
buffer_count=128"
[root@rdbkkvm1 ~]# nmcli con mod bond-slave-enc1ee3 802-3-ethernet.s390-nettype qeth
[root@rdbkkvm1 ~]# nmcli con mod bond-slave-enc1ee3 802-3-ethernet.s390-subchannels
0.0.1ee3,0.0.1ee4,0.0.1ee5
[root@rdbkkvm1 ~]# nmcli con mod bond-slave-enc1ee3 802-3-ethernet.s390-options "layer2=1
buffer_count=128"

Also, the permanent (persistent) configurations must be fixed by using vi to remove the // in
the OPTIONS statements, as shown in the following examples:

� [root@rdbkkvm1 ~]# vi /etc/sysconfig/network-scripts/ifcfg-bond-slave-enc1e83

Remove the // in the OPTIONS line

� [root@rdbkkvm1 ~]# vi /etc/sysconfig/network-scripts/ifcfg-bond-slave-enc1ee3

Remove the // in the OPTIONS line

We used the VLAN 8 in our lab; therefore, we must create a VLAN subinterface of the bond1
connection (see Example 3-17).

Example 3-17 Creating the bond1.008 VLAN 8 subinterface

[root@rdbkkvm1~]# nmcli con add type vlan con-name bond1.008 ifname bond1.008 dev bond1 id 8
[root@rdbkkvm1~]# nmcli con mod bond1.008 ipv4.method disabled
[root@rdbkkvm1~]# nmcli con mod bond1.008 ipv6.method disabled

For more information about VLANs on RHEL, see this Red Hat web page.

Now, we can check our defined connections status (see Example 3-18).

Example 3-18 Checking connections status

[root@rdbkkvm1 bonding]# nmcli con show
NAME UUID TYPE DEVICE
bond1.008 da6c399e-85f5-413d-a3b3-9437700d7da2 vlan bond1.008
bond-bond1 88435ff5-c60a-4859-b9a3-699b40f39c41 bond bond1
bond-slave-enc1e83 2d04a5fa-491d-4a08-958c-e3f108c1bfd1 ethernet enc1e83
bond-slave-enc1ee3 a99c7330-645b-4068-ad46-296c51242a69 ethernet enc1ee3

If some connections are not displayed in green, you must start the connection by using the
nmcli con up connection_name command.
64 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.redhat.com/sysadmin/vlans-configuration

As shown in Example 3-19, we verify that the definition of the bond1 interface is correct.

Example 3-19 Validating bond interface

root@rdbkkvm1 rhel84]# cat /proc/net/bonding/bond1
Ethernet Channel Bonding Driver: v4.18.0-305.25.1.el8_4.s390x

Bonding Mode: transmit load balancing
Primary Slave: None
Currently Active Slave: enc1e83
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0
Peer Notification Delay (ms): 0

Slave Interface: enc1e83
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: f2:b1:16:7b:16:be
Slave queue ID: 0

Slave Interface: enc1ee3
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 5e:7c:1a:ea:68:8c
Slave queue ID: 0

For more information about bonding, see the IBM publication Linux Channel Bonding Best
Practices and Recommendations.

3.5.3 Defining HiperSocket interfaces

HiperSockets allows memory-to-memory communication between hosts in the same IBM Z
platform. HiperSockets avoid the use of external communications by way of NIC and Ethernet
switch. This feature eliminates traditional network latency.

For more information about this feature, see “Network connectivity” on page 6.

As described in 3.1, “Defining the target configuration” on page 48, the HiperSocket CHPID is
F4. The triplet for the encf00 interface definition is 0F00 - 0F02 in our lab environment.
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

http://public.dhe.ibm.com/software/dw/linux390/docu/l0wlcb00.pdf
http://public.dhe.ibm.com/software/dw/linux390/docu/l0wlcb00.pdf

3.5.4 Defining HiperSocket interface to support VM guest network

We define the encf00 interface on the HiperSocket chpid(f4) to allow VM guest access to the
HiperSocket network.

Example 3-20 shows the HiperSocket device availability.

Example 3-20 List of unconfigured HSI devices on F4 CHPID

[root@rdbkkvm1 dev]# znetconf -u | grep " f4 "
0.0.0f00,0.0.0f01,0.0.0f02 1731/05 HiperSockets f4 qeth
0.0.0f03,0.0.0f04,0.0.0f05 1731/05 HiperSockets f4 qeth
0.0.0f06,0.0.0f07,0.0.0f08 1731/05 HiperSockets f4 qeth
0.0.0f09,0.0.0f0a,0.0.0f0b 1731/05 HiperSockets f4 qeth
0.0.0f0c,0.0.0f0d,0.0.0f0e 1731/05 HiperSockets f4 qeth
0.0.0f0f,0.0.0f10,0.0.0f11 1731/05 HiperSockets f4 qeth
0.0.0f12,0.0.0f13,0.0.0f14 1731/05 HiperSockets f4 qeth
0.0.0f15,0.0.0f16,0.0.0f17 1731/05 HiperSockets f4 qeth
0.0.0f18,0.0.0f19,0.0.0f1a 1731/05 HiperSockets f4 qeth
0.0.0f1b,0.0.0f1c,0.0.0f1d 1731/05 HiperSockets f4 qeth

Choose the 0.0.0f00, 0.0.0f01, and 0.0.0f02 devices to create the encf00 interface, as
shown in Example 3-21.

Example 3-21 Configuring the HiperSocket interface

[root@rdbkkvm1 dev]# znetconf -a 0f00 -o layer2=1 -o buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.0f00 (encf00)

To have a persistent definition of the encf00 HiperSocket interface, create the configuration
file, as shown in Example 3-22.

Example 3-22 Making HiperSocket changes permanent

[root@rdbkkvm1 home]# nmcli con add type ethernet ifname encf00 con-name encf00
Connection 'encf00' (bbb079f1-7037-4159-a755-a77ab6ad2a06) successfully added.
[root@rdbkkvm1 home]# nmcli con mod encf00 802-3-ethernet.s390-nettype qeth
[root@rdbkkvm1 home]# nmcli con mod encf00 802-3-ethernet.s390-subchannels
0.0.0f00,0.0.0f01,0.0.0f02
[root@rdbkkvm1 home]# nmcli con mod encf00 802-3-ethernet.s390-options "layer2=1
buffer_count=128"
[root@rdbkkvm1 home]# nmcli con mod encf00 ipv4.method disabled
[root@rdbkkvm1 home]# nmcli con mod encf00 ipv6.method disabled

Also, we must check the permanent configurations that are correcting the OPTIONS
statements (see Example 3-23.

Example 3-23 Correcting the encf000 hsi persistent configuration

vi /etc/sysconfig/network-scripts/ifcfg-encf00 ---> REMOVE the // in the OPTIONS line
66 Virtualization Cookbook for IBM Z Volume 5: KVM

The next step is to start and validate the new interface, as shown in Example 3-24.

Example 3-24 HiperSocket interface start and validation

[root@rdbkkvm1 network-scripts]# nmcli con up encf00
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/27)
[root@rdbkkvm1 network-scripts]# nmcli con show encf00
connection.id: encf00
connection.uuid: bbb079f1-7037-4159-a755-a77ab6ad2a06
connection.stable-id: --
connection.type: 802-3-ethernet
[…]
802-3-ethernet.port: --
802-3-ethernet.speed: 0
802-3-ethernet.duplex: --
802-3-ethernet.auto-negotiate: no
802-3-ethernet.mac-address: --
802-3-ethernet.cloned-mac-address: --
802-3-ethernet.generate-mac-address-mask:--
802-3-ethernet.mac-address-blacklist: --
802-3-ethernet.mtu: auto
802-3-ethernet.s390-subchannels: 0.0.0f00,0.0.0f01,0.0.0f02
802-3-ethernet.s390-nettype: qeth
802-3-ethernet.s390-options: layer2=1 buffer_count=128
[…]

3.5.5 Defining HiperSocket KVM host interface

We also must define a HiperSocket interface for KVM use. To set up this interface, select the
0.0.0f03, 0.0.0f04, and 0.0.0f05 devices to create interface encf03, as shown in
Example 3-25.

Example 3-25 Configuring the HiperSocket interface

[root@rdbkkvm1 network-scripts]# znetconf -a 0f03 -o layer2=1 -o buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.0f03 (encf03)
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

To have a persistent definition of the encf03 HiperSocket interface, we must define the
network manager’s connection, as shown in Example 3-26.

Example 3-26 Making HiperSocket changes permanent and assigning an IP address

[root@rdbkkvm1 network-scripts]# nmcli con add type ethernet ifname encf03 con-name encf03
Connection 'encf03' (cb02de05-0a2e-48da-9d3d-6660935e2966) successfully added.
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 802-3-ethernet.s390-nettype qeth
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 802-3-ethernet.s390-subchannels
0.0.0f03,0.0.0f04,0.0.0f05
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 802-3-ethernet.s390-options "layer2=1
buffer_count=128"
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 ipv6.method disabled
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 ipv4.method auto
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 ipv4.addresses 100.150.233.40/24
[root@rdbkkvm1 network-scripts]# nmcli con mod encf03 ipv4.method manual
[root@rdbkkvm1 network-scripts]# nmcli con up encf03

Also, we must check the permanent configurations that are correcting the OPTIONS
statements (see Example 3-27).

Example 3-27 Correcting the encf000 HSI persistent configuration

vi /etc/sysconfig/network-scripts/ifcfg-encf03 ---> REMOVE the // in OPTIONS line

3.5.6 Defining HiperSocket Converged interface

By using HiperSockets Converged Interface (HSCI) connections, a HiperSockets network
interface can be combined with an external OSA- or RoCE port, which creates a single
network interface. With this interface, we can access the switched network and the intra-CEC
HiperSocket network with the same IP. Both of the devices that are participating in the HSCI
interface must have the same physical network (PNET) ID.

For our lab, we choose the adapters that are listed in Table 3-4.

Table 3-4 Lab adapters

The sequence of commands that is used to check the HiperSocket PNET ID device is shown
in Example 3-28 - Example 3-32 on page 69.

Example 3-28 Checking the OSA PNET ID

[root@rdbkkvm1 isos]# cat /sys/devices/css0/chp0.ee/util_string | iconv -f
IBM-1047 -t ASCII
PERFNET

Device type CHPID Devices PNETID

HiperSocket F2 0.0.0FC9,0.0.0FCA,0.0.0FCB PERFNET

OSA Express EE 0.0.1EE9,0.0.1EEA,0.0.1EEB PERFNET
68 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 3-29 Creating HSI and OSA interfaces

[root@rdbkkvm1 ~]# znetconf -a 0fc9 -o layer2=1 -o buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.0fc9 (encfc9)
[root@rdbkkvm1 ~]# znetconf -a 1ee9 -o layer2=1 -o buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.1ee9 (enc1ee9)

Example 3-30 Checking the HSCI interface

[root@rdbkkvm1 ~]# hsci add encfc9 enc1ee9
Verifying net dev enc1ee9 and HiperSockets dev encfc9
Adding hsci0fc9 with a HiperSockets dev encfc9 and an external dev enc1ee9
Set encfc9 MAC 0e:00:f2:35:00:0b on enc1ee9 and hsci0fc9
Successfully added HSCI interface hsci0fc9

Example 3-31 Creating the VLAN 8 interface from HSCI 0FC9 device and assign IP

[root@rdbkkvm1 ~]# ip link add dev hsci0fc9.8 link hsci0fc9 type vlan id 8
[root@rdbkkvm1 ~]# ip addr add 129.40.23.232/24 dev hsci0fc9.8
[root@rdbkkvm1 ~]# ip link set up hsci0fc9.8

Example 3-32 Checking HSCI interface

[root@rdbkkvm1 isos]# hsci show
HSCI PNET_ID HiperSockets External
--
hsci0fc9 PERFNET encfc9 enc1ee9

3.5.7 Defining SMC interfaces

SMC-D and SMC-R use shared memory to provide low-latency, high-bandwidth, and
cross-LPAR connections for applications. This support is intended to provide
application-transparent direct memory access (DMA) communications to TCP endpoints for
socket-based connections.

Installing SMC tools package
To support SMC-D (ISM) and SMC-R (RoCE), you must install the SMC-tools package. For
more information about obtaining the packages, see this GitHub web page.

After downloading the content, you must extract the packages and upload them to the host (in
our example to /home/isos/).

Use the commands that are shown in Example 3-33 to install the packages.

Example 3-33 Installing SMC

[root@rdbkkvm1 isos]# yum install libn*
[root@rdbkkvm1 smc-tools-main]# make
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

https://github.com/ibm-s390-linux/smc-tools

Enabling SMC-D
This section provides the basic commands to enable SMC-D on the RHEL host server.

Example 3-34 shows how to check the ISM device availability.

Example 3-34 Checking PCI devices

[root@rdbkkvm1 smc-tools-main]# lspci
00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI device

As described in 3.5.1, “Defining NICs” on page 61 and Example 3-35 and Example 3-36, we
check the PNET ID of the ISM device and in the OSA. Both should represent the same PNET
ID.

Example 3-35 Checking ISM device PNET ID

[root@rdbkkvm1 smc-tools-main]# cat
/sys/devices/pci0000:00/0000:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
PERFNET

Example 3-36 Checking the OSA PNET ID

[root@rdbkkvm1 css0]# cat /sys/devices/css0/chp0.ee/util_string | iconv -f
IBM-1047 -t ASCII
PERFNET

In our lab, we define a NIC in the CHPID EE (see Example 3-37). For more information, see
3.5.1, “Defining NICs” on page 61.

Example 3-37 Defining OSA, VLAN interface and assign IP

[root@rdbkkvm1 home]# znetconf -a 1ee6 -o layer2=1 -o buffer_count=128
Connection ' enc1ee6' (dca07eda-d307-48c9-992a-272e460d4486) successfully added.
[root@rdbkkvm1 home]# nmcli con add type ethernet ifname enc1ee6 con-name enc1ee6
[root@rdbkkvm1 home]# nmcli con mod enc1ee6 802-3-ethernet.s390-nettype qeth
[root@rdbkkvm1 home]# nmcli con mod enc1ee6 802-3-ethernet.s390-subchannels
0.0.1ee6,0.0.1ee7,0.0.1ee8
[root@rdbkkvm1 home]# nmcli con mod enc1ee6 802-3-ethernet.s390-options "layer2=1
buffer_count=128"
[root@rdbkkvm1 home]# nmcli con mod enc1ee6 ipv4.method disabled
[root@rdbkkvm1 home]# nmcli con mod enc1ee6 ipv6.method disabled
[root@rdbkkvm1 home]# nmcli con add type vlan con-name enc1ee6.008 ifname
enc1ee6.008 dev enc1ee6 id 8
Connection 'enc1ee6.008 ' (97433a8e-63d9-40e4-98f8-5b94e1ffbdb4) successfully
added.
[root@rdbkkvm1 home]# nmcli con add type vlan con-name enc1ee6.008 ifname
enc1ee6.008 dev enc1ee6 id 8
Connection 'enc1ee6.008 ' (97433a8e-63d9-40e4-98f8-5b94e1ffbdb4) successfully
added.
[root@rdbkkvm1 home]# nmcli con mod enc1ee6.008 ipv4.method auto
70 Virtualization Cookbook for IBM Z Volume 5: KVM

[root@rdbkkvm1 home]# nmcli con mod enc1ee6.008 ipv4.addresses 129.40.23.220/24
[root@rdbkkvm1 home]# nmcli con mod enc1ee6.008 ipv4.method manual
[root@rdbkkvm1 home]# nmcli con mod enc1ee6.008 ipv6.method disabled

To test the communication between rdbkkvm1 and rdbkkvm2 LPARs in the same CPC by using
the SMC-D, we use the iperf3 tool. To install this tool, run the yum command that is in
Example 3-38 in each LPAR.

Example 3-38 installing iperf3 tool

[root@rdbkkvm1 home]# yum -y install iperf3
[root@rdbkkvm2 home]# yum -y install iperf3

Allow the local firewall (see Example 3-39) to accept connections for iperf3 on the 5201 TCP
port on the rdbkkvm2 LPAR server.

Example 3-39 Allowing the local firewall port 5201

[root@rdbkkvm2 home]# firewall-cmd --permanent --add-port=5201/tcp
success
[root@rdbkkvm2 home]# firewall-cmd --reload
success
[root@rdbkkvm2 ~]# firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: bond1 bond1.008 enP6p0s0 enP6p0s0.008 enc1e80 enc1e80.008 enc1e83
enc1ee3 enc1ee6 enc1ee6.008 encf00 encf03
 sources:
 services: cockpit dhcpv6-client ssh
 ports: 21/tcp 5901/tcp 5201/tcp
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Start iperf3 in listening mode by using the command that is shown in Example 3-40 on
rdbkkvm2.

Example 3-40 Starting iperf3 in listening mode

[root@rdbkkvm2 ~]# smc_run iperf3 -s

Server listening on 5201
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Use the command that is shown in Example 3-41 to open another SSH session against the
rdbkkvm2 server and print the information about the SMC sockets.

Example 3-41 Checking the SMC listening on port 5201

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf Mode
LISTEN 00000 0526700 0.0.0.0:5201

To test the SMC connections, run the iperf3 command on rdbkkvm4 that is shown in
Example 3-42 and then, check rdbkkvm.

Example 3-42 Running ipfer3 client on rdbkkvm1 to the server rdbkkvm2

[root@rdbkkvm1 network-scripts]# smc_run iperf3 -c 129.40.23.221 -t 10
Connecting to host 129.40.23.221, port 5201
[5] local 129.40.23.89 port 47660 connected to 129.40.23.221 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 2.97 GBytes 25.5 Gbits/sec 0 14.1 KBytes
[5] 1.00-2.00 sec 3.03 GBytes 26.0 Gbits/sec 0 14.1 KBytes
[5] 2.00-3.00 sec 3.06 GBytes 26.3 Gbits/sec 0 14.1 KBytes
[5] 3.00-4.00 sec 3.19 GBytes 27.4 Gbits/sec 0 14.1 KBytes
[5] 4.00-5.00 sec 3.06 GBytes 26.3 Gbits/sec 0 14.1 KBytes
[5] 5.00-6.00 sec 3.21 GBytes 27.6 Gbits/sec 0 14.1 KBytes
[5] 6.00-7.00 sec 3.53 GBytes 30.3 Gbits/sec 0 14.1 KBytes
[5] 7.00-8.00 sec 3.61 GBytes 31.0 Gbits/sec 0 14.1 KBytes
[5] 8.00-9.00 sec 3.60 GBytes 30.9 Gbits/sec 0 14.1 KBytes
[5] 9.00-10.00 sec 3.57 GBytes 30.7 Gbits/sec 0 14.1 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 32.8 GBytes 28.2 Gbits/sec 0 sender
[5] 0.00-10.00 sec 32.8 GBytes 28.2 Gbits/sec receiver

iperf Done.

If multiple subnets are used in your configuration on the same CPC, you can use ISM. SMC-D
is enhanced to remove the same subnet restriction by using SMC-Dv2 (see Example).

Example 3-43 Checking the usage of SMV-D

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf Mode
ACTIVE 00000 0521467 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47660 0000
SMCD
ACTIVE 00000 0521466 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47658 0000
SMCD
LISTEN 00000 0521464 0.0.0.0:5201
[root@rdbkkvm2 ~]# smcss -D
State UID Inode Local Address Peer Address Intf
Mode GID Token Peer-GID Peer-Token Linkid
72 Virtualization Cookbook for IBM Z Volume 5: KVM

ACTIVE 00000 0521467 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47660 0000
SMCD 10000facb7f88561 0000090210000000 68000fabb7f88561 0000090310000000 00000400
ACTIVE 00000 0521466 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47658 0000
SMCD 10000facb7f88561 0000090410000000 68000fabb7f88561 0000090510000000 00000400

SMC-R
As described in “Enabling SMC-D” on page 70, SMC also can be enabled between different
CPCs by using an RoCE card that allows remote direct memory access (RDMA) over the
external network (SMC-R).

Example 3-44 shows how to check the RoCE device availability.

Example 3-44 Checking PCI devices

[root@rdbkkvm1 network-scripts]# lspci0006:00:00.0 Ethernet controller: Mellanox
Technologies MT27710 Family [ConnectX-4 Lx Virtual Function]

In Example 3-36 on page 70, the PNET ID in the OSA card is displayed. Example 3-45 shows
the PNET ID in the RoCE device. Both should display the same PNET ID.

Example 3-45 Checking RoCE device PNET ID

[[root@rdbkkvm1 network-scripts]# cat
/sys/devices/pci0006:00/0006:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
PERFNET

We use the same configuration as in the SMC-D configuration. However, in this example, we
use RoCE 2 instead ISM.

Example 3-46 shows a similar example to Example 3-45 on page 73; however, the
communication uses SMC-R here.

Example 3-46 Test results

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf Mode
ACTIVE 00000 0524210 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47664 0000 SMCR
ACTIVE 00000 0524209 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47662 0000 SMCR
LISTEN 00000 0524095 0.0.0.0:5201
[root@rdbkkvm2 ~]# smcss -R
State UID Inode Local Address Peer Address
Intf Mode Role IB-device
Port Linkid GID Peer-GID
ACTIVE 00000 0524210 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47664 0000
SMCR SERV mlx5_3
01 01 0000:0000:0000:0000:0000:ffff:8128:17df fe80:0000:0000:0000:13c6:58ef:9ce6:336d
ACTIVE 00000 0524209 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:47662 0000
SMCR SERV mlx5_3
01 01 0000:0000:0000:0000:0000:ffff:8128:17df fe80:0000:0000:0000:13c6:58ef:9ce6:336d
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

If multiple subnets are used between IBM z15 CPCS, SMC Version 2 (SMCv2) allows you to
enable multiple IP subnet capability for SMC. The multiple subnet capability is enabled by
updates to the underlying networking specifications for RoCE (referred to as RoCEv2) and the
IBM Z ISM feature (referred to as ISMv2) along with updates to the related technologies.

Also, if two or more RoCE cards are used, the SMC driver creates an SMC-R link group that
allows load-balancing and high availability after the SMC-R communication is established.

For more information about RoCE, see this IBM Documentation web page.

3.5.8 Defining the MacVTap network

This section describes defining two MacVTap networks: one for OSA and one for
HiperSockets.

MacVTap for OSA NICs
Instead of the use of the default network connectivity for the guests network address
translation (NAT) connections, we chose MacVTap in bridge mode. This mode allows the
guests a direct connection with the specified interface in the MacVTap network.

To configure the MacVTap network, complete the following steps

1. Use the virsh command and an XML definition file. Example 3-47 shows our
macvtap-net.xml network definition file.

Example 3-47 macvtap-net.xml

[root@rdbkkvm1 network]# cat macvtap-net1.xml
<network>
 <name>macvtap-net1</name>
 <forward mode="bridge">
 <interface dev="bond1.008"/>
 </forward>

</network>

Example 3-48 shows the virsh command that is used to define a MacVTap network.

Example 3-48 virsh net-define command

[root@rdbkkvm1 network]# virsh net-define macvtap-net1.xml
Network macvtap-net1 defined from macvtap-net1.xml

2. Set MacVTap-net persistence and start the network, as shown in Example 3-49.

Example 3-49 virsh net-autostart and net-start command

[root@rdbkkvm1 network]# virsh net-autostart macvtap-net1
Network macvtap-net1 marked as autostarted
[root@rdbkkvm1 network]# virsh net-start macvtap-net1
Network macvtap-net1 started
74 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lkdd/lkdd_r_roce_dd.html

MacVTap for HiperSocket NIC
The same steps that are used in “MacVTap for OSA NICs” on page 74 are applied to the
MacVTap HiperSockets definition. Example 3-50 shows the XML file that was created to
define the HiperSockets NIC.

Example 3-50 macvtap-hsi.xml

[root@rdbkkvm1 network]# cat macvtap-hsi1.xml
<network>
 <name>macvtap-hsi1</name>
 <forward mode="bridge">
 <interface dev="encf00"/>
 </forward>
</network>

Also, define start and autoenable the new macvtap-his1 network, as shown in Example 3-50.

3.5.9 Defining crypto adapters and domains

As explained in 2.2.4, “Encryption considerations” on page 33, the Crypto Express card
advantages can be used by the KVM hosts and VM guests.

It is important to check the compatibility list for Crypto Express adapters when RHEL is used
before beginning the installation. For more information about supported Crypto Express
adapters, see this IBM Documentation web page.

To make the AP cards available to the KVM guests (see “Cryptography” on page 57), you use
the VFIO mediated device framework to assign cryptographic adapter resources to the
device.

To make this assignment, load the vfio_ap device driver by running the modprobe vfio_ap
command and then, add adapters 0x0 to the device, as shown in Example 3-51 and
Example 3-52.

Example 3-51 Enabling vfio_ap permanently (adding modules in /etc/modules)

[root@rdbkkvm1 ~]# vim /etc/modules-load.d/modules01.conf
[root@rdbkkvm1 ~]# cat /etc/modules-load.d/modules01.conf
Load the below modules at boot
vfio_ap
[root@rdbkkvm1 ~]# systemctl restart systemd-modules-load

Example 3-52 Preparing crypto usage

[root@rdbkkvm1 vfio_ccw]# modprobe vfio_ap

By default, the zcrypt device driver controls all AP queues that are available to a KVM host,
which makes them unavailable to guests.
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lkdd/lkdd_r_supporteddevs.html

You must free all adapters and domains to assign them to a KVM guest. To do so, issue the
command that is shown in Example 3-53.

Example 3-53 Freeing all cards and domains from the KVM host

[root@rdbkkvm1 vfio_ccw]# echo 0x0 > /sys/bus/ap/apmask
[root@rdbkkvm1 vfio_ccw]# echo 0x0 > /sys/bus/ap/aqmask

Use the lszcrypt command to display information about the crypto adapters, as shown in
Example 3-54.

Example 3-54 Verifying crypto cards

[root@rdbkkvm1 ~]# lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
03 CEX6C CCA-Coproc online 1
06 CEX6C CCA-Coproc online 0

Assign AP queues to KVM. Example 3-55 shows the procedure that is used to assign the two
crypto cards (03 and 06) and domain (0x25) to the KVM host.

Example 3-55 Crypto for KVM host

[root@rdbkkvm1 ~]# echo +0x03 > /sys/bus/ap/apmask
[root@rdbkkvm1 ~]# echo +0x06 > /sys/bus/ap/apmask
[root@rdbkkvm1 ~]# echo +0x25 > /sys/bus/ap/aqmask

Example 3-56 shows verifying the crypto assignment to the KVM host.

Example 3-56 Verifying crypto assignment

[root@rdbkkvm1 /]# lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 2
03.0025 CEX7C CCA-Coproc online 2
06 CEX7C CCA-Coproc online 0
06.0025 CEX7C CCA-Coproc online 0

One way to make a permanent configuration of the cryptos is running scripts and the use of
rc.local to run it at start. Example 3-57 - Example 3-62 on page 78 show how to enable
rc.local systemd to run scripts.

Example 3-57 Checking whether rc_local service is running

[root@rdbkkvm1 ~]# systemctl status rc-local
? rc-local.service - /etc/rc.d/rc.local Compatibility
 Loaded: loaded (/usr/lib/systemd/system/rc-local.service; static; vendor
preset: disabled)
 Active: inactive (dead)
 Docs: man:systemd-rc-local-generator(8)
76 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 3-58 Checking de rc.local.service systemd unit

[root@rdbkkvm1 ~]# vim /etc/systemd/system/rc-local.service
[root@rdbkkvm1 ~]# cat /etc/systemd/system/rc-local.service
[Unit]
Description=/etc/rc.local Compatibility
ConditionPathExists=/etc/rc.local

[Service]
Type=forking
ExecStart=/etc/rc.local start
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes
SysVStartPriority=99

[Install]
WantedBy=multi-user.target

Example 3-59 Creating the rc_local file

[root@rdbkkvm1 ~]# vim /etc/rc.local
[root@rdbkkvm1 ~]# cat /etc/rc.local
#!/bin/sh -e
##
exit 0
[root@rdbkkvm1 ~]# chmod -v +x /etc/rc.local
mode of '/etc/rc.local' changed from 0644 (rw-r--r--) to 0755 (rwxr-xr-x)

Example 3-60 Enabling and starting the rc_local service

root@rdbkkvm1 ~]# systemctl enable rc-local
Created symlink /etc/systemd/system/multi-user.target.wants/rc-local.service •
/etc/systemd/system/rc-local.service.
[root@rdbkkvm1 ~]# systemctl start rc-local
[root@rdbkkvm1 ~]# systemctl status rc-local
? rc-local.service - /etc/rc.local Compatibility
 Loaded: loaded (/etc/systemd/system/rc-local.service; enabled; vendor preset:
disabled)
 Active: active (exited) since Tue 2021-11-30 11:32:29 CST; 8s ago
 Process: 31978 ExecStart=/etc/rc.local start (code=exited, status=0/SUCCESS)

Nov 30 11:32:29 rdbkkvm1 systemd[1]: Starting /etc/rc.local Compatibility...
Nov 30 11:32:29 rdbkkvm1 systemd[1]: Started /etc/rc.local Compatibility.
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Example 3-61 Creating a script for freeing ap and aq queues for crypto enablement

[root@rdbkkvm1 isos]# vim crypto_enablement.sh
[root@rdbkkvm1 isos]# chmod u+x /home/isos/crypto_enablement.sh
[root@rdbkkvm1 isos]# cat crypto_enablement.sh
#!/bin/bash
Freeing ap and aq queues for crypto enablement
echo Preparing crypto enviroment
echo 0x0 > /sys/bus/ap/apmask
echo 0x0 > /sys/bus/ap/aqmask
echo +0x03 > /sys/bus/ap/apmask
echo +0x06 > /sys/bus/ap/apmask
echo +0x25 > /sys/bus/ap/aqmask

Example 3-62 Adding the script to rc_local

[root@rdbkkvm1 isos]# vim /etc/rc.local
[root@rdbkkvm1 isos]# cat /etc/rc.local
#!/bin/bash
THIS FILE IS ADDED FOR COMPATIBILITY PURPOSES
#
It is highly advisable to create own systemd services or udev rules
to run scripts during boot instead of using this file.
#
In contrast to previous versions due to parallel execution during boot
this script will NOT be run after all other services.
#
Please note that you must run 'chmod +x /etc/rc.d/rc.local' to ensure
that this script will be executed during boot.
touch /var/lock/subsys/local
/home/isos/crypto_enablement.sh

Results that are similar to the results that are shown in Example 3-55 on page 76 verify that
the AP queues were assigned for KVM use.

Example 3-63 shows how to generate a Universally Unique Identifier (UUID) for the mediated
device, create the mediated device, and assign the crypto cards and crypto domains to it (for
use and control).

Example 3-63 Generating a UUID for VM guest

[root@rdbkkvm1 /]# uuidgen
50e3859c-115d-459e-9e3d-69114c3973c5
[root@rdbkkvm1 ~]# echo 50e3859c-115d-459e-9e3d-69114c3973c5 >
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/create
[root@rdbkkvm1 ~]# echo 0x03 >
/sys/devices/vfio_ap/matrix/50e3859c-115d-459e-9e3d-69114c3973c5/assign_adapter
[root@rdbkkvm1 ~]# echo 0x06 >
/sys/devices/vfio_ap/matrix/50e3859c-115d-459e-9e3d-69114c3973c5/assign_adapter
[root@rdbkkvm1 ~]# echo 0x002f >
/sys/devices/vfio_ap/matrix/50e3859c-115d-459e-9e3d-69114c3973c5/assign_domain
78 Virtualization Cookbook for IBM Z Volume 5: KVM

[root@rdbkkvm1 ~]# echo 0x002f >
/sys/devices/vfio_ap/matrix/50e3859c-115d-459e-9e3d-69114c3973c5/assign_control_domain

The procedure that is shown in Example 3-63 must be done for each domain that is used by a
VM. In our lab, we used the domains 74 and 75. Example 3-64 shows how to verify the
mediated device crypto assignment.

Example 3-64 Verifying mediated device crypto assignment

[root@rdbkkvm1 devices]# cat
/sys/devices/vfio_ap/matrix/50e3859c-115d-459e-9e3d-69114c3973c5/matrix
03.002f
06.002f

To make the vfio_ap persistent, you must install the mdevctl package and then, run the
commands that are shown in Example 3-65 on page 79 by using the UUID, adapter, and
domains that are used for the mediated device.

The mdevctl utility is used for managing and persisting devices in the mediated device
framework of the Linux kernel. For more information about the mdevctl utility, see this GitHub
web page.

Example 3-65 Making vfio_ap mediated device persistent

[root@rdbkkvm1 ~]# mdevctl define --uuid 50e3859c-115d-459e-9e3d-69114c3973c5
--parent matrix --type vfio_ap-passthrough
[root@rdbkkvm1 ~]# mdevctl modify --uuid 50e3859c-115d-459e-9e3d-69114c3973c5
--addattr=assign_adapter --value=0x03
[root@rdbkkvm1 ~]# mdevctl modify --uuid 50e3859c-115d-459e-9e3d-69114c3973c5
--addattr=assign_adapter --value=0x06
[root@rdbkkvm1 ~]# mdevctl modify --uuid 50e3859c-115d-459e-9e3d-69114c3973c5
--addattr=assign_domain --value=0x002f
[root@rdbkkvm1 ~]# mdevctl modify --uuid 50e3859c-115d-459e-9e3d-69114c3973c5
--addattr=assign_control_domain --value=0x002f
[root@rdbkkvm1 ~]# mdevctl start --uuid 50e3859c-115d-459e-9e3d-69114c3973c5
[root@rdbkkvm1 ~]# mdevctl list
50e3859c-115d-459e-9e3d-69114c3973c5 matrix vfio_ap-passthrough (defined)

Note: You must start the mediated device after the host is restarted.
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

https://github.com/mdevctl/mdevctl
https://github.com/mdevctl/mdevctl

3.6 Deploying virtual machines on KVM

In this section, we describe the deployment of VMs in the KVM environment. Although a VM
can be created by using various methods, this section describes the use of the virt-install
command and virsh tools.

3.6.1 Creating QCOW2 disk image file

As described in “Disk” on page 55, QCOW2 files are used to create the VM disks.

Example 3-66 shows the command that is used to create a 10-GB QCOW2 file.

Example 3-66 Creating QCOW2 image file

[root@rdbkkvm1 isos]# qemu-img create -f qcow2 kvm1guest03_vol001.img 10G
Formatting 'kvm1guest03_vol001.img', fmt=qcow2 size=10737418240 cluster_size=65536
lazy_refcounts=off refcount_bits=16

3.6.2 Installing a new guest by using virt-install

The virt-install command line tool is used for creating VMs on KVM, which uses the
libvirt hypervisor management library. Example 3-67 shows how to install a VM by using
the virt-install command.

Example 3-67 Creating VM guest by using virt-install command

[root@rdbkkvm1 ~]# virt-install --name kvm1guest03 --memory 4000 --vcpus 2
--os-variant rhel8.4 --disk path=/home/isos/kvm1guest03_vol001.img --network
network:macvtap-net1 --cdrom
/var/ftp/pub/RHEL-8.4.0-20210503.1-s390x-dvd1.iso

Consider the following points:

� The --name parameter specifies the name of the VM guest.

� The --memory parameter specifies an amount of RAM that is designated to the VM, which
is expressed in megabytes.

� The --vcpus parameter specifies how many vCPUs are assigned to the VM.

� The --os-variant parameter specifies which type of operating system is installed; the
option is highly recommended when importing a disk image. If it is not provided, the
performance of the created VM is negatively affected. You can see the full list of available
operating system by running the osinfo-query os command.

� The --disk parameter specifies the media to use as storage for the VM guest; kvmrvm01
uses QCOW2 files. If the file was preallocated, specify the --import parameter.
Otherwise, omit the --import parameter and insert a new file path by using the
parameter’s format and size to allocate the file during the installation.

� The --network parameter specifies the network options for the VM guest. In this case, we
are connecting the guest to the MacVTap-net that was created as described in 3.5.8,
“Defining the MacVTap network” on page 74.

� For the installation source, we used a .iso file that uses the --cdrom parameter. You also
can install from other sources, such as an FTP server.
80 Virtualization Cookbook for IBM Z Volume 5: KVM

After the command that is shown in Example 3-67 on page 80 is issued, the VM installation
begins, as shown in Figure 3-6.

Starting install...
Connected to domain kvm1guest03
Escape character is ^]
[0.398874] random: fast init done
[3.625497] Freeing initrd memory: 47172K
[3.629251] alg: No test for crc32be (crc32be-vx)
[3.630612] hypfs: The hardware system does not support hypfs
[3.630620] hypfs: Initialization of hypfs failed with rc=-61
[3.630883] Initialise system trusted keyrings
[3.630889] Key type blacklist registered
[3.630947] workingset: timestamp_bits=42 max_order=20 bucket_order=0
[3.632031] pstore: using deflate compression
[3.632181] Platform Keyring initialized
[3.711534] NET: Registered protocol family 38
[3.711540] Key type asymmetric registered
[3.711541] Asymmetric key parser 'x509' registered
[3.711558] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 249)
[3.711615] io scheduler mq-deadline registered
[3.711617] io scheduler kyber registered
[3.711649] io scheduler bfq registered
[3.711740] atomic64_test: passed
[3.711865] hvc_iucv: The z/VM IUCV HVC device driver cannot be used without z/VM
[3.713204] random: crng init done
[3.714278] rdac: device handler registered
[3.714330] hp_sw: device handler registered
[3.714332] emc: device handler registered
[3.714352] alua: device handler registered
[3.714437] cio: Channel measurement facility initialized using format extended (mode
autodetected)
[3.714600] drop_monitor: Initializing network drop monitor service
[3.714663] Initializing XFRM netlink socket
[3.714721] NET: Registered protocol family 10
[3.714845] sclp_sd: Store Data request failed (eq=2, di=3, response=0x40f0,
flags=0x00, status=0, rc=-5)
[3.715056] Segment Routing with IPv6
[3.715068] NET: Registered protocol family 17
[3.715846] mpls_gso: MPLS GSO support
[3.715902] registered taskstats version 1
[3.715914] Loading compiled-in X.509 certificates
[3.805488] Loaded X.509 cert 'Red Hat Enterprise Linux kernel signing key:
a7692646c01499ee798d1448e7130abb87e6dae9'
[3.805926] Loaded X.509 cert 'Red Hat Enterprise Linux Driver Update Program (key
3): bf57f3e87362bc7229d9f465321773dfd1f77a80'
[3.806343] Loaded X.509 cert 'Red Hat Enterprise Linux kpatch signing key:
4d38fd864ebe18c5f0b72e3852e2014c3a676fc8'
[3.806353] page_owner is disabled
[3.808779] Key type big_key registered
[3.808788] ima: No TPM chip found, activating TPM-bypass!
[3.808793] ima: Allocated hash algorithm: sha256
[3.808800] ima: No architecture policies found
[3.809482] Freeing unused kernel memory: 3428K
[3.838980] Write protected read-only-after-init data: 44k
[
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Figure 3-6 VM Guest installation process through virt-install

For more information about the virt-install command, see this Red Hat web page.

3.6.3 Cloning a guest by using Virsh

Virsh is a command-line program that is used to manage VM guests and the hypervisor. It
also uses the libvirt hypervisor management library. This section shows how to clone a VM
from a previous image installation base.

Example 3-68 shows the first task: copying the QCOW2 file (kvmrvm01_vol001.img) to
kvmrvm01_vol002.img.

Example 3-68 Copying the QCOW2 file

[root@rdbkkvm1 images]# cp kvmrvm01_vol001.img kvmrvm02_vol001.img

Run the dumpxml command to return the guest VM’s configuration file. As shown in
Example 3-69, we obtain the XML configuration file kvmrvm02.xml from the VM guest,
kvmrvm01.

Example 3-69 Creating the guest configuration file.

[root@rdbkkvm1 images]# virsh dumpxml kvmrvm01 > kvmrvm02.xml

Because this VM guest is cloned, you must edit kvmsvm02.xml by completing the following
steps:

1. Change the VM name in the file from <name>kvmrvm01</name> to <name>kvmrvm02</name>.

2. Delete the UUID assignment statement:

<uuid>251e124e-2295-4126-8944-ae080e26c27e</uuid>

3. Change the source file of QCOW2 disk from:

<source file='/var/lib/libvirt/images/kvmrvm01_vol001.img'/>

to:

<source file='/var/lib/libvirt/images/kvmrvm02_vol001.img'/>

4. In the <interface type='direct'> section:

a. Delete the MAC address statement: <mac address='52:54:00:6b:8d:f7'/>.
b. Delete target device statement: <target dev='macvtap1'/>.

[3.845012] systemd[1]: systemd 239 (239-45.el8) running in system mode.
(+PAM +AUDIT +SELINUX +IMA -APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP
+GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -IDN +PCRE2
default-hierarchy=legacy)
[3.845189] systemd[1]: Detected virtualization kvm.
[3.845191] systemd[1]: Detected architecture s390x.
[3.845192] systemd[1]: Running in initial RAM disk.

Welcome to Red Hat Enterprise Linux 8.4 (Ootpa) dracut-049-135.git20210121.el8
(Initramfs).
82 Virtualization Cookbook for IBM Z Volume 5: KVM

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-guest_virtual_machine_installation_overview-creating_guests_with_virt_install

All deleted information is dynamically generated when the virsh define command is used.

The kvmrvm02 guest is defined as shown in Example 3-70.

Example 3-70 kvmrvm02 guest definition

[root@rdbkkvm1 images]# virsh define kvmrvm02.xml
Domain kvm1guest02 defined from kvm1gues02.xml

To start the new cloned guest, run a virsh start kvm1guest02 command.

You must change the basic parameters of the new guest, such as the IP address and host
name.

Another method that can be used to clone guest is by using the virt-clone command, as
show in the Example 3-71. The guest to be cloned must be shut down.

Example 3-71 Cloning the kvm1guest01 guest

[root@rdbkkvm1 isos]# virt-clone --original kvm1guest01 --name kvm1guest02 --file
/home/isos/kvm1guest02_vol001.img
Allocating 'kvm1guest02_vol001.img'
| 10 GB 00:00:01

Clone 'kvm1guest02' created successfully.

Consider the following points:

� The --original statement indicates the name of the guest (domain) to be cloned.

� The --name statement indicates the name of the new guest (domain) to be created.

� The --file statement indicates the location of the new qcow2 that is to be allocated for the
new guest.

3.6.4 Adding HiperSockets to the VM guest

To add a NIC, a VM is needed to shut down the guest and edit the domain definition. In our
example, a vNIC, macvtap-hsi is used, which targets the encf00 HiperSocket interface.

Example 3-72 shows the command that is used to edit the VM domain definition in XML
format.

Example 3-72 Editing domain definition

[root@rdbkkvm1 images]# virsh edit kvm1guest02
Domain kvm1guest01 XML configuration edited.

The definition that is shown in Example 3-73 must be added in the <devices> section.

Example 3-73 Interface definition

<interface type='network'>
 <source network='macvtap-hsi1'/>
 <model type='virtio'/>

</interface>
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

After the domain starts, the VM shows the new interface, and that the domain definition was
updated (see Example 3-74).

Example 3-74 interface verification

At the VM level:

[root@kvm1guest02 ~]# ip link
3: enc6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode
DEFAULT group default qlen 1000
 link/ether 52:54:00:f2:74:02 brd ff:ff:ff:ff:ff:ff

At the KVM host:

[root@rdbkkvm1 images]# virsh dumpxml kvm1guest02
[...]
 <interface type='direct'>
 <mac address='52:54:00:f2:74:02'/>
 <source network='macvtap-hsi1' portid='50d4217c-5041-439f-99be-d22b08bd08d8'
dev='encf00' mode='bridge'/>
 <target dev='macvtap37'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0006'/>
 </interface>
[...]

3.6.5 Adding space to guest from ECKD DASD

To add space to a VM in our lab, we added a full volume DASD as a virtio device. You can
also add space by using a logical volume from an LVM pool.

The first step is formatting the volume on the host, as shown in Example 3-75 for the ECKD
device 0.0.91A8. For this task, we must check whether the device is available for the LPAR
and enable it before the formatting process.

Example 3-75 DASD formatting

[root@rdbkkvm1 by-path]# lsdasd -a | grep 91a8
0.0.91a8 offline
[root@rdbkkvm1 ~]# chccwdev -e 91A8
Setting device 0.0.91a8 online
[root@rdbkkvm1 by-path]# dasdfmt -b 4096 /dev/disk/by-path/ccw-0.0.91a8 -p
--label=0x91A8
Drive Geometry: 60102 Cylinders * 15 Heads = 901530 Tracks
Device Type: Thinly Provisioned
84 Virtualization Cookbook for IBM Z Volume 5: KVM

Format the device /dev/disk/by-path/ccw-0.0.91a8 as shown in the following example:

 Device number of device : 0x91a8
 Labelling device : yes
 Disk label : VOL1
 Disk identifier : 0X91A8
 Extent start (trk no) : 0
 Extent end (trk no) : 1
 Compatible Disk Layout : yes
 Blocksize : 4096
 Mode : Quick
 Full Space Release : yes

WARNING:
Disk /dev/disk/by-path/ccw-0.0.91a8 is online on operating system instances in 15
different LPARs.
Ensure that the disk is not being used by a system outside your LPAR.
Note: Your installation might include z/VM systems that are configured to
automatically vary on disks, regardless of whether they are subsequently used.

--->> ATTENTION! <<---
All data of that device will be lost.
Type "yes" to continue, no will leave the disk untouched: yes
Releasing space for the entire device...
Skipping format check due to thin-provisioned device.
Formatting the first two tracks of the device.
Finished formatting the device.
Rereading the partition table... ok

To realize more I/O performance on the virtual block devices, we can configure one or more
I/O threads for the virtual server and each virtual block device can use one of these I/O
threads (see Example 3-76).

Example 3-76 Creating I/O thread for guest

[root@rdbkkvm1 isos]# virsh iothreadadd --domain kvm1guest01 --id 1 ––live
[root@rdbkkvm1 isos]# virsh iothreadadd --domain kvm1guest01 --id 1 ––confi

Now, we can define and attach the new formatted DASD to the guest. Remember to always
format the DASD on the host, but create the partitions at the guest level if you plan to assign
the entire disk to the guest (see Example 3-77).

Example 3-77 Defining the virtual block device .xml and attach it to the guest

[root@rdbkkvm1 isos]# vim kvm1guest01_dasd01.xml
[root@rdbkkvm1 isos]# cat kvm1guest01_dasd01.xml
<disk type="block" device="disk">
 <driver name="qemu" type="raw" cache="none" io="native" iothread="1"/>
 <source dev="/dev/disk/by-path/ccw-0.0.91a8"/>
 <target dev="vdb" bus="virtio"/>
 <address type="ccw" cssid="0xfe" ssid="0x0" devno="0x00a8"/>
</disk>
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

[root@rdbkkvm1 isos]# virsh attach-device kvm1guest01 kvm1guest01_dasd01.xml
--persistent
Device attached successfully

In KVM, we can verify the usage of the virtio device, as shown in Example 3-78.

Example 3-78 Verification commands

[root@rdbkkvm1 isos]# virsh domblklist kvm1guest01
Target Source

vda /var/lib/libvirt/images/kvm1guest01.qcow2
vdb /dev/disk/by-path/ccw-0.0.91a8
sda -

Example 3-51 On the guest, we verify the device availability:
root@kvm1guest1:/home/rdbkuser1# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 53.3M 1 loop /snap/core20/1167
loop1 7:1 0 53.3M 1 loop /snap/core20/1240
loop2 7:2 0 39.2M 1 loop /snap/snapd/14057
loop3 7:3 0 30.2M 1 loop /snap/snapd/13639
loop4 7:4 0 64.7M 1 loop /snap/lxd/21898
loop5 7:5 0 65M 1 loop /snap/lxd/21620
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
••vda1 252:1 0 1G 0 part /boot
••vda2 252:2 0 9G 0 part
 ••ubuntu--vg-ubuntu--lv 253:0 0 9G 0 lvm /
vdb 252:16 0 41.3G 0 disk

3.6.6 Adding DASD space to guest as a VFIO device

Another way to add DASD to the guest is by using a VFIO pass-through device. This device
allows the guest to control the entire DASD as a direct device. For this process, you must
bring the DASD’s subchannel under control of the vfio_ccw device driver, create a mediated
device for the DASD and then, assign the mediated device to the guest.

This process is shown in Example 3-79 - Example 3-85 on page 88).

Example 3-79 Checking the device subchannel

[root@rdbkkvm1 ~]# lscss -a | grep 91a9
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.91a9 0.0.2647 3390/0c 3990/e9 f0 f0 7f 50525153 00000000
86 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 3-80 Formatting the DASD device

[root@rdbkkvm1 by-path]# dasdfmt -b 4096 /dev/disk/by-path/ccw-0.0.91a9 -p
--label=0x91A9

Example 3-81 Unbinding the device from host and creating the mediated device for DASD

[root@rdbkkvm1 network-scripts]# echo 0.0.91a9 >
/sys/bus/ccw/drivers/dasd-eckd/unbind
[root@rdbkkvm1 network-scripts]# echo 0.0.2647 >
/sys/bus/css/devices/0.0.2647/driver/unbind
[root@rdbkkvm1 network-scripts]# echo 0.0.2647 >
/sys/bus/css/drivers/vfio_ccw/bind
[root@rdbkkvm1 network-scripts]# uuidgen
4d56cc2f-f614-4549-934d-656eef9926f5
[root@rdbkkvm1 network-scripts]# echo 4d56cc2f-f614-4549-934d-656eef9926f5>
/sys/bus/css/devices/0.0.2647/mdev_supported_types/vfio_ccw-io/create

Example 3-82 Adding the mediated device to the definition in the device section

[root@rdbkkvm1 by-path]# virsh edit kvm1guest01
 <hostdev mode="subsystem" type="mdev" model="vfio-ccw">
 <source>
 <address uuid="4d56cc2f-f614-4549-934d-656eef9926f5"/>
 </source>
 <address type="ccw" cssid="0xfe" ssid="0x0" devno="0x00b1"/>
 </hostdev>

Example 3-83 Checking at the guest level

root@kvm1guest1:/home/rdbkuser1# lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.0003 0.0.0000 0000/00 3832/08 yes 80 80 ff 00000000 00000000
0.0.0004 0.0.0001 0000/00 3832/03 yes 80 80 ff 00000000 00000000
0.0.0000 0.0.0002 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.0001 0.0.0003 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.0009 0.0.0004 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.0005 0.0.0005 0000/00 3832/12 yes 80 80 ff 00000000 00000000
0.0.0006 0.0.0006 0000/00 3832/12 yes 80 80 ff 00000000 00000000
0.0.0002 0.0.0007 0000/00 3832/10 yes 80 80 ff 00000000 00000000
0.0.00b1 0.0.0008 3390/0c 3990/e9 f0 f0 7f 50525153 00000000
0.0.0007 0.0.0009 0000/00 3832/05 yes 80 80 ff 00000000 00000000
0.0.08.000a 0000/00 3832/04 yes 80 80 ff 00000000 00000000
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Example 3-84 Enabling the DASD on the guest

root@kvm1guest1:/home/rdbkuser1# chzdev -e dasd 0.0.00b1
ECKD DASD 0.0.00b1 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - ECKD DASD 0.0.00b1
update-initramfs: Generating /boot/initrd.img-5.13.0-22-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: vda (0000).
Done.

Example 3-85 Verifying the device availability at guest level

root@kvm1guest1:/# lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.00b1 active dasda 94:0 ECKD (ESE) 4096 42259MB 10818360
root@kvm1guest1:/home/rdbkuser1# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop1 7:1 0 53.3M 1 loop /snap/core20/1240
loop2 7:2 0 39.2M 1 loop /snap/snapd/14057
loop3 7:3 0 65M 1 loop /snap/lxd/21620
loop4 7:4 0 30.2M 1 loop /snap/snapd/13639
loop5 7:5 0 64.7M 1 loop /snap/lxd/21898
loop6 7:6 0 53.4M 1 loop /snap/core20/1272
sr0 11:0 1 1024M 0 rom
dasda 94:0 0 41.3G 0 disk
••dasda1 94:1 0 41.3G 0 part
 active dasda 94:0 ECKD (ESE) 4096 42259MB 10818360

root@kvm1guest1:/home/rdbkuser1# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
dasda 94:0 0 41.3G 0 disk
••dasda1 94:1 0 41.3G 0 part

To make the vfio_ccw persistent, install the mdevctl and driverctl packages and then, run
the commands that are shown in Example 3-86 on page 89 by using the UUID and the
subchannel that are selected for this device.

Notes: Consider the following points:

� Mediated devices can be configured manually by using sysfs operations.

� The mdevctl utility is used for managing and persisting devices in the mediated device
framework of the Linux kernel. For more information, see this GitHub web page.

� The driverctl device driver is control utility for Linux. For information, see this GitHub
web page.
88 Virtualization Cookbook for IBM Z Volume 5: KVM

https://github.com/mdevctl/mdevctl
https://github.com/medvctl/mdevctl
https://gitlab.com/driverctl/driverctl
https://github.com/medvctl/mdevctl
https://gitlab.com/druverctk/driverctl
https://github.com/boboniu2004/driverctl
https://github.com/boboniu2004/driverctl

Example 3-86 Making vfio_ccw mediated device persistent

[root@rdbkkvm1 ~]# driverctl -b css set-override 0.0.2647 vfio_ccw
[root@rdbkkvm1 ~]# mdevctl define -u 4d56cc2f-f614-4549-934d-656eef9926f5 -p
0.0.2647 -t vfio_ccw-io -a
[root@rdbkkvm1 ~]# mdevctl start --uuid 4d56cc2f-f614-4549-934d-656eef9926f5
[root@rdbkkvm1 ~]# mdevctl list
4d56cc2f-f614-4549-934d-656eef9926f5 0.0.2647 vfio_ccw-io (defined)

3.6.7 Adding LUNs if FCP SCSI storage is used

To add space to a VM, you can map a target LUN. In this case, you can choose an available
LUN to identify the device-ID that are presented to the VM.

As described in 2.2.2, “Storage considerations” on page 27, the following options are
available:

� Entire disk (LUN or ECKD DASD)
� Partition of the disk
� Logical volume

For our lab environment, we choose the entire disk.

It is important to map the device-ID by using the multipath ID. This mapping can be achieved
in some installations by multipath-friendly names, such as mpathX. To be read by VM
migrations, the recommendation is to avoid the use of multipath-friendly names.

Example 3-87 shows how to identify the target LUN.

Example 3-87 Identifying the target LUN

[root@rdbkkvm1 by-id]# multipath -ll | grep 450000000000000007
mpathc (36005076309ffd1450000000000000007) dm-4 IBM,2107900

Example 3-88 shows the identification by device ID.

Example 3-88 Device mapper mpath identification by device ID

[root@rdbkkvm1 by-id]# ls | grep 36005076309ffd1450000000000000007
dm-uuid-mpath-36005076309ffd1450000000000000007
scsi-36005076309ffd1450000000000000007

After identifying the target LUN and the device ID for our lab environment, the target disk is:

/dev/disk/by-id/dm-uuid-mpath-36005076309ffd1450000000000000007
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

The next step is to create an XML file to attach the disk with this information, as shown in
Example 3-89.

Example 3-89 Device mapper mpath identification by ID

[root@rdbkkvm1 images]# vim kvm1guest01_block1.xml
[root@rdbkkvm1 images]# cat kvm1guest01_block1.xml
 <disk type="block" device="disk">
 <driver name="qemu" type="raw" cache="none" io="native"/>
 <source
dev="/dev/disk/by-id/dm-uuid-mpath-36005076309ffd1450000000000000007"/>
 <target dev="vdb" bus="virtio"/>

</disk>

Define the disk to the VM guest, as shown in Example 3-90.

Example 3-90 Attaching disk to kvm1guest01 guest

[root@rdbkkvm1 images]# virsh attach-device kvm1guest01 kvm1guest01_block1.xml
--persistent
Device attached successfully

Validate the host and the guest, as shown in Example 3-91.

Example 3-91 Verifying that the host and guest are attached to the disk

From KVM host.
[root@rdbkkvm1 images]# virsh domblklist kvm1guest01
Target Source
--
vda /var/lib/libvirt/images/kvm1guest01_vol001.img
vdb /dev/disk/by-id/dm-uuid-mpath-36005076309ffd1450000000000000007

From kvm1guest01 guest.
[root@kvm1guest01 ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
••vda1 252:1 0 1G 0 part /boot
••vda2 252:2 0 9G 0 part
 ••rhel-root 253:0 0 8G 0 lvm /
 ••rhel-swap 253:1 0 1G 0 lvm [SWAP]
vdb 252:16 0 40G 0 disk
90 Virtualization Cookbook for IBM Z Volume 5: KVM

3.6.8 Adding cryptography support to the VM guest

In 3.5.9, “Defining crypto adapters and domains” on page 75, the crypto adapters and domain
were defined. The AP queues were then assigned for use by KVM. The vfio_ap mediated
device was created to enable the assignment of the crypto device to a VM guest.

Complete the following steps to add cryptography support to the VM guest:

1. In the VM domain definition, edit the XML file (see Example 3-92), locate the <devices>
section, and add the <hostdev> section, as shown in Example 3-93.

Example 3-92 Editing VM definitions using virsh

[root@rdbkkvm1 images]# virsh edit kvm1guest01
Domain kvm1guest01 XML configuration edited

Example 3-93 Mediated device definition

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ap'>
 <source>
 <address uuid='50e3859c-115d-459e-9e3d-69114c3973c5'/>
 </source>
</hostdev>

2. Use the true random number generator (TRNG) feature to generate random numbers.
Enable this feature by following Example 3-94. For more information, see Chapter 2,
“Planning for the Kernel-based Virtual Machine host and guest” on page 21.

Example 3-94 Statement to use TRNG

<rng model='virtio'>
 <backend model='random'>/dev/trng</backend>
</rng>

3. Recycle the VM and verify the definitions by running the commands that are shown in
Example 3-95.

Example 3-95 Verification commands

In KVM, we verify the usage of TRNG:

[root@rdbkkvm1 ~]# cat /sys/devices/virtual/misc/trng/byte_counter
trng: 16
hwrng: 528
arch: 21240904
total: 21241448O

On the guest, we verify the crypto availability:

root@kvm1guest1:/home/rdbkuser1# lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 1
03.002f CEX7C CCA-Coproc online 1
06 CEX7C CCA-Coproc online 0
06.002f CEX7C CCA-Coproc online 0
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

Upon completion of these steps, the crypto card is available to be used in the entire
environment, including the KVM host and the VMs.

For more information, see Configuring Crypto Express Adapters for KVM Guests,
SC34-7717.

3.6.9 Using the Integrated Accelerator for zEnterprise Data Compression

The Integrated Accelerator for zEnterprise Data Compression (zEDC) with the IBM® z15™
replaces the zEDC Express adapter with on-chip compression. It provides increased
throughput and capacity and reduces the cost of storing, processing, and transporting data.

The acceleration with the on-chip Integrated Accelerator for zEDC is available to applications
that use zlib or gzip in user spaces and to the kernel zlib.

To check whether your platform can use the Integrated zEDC, you must confirm that the dflt
feature is available by using the command that is shown in Example 3-96.

Example 3-96 Checking dflt feature

[root@kvm1guest03 home]# lscpu | grep dflt
Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te vx vxd vxe gs
vxe2 vxp sort dflt

In our lab, we have a z15; therefore, the dflt feature its available. To use this feature, you
must update the DFLTCC_LEVEL_MASK environmental variable, which establishes the
compression level.

You can update this environmental variable for a command, a session, or for the entire
system. For this example, we show at session level that uses a 5.8 Gb text file that is called
operlog txt.

By using higher levels of compression, you can save almost 30x of CPU time and 23x of
elapsed time. However, the ratio compression can be lower (in our example, by only 2.7%), as
shown in Table 3-5 and Table 3-6 on page 93.

Table 3-5 Compression statistics

Compression level Compression ratio Elapsed time Total CPU time

0x0000 91.6% 1m23.855s 1m23.496s

0x0002 91.6% 1m23.708s 1m23.496s

0x007E 88.9% 0m3.415s 0m2.515s

0x01FF 88.9% 0m3.659s 0m2.557s
92 Virtualization Cookbook for IBM Z Volume 5: KVM

http://public.dhe.ibm.com/software/dw/linux390/docu/l198hq00.pdf

Table 3-6 Compression exercises

For more information about Integrated Accelerator for zEDC, see this IBM Support Dweb
page.

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x0000
root@kvm1guest1:/home/rdbkuser1# time gzip -v -c operlog.txt > operlog1_nohw.gz
operlog.txt: 91.6%
 real 1m23.855s
user 1m21.341s
sys 0m2.155s

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x0002
root@kvm1guest1:/home/rdbkuser1# time gzip -v -c operlog.txt > operlog1_lvl_0x0002.gz
operlog.txt: 91.6%
real 1m23.708s
user 1m21.131s
sys 0m2.244s

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x007e
root@kvm1guest1:/home/rdbkuser1# time gzip -v -c operlog.txt > operlog1_lvl_0x007e.gz
operlog.txt: 88.9%
real 0m3.415s
user 0m0.447s
sys 0m2.068s

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x01ff
root@kvm1guest1:/home/rdbkuser1# time gzip -v -c operlog.txt > operlog1_lvl_0x01ff.gz
operlog.txt: 88.9%
real 0m3.659s
user 0m0.450s
sys 0m2.107s
Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use

https://www.ibm.com/support/z-content-solutions/compression/
https://www.ibm.com/support/z-content-solutions/compression/

94 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 4. Preparing the SLES
Kernel-based Virtual Machine
environment for virtual machine
use

This chapter provides instructions to perform an installation of SUSE Linux Enterprise Server
(SLES) on an LPAR, prepare it as a Kernel-based Virtual Machine (KVM) host, and deploy
KVM guests.

This chapter includes the following topics:

� 4.1, “Defining the target configuration” on page 96
� 4.2, “Preparing the infrastructure” on page 98
� 4.3, “Collecting information” on page 102
� 4.4, “Installing SUSE on an LPAR as a KVM host” on page 106
� 4.5, “Preparing the host for virtualization” on page 108
� 4.6, “Configuring the KVM host” on page 111
� 4.7, “Deploying VMs on KVM” on page 127

4

© Copyright IBM Corp. 2022. All rights reserved. 95

4.1 Defining the target configuration

To prepare the environment for the workloads that runs in the virtual machines (VMs), it is
recommended to build an installation plan. For more information, see Chapter 2, “Planning for
the Kernel-based Virtual Machine host and guest” on page 21, which includes the
requirements for the installation.

This section provides the instructions to configure and deploy a basic KVM environment on
SLES15 SP3.

4.1.1 Logical View

The Logical View of our lab environment that is used in this book is shown in Figure 4-1. This
view provides am overview of the entire environment and can be built during the planning
phase. For more information, see Chapter 2, “Planning for the Kernel-based Virtual Machine
host and guest” on page 21.

The following types of networks are available for guests:

� External network through the MacVTap network (MacVTap-net)
� Internal IBM Z platform network through the HiperSocket MacVTap network

Figure 4-1 SLES Logical View

The KVM host can access the following networks:

� HiperSockets network through an HSI CHPID(f2) interface.

� Internal Shared Memory or ISM (SMC-D VFID 1036 and 1136), as described in Chapter 2,
“Planning for the Kernel-based Virtual Machine host and guest” on page 21.

� RoCE network (SMC-R VFID c7 and d7), as described in Chapter 2, “Planning for the
Kernel-based Virtual Machine host and guest” on page 21.

� External network through the OSA network interface card (NIC).
96 Virtualization Cookbook for IBM Z Volume 5: KVM

4.1.2 Physical resources

Figure 4-2 shows the following hardware and connectivity setup:

� One IBM z15 platform with four logical partitions (LPARs)

� Two OSA adapters that are connected to LAN network

� Two FICON adapters for connectivity to storage: SCSI devices (FICON as FCP adapter)

� Four FICON Express16SA+ for connection to the ECKD DASD on IBM DS8900F storage
box.

� One FTP server

� Two HiperSocket defined CHIPDs

� Two Crypto Express cards

Figure 4-2 SLES physical resources

All LPARs can access all resources. Our lab environment includes the following LPARS:

� ARIES35: For RHEL
� ARIES36: For RHEL
� ARIES37: For SLES
� ARIES38: For Ubuntu

This chapter is focused on the ARIES37 LPAR for the SLES implementation.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 97

4.1.3 Software resources

For our configuration, we choose SLES 15 SP3, which is the latest supported version for IBM
Z. The operating system architecture of the Z platform is s390x and the Linux packages must
be based on this architecture.

For more information about SLES-supported versions on IBM Z, see this IBM Documentation
web page.

For KVM virtualization (beyond the operating system), the virtualization package is required
for the KVM host. For more information, see this SLES Documentation web page.

4.2 Preparing the infrastructure

The IT infrastructure planning depends on many of the factors that are discussed in
Chapter 2, “Planning for the Kernel-based Virtual Machine host and guest” on page 21.
During the planning phase (see 2.2, “Planning resources for KVM guests” on page 26), we
made some decisions about the IT resources that are needed for our lab environment. This
section discusses the decisions that we made.

Configuring the resources
For this book, we used the Hardware Management Console (HMC) and Input/Output
configuration data set (IOCDS) to set up the resources. For more information about ICODS,
see I/O Configuration Using z/OS HCD and HCM, SG24-7804.

For users not familiar with HCD and HMC, the use of Dynamic Partition Manager (DPM) is
recommended. For more information, see IBM Support’s IBM Dynamic Partition Manager
Guide.

Configuring the storage resources
In our lab configuration, we decided to use ECKD DASD configuration as storage devices for
the KVM and the guest storages. You also can use SCSI LUNs that use the Fibre Channel
Protocol (FCP) configuration, as described in 2.2.2, “Storage considerations” on page 27.

On IBM Z, the ECKD disk is accessed by using its device address. After the device is
formatted under Linux, a volume name that uses the dasd prefix and a suffix ranging from
a - z are associated to it (see Table 4-1).

Table 4-1 Storage resources

Device address Volume name Capacity Description

90DE dasda 400 GB Rdbkkvm3 boot and
root disk.

904B dasdb 54 GB volume group for kvm
guest qcow2 files

914B dasdc 54 GB VFIO dasd for
kvm3guest3
98 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_suse.html
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_suse.html
https://documentation.suse.com/sles/15-SP3/
http://www.redbooks.ibm.com/redbooks/pdfs/sg247804.pdf
https://www-01.ibm.com/support/docview.wss?uid=isg298495726beda108c85258194006e111d&aid=1
https://www-01.ibm.com/support/docview.wss?uid=isg298495726beda108c85258194006e111d&aid=1

If you have FCP SCSI LUNs environment, you must work with the your storage team to
prepare the disks. The worldwide port name (WWPN) must be given to the storage team for
the correct SAN zoning configuration. An example of WWPN information that is needed for
the zoning is the WWPN of the IBM Z FCP channels and the storage target ports, as shown in
the following example:

� FCP subchannels WWPN:

– LUN : 4000400A00000000
– FCP : B909 WWPN : C05076D08001DA24
– FCP : C909 WWPN : C05076D0800092A4

� Storage target PORTS:

– 5005076309141145: WWPN for P1 storage device port
– 5005076309149145: WWPN for P2 storage device port
– 50050763091b1145: WWPN for P3 storage device port
– 50050763091b9145: WWPN for P4 storage device port

Figure 4-3 shows the SAN configuration for SLES LPAR (ARIES19).

Figure 4-3 SLES SAN configuration example

In this example, we followed the instructions that are described in SUSE’s Deployment Guide:
SUSE Linux Enterprise Server 15 SP3. On our FTP server that included an IP address of
rdbkftp1.pbm.ihost.com, we created a directory for each ISO file that was downloaded from
the SUSE portal and uploaded the contents to the FTP server.

After all of the .ISO files are available on your FTP server, and the server is accessible by the
target (HMC or DPM consoles), you can install the host operating system by choosing the
FTP method of installation.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 99

https://documentation.suse.com/sles/15-SP3/pdf/book-sle-deployment_color_en.pdf
https://documentation.suse.com/sles/15-SP3/pdf/book-sle-deployment_color_en.pdf

FTP can provide a secondary function, which provides access to the local packages
repository. You can start the installation process because the first .ISO installer is the only
.ISO. The following files are required for a SUSE installation along with the SLES15SP1IDVD1/
directory structure:

� /boot:

– /s390x (the rdbkkvm3.p parameter file is in this directory)
– /x86_64

� /[BOOT]

� /s390x

� /repodata

� /noarch

� /media.1

� /docu

� ARCHIVES.gz

� CHECKSUMS

� CHECKSUMS.asc

� COPYRIGHT

� COPYRIGHT.de

� ChangeLog

� INDEX.gz

� README

� gpg-pubkey-307e3d54-5aaa90a5.asc

� gpg-pubkey-39db7c82-5847eb1f.asc

� gpg-pubkey-50a3dd1c-50f35137.asc

� ls-lR.gz

� rdbkkvm1.ins

� suse.ins

� suse_ptf_key.asc

� Susehmc.ins

� ARCHIVES.gz

� CHECKSUMS

� CHECKSUMS.asc

� COPYRIGHT

� COPYRIGHT.de

� ChangeLog

� INDEX.gz

� Module-Basesystem

� Module-Containers

� Module-Desktop-Applications

� Module-Development-Tools
100 Virtualization Cookbook for IBM Z Volume 5: KVM

� Module-Legacy

� Module-Live-Patching

� Module-Public-Cloud

� Module-Python2

� Module-SAP-Applications

� Module-Server-Applications

� Module-Transactional-Server

� Module-Web-Scripting

� Product-HA

� Product-SLES

� Product-SUSE-Manager-Server-4.2

� README

� Boot: /s390x (the prepared rdbkkvm3.p parameter file is in this directory)

� docu

� glump

� gpg-pubkey-307e3d54-5aaa90a5.asc

� gpg-pubkey-39db7c82-5f68629b.asc

� gpg-pubkey-50a3dd1c-50f35137.asc

� ls-lR.gz

� media.1

� repodata

� suse.ins

� suse_ptf_key.asc

� susehmc.ins
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 101

4.3 Collecting information

Based on the instructions that are provided in the planning stage as described in Chapter 2,
“Planning for the Kernel-based Virtual Machine host and guest” on page 21, it is
recommended that you save the information that you use during the installation process.

A good practice is to create a table (see Table 4-2) that contains the components information.
This table is useful during the installation process.

Table 4-2 Sample KVM host installation checklist

KVM host installation checklist

Name Type Description More information

Host IP/subnet TCP/IP 129.40.23.197/24 KVM host

VLAN 8

Hostname.domain DNS rdbkkvm3.pbm.ihost.co
m

DNS server
129.40.106.1

Gateway Default GW 129.40.22.254

FTP server FTP port 20/21 rdbkftp1.pbm.ihost.com Check firewall rules

FTP folder Install folder /SLES15SP3IDVD1 Check permission

FTP access Credentials user: lnxadmin pw xxx

LPAR Logical Partition Aries37

Memory RAIM Memory 32 GB HostOS, GuestsOS, and
Workloads

Physical Processors IFL (shared) 16 IFL SMT enabled

Virtual Processors Virtual Processors Two for each guest Can be expanded later,
recommended vCPU
number <=max of
physical CPUs

Storage ECKD DASD 0.0.90DE
0.0.904B
0.0.914B

400 GB
54 GB
54 GB

OSA1 Network card1 CHP E8 Devices 1E80-1E82

CRYPTO Domain/Card CARDS
0x03
0x06

DOMAINS
0x1E
0x1F
0x20
102 Virtualization Cookbook for IBM Z Volume 5: KVM

4.3.1 Required information for SLES on an LPAR installation

In this section, we describe our lab environment. You can use the information in this section
as a reference to create your own environment.

Installation by using FTP
SLES can be installed from a DVD in the HMC or from an FTP server. In this example, we
installed SLES from an FTP server. Be sure to have the FTP port open in the firewall. Our lab
environment included the following FTP server information:

� IP address: rdbkftp1.pbm.ihost.com

� Credentials:

– User lnxadmin
– Password xxxxxx

� Directory: /SLES15SP3IDVD1

OSA device addresses
On the IBM Z platform, the network interface cards (NIC) are represented by OSA Express
adapters. Each OSA card can manage a range of devices. To use a specific OSA, three
consecutive addresses are required: one device for control reads, one for control writes, and
the third for data.

For this example, we choose the first triplet from OSA CHPID E2 (1E80-1E82).

Networking information
Contact your network administrator for the correct networking information for the host.

The following networking information was used in our lab environment:

� Hostname: rdbkkvm3
� IP address: 129.40.23.197
� Subnet prefix: 24
� Default gateway: 129.40.23.254
� Layer 2 or 3: 2
� VLAN: 8
� DNS: 129.40.106.1 and 129.40.106.2

IP address 100.150.233.60 was used for HiperSockets network access.

Storage
As described 2.2.2, “Storage considerations” on page 27, two options are available for
storage on the Linux on IBM Z platform: ECKD DASD disk or FCP LUN disk.

In this example, we used ECKD DASD.

Our storage included the following information:

� ECKD device address: 90de
� Volume serial: 0X90DE
� Space: 400

The operating system installation uses a single DASD under Logical Volume Manager (LVM).
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 103

4.3.2 Required information for VM installations

In this section, we review the following required information for VM installations:

� Compute
� Memory
� Disk
� Network
� Cryptography

Compute
For VM deployment, all of the guests use two virtual CPUs (vCPU) to use the Simultaneous
Multi-Threading (SMT) on an IBM Integrated Facility for Linux (IFL) processor.

Memory
Each VM has 2 GB of RAM, which is the amount of memory that is related to the type of
workload that a machine is going to host. For the Linux guest operating system, we
recommend starting with 512 MB of memory (for more information, see Chapter 2, “Planning
for the Kernel-based Virtual Machine host and guest” on page 21).

To avoid memory constraints, it is a good practice to have an accurate workload and capacity
study to suitably define the amount of memory.

Disk
QEMU Copy On Write (QCOW2) is a file format for disk image files that are used by Quick
Emulator (QEMU), which is a hosted VM monitor. QCOW2 uses a disk storage optimization
strategy that delays allocation of storage until it is needed. Disk images for specific guest
operating systems often are provided as a file in the QCOW2 format.

A QCOW2 image file was used for the operating system disk in our example.

The files were stored in the LVM to create more flexible storage migrations. For more
information, see 2.2.2, “Storage considerations” on page 27.

The ECKD-DASD used for the Volume Group (VG) that is used for images (rdbkkvm3-images),
is the 0X904B volume.

The maximum space that is specified in our lab environment for the image files was 10 GB,
although this maximum can be extended.

We created the following two disk images to use as storage for the VM guests:

� kvm3guest01: /var/lib/libvirt/images/kvm3guest1_vol001.img
� kvm3guest02: /var/lib/libvirt/images/kvm3guest2_vol001.img
� kvm3guest03: /var/lib/libvirt/images/kvm3guest3_vol001.img
� kvm3guest04: /var/lib/libvirt/images/kvm3guest4_vol001.img

Network
As described in “OSA device addresses” on page 103, contact your network team for the
networking information.

Our lab environment used the following network setup:

� Hostname: kvm3guest01

� IP address: 129.40.23.208
104 Virtualization Cookbook for IBM Z Volume 5: KVM

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� Hostname: kvm3guest02

� IP address: 129.40.23.209

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� Hostname: kvm3guest03

� IP address: 129.40.23.210

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� Hostname: kvm3guest04

� IP address: 129.40.23.211

� Subnet prefix: 24

� Default gateway: 129.40.23.254

� For HiperSockets access:

– Hostname: rdbkkvm3
– IP address: 100.150.233.60
– Hostname: kvm3guest01
– IP address: 100.150.233.61
– Hostname: kvm3guest02
– IP address: 100.150.233.62
– Hostname: kvm3guest03
– IP address: 100.150.233.63
– Hostname: kvm3guest04
– IP address: 100.150.233.64

Cryptography
For more information about the z15 Crypto Express adapters, see 2.4.5, “Cryptography” on
page 42.

In our lab environment, we assigned four crypto adapters and three domains to ARIES37
LPAR.

The Adjunct Processor (AP) queues that we used in our lab environment as our virtual
cryptographic resources are listed in Table 4-3.

Table 4-3 AP queues assignment

Crypto domains/Crypto adapters 03 (0x03) 06 (0x6)

30 (0x1E) 03.001E 06.001E

31 (0x4c) 03.001F 06.001F

32 (0x20) 03.0020 06.0020
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 105

As described in 2.4.5, “Cryptography” on page 42, the AP queues are a combination of
<crypto card>.<crypto domain>., both expressed in hexadecimal. Consider the following
points:

� Domain 30 was used for rdbkkvm3
� Domain 31 was used for kvm3guest1
� Domain 32 was used for kvm3guest2

4.4 Installing SUSE on an LPAR as a KVM host

In this section, we describe how to perform the following tasks:

� Prepare for the installation
� Install SLES on an LPAR
� Prepare the host for virtualization

4.4.1 Preparing the installation

The information that we created to use an FTP server to install SLES on an LPAR is
described in “Installation by using FTP” on page 103.

In this example, we created a directory structure that contained the .ins and .p files that are
needed for the installer for SLES on an LPAR.

Example 4-1 shows the contents of the rdbkkvm3.ins file, which is a copy of the suse.ins file
that is provided in the root of the SLES ISO installer. Change only the line
boot/s390x/parmfile, replacing parmfile with rdbkkvms.p.

Example 4-1 rdbkkvm3.ins

* SUSE Linux for IBM Z Installation/Rescue System
boot/s390x/linux 0x00000000
boot/s390x/initrd.off 0x0001040c
boot/s390x/initrd.siz 0x00010414
boot/s390x/initrd 0x01000000
boot/s390x/rdbkkvm3.p 0x00010480

Example 4-2 shows the rdbkkvms.p file. It defines DASD for the target installation (or the
SCSI information if you have FCP SAN disk), network properties, and the location of the FTP
repository.

Example 4-2 rdbkkvm3.p parameter file

ro ramdisk_size=50000 PORTNO=0 InstNetDev=osa OSAInterface=qdio osahwaddr=
 cio_ignore=all,!condev,!0.0.1e80-0.0.1e82,!0.0.90de
 ReadChannel=0.0.1e80 WriteChannel=0.0.1e81 DataChannel=0.0.1e82
 HostIP=129.40.23.197/24 Gateway=129.40.23.254 Hostname=rdbkkvm3
 Domain=pbm.ihost.com nameserver=129.40.106.1 vlanid=8
 Install=ftp://129.40.23.88/SLES15SP3IDVD1
 usevnc=1 vncpassword=lnx4rdbk ssl_certs=0
 self_update=0
106 Virtualization Cookbook for IBM Z Volume 5: KVM

Consider the following points:

� The rd.dasd statement points to our storage ECKD disk device.

� The cio_ignore=all disables all devices and with the !condev, allows you to specify witch
devices are to be available at the installation time.

� The following parameters are related to networking:

– readchannel, writechannel, and datachannel, which are the devices of the OSA triplet.
– IP parameters: hostname, hostip, netmask, broadcast, and gateway.

� The install parameter points to the source of the installation DVD1.

� The following console parameters were used:

– linuxrclog, which is related to console
– VNC parameters: vnc=1 (VNC enabled) and password VNCPassword

4.4.2 Installing SLES on an LPAR

After all of the prerequisites were met, we started from FTP by using the information that is
described in “Installation by using FTP” on page 103 (see Figure 4-4).

Figure 4-4 Loading from an FTP server

Note: When the cio_ignore=all is used to add new devices, you must use the chzdev
command to update the kernel enabled devices.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 107

When you receive the prompt with the list of .ins files inn the DPM or HMC, choose the file
that you created, such as rdbkkvms.ins.

Continue with the installation process. For more information, this SUSE web page.

4.5 Preparing the host for virtualization

Complete the following steps to enable SLES on IBM Z as a KVM Host:

1. Subscribe the server to the SUSE Repository Mirroring Tool (RMT).

To access the packages and support, you must subscribe your system to a SUSE RMT
server. For more information about this process, see SUSE’s Repository Mirroring Tool
Guide.

Also, you can install and update packages from a local repository. For more information,
see this SUSE web page.

2. Check whether the LPAR supports virtualization functions.

The LPAR must support Start Interpretive Execution (SIE) instructions, as shown in
Example 4-3.

Example 4-3 Checking virtualization support

rdbkkvm3:/home/lnxadmin # lscpu | grep sie
Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs te vx vxd vxe gs vxe2 vxp sort dflt sie

3. Load the KVM module and verify that the loading process was successful.

As shown in Example 4-4, issue the Linux command to load the KVM module by using the
modprobe command, and validate that KVM is loaded by using the command lsmod.

Example 4-4 Loading KVM module

rdbkkvm3:/home/lnxadmin # modprobe kvm
rdbkkvm3:/home/lnxadmin # lsmod | grep kvm
kvm 417792 0
108 Virtualization Cookbook for IBM Z Volume 5: KVM

https://documentation.suse.com/sles/15-SP1/pdf/book-rmt_color_en.pdf
https://documentation.suse.com/sles/15-SP1/html/SLES-all/cha-install.html
https://documentation.suse.com/sles/15-SP1/single-html/SLES-rmt/index.html
https://documentation.suse.com/sles/15-SP1/html/SLES-all/cha-install.html
https://documentation.suse.com/sles/15-SP1/html/SLES-all/cha-install.html
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-install.html
https://documentation.suse.com/sles/15-SP3/single-html/SLES-rmt/index.html
https://documentation.suse.com/sles/15-SP3/single-html/SLES-rmt/index.html
https://documentation.suse.com/sles/15-SP3/single-html/SLES-rmt/index.html

4. Install the virtualization packages and modules.

It is important to install the virtualization module during the LPAR installation (as shown in
Figure 4-5) by choosing the KVM Virtualization Host and tools and KVM Host Server
option during the SLES installation process.

Figure 4-5 SUSE software selection during installation

Alternatively, you can install the virtualization packages later by running the command that
is shown in Example 4-5.

Example 4-5 Installing KVM packages

rdbkkvm3:/home/lnxadmin # zypper install virt-manager virt-viewer qemu kvm libvirt
libvirt-python virt-install

Note: The figures that are presented here show a graphical installation. To use this
method, it is necessary to configure VNC in the guest. For more information about
installing and configuring VNC, see this SUSE Documentation web page.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 109

https://documentation.suse.com/sles/15-SP1/html/SLES-all/cha-vnc.html

5. Validate whether the host is ready for virtualization.

Before starting to work with KVM, run the virt-host-validate command, as shown in
Example 4-6.

Example 4-6 Virtualization verification

rdbkkvm3:/home/lnxadmin # virt-host-validate
 QEMU: Checking for hardware virtualization :
PASS
 QEMU: Checking if device /dev/kvm exists :
PASS
 QEMU: Checking if device /dev/kvm is accessible :
PASS
 QEMU: Checking if device /dev/vhost-net exists :
PASS
 QEMU: Checking if device /dev/net/tun exists :
PASS
 QEMU: Checking for cgroup 'cpu' controller support :
PASS
 QEMU: Checking for cgroup 'cpuacct' controller support :
PASS
 QEMU: Checking for cgroup 'cpuset' controller support :
PASS
 QEMU: Checking for cgroup 'memory' controller support :
PASS
 QEMU: Checking for cgroup 'devices' controller support :
PASS
 QEMU: Checking for cgroup 'blkio' controller support :
PASS
QEMU: Checking if IOMMU is enabled by kernel :
PASS
 QEMU: Checking for secure guest support :
WARN (IBM Secure Execution appears to be disabled in kernel. Add prot_virt=1 to
kernel cmdlin e arguments)
 LXC: Checking for Linux >= 2.6.26
: PASS
 LXC: Checking for namespace ipc :
PASS
 LXC: Checking for namespace mnt :
PASS
 LXC: Checking for namespace pid :
PASS
 LXC: Checking for namespace uts :
PASS
 LXC: Checking for namespace net :
PASS
 LXC: Checking for namespace user :
PASS
 LXC: Checking for cgroup 'cpu' controller support :
PASS
 LXC: Checking for cgroup 'cpuacct' controller support :
PASS
 LXC: Checking for cgroup 'cpuset' controller support :
PASS
 LXC: Checking for cgroup 'memory' controller support :
PASS
110 Virtualization Cookbook for IBM Z Volume 5: KVM

 LXC: Checking for cgroup 'devices' controller support :
PASS
 LXC: Checking for cgroup 'freezer' controller support :
PASS
 LXC: Checking for cgroup 'blkio' controller support :
PASS
 LXC: Checking if device /sys/fs/fuse/connections exists :
PASS

When KVM is used, you must check only the QEMU tests, as shown in Example 4-6 on
page 110. The LXC test results are for Linux containers.

The WARN in the last line indicates that this host is not enabled to use secure guest support.

For more information about secure guest support on IBM z15 and how to secure this feature,
see Chapter 8, “Using IBM Secure Execution” on page 253.

For more information about planning and implementation, see this IBM Documentation web
page.

4.6 Configuring the KVM host

This section describes how to enable SLES as a KVM host and set up the devices to be ready
for VM guest usage.

4.6.1 Defining NICs

As described in 4.1, “Defining the target configuration” on page 96, we use in our lab
environment one NIC through the 1e80-1e82 triplet OSA devices (which is defined in the E8
OSA channel) for management purposes.

For the VM guest network, we used the MacVTap network that uses a bond interface with two
OSA interfaces (OSA E8 and OSA EE).

As shown in Example 4-7, the only NIC that is configured is the NIC that we used for the
SLES installation.

Example 4-7 Configured networks

rdbkkvm3:~ # znetconf -c

Device IDs Type Card Type CHPID Drv. Name State

0.0.1e80,0.0.1e81,0.0.1e82 1731/01 OSD_10GIG E8 qeth eth0 online

By following the architecture that is used in our lab environment for the guest network, we
must add two NICs (OSA triplets) that use different OSA cards that access the same network
through different switches.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 111

https://www.ibm.com/docs/en/lin
https://www.ibm.com/docs/en/lin

Example 4-8 shows two unconfigured NICs that were added with different OSA cards and
CHPIDs, which provide redundancy for the virtual environment.

Example 4-8 Checking NICS availability

rdbkkvm3:~ # znetconf -u
Scanning for network devices...
Device IDs Type Card Type CHPID Drv.
--
0.0.1e83,0.0.1e84,0.0.1e85 1731/01 OSA (QDIO) e8 qeth
0.0.1ee3,0.0.1ee4,0.0.1ee5 1731/01 OSA (QDIO) ee qeth

As shown in Example 4-9, we configured the 0.0.1e83-0.0.1e85 device as interface eth5 and
the 0.0.1ee3-0-0.0.0.1ee5 device as interface eth6.

Example 4-9 Configuring the NICs

rdbkkvm3:/etc/sysconfig/network # chzdev -e qeth 0.0.1e83,0.0.1e84,0.0.1e85 layer2=1
buffer_count=128
QETH device 0.0.1e83:0.0.1e84:0.0.1e85 configured
rdbkkvm3:/etc/sysconfig/network # chzdev -e qeth 0.0.1ee3,0.0.1ee4,0.0.1ee5 layer2=1
buffer_count=128
QETH device 0.0.1ee3:0.0.1ee4:0.0.1ee5 configured

Example 4-10 shows how to validate interfaces eth5 and eth6.

Example 4-10 Validating interfaces

rdbkkvm3:~ # ip link | grep 'eth5\|eth6'
8: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default
qlen 1000
9: eth6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default
qlen 1000

For more information about network configuration on SLES, see this IBM Documentation web
page.

4.6.2 Defining the bond interface

To enable network high availability (HA), we define a bond interface that is named bond0
(master). This interface accesses the physical network through two NIC slave interfaces: eth5
and eth6.

Example 4-11 shows how to define a bond interface and set eth5 and eth6 as slave interfaces
of the bond0 interface. To allow guest traffic through the bond interface, the slave interfaces
must be in promiscuous mode. Promiscuous mode allows a network device to intercept and
read each network packet; therefore, these interfaces must be disabled to change the
properties of NICs.

Example 4-11 Defining a bond interface

rdbkkvm3:~ # ip link add bond0 type bond miimon 100 mode balance-tlb
rdbkkvm3:~ # ip link set eth5 down
rdbkkvm3:~ # ip link set eth6 down
rdbkkvm3:~ # ip link set eth5 master bond0
rdbkkvm3:~ # ip link set eth6 master bond0
rdbkkvm3:~ # ip link set eth5 up
112 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lhdd/lhdd_r_chzdev_cmd.html
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lhdd/lhdd_r_chzdev_cmd.html

rdbkkvm3:~ # ip link set eth6 up
rdbkkvm3:~ # ip link set bond0 up

If dedicated OSAs are used for the slaves and the proper configuration is used for the
switches, you can configure the bonding option as mode=802.3ad miimon=100", which allows
you to create LACP aggregation groups that share the speed and duplex settings.

If two OSA Express7s 10 Gb are used, you can aggregate two 10 Gb per second (Gbps)
ports into a 20 Gbps trunk port. This aggregation is equivalent to having one interface with 20
Gbps speed. It provides fault tolerance and load balancing.

As shown in Example 4-12, we verify that the definition of the bond0 interface is correct.

Example 4-12 Verifying bond interface

rdbkkvm3:~ # cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: transmit load balancing
Primary Slave: None
Currently Active Slave: eth5
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0
Peer Notification Delay (ms): 0

Slave Interface: eth5
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 36:7a:07:65:28:ce
Slave queue ID: 0

Slave Interface: eth6
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: ee:a1:0b:5e:1d:b6
Slave queue ID: 0

Next, we must set the bond0 interface and the slave configuration as permanent in the eth*
interfaces.

Example 4-13 shows the content of our definition file for the channel bonding interface, bond0.

Example 4-13 Making bondn interface permanent-bonding master configuration file

rdbkkvm3:/etc/sysconfig/network # cat ifcfg-bond0
IPADDR='0.0.0.0'
BOOTPROTO='none'
STARTMODE='auto'
BONDING_MASTER='yes'
BONDING_SLAVE0='eth5'
BONDING_SLAVE1='eth6'
BONDING_MODULE_OPTS='mode=balance-tlb miimon=100''
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 113

Example 4-14 shows how to make the VLAN interface configuration.

Example 4-14 Making a VLAN interface bond0.8 interface permanent configuration file

rdbkkvm3:/etc/sysconfig/network # cat ifcfg-bond0.8
IPADDR='0.0.0.0/32'
NAME=''
MTU='0'
BOOTPROTO='static'
STARTMODE='auto'
ZONE=''
ETHERDEVICE='bond0'
VLAN_ID='8'

Example shows how to code the permanent slave configuration file.

Example 4-15 Coding the eth6 interface permanent slave configuration file

IPADDR='0.0.0.0'
NAME=''
BOOTPROTO='none'
STARTMODE='auto'
ZONE=''
rdbkkvm3:/etc/sysconfig/network # cat ifcfg-eth6
IPADDR='0.0.0.0'
NAME=''
BOOTPROTO='none'
STARTMODE='auto'
ZONE=''

For more information about bonding, see this IBM Documentation web page.

Also, we can configure networking parameters to SLES configurations by using yast, which is
a user-friendly interface. For more information about configuring bond interfaces on yast, see
this SUSE Documentation web page.

4.6.3 Defining HiperSockets interfaces

HiperSockets allows memory-to-memory communication between hosts in the same IBM Z
platform. HiperSockets avoids the use of external communications by way of an NIC and
Ethernet switch, which eliminates traditional network latency. For more information about this
feature, see “Network connectivity” on page 6.

As described in 4.1, “Defining the target configuration” on page 96, the HiperSocket CHPID is
F4 in our lab environment, and triplet for the hsi0 interface definition is 0F00-0F02.
114 Virtualization Cookbook for IBM Z Volume 5: KVM

http://public.dhe.ibm.com/software/dw/linux390/docu/l0wlcb00.pdf
bm.com/docs/en/linux-on-systems?topic=availability-linux-channel-bonding-best-practices-recommendations
https://www.ibm.com/docs/en/linux-on-systems?topic=recommendations-channel-bonding-options
https://documentation.suse.com/sle-ha/15-SP3/html/SLE-HA-all/cha-ha-netbonding.html

4.6.4 Defining the HiperSocket interface to support VM guest network

We define the encf00 interface on the HiperSocket chpid(F4) to allow VM guest access to the
HiperSocket network.

Example 4-16 on page 115 shows the HiperSocket device availability.

Example 4-16 List of unconfigured HSI devices on F4 CHPID

rdbkkvm3:/home/lnxadmin # znetconf -u
Scanning for network devices...
Device IDs Type Card Type CHPID Drv.
--
0.0.0f00,0.0.0f01,0.0.0f02 1731/05 HiperSockets f4 qeth
0.0.0f03,0.0.0f04,0.0.0f05 1731/05 HiperSockets f4 qeth

Choose the 0.0.0f00,0.0.0f01,0.0.0f02 devices to create the hsi0 interface, as shown in
Example 4-17.

Example 4-17 Configuring the HiperSocket interface

rdbkkvm3:/home/lnxadmin # chzdev -e qeth 0.0.0f00,0.0.0f01,0.0.0f02 layer2=1
buffer_count=128
QETH device 0.0.0f00:0.0.0f01:0.0.0f02 configured

Next, you validate the new interface, as shown in Example 4-18.

Example 4-18 Validating HiperSockets interface

rdbkkvm3:/home/lnxadmin # ip link show hsi0
12: hsi0: <BROADCAST,MULTICAST> mtu 8192 qdisc noop state DOWN mode DEFAULT group
default qlen 1000
 link/ether 0e:00:f4:37:00:02 brd ff:ff:ff:ff:ff:ff
 altname encf00

4.6.5 Defining the HiperSocket interface of the KVM host

We need to define a HiperSockets interface for KVM use. For this definition, select the
0.0.0f03,0.0.0f04,0.0.0f05 devices to create interface hsi1, as shown in Example 4-19.

Example 4-19 Configuring the HiperSocket interface

rdbkkvm3:/home/lnxadmin # chzdev -e qeth 0.0.0f03,0.0.0f04,0.0.0f05 layer2=1
buffer_count=128
QETH device 0.0.0f03:0.0.0f04:0.0.0f05 configured

Assign the IP address to the interface and start the interface, as shown in Example 4-20.

Example 4-20 Assigning IP address and start HSI1 interface

rdbkkvm3:/home/lnxadmin # ip addr add 100.150.233.60/24 dev hsi1
rdbkkvm3:/home/lnxadmin # ip link set hsi1 up
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 115

Example 4-21 shows the contents of the file, ifcfg-hsi1, which is found in the
/etc/sysconfig/network directory to have persistency for the HSI1 interface.

Example 4-21 Making hsi1 interface configuration permanent

rdbkkvm3:/etc/sysconfig/network # cat ifcfg-hsi0
IPADDR='0.0.0.0/32'
NAME=''
BOOTPROTO='static'
STARTMODE='auto'
ZONE=''
rdbkkvm3:/etc/sysconfig/network # cat ifcfg-hsi1
IPADDR='100.150.233.60/24'
NAME=''
BOOTPROTO='static'
STARTMODE='auto'
ZONE=''

4.6.6 Defining HiperSocket Converged Interface

By using HiperSockets Converged Interface (HSCI) connections, a HiperSockets network
interface can be combined with an external OSA- or RoCE port, which creates a single
network interface. With this interface, we can access the switched network and the intra-CEC
HiperSocket network with the same IP. Both of the devices that participate in the HSCI
interface must have the same physical network (PNET) ID.

For our lab, we choose the adapters that are listed in Table 4-4.

Table 4-4 Adapters that were used in our lab environment

Example 4-22 - Example 4-27 on page 117 show the steps that are required to define the
HiperSocket Converged Interface.

Example 4-22 Checking PNETID of the HiperSocket device

rdbkkvm3:/home/lnxadmin/isos # cat /sys/devices/css0/chp0.f2/util_string | iconv
-f IBM-1047 -t ASCII
PERFNET

Example 4-23 Checking the OSA PNETID

rdbkkvm3:/home/lnxadmin/isos # cat /sys/devices/css0/chp0.ee/util_string | iconv
-f IBM-1047 -t ASCII
PERFNET

Device Type CHPID Devices PNETID

HiperSocket F2 0.0.0FC9
0.0.0FCA
0.0.0FCB

PERFNET

OSA Express EE 0.0.1EE9
0.0.1EEA
0.0.1EEB

PERFNET
116 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 4-24 Creating HSI and OSA interfaces

rdbkkvm3:/home/lnxadmin/isos # chzdev -e qeth 0.0.0fc9,0.0.0fca,0.0.0fcb layer2=1
buffer_count=12
QETH device 0.0.0fc9:0.0.0fca:0.0.0fcb configured
rdbkkvm3:/home/lnxadmin/isos # chzdev -e qeth 0.0.1ee9,0.0.1eea,0.0.1eeb layer2=1
buffer_count=12
QETH device 0.0.1ee9:0.0.1eea:0.0.1eeb configured

Example 4-25 Checking the HSCI interface

rdbkkvm3:/home/lnxadmin/isos # hsci add hsi2 eth10
Verifying net dev eth10 and HiperSockets dev hsi2
Adding hsci0fc9 with a HiperSockets dev hsi2 and an external dev eth10
Set hsi2 MAC 0e:00:f2:37:00:0b on eth10 and hsci0fc9
Successfully added HSCI interface hsci0fc9

Example 4-26 Creating the VLAN 8 interface from hsci0fc9 device and assign IP

rdbkkvm3:/home/lnxadmin/isos # ip link add dev hsci0fc9.8 link hsci0fc9 type vlan
id 8
rdbkkvm3:/home/lnxadmin/isos # ip addr add 129.40.23.230/24 dev hsci0fc9.8
rdbkkvm3:/home/lnxadmin/isos # ip link set up hsci0fc9.8

Example 4-27 Checking HSCI interface

rdbkkvm3:/home/lnxadmin/isos # hsci show
HSCI PNET_ID HiperSockets External
--
hsci0fc9 PERFNET hsi2 eth10

4.6.7 Defining SMC interfaces

SMC-R and SMC-D use shared memory to provide low-latency, high-bandwidth, cross-LPAR
connections for applications. This support is intended to provide application-transparent direct
memory access (DMA) communications to TCP endpoints for socket-based connections.

SMC tools package installation
To support SMC-D (ISM) and SMC-R (RoCE), you must install the smc-tools package. For
more information about obtaining the packages, see this GitHub web page. After the content
is downloaded, decompress the packages and upload them to the host (in our example, to
/home/isos/).

Use the commands that are shown in Example 4-28 to install the packages.

Example 4-28 Installing SMC tools package

rdbkkvm3:/home/lnxadmin/isos # zypper install smc-tools
Loading repository data...
Reading installed packages...
Resolving package dependencies...

The following NEW package is going to be installed:
 smc-tools
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 117

https://github.com/ibm-s390-linux/smc-tools

1 new package to install.
Overall download size: 62.0 KiB. Already cached: 0 B. After the operation,
additional 161.4 KiB will be used.
Continue? [y/n/v/...? shows all options] (y): y
Retrieving package smc-tools-1.5.0-1.8.s390x
(1/1), 62.0 KiB (161.4 KiB unpacked)
Retrieving: smc-tools-1.5.0-1.8.s390x.rpm
..
...[done]

Checking for file conflicts:
..
..[done]
(1/1) Installing: smc-tools-1.5.0-1.8.s390x
..
...[done]
rdbkkvms:/var/lib/libvirt/images # cd smc-tools-1.2.0
rdbkkvms:/var/lib/libvirt/images/smc-tools-1.2.0 # zypper install libn*
rdbkkvms:/var/lib/libvirt/images/smc-tools-1.2.0 # make

SMC-D
In this section, we provide the basic commands to enable SMC-D on the SLES host server.

Example 4-29 shows how to check the ISM device availability.

Example 4-29 Checking PCI devices

rdbkkvm3:/home/lnxadmin/isos # smc_rnics

 FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev

 c7 1 0005:00:00.0 0158 RoCE_Express2 n/a PERFNET eth7

 d7 1 0006:00:00.0 0158 RoCE_Express2 n/a PERFNET eth8

 e7 1 0003:00:00.0 01b8 RoCE_Express2 n/a PERFNET eth1

 f7 1 0004:00:00.0 01b8 RoCE_Express2 n/a PERFNET eth2

 1036 1 0000:00:00.0 07c0 ISM n/a PERFNET n/a

 1136 1 0001:00:00.0 07c1 ISM n/a PERFNET1 n/a

 1236 1 0002:00:00.0 07c2 ISM n/a PERFNET2 n/a
118 Virtualization Cookbook for IBM Z Volume 5: KVM

As shown in Example 4-30 and Example 4-31, we check the PNET ID of the ISM device and
in the OSA. Both should display the same PNET ID.

Example 4-30 Checking PNET ID of the ISM device

rdbkkvm3:/home/lnxadmin/isos # cat
/sys/devices/pci0000:00/0000:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
PERFNET

Example 4-31 Checking the OSA PNET ID

rdbkkvm3:/home/lnxadmin/isos # cat /sys/devices/css0/chp0.ee/util_string | iconv
-f IBM-1047 -t ASCII
PERFNET

In our lab, we define an NIC in CHPID EE (see 4.6.1, “Defining NICs” on page 111) with the
command that is shown in Example 4-32.

Example 4-32 Defining OSA and assign IP

rdbkkvm3:/home/lnxadmin/isos # chzdev -e qeth 0.0.1ee6,0.0.1ee7,0.0.1ee8 layer2=1
buffer_count=128
QETH device 0.0.1ee6:0.0.1ee7:0.0.1ee8 configured

To test the communication between rdbkkvm3 and rdbkkvm2 LPARs in the same CPC that use
the SMC-D, we use the iperf3 tool. To install it, run the yum command that is shown in
Example 4-33 in each LPAR.

Example 4-33 Installing iperf

rdbkkvm3:/home/lnxadmin/isos # zypper addrepo
https://download.opensuse.org/repositories/network:utilities/SLE_15_SP3/network:ut
ilities.repo
rdbkkvm3:/home/lnxadmin/isos # zypper refresh
*respond "t" for allowing temporary access or "a" always
rdbkkvm3:/home/lnxadmin/isos # zypper install iperf
[root@rdbkkvm2 home]# yum -y install iperf3

For more information, see this iopenSUSE.org web page.

Note: Assign IP address 129.40.23.223/24 through Yast. If a VLAN is used, set the IP on
the VLAN interface.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 119

https://software.opensuse.org/package/iperf

Allow the local firewall to accept connections for iperf3 on the 5201 TCP port on rdbkkvm2
LPAR server (see Example 4-43).

Example 4-34 Allowing firewall port 5201

[root@rdbkkvm2 home]# firewall-cmd --permanent --add-port=5201/tcp
success
[root@rdbkkvm2 home]# firewall-cmd --reload
success
[root@rdbkkvm2 ~]# firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: bond1 bond1.008 enP6p0s0 enP6p0s0.008 enc1e80 enc1e80.008 enc1e83
enc1ee3 enc1ee6 enc1ee6.008 encf00 encf03
 sources:
 services: cockpit dhcpv6-client ssh
 ports: 21/tcp 5901/tcp 5201/tcp
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Start iperf3 in listening mode by using the command that is shown in Example 4-35 on
rdbkkvm2.

Example 4-35 Starting iperf3 by using SMC

[root@rdbkkvm2 ~]# smc_run iperf3 -s

Server listening on 5201

Use the command that is shown in Example 4-36 to open another SSH session against the
rdbkkvm2 server and print the information about the SMC sockets.

Example 4-36 Checking the SMC listening on port 5201

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf
Mode
LISTEN 00000 0526700 0.0.0.0:5201

To test SMC connections, issue the iperf3 command that is shown in Example 4-37 on
rdbkkvm1 and check on rdbkkvm2 (see Example 4-37 and Example 4-38 on page 121).

Example 4-37 Running ipfer3 client on rdbkkvm3 to the server on rdbkkvm2

rdbkkvm3:/home/lnxadmin/isos # smc_run iperf3 -c 129.40.23.221 -t 10
Connecting to host 129.40.23.221, port 5201
[5] local 129.40.23.197 port 40958 connected to 129.40.23.221 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 2.86 GBytes 24.6 Gbits/sec 0 14.1 KBytes
[5] 1.00-2.00 sec 2.88 GBytes 24.8 Gbits/sec 0 14.1 KBytes
[5] 2.00-3.00 sec 2.91 GBytes 25.0 Gbits/sec 0 14.1 KBytes
120 Virtualization Cookbook for IBM Z Volume 5: KVM

[5] 3.00-4.00 sec 2.81 GBytes 24.1 Gbits/sec 0 14.1 KBytes
[5] 4.00-5.00 sec 2.80 GBytes 24.0 Gbits/sec 0 14.1 KBytes
[5] 5.00-6.00 sec 2.72 GBytes 23.4 Gbits/sec 0 14.1 KBytes
[5] 6.00-7.00 sec 2.68 GBytes 23.0 Gbits/sec 0 14.1 KBytes
[5] 7.00-8.00 sec 2.71 GBytes 23.3 Gbits/sec 0 14.1 KBytes
[5] 8.00-9.00 sec 2.70 GBytes 23.2 Gbits/sec 0 14.1 KBytes
[5] 9.00-10.00 sec 2.75 GBytes 23.6 Gbits/sec 0 14.1 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 27.8 GBytes 23.9 Gbits/sec 0 sender
[5] 0.00-10.00 sec 27.8 GBytes 23.9 Gbits/sec receiver

iperf Done.

Example 4-38 Checking the usage of SMC-D

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf
Mode
ACTIVE 00000 0129536 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:40950 0000
SMCD
ACTIVE 00000 0129535 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:40948 0000
SMCD
LISTEN 00000 0129522 0.0.0.0:5201
[root@rdbkkvm2 ~]# smcss -D
State UID Inode Local Address Peer Address Intf
Mode GID Token Peer-GID Peer-Token Linkid
ACTIVE 00000 0129536 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:40950 0000
SMCD 11000facb7f88561 0000090810000000 25000fadb7f88561 0000090910000000 00000100
ACTIVE 00000 0129535 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:40948 0000
SMCD 11000facb7f88561 0000090610000000 25000fadb7f88561 0000090710000000 00000100

You can use ISM if multiple subnets exist in your configuration on the same CEC. SMC-D is
enhanced to remove the same subnet restriction by using SMC-Dv2.

SMC-R
SMC also can be enabled between different CPCs by using a RoCE card that allows remote
direct memory access (RDMA) over the external network (SMC-R).

Example 4-39 shows how to check the RoCE device availability.

Example 4-39 Checking PCI devices

rdbkkvm3:/home/lnxadmin/isos # lspci
0006:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4
Lx Virtual Function

The PNET ID in the OSA card is displayed. The PNET ID in the RoCE device also is shown.
Both should display the same PNET ID.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 121

4.6.8 Defining the MacVTap network

This section describes defining two MacVTap networks: one for OSA and another for
HiperSockets.

The same configuration is used as in the SMC-D configuration. However, we use RoCE 2
instead ISM in this case.

Example 3-34 shows a similar example to Example 3-31 on page 69; however, the
communication uses SMC-R in this case.

Example 4-40 Test results

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf Mode
ACTIVE 00000 0126538 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:55590 0000 SMCR
ACTIVE 00000 0126537 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:55588 0000 SMCR
LISTEN 00000 0126533 0.0.0.0:5201

[root@rdbkkvm2 ~]# smcss -R
State UID Inode Local Address Peer Address Intf Mode Role
IB-device Port Linkid GID Peer-GID
ACTIVE 00000 0126538 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:55590 0000 SMCR SERV
mlx5_0 01 01 0000:0000:0000:0000:0000:ffff:8128:17df
fe80:0000:0000:0000:8017:9bff:fea8:a19b
ACTIVE 00000 0126537 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:55588 0000 SMCR SERV
mlx5_0 01 01 0000:0000:0000:0000:0000:ffff:8128:17df
fe80:0000:0000:0000:8017:9bff:fea8:a19b

If multiple subnets exist between IBM z15 CPCS, SMC Version 2 (SMCv2) allows you to
enable multiple IP subnet capability for SMC. This capability is enabled by updates to the
underlying networking specifications for RoCE (RoCEv2) and the IBM Z ISM feature (ISMv2)
along with updates to the related technologies.

4.6.9 Defining the MacVTap network

This section describes defining two MacVTap networks: one for OSA and another for
HiperSockets.

MACVTap for OSA NICs
Instead of the use of the default network connectivity for the guests network address
translation (NAT) connections, we chose MacVTap in bridge mode. This mode enables the
guests a direct connection with the specified interface in the MacVTap network.

To configure the MacVTap network, we use the virsh command and an XML definition file.
Example 4-41 shows our macvtap-net.xml network definition file.

Example 4-41 macvtap-net.xml

rdbkkvm3:/home/lnxadmin # cat macvtap-net1.xml
<network>
 <name>macvtap-net1</name>
 <forward mode="bridge">
 <interface dev="bond0.8"/>
 </forward>
</network>
122 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 4-42 shows the virsh command that is used to define a MacVTap network.

Example 4-42 virsh net-define command

rdbkkvm3:/home/lnxadmin # virsh net-define macvtap-net1.xml
Network macvtap-net1 defined from macvtap-net1.xml

Example 4-43 shows how to set MacVTap-net persistence and start the network.

Example 4-43 virsh net-autostart and net.start command

rdbkkvm3:/home/lnxadmin # virsh net-autostart macvtap-net1
Network macvtap-net1 marked as autostarted
rdbkkvm3:/home/lnxadmin # virsh net-start macvtap-net1
Network macvtap-net1 started

MacVTap for HiperSockets NIC
The same steps that are used in 4.6.9, “Defining the MacVTap network” on page 122 are
applied to the MacVTap HiperSockets definition. Example 4-44 shows the XML file that was
created to define the HiperSockets NIC.

Example 4-44 macvtap-hsi.xml

rdbkkvm3:/home/lnxadmin/isos # cat macvtap-hsi0.xml
<network>
 <name>macvtap-hsi0</name>
 <forward mode="bridge">
 <interface dev="hsi0"/>
 </forward>
</network>

4.6.10 Defining crypto adapters and domain

As described in 2.2.4, “Encryption considerations” on page 33, the Crypto Express card
advantages can be used by the KVM hosts and VM guest.

It is important to check the compatibility list for Crypto Express adapters when SLES is used
before beginning the installation. For more information about supported Crypto Express
adapters with your version of SLES, see this IBM Documentation web page.

To make the AP cards available to the KVM guests (see “Cryptography” on page 105), use
the VFIO mediated device framework to assign cryptographic adapter resources to the
device.

For this process, load the vfio_ap device driver by running the modprobe vfio_ap command.
Then, add adapters 0x0 to the device, as shown in Example 4-45 and Example 4-46 on
page 124.

Example 4-45 Enabling vfio_ap permanently

rdbkkvm3:/etc # vim /etc/modules-load.d/vfio_ap.conf
rdbkkvm3:/etc # cat /etc/modules-load.d/vfio_ap.conf
vfio_ap
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 123

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.ljdd/ljdd_r_supporteddevs.html

Example 4-46 Preparing crypto usage

rdbkkvm3:/home/lnxadmin/isos # modprobe vfio_ap
rdbkkvm3:/home/lnxadmin/isos # echo 0x0 > /sys/bus/ap/apmask
rdbkkvm3:/home/lnxadmin/isos # echo 0x0 > /sys/bus/ap/aqmask

Run the lszcrypt command to display information about the crypto adapters, as shown in
Example 4-47.

Example 4-47 Displaying information about crypto adapters

rdbkkvm3:/home/lnxadmin/isos # lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 1
06 CEX7C CCA-Coproc online

Assign AP queues to the KVM. Example 4-48 shows the procedure to assign the two crypto
cards (03 and 06) and domain (0x1e) to the KVM host.

Example 4-48 Crypto for KVM host

rdbkkvm3:/home/lnxadmin/isos # echo +0x03 > /sys/bus/ap/apmask
rdbkkvm3:/home/lnxadmin/isos # echo +0x06 > /sys/bus/ap/apmask
rdbkkvm3:/home/lnxadmin/isos # echo +0x1e > /sys/bus/ap/aqmask

Example 4-49 shows the verification of the crypto assignment to the KVM host.

Example 4-49 Verifying crypto assignment

rdbkkvm3:/home/lnxadmin/isos # lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 2
03.001e CEX7C CCA-Coproc online 2
06 CEX7C CCA-Coproc online 0
06.001e CEX7C CCA-Coproc online 0

One way to make permanent configuration of the cryptos is running scripts by using the
insserv command, which enables an installed system init script (“boot script”).

Example 4-50 Installing the insserv package

rdbkkvm3:/home/lnxadmin # zypper install insserv-compat
124 Virtualization Cookbook for IBM Z Volume 5: KVM

We created the sles_maintenance service to run the scripts that are shown in Example 4-51at
start.

Example 4-51 Adding 01-crypto_enablement.sh script

rdbkkvm3:/etc/init.d/sles_maintenance.d/start.d # vim 01-crypto_enablement.sh
rdbkkvm3:/etc/init.d/sles_maintenance.d/start.d # chmod u+x
/etc/init.d/sles_maintenance.d/start.d/01-crypto_enablement.sh
rdbkkvm3:/etc/init.d/sles_maintenance.d/start.d # cat 01-crypto_enablement.sh
#!/bin/bash
Freeing ap and aq queues for crypto enablement
echo Preparing crypto enviroment
echo 0x0 > /sys/bus/ap/apmask
echo 0x0 > /sys/bus/ap/aqmask
echo +0x03 > /sys/bus/ap/apmask
echo +0x06 > /sys/bus/ap/apmask
echo +0x1e > /sys/bus/ap/aqmask

For more information about configuring the insserv, see this SUSE web page.

Example 4-52 shows how to generate a Universally Unique Identifier (UUID) for the mediated
device, create the mediated device, and assign the crypto cards and crypto domains to it (for
use and control).

Example 4-52 Generating a UUID for VM guest

rdbkkvm3:/home/lnxadmin/isos # uuidgen
6d3b463c-4bf0-41f8-b22d-2750692431f6
rdbkkvm3:/home/lnxadmin/isos # echo 6d3b463c-4bf0-41f8-b22d-2750692431f6 > /sys/device
s/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/create

rdbkkvm3:/home/lnxadmin # echo 6d3b463c-4bf0-41f8-b22d-2750692431f6 >
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/create
rdbkkvm3:/home/lnxadmin # echo 0x03 >
/sys/devices/vfio_ap/matrix/6d3b463c-4bf0-41f8-b22d-2750692431f6/assign_adapter
rdbkkvm3:/home/lnxadmin # echo 0x06 >
/sys/devices/vfio_ap/matrix/6d3b463c-4bf0-41f8-b22d-2750692431f6/assign_adapter
rdbkkvm3:/home/lnxadmin # echo 0x001f >
/sys/devices/vfio_ap/matrix/6d3b463c-4bf0-41f8-b22d-2750692431f6/assign_domain
rdbkkvm3:/home/lnxadmin # echo 0x001f >
/sys/devices/vfio_ap/matrix/6d3b463c-4bf0-41f8-b22d-2750692431f6/assign_control_domain

The procedure that is shown in Example 4-52 must be done for each domain that is used by a
VM. In our lab environment, we used domains 31 and 32.

Example 4-53 shows how to verify the mediated device crypto assignment.

Example 4-53 Verifying mediated device crypto assignment

rdbkkvm3:/home/lnxadmin # cat
/sys/devices/vfio_ap/matrix/6d3b463c-4bf0-41f8-b22d-2750692431f6/matrix
03.001f
06.001f
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 125

https://www.suse.com/c/easy-running-scripts-boot-and-shutdown/

To make the vfio_ap persistent, you must install the mdevctl package and then, run the
commands that are shown in Example 4-54 by using the UUID, which is the adapter and
domains that are used for the mediated device.

Example 4-54 Making vfio_ap mediated device persistent

rdbkkvm3:/home/lnxadmin # mdevctl define --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
--parent matrix --type vfio_ap-passthrough
rdbkkvm3:/home/lnxadmin # mdevctl modify --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
--addattr=assign_adapter --value=0x03
rdbkkvm3:/home/lnxadmin # mdevctl modify --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
--addattr=assign_adapter --value=0x06
rdbkkvm3:/home/lnxadmin # mdevctl modify --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
--addattr=assign_domain --value=0x001f
rdbkkvm3:/home/lnxadmin # mdevctl modify --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
--addattr=assign_control_domain --value=0x001f
rdbkkvm3:/home/lnxadmin # mdevctl start --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
rdbkkvm3:/home/lnxadmin # mdevctl modify --uuid 6d3b463c-4bf0-41f8-b22d-2750692431f6
--auto rdbkkvm3:/home/lnxadmin # mdevctl list
6d3b463c-4bf0-41f8-b22d-2750692431f6 matrix vfio_ap-passthrough (defined)

Notes: Consider the following points:

� Mediated devices can be configured manually by using sysfs operations.

� The mdevctl utility is used for managing and persisting devices in the mediated device
framework of the Linux kernel. For more information, see this GitHub web page.

� The driverctl device driver is a control utility for Linux. For more information, see this
GitLab web page.

Notes: Consider the following points:

� The mediated device must be started after the host is restarted.

� The --auto parameter that is shown in Example 4-54 triggers only autostart after a
system restart if the user sets the apmask and aqmask correctly and loads the vfio_ap
driver.
126 Virtualization Cookbook for IBM Z Volume 5: KVM

https://github.com/medvctl/mdevctl
https://github.com/medvctl/mdevctl
https://gitlab.com/driverctl/driverctl
https://github.com/medvctl/mdevctl
https://gitlab.com/druverctk/driverctl
https://github.com/mdevctl/mdevctl

4.7 Deploying VMs on KVM

In this section, we describe the deploying VMs in the KVM environment. Creating a VM can
be done by using several methods. This section describes the virt-install command and
virsh tools.

4.7.1 Creating QCOW2 disk image file

As described in “Disk” on page 104, QCOW2 files are used to create the VM disks.

Example 4-55 shows the command that is used to create a 10 GB QCOW2 file.

Example 4-55 Creating qcow2 image file

rdbkkvm3:/home/lnxadmin/isos # qemu-img create -f qcow2 kvm3guest01_vol001.img 10G
Formatting 'kvm3guest01_vol001.img', fmt=qcow2 cluster_size=65536 extended_l2=off
compression_type=zlib size=10737418240 lazy_refcounts=off refcount_bits=16

4.7.2 Installing a new guest by using virt-install

The virt-install is a command-line tool that is used to create VMs on KVM that use the
libvirt hypervisor management library.

Example 4-56 shows how to install a VM by using the virt-install command.

Example 4-56 Creating VM guest by using virt-install command

virt-install --name kvm3guest01 --vcpus 2 --memory 4000 --os-variant sles13sp5
--disk path=/home/lnxadmin/isos/kvm3guest01_vol001.img --network
network:macvtap-net1 --cdrom /home/lnxadmin/SLE-15-SP3-Full-s390x-GM-Media1.iso
--graphics none

Consider the following points:

� The --name parameter specifies the name of the VM guest.

� The --nographics parameter must be specified to disable the graphics installation.

� The --memory parameter specifies the amount of memory (RAM) that is allocated to the
VM (expressed in megabytes).

� The --vcpus parameter specifies how many vcpus are assigned to the VM.

� The --os-variant parameter specifies which type of operating system is to be installed;
this option is highly recommended when importing a disk image. If it is not provided, the
performance of the VM that is created is negatively affected. Run the osinfo-query os
command for a full list of available operating systems.

� The --disk parameter specifies the media to use as storage for the VM guest
(kvm3guest01 uses QCOW2 files). If the file was preallocated, specify the --import
parameter. Otherwise, you can omit the --import parameter and include the new file path
by using the parameters format and size to allocate the file during the installation.

� The --network parameter specifies the network options for the VM guest. In this case, we
are connecting the guest to MacVTap-net that was created as described in “Defining the
MacVTap network” on page 122.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 127

� For the installation source, we used an .iso file that uses the --cdrom parameter. You also
can install from other sources, such as an FTP server

After the command is issued (see Example 4-56 on page 127), the VM installation begins, as
shown in Figure 4-6.

Figure 4-6 VM guest installation process by using vrit-install command

After the restart at the end of the installation process, we delete the parameters that are
specified in the --boot section. Example 4-57 shows how to edit the VM guest domain to
delete <kernel></kernel>, <initrd></initrd>, and <cmdline></cmdline>.

Example 4-57 Editing VM guest domain

rdbkkvm3:/var/lib/libvirt/images # virsh edit kvm3guest01
<domain type='kvm'>
 <name>kvm3guest01</name>
[...]
 <os>
 type arch='s390x' machine='s390-ccw-virtio-3.1'>hvm</type>
 <kernel>/var/lib/libvirt/images/s15p1-kernel.boot</kernel>

Starting install...
Running text console command: virsh --connect qemu:///system console
kvm3guest01
Connected to domain 'kvm3guest01'
Escape character is ^] (Ctrl +])
[0.031118] Linux version 5.3.18-57-default (geeko@buildhost) (gcc version
7.5.0 (SUSE Linux)) #1 SMP Wed Apr 28 10:54:41 UTC 2021 (ba3c2e9)
[0.031120] setup: Linux is running under KVM in 64-bit mode
[0.032419] setup: The maximum memory size is 4000MB
[0.032444] numa: NUMA mode: plain
[0.032491] cpu: 2 configured CPUs, 0 standby CPUs
[0.032567] Write protected kernel read-only data: 10620k
[0.032608] Zone ranges:
[0.032609] DMA [mem 0x0000000000000000-0x000000007fffffff]
[0.032610] Normal [mem 0x0000000080000000-0x00000000f9ffffff]
[0.032612] Movable zone start for each node
[0.032612] Early memory node ranges
[0.032613] node 0: [mem 0x0000000000000000-0x00000000f9ffffff]
[0.032615] Initmem setup node 0 [mem 0x0000000000000000-0x00000000f9ffffff]
[0.068688] percpu: Embedded 33 pages/cpu s98048 r8192 d28928 u135168
[...]
>>> SUSE Linux Enterprise 15 SP3 installation program v7.0.30.3 (c) 1996-2020
SUSE LLC on IBM z15 <<<

Starting udev... [9.512535] SCSI subsystem initialized
[9.514322] alua: device handler registered
[9.532998] emc: device handler registered
[9.551702] rdac: device handler registered
[10.005060] VFIO - User Level meta-driver version: 0.3
[10.009286] vfio_ccw: externally supported module, setting X kernel taint
flag.
[10.056176] virtio_blk virtio2: [vda] 20971520 512-byte logical blocks (10.7
GB/10.0 GiB)
128 Virtualization Cookbook for IBM Z Volume 5: KVM

 <initrd>/var/lib/libvirt/images/s15p1-initrd.boot</initrd>
 <cmdline>HostIP=9.76.61.32/24 Hostname=kvmguest03 Gateway=9.76.61.1 Layer2=1
Install=ftp://itso:itso1cpo@9.76.56.32/SLES15SP1IDVD1/ Manual=1</cmdline>
 <boot dev='hd'/>
 </os>
[...]
</domain>
Domain kvmguest03 XML configuration edited.

Finally, recycle the VM guest (by using the virsh destroy and virsh start commands) to
complete the changes.

For more information about the virt-install command, see this SUSE Documentation web
page.

4.7.3 Cloning a guest by using Virsh

Virsh is a command-line tool that is used to manage VM guests and the hypervisor. It also
uses the libvirt hypervisor management library. In this section, we show how to clone a VM
from a previous image installation base.

Example 4-58 on page 129 shows the first task. Copy the QCOW2 file
kvm3guest01_vol001.img to kvmguest02_vol001.img.

Example 4-58 Copying the QCOW2 file

rdbkkvms:/var/lib/libvirt/images # cp kvm3guest01_vol001.img
kvm3guest02_vol001.img

Run the dumpxml command to return the guest VM’s configuration file. As shown in
Example 4-59, we obtain the XML configuration file kvmsvm02.xml from the VM guest,
kvmsvm01.

Example 4-59 Creating the guest configuration file

rdbkkvm3: /var/lib/libvirt/images # virsh dumpxml kvm3guest01 > kvm3guest02.xml

Because the VM guest is to be cloned, complete the following steps to edit kvm3guest02.xml:

1. Change the VM name in the file from:

<name>kvm3guest01</name>

to:

<name>kvm3guest02</name>.

2. Delete the following UUID assignment statement:

<uuid>b4b9e0fd-b8e5-4b95-9192-9e385f1e4864</uuid>

3. Change the source file of QCOW2 disk from:

<source file='/var/lib/libvirt/images/kvm3guest01_vol001.img'/>

to:

<source file='/var/lib/libvirt/images/kvm3guest02_vol001.img'/>

4. Complete the following steps in the <interface type='direct'> section:

a. Delete the MAC address statement: <mac address='52:54:00:6b:8d:f7'/>.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 129

https://documentation.suse.com/sles/15-SP1/pdf/book-virt_color_en.pdf
https://documentation.suse.com/sles/15-SP3/pdf/book-virtualization_color_en.pdf
https://documentation.suse.com/sles/15-SP3/pdf/book-virtualization_color_en.pdf

b. Delete the target device statement: <target dev='macvtap1'/>.

All deleted information is dynamically generated when we use the virsh define command.

The kvm3guest02 guest is defined as shown in Example 4-60.

Example 4-60 Defining the kvm3guest2 guest

rdbkkvm3:/home/lnxadmin/isos # virsh define kvm3guest02.xml
Domain kvm3guest02 defined from kvm3guest02.xml

To start the new cloned guest, run virsh start kvm3guest02.

You must change the basic parameters on the new guest, such as the IP address and
hostname.

Another way to clone guests is by using the virt-clone command, as shown in
Example 4-61. The guest must be shut down to be cloned.

Example 4-61 Cloning the kvm3guest01 guest

rdbkkvm3:/home/lnxadmin/isos # virt-clone --original kvm3guest01 --name kvm3guest02 --file
/home/lnxadmin/isos/kvm3guest02_vol001.img
Allocating 'kvm3guest02_vol001.img'
| 10 GB 00:00:01

Clone 'kvm3guest02' created successfully.

Consider the following points:

� The --original statement indicates the name of the guest (domain) to be cloned.

� The --name statement indicates the name of the new guest (domain) to be created.

� The --file statement indicates the location of the new qcow2 that is to be allocated for
the new guest.

4.7.4 Adding HiperSockets to the VM guest

To add an NIC, a VM is needed to shut down the guest and edit the domain definition. In this
example, we use a vNIC, macvtap-hsi, which targets the hsi0 HiperSockets interface.

Example 4-62 shows the command that is used to edit the VM domain definition in XML
format.

Example 4-62 Edit domain definition

rdbkkvm3:/home/lnxadmin # virsh edit kvm3guest01
Domain kvm3guest01 XML configuration edited.

You also must add the definition that is shown in Example in the <devices> </devices>
section.

Example 4-63 Interface definition

<devices>
<interface type='network'>

 <source network='macvtap-hsi0'/>
 <model type='virtio'/>
130 Virtualization Cookbook for IBM Z Volume 5: KVM

</interface>
</devices>

After the domain starts, the VM shows the new interface and that the domain definition was
updated, as shown in Example 4-64.

Example 4-64 interface verification

At the VM level:

kvm3guest01:/home/lnxadmin # ip a show eth1
2: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen
1000
 link/ether 52:54:00:ae:00:3f brd ff:ff:ff:ff:ff:ff
 altname enc6

At the KVM host:
rdbkkvm3:/home/lnxadmin # virsh dumpxml kvm3gues01
[...]
<interface type='direct'>
 <mac address='52:54:00:ae:00:3f'/>
 <source network='macvtap-hsi0' portid='75e0d07c-a144-4d73-9257-a7c24e251f7c'
dev='hsi0' mode='bridge'/>
 <target dev='macvtap4'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0006'/>
 </interface>
[...]

4.7.5 Adding space to guest from ECKD DASD

To add space to a VM in our lab, we added a full volume DASD as a virtio device. You can
also add space by using a logical volume from an LVM pool.

The first step is formatting the volume on the host as the example shows for the ECKD device
0.0.914B. For this task, we check whether the device is available for the LPAR and enabled it
before the formatting process (see Example 4-65 and Example 4-66 on page 132).

Example 4-65 DASD formatting

rdbkkvm3:/home/lnxadmin/isos # chzdev -e dasd 0.0.904b
ECKD DASD 0.0.914b configured
rdbkkvm3:/home/lnxadmin/isos # dasdfmt -b 4096 /dev/disk/by-path/ccw-0.0.914b -p
--label=0x914B
Drive Geometry: 60102 Cylinders * 15 Heads = 901530 Tracks
Device Type: Thinly Provisioned

I am going to format the device /dev/disk/by-path/ccw-0.0.914b in the following
way:
 Device number of device : 0x914b
 Labelling device : yes
 Disk label : VOL1
 Disk identifier : 0X914B
 Extent start (trk no) : 0
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 131

 Extent end (trk no) : 1
 Compatible Disk Layout : yes
 Blocksize : 4096
 Mode : Quick
 Full Space Release : yes

WARNING:
Disk /dev/disk/by-path/ccw-0.0.914b is online on operating system instances in 15
different LPARs.
Ensure that the disk is not being used by a system outside your LPAR.
Note: Your installation might include z/VM systems that are configured to
automatically vary on disks, regardless of whether they are subsequently used.

--->> ATTENTION! <<---
All data of that device will be lost.
Type "yes" to continue, no will leave the disk untouched: yes
Releasing space for the entire device...
Skipping format check due to thin-provisioned device.
Formatting the first two tracks of the device.
Finished formatting the device.
Rereading the partition table... ok
For get more i/o performance on the virtual block devices we can configure one or
more I/O threads for the virtual server and each virtual block device can use one
of these I/O threads.

Example 4-66 Creating I/O thread for guest

rdbkkvm3:/home/lnxadmin/isos # virsh iothreadadd --domain kvm3guest01 --id 1
--live
rdbkkvm3:/home/lnxadmin/isos # virsh iothreadadd --domain kvm3guest01 --id 1
--config

Now, we can define and attach to the guest the new formatted DASD. Remember to always
format the DASD on the host, but create the partitions at the guest level if you plan to assign
the hole disk to the guest (see Example 4-67).

Example 4-67 Defining the virtual block device .xml and attach to the guest

rdbkkvm3:/home/lnxadmin/isos # vim kvm3guest01_dasd01.xml
rdbkkvm3:/home/lnxadmin/isos # cat kvm3guest01_dasd01.xml
<disk type="block" device="disk">
<driver name="qemu" type="raw" cache="none" io="native" iothread="1"/>
<source dev="/dev/disk/by-path/ccw-0.0.914b"/>
<target dev="vdb" bus="virtio"/>
<address type="ccw" cssid="0xfe" ssid="0x0" devno="0x00a8"/>
</disk>
rdbkkvm3:/home/lnxadmin/isos # virsh attach-device kvm1guest01
kvm3guest01_dasd01.xml --persistent
Device attached successfully
132 Virtualization Cookbook for IBM Z Volume 5: KVM

Verification commands
In KVM, we can verify the use of the virtio device (see Example 4-68 and Example 4-69).

Example 4-68 Verifying the use of virtio device

rdbkkvm3:/home/lnxadmin # virsh domblklist kvm3guest01
Target Source
--
vda /home/lnxadmin/isos/kvm3guest01_vol001.img
vdb /dev/disk/by-path/ccw-0.0.914b
sda -

Example 4-69 Verifying the device availability on the guest

kvm3guest01:/home/lnxadmin # lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 253:0 0 10G 0 disk
??vda1 253:1 0 300M 0 part /boot/zipl
??vda2 253:2 0 9.7G 0 part /
vdb 253:16 0 41.3G 0 disk

4.7.6 Adding DASD space to guest as a VFIO device

Another way to add DASD to the guest is by using a VFIO pass-through device, which allows
the guest to control the hole DASD as a direct device. To add a DASD to the guest, you must
bring its subchannel under control of the vfio_ccw device driver, create a mediated device for
the DASD and then, assign the mediated device to the guest (see Example 4-70 -
Example 4-75 on page 134).

Example 4-70 Checking the device sub-channel

rdbkkvm3:/home/lnxadmin # lscss -a | grep 904b
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.904b 0.0.24e9 3390/0c 3990/e9 f0 f0 ff 40424143 00000000

Example 4-71 Unbinding the device from host and creating the mediated device for DASD

rdbkkvm3:/home/lnxadmin # echo 0.0.904b > /sys/bus/ccw/drivers/dasd-eckd/unbind
rdbkkvm3:/home/lnxadmin # echo 0.0.26e9 >
/sys/bus/css/devices/0.0.26e9/driver/unbind
rdbkkvm3:/home/lnxadmin # echo 0.0.26e9 > /sys/bus/css/drivers/vfio_ccw/bind
rdbkkvm3:/home/lnxadmin # uuidgen
fef02213-6b37-4434-9158-c4105c8d2b6f
[root@rdbkkvm1 network-scripts]# echo fef02213-6b37-4434-9158-c4105c8d2b6f >
/sys/bus/css/devices/0.0.26e9/mdev_supported_types/vfio_ccw-io/create
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 133

Example 4-72 Adding the mediated device to the definition in the device section

rdbkkvm3:/home/lnxadmin # virsh edit kvm3guest02
 <hostdev mode="subsystem" type="mdev" model="vfio-ccw">
 <source>
 <address uuid="fef02213-6b37-4434-9158-c4105c8d2b6f"/>
 </source>
 <address type="ccw" cssid="0xfe" ssid="0x0" devno="0x00b1"/>
 </hostdev>

Example 4-73 Checking at the guest level

kvm3guest02:/home/lnxadmin # lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.0002 0.0.0000 0000/00 3832/08 yes 80 80 ff 00000000 00000000
0.0.0003 0.0.0001 0000/00 3832/03 yes 80 80 ff 00000000 00000000
0.0.0000 0.0.0002 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.0001 0.0.0003 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.00b1 0.0.0004 3390/0c 3990/e9 yes f0 f0 ff 40424143 00000000
0.0.0004 0.0.0005 0000/00 3832/05 yes 80 80 ff 00000000 00000000
0.0.0005 0.0.0006 0000/00 3832/04 yes 80 80 ff 00000000 00000000

Example 4-74 Enabling the DASD on the guest

kvm3guest02:/home/lnxadmin # chzdev -e dasd 0.0.00b1
ECKD DASD 0.0.00b1 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - ECKD DASD 0.0.00b1

Example 4-75 Verifying the device availability at guest level

kvm3guest02:/home/lnxadmin # lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.00b1 active dasda 94:0 ECKD (ESE) 4096 42259MB 10818360
kvm3guest02:/home/lnxadmin # lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
dasda 94:0 0 41.3G 0 disk
??dasda1 94:1 0 41.3G 0 part
vda 253:0 0 10G 0 disk
??vda1 253:1 0 300M 0 part /boot/zipl
??vda2 253:2 0 9.7G 0 part /

To make the vfio_ccw persistent, the mdevctl and driverctl packages must be installed and
the commands that are shown in Example 4-76 on page 135 run by using the UUID and the
subchannel that are selected for this device.

Notes: Consider the following points:

� Mediated devices can be configured manually by using sysfs operations.

� The mdevctl utility is used for managing and persisting devices in the mediated device
framework of the Linux kernel. For more information, see this GitHub web page.

� The driverctl device driver is a control utility for Linux. For more information, see this
GitLab web page.
134 Virtualization Cookbook for IBM Z Volume 5: KVM

https://github.com/medvctl/mdevctl
https://github.com/mdevctl/mdevctl
https://github.com/medvctl/mdevctl
https://gitlab.com/driverctl/driverctl
https://github.com/medvctl/mdevctl
https://github.com/medvctl/mdevctl

Example 4-76 Making vfio_ccw mediated device persistent

rdbkkvm3:/home/lnxadmin # driverctl -b css set-override 0.0.24e9 vfio_ccw
rdbkkvm3:/home/lnxadmin # mdevctl define -u fef02213-6b37-4434-9158-c4105c8d2b6f
-p 0.0.24e9 -t vfio_ccw-io
rdbkkvm3:/home/lnxadmin # mdevctl start --uuid
fef02213-6b37-4434-9158-c4105c8d2b6f
rdbkkvm3:/home/lnxadmin # mdevctl modify --uuid
fef02213-6b37-4434-9158-c4105c8d2b6f --auto
rdbkkvm3:/home/lnxadmin # mdevctl list
fef02213-6b37-4434-9158-c4105c8d2b6f 0.0.24e9 vfio_ccw-io (defined)

4.7.7 Adding LUNs when FCP SCSI storage is used

To add space to a VM, you can map a target LUN. In this case, you can choose an available
LUN to identify the device-ID that we present to the VM.

As described in 2.2.2, “Storage considerations” on page 27, the following options are
available:

� Entire disk (LUN or ECKD DASD)
� Partition of the disk
� Logical volume

Map the device ID by using the multipath ID. Avoid the use of multipath-friendly names.

Example 4-77 shows how to identify the target LUN.

Example 4-77 Identifying the LUN example

rdbkkvm3:/home/lnxadmin/isos # multipath -ll | grep
36005076309ffd145000000000000000c
36005076309ffd145000000000000000c dm-11 IBM,2107900

Example 4-78 shows the identification by device ID.

Example 4-78 Device mapper mpath identification by device ID

rdbkkvm3:/dev/disk/by-id # ls | grep 36005076309ffd145000000000000000c
dm-name-36005076309ffd145000000000000000c
dm-uuid-mpath-36005076309ffd145000000000000000c
scsi-36005076309ffd145000000000000000c

After identifying the target LUN and the device ID for our lab environment, the target disk is:

/dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000000c

With this information available, the next step is to create an XML file to attach the disk, as
shown in Example 4-79.

Example 4-79 Device mapper mpath identification by device ID

rdbkkvm3:/home/lnxadmin/isos # vim kvm3guest01_block1.xml
rdbkkvm3:/home/lnxadmin/isos # cat kvm3guest01_block1.xml
 <disk type="block" device="disk">
 <driver name="qemu" type="raw" cache="none" io="native"/>
 <source
dev="/dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000000c"/>
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 135

 <target dev="vdb" bus="virtio"/>
 </disk>

Attach disk to the VM guest, as shown in Example 4-80.

Example 4-80 Attaching disk to kvmsvm01 guest

rdbkkvm3:/home/lnxadmin/isos # virsh attach-device kvm3guest01
kvm3guest01_block1.xml --persistent
Device attached successfully

In guest kvmsvm01:

rdbkkvm3:/home/lnxadmin/isos # virsh attach-device kvm3guest01
kvm3guest01_block1.xml --persistent
Device attached successfully

Validate that the host and guest are attached to the disk, as shown in Example 4-81.

Example 4-81 Verifying that the host and guest are attached to the disk

From KVM host:

rdbkkvm3:/home/lnxadmin/isos # virsh domblklist kvm3guest01
 Target Source

 vda /var/lib/libvirt/images/kvm3guest01_vol001.img
 vdb /dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000000c

From kvm3guest01 guest:

kvm3guest01:/home/lnxadmin # lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 254:0 0 10G 0 disk
??vda1 254:1 0 300M 0 part /boot/zipl
??vda2 254:2 0 9.7G 0 part /
vdb 254:16 0 40G 0 disk

4.7.8 Adding cryptography support to the VM guest

As described in 4.6.10, “Defining crypto adapters and domain” on page 123, the crypto
adapters and domain were defined. The AP queues were then assigned for use by KVM. The
vfio_ap mediated device was created to enable the assignment of the crypto device to a VM
guest.

Complete the following steps to add cryptography support to the VM guest:

1. In the VM domain definition, edit the XML file (see Example 4-82). Locate the <devices>
section and add the <hostdev> section, as shown in Example 4-82.

Example 4-82 Editing VM definitions by using virsh

rdbkkvm3:/var/lib/libvirt/images # virsh edit kvm3guest01
Domain kvm3guest01 XML configuration edited.
136 Virtualization Cookbook for IBM Z Volume 5: KVM

Locate the <devices> section and add the <hostdev> section, as shown in Example 4-83.

Example 4-83 Mediated device definition

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ap'>
 <source>
 <address uuid='6d3b463c-4bf0-41f8-b22d-2750692431f6'/>
 </source>
</hostdev>

The true random number generator (TRNG) feature can be used to generate random
numbers (see Example 4-84). For more information, see Chapter 2, “Planning for the
Kernel-based Virtual Machine host and guest” on page 21.

Example 4-84 Statement to use TRNG

<rng model='virtio'>
 <backend model='random'>/dev/trng</backend>
</rng>

2. Recycle the VM and verify the definitions by running the commands that are shown in
Example 4-85.

Example 4-85 Verification commands

rdbkkvm3:/home/lnxadmin/isos # cat /sys/devices/virtual/misc/trng/byte_counter
trng: 32
hwrng: 32
arch: 472720
total: 472784

On the guest, we verify the crypto availability:

kvm3guest01:/home/lnxadmin # lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 1
03.001f CEX7C CCA-Coproc online 1
06 CEX7C CCA-Coproc online 0
06.001f CEX7C CCA-Coproc online 0

Upon completion of these steps, the crypto card is available to be used in the entire
environment, including the KVM host and the VMs.

For more information, see Configuring Crypto Express Adapters for KVM Guests,
SC34-7717.
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 137

http://public.dhe.ibm.com/software/dw/linux390/docu/l198hq00.pdf

4.7.9 Using the Integrated Accelerator for zEnterprise Data Compression

The Integrated Accelerator for zEnterprise Data Compression (zEDC) with the IBM® z15
replaces the zEDC Express adapter with on-chip compression, which provides increased
throughput and capacity. It also reduces the cost of storing, processing, and transporting
data.

The acceleration with the on-chip Integrated Accelerator for zEDC is available to applications
that use zlib or gzip in user space and to the kernel zlib.

To check whether your platform can use the Integrated zEDC, you must check whether the
dflt feature is available by using the command that is shown in Example 4-86.

Example 4-86 Checking the dift feature

root@kvm3guest01:/home/rdbkuser1# lscpu | grep dflt
Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs te vx vxd vxe gs vxe2 vxp sort dflt

In our lab, the dflt feature is available because we use an IBM z15. To use this feature, you
must update the DFLTCC_LEVEL_MASK (see Table 4-5). For more information, see the IBM
Documentation web page.

Table 4-5 Compression statistics

Compression
level

Compression
ratio

Elapsed time Total CPU Time

0x0000 91.6% 1m24.825s 1m18.283s

0x0002 91.6% 1m18.038s 1m17.794s

0x007E 88.9% 0m14.866s 0m1.737s

0x01FF 88.9% 0m16.419s 0m1.757.s
138 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en/linux-on-systems?topic=o-applications-1
https://www.ibm.com/docs/en/linux-on-systems?topic=concepts-hardware-accelerated-compression
https://www.ibm.com/docs/en/linux-on-systems?topic=concepts-hardware-accelerated-compression
https://www.ibm.com/docs/en/linux-on-systems?topic=concepts-hardware-accelerated-compression
https://www.ibm.com/docs/en/linux-on-systems?topic=concepts-hardware-accelerated-compression

The zEDC compression exercises and statistics are listed in Table 4-6.

Table 4-6 zEDC compression exercises and statistics

For more information about Integrated Accelerator for zEDC, see this IBM Documentation
web page.

Exercises:

kvm3guest01:/home/lnxadmin # export DFLTCC_LEVEL_MASK=0x0000
kvm3guest01:/home/lnxadmin # time gzip -v -c operlog.txt > operlog1_nohw.gz
operlog.txt: 91.6%
 real 1m24.825s
user 1m16.746s
sys 0m1.537s

kvm3guest01:/home/lnxadmin # export DFLTCC_LEVEL_MASK=0x0002
kvm3guest01:/home/lnxadmin # time gzip -v -c operlog.txt > operlog1_lvl_0x0002.gz
operlog.txt: 91.6%
real 1m18.038s
user 1m16.298s
sys 0m1.496s

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x007e
kvm3guest01:/home/lnxadmin # time gzip -v -c operlog.txt > operlog1_lvl_0x007e.gz
operlog.txt: 88.9%
real 0m14.866s
user 0m0.430s
sys 0m1.307s

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x01ff
kvm3guest01:/home/lnxadmin # time gzip -v -c operlog.txt > operlog1_lvl_0x01ff.gz
operlog.txt: 88.9%
real 0m16.419s
user 0m0.430s
sys 0m1.327s
Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use 139

https://www.ibm.com/docs/en/linux-on-systems?topic=sr-integrated-zedc-data-compression-1
https://www.ibm.com/docs/en/linux-on-systems?topic=sr-integrated-zedc-data-compression-1

140 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 5. Preparing the Ubuntu
Kernel-based Virtual Machine
environment for virtual machine
use

This chapter describes the installation process for Ubuntu on LPAR, prepare it as a
Kernel-based Virtual Machine (KVM) host, and deploy the KVM guests.

This chapter includes the following topics:

� 5.1, “Defining the target configuration” on page 142
� 5.2, “Preparing the infrastructure” on page 144
� 5.3, “Collecting information” on page 146
� 5.4, “Installing Ubuntu on an LPAR as a KVM host” on page 151
� 5.5, “Preparing the host for virtualization” on page 152
� 5.6, “Configuring the KVM host” on page 154
� 5.7, “Deploying virtual machines on KVM” on page 173

5

© Copyright IBM Corp. 2022. All rights reserved. 141

5.1 Defining the target configuration

To prepare the environment for the workloads that run in the virtual machines (VMs), it is
recommended to build an installation plan. For more information, see 2.2, “Planning
resources for KVM guests” on page 26.

This section provides the instructions to configure and deploy a basic KVM environment on
Ubuntu 21.10 LTS.

5.1.1 Logical View

The Logical View of our lab environment that is used in this book is shown in Figure 5-1. This
view provides an overview of the entire environment and can be built during the planning
phase. For more information, see Chapter 2, “Planning for the Kernel-based Virtual Machine
host and guest” on page 21.

The following networks types for guests are available:

� External network through the MacVTap network
� Internal CPC network through the HiperSocket MacVTap network

Figure 5-1 Ubuntu Logical view

The KVM host can access the following networks:

� HiperSockets network through the HSI (CHPID F4) interface.

� Internal Shared Memory or ISM (SMC-D VFID 1037 and 1137), as described in Chapter 2,
“Planning for the Kernel-based Virtual Machine host and guest” on page 21.

� RoCE network (SMC-R, VFID C8 and D8), as described in Chapter 2, “Planning for the
Kernel-based Virtual Machine host and guest” on page 21.

� External network through the OSA network interface card (NIC).
142 Virtualization Cookbook for IBM Z Volume 5: KVM

5.1.2 Physical resources

Figure 5-2 shows the hardware and connectivity setup, which includes the following
components:

� One IBM z15 platform with four logical partitions (LPARs)

� Two OSA cards that are connected to a LAN

� Four FICON Express16SA+ cards for connection to the ECKD DASD on IBM DS8900F
storage box

� One FTP server

� Two HiperSockets defined CHIPDs

� Two ISM defined as SMC-D

� Two RoCE cards as SMC-R

� Two CryptoExpress cards

Figure 5-2 Ubuntu physical resources

All LPARs can access all resources. Our lab environment includes the following LPARS:

� ARIES35: For RHEL
� ARIES36: For RHEL
� ARIES37: For SLES
� ARIES38: For Ubuntu
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 143

5.1.3 Software resources

The Ubuntu version that was used in our lab environment is 21.10 LTS, which is latest
supported version for IBM Z. It is important to know that the operating system architecture of
the Z platform is s390x and the Linux packages must be based on this architecture.

For more information about Ubuntu-supported versions on IBM Z, see this IBM
Documentation web page.

For KVM virtualization beyond the operating system, the virtualization package is required for
the KVM host. For more information, see this Ubuntu Documentation web page.

5.2 Preparing the infrastructure

The IT infrastructure planning depends on many factors, as described in Chapter 2, “Planning
for the Kernel-based Virtual Machine host and guest” on page 21.

During the planning phase, we made some decisions regarding the IT resources that are
needed for our lab environment. This section discusses those decisions.

5.2.1 Configuring resources

For this book, we used the Hardware Manage Console (HMC) and input/output configuration
data set (IOCDS) to set up the resources. For more information about ICODS, see I/O
Configuration Using z/OS HCD and HCM, SG24-7804.

For users that are unfamiliar with the HMC, the use of Dynamic Partition Manager (DPM) is
recommended. For more information, see this IBM Support web page.

5.2.2 Configuring storage resources

In our lab configuration, we decided to use the ECKD DASD configuration as storage devices
for the KVM and the guest storages. You can also use SCSI LUNs by using a Fibre Channel
Protocol (FCP) configuration, as described in 2.2.2, “Storage considerations” on page 27. On
IBM Z, the ECKD disk is accessed through his device address.

After we format the device under Linux, the disk displays a name; for example, starting with
dasdx (where x is a - z).

Table 5-1 Storage resources

Note: This chapter is focused on the ARIES38 LPAR for the Ubuntu implementation.

Device address Volume name Capacity Description

91DE dasda 400 GB Rdbkkvm1 boot and
root disk

904C dasdb 54 GB volume group for kvm
guest qcow2 files

914C dasdc 54 GB volume group for kvm
guest qcow2 files
144 Virtualization Cookbook for IBM Z Volume 5: KVM

https://help.ubuntu.com/community/KVM/Installation
https://www-01.ibm.com/support/docview.wss?uid=isg298495726beda108c85258194006e111d&aid=1
http://www.redbooks.ibm.com/redbooks/pdfs/sg247804.pdf
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_ubuntu.html
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_ubuntu.html
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_ubuntu.html
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaaf/lnz_r_ubuntu.html

If an FCP SCSI LUNs environment is used, work with your storage team to prepare the disks.
The worldwide port name (WWPN) must be provided to the storage team for the correct SAN
zoning configuration.

An example of WWPN information that is needed for the zoning is the WWPN of the IBM Z
FCP channels and the storage target ports, as shown in the following example:

� FCP subchannels WWPN:

– LUN: 4001400800000000
– FCP: B90A WWPN: C05076D08001DAA8
– FCP: C90A WWPN: C05076D080009328

� Storage target PORTS:

– 5005076309141145 is the WWPN for P1 storage device port
– 5005076309149145 is the WWPN for P2 storage device port
– 50050763091b1145 is the WWPN for P3 storage device port
– 50050763091b9145 is the WWPN for P4 storage device port

Figure 5-3 shows an FCP/SCSI storage area network (SAN) configuration example.

Figure 5-3 Ubuntu SAN configuration
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 145

5.2.3 Setting up the FTP server for the installation

In this example, we followed the Ubuntu instructions that are available at this Ubuntu Wiki web
page.

You must download the .iso file from Ubuntu 21.10 (Impish Indri).

On our FTP server that included an IP address of rdbkftp1.pbm.ihost.com, we created a
directory for each ISO file that was downloaded from Ubuntu images page Ubuntu 21.10
(Impish Indri) and uploaded the contents to the FTP server.

For an Ubuntu 21.10 LTS (impish) installation, the following installation path was used in our
FTP server:

/var/www/html/ubuntu-21.10-live-server-s390x

5.3 Collecting information

Based on the instructions that are provided in the planning stage as described in Chapter 2,
“Planning for the Kernel-based Virtual Machine host and guest” on page 21, it is
recommended that you save the information that you use during the installation process.

A good practice is to create a table (see Table 5-2) that contains the components’ information.
This table is useful during the installation process and for future consultation.

Table 5-2 Sample KVM host installation checklist

Name Type Description More information

Host IP/subnet TCP/IP 129.40.23.198 /
255.255.255.0

KVM host

VLAN 8

Hostname.domain DNS rdbkkvm1.pbm.ihost.com rdbkkvm1.pbm.ihost.com

Gateway Default GW 129.40.23.254

FTP server FTP port 20/21 rdbkftp1.pbm.ihost.com Check firewall rules

FTP folder Installation
parameter

/var/www/html/ubuntu-
21.10-live-server-s390x

Check permission

FTP access Credentials User: lnxadmin pw xxx

LPAR Logical Partition Aries38

Memory RAIM Memory 128 GB HostOS, GuestsOS, and
Workloads

Physical Processors IFL (shared) 16 IFL SMT enabled

Virtual Processors Virtual Processors 2 for each guest Can be expanded later,
recommended vCPU
number <=max of
physical CPUs

Storage ECKD DASD 0.0.91DE
090904C
0.0.914C

400 GB
54 GB
54 GB
146 Virtualization Cookbook for IBM Z Volume 5: KVM

https://wiki.ubuntu.com/S390X/Installation%20In%20LPAR
https://wiki.ubuntu.com/S390X/Installation%20In%20LPAR

5.3.1 Required information for Ubuntu on an LPAR installation

In this section, we provide the information about our lab environment. You can use the
information in this section as a reference to create your own environment.

Installing by using FTP
The Ubuntu installation points to an FTP server that is provided by Canonical. Be sure to have
the FTP port open in the firewall. The FTP server in our lab environment includes the
following the pertinent information:

� IP address: rdbkftp1.pbm.ihost.com

� Credentials:

– User lnxadmin
– Password: xxxxxx

� Directory: /var/www/html/ubuntu-21.10-live-server-s390x

OSA device addresses
On the IBM Z platform, the Network interfaces (NIC) are represented by OSA express
adapters. Each OSA card can manage a range of devices. To use a specific OSA, three
consecutive addresses are required: one device for control reads, one for control writes, and
the third for data.

For this example, we choose the first triplet from OSA CHPID E8: 1E80-1E82.

OSA1 Network card1 CHP E8 Devices 1E80-1E82

CRYPTO Domain/Card CARDS
0x03
0x06

DOMAINS
0x28
0x2A

Name Type Description More information

Host IP/subnet TCP/IP 129.40.23.198 /
255.255.255.0

KVM host

VLAN 8

Hostname.domain DNS rdbkkvm1.pbm.ihost.com rdbkkvm1.pbm.ihost.com

Gateway Default GW 129.40.23.254

FTP server FTP port 20/21 rdbkftp1.pbm.ihost.com Check firewall rules

FTP folder Installation
parameter

/var/www/html/ubuntu-
21.10-live-server-s390x

Check permission

FTP access Credentials User: lnxadmin pw xxx

LPAR Logical Partition Aries38

Memory RAIM Memory 128 GB HostOS, GuestsOS, and
Workloads

Physical Processors IFL (shared) 16 IFL SMT enabled
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 147

Networking information
Contact your network administrator to obtain the networking information for the host.

The following networking information was used in our lab environment:

� Host name: rdbkkvms
� IP address: 9.76.61.184
� Hostname: rdbkkvm1
� IP address: 129.40.23.198
� Subnet prefix: 24
� Default gateway: 129.40.23.254
� Layer 2 or 3: 2
� VLAN: 8
� DNS: 129.40.106.1 and 129.40.106.2

For HiperSockets network access, IP address 100.150.233.70 was used.

Storage
As described in 2.2.2, “Storage considerations” on page 27, two options are available on
Linux on z platform: ECKD DASD disk or FCP LUN disk. I

n this example, we used ECKD DASD.

Our example featured the following storage information:

� ECKD device address: 91DE
� Volume serial: 0X91DE
� Space: 400

The operating system installation uses a single DASD under Logical Volume Manager (LVM).

5.3.2 Required information for virtual machine installations

In this section, we review following the required components for VM installations:

� Compute
� Memory
� Disk
� Network
� Cryptography

Compute
For VM deployment, all of the guests use two virtual CPUs (vocable) to use the Simultaneous
Multi-Threading (SMT) on an IBM Integrated Facility for Linux (IFL) processor.

Memory
Each VM features 2 GB of RAM, which is the amount of memory that is related to the type of
workload that a machine is going to host. For the Linux guest operating system, we
recommend starting with 512 MB of memory (see Chapter 2, “Planning for the Kernel-based
Virtual Machine host and guest” on page 21).

To avoid memory constraints, it is a good practice to have an accurate workload and capacity
study to accurately define the amount of memory.
148 Virtualization Cookbook for IBM Z Volume 5: KVM

Disk
QCOW2 is a file format for disk image files that are used by Quick Emulator (QEMU), which is
a hosted VM monitor. QEMU Copy On Write uses a disk storage optimization strategy that
delays allocation of storage until it is needed. Disk images for specific guest operating
systems are often provided as a file in the QCOW2 format.

A QCOW2 image file was used for the operating system disk in our example. The files were
stored in the LVM to create more flexible storage migrations.

For more information, see 2.2.2, “Storage considerations” on page 27.

The ECKD DASD used for the Volume Group (VG) that is used for images
(rdbkkvm4-images), is the 0X904C volume.

The maximum space that is specified in our lab environment for the image files was 10 GB,
but can be extended. We created the following two disk images to use as storage for the
virtual machine guests:
� kvm4guest01: /var/lib/libvirt/images/kvm4guest1_vol001.img
� kvm4guest02: /var/lib/libvirt/images/kvm4guest2_vol001.img
� kvm4guest03: /var/lib/libvirt/images/kvm4guest3_vol001.img
� kvm4guest04: /var/lib/libvirt/images/kvm4guest4_vol001.img

Network
As described in “OSA device addresses” on page 147, you must contact your network team
to obtain the proper networking information.

The following guest network setup was used in our lab environment:

� For external network access:

– Hostname: kvm4guest01
– IP address: 129.40.23.212
– Subnet prefix: 24
– Default gateway: 129.40.23.254
– Hostname: kvm4guest02
– IP address: 129.40.23.213
– Subnet prefix: 24
– Default gateway: 129.40.23.254
– Hostname: kvm4guest03
– IP address: 129.40.23.214
– Subnet prefix: 24
– Default gateway: 129.40.23.254
– Hostname: kvm4guest04
– IP address: 129.40.23.215
– Subnet prefix: 24
– Default gateway: 129.40.23.254

For HiperSockets access:

– Hostname: rdbkkvm4
– IP address: 100.150.233.60
– Hostname: kvm4guest01
– IP address: 100.150.233.61
– Hostname: kvm4guest02
– IP address: 100.150.233.62
– Hostname: kvm4guest03
– IP address: 100.150.233.63
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 149

– Hostname: kvm4guest04
– IP address: 100.150.233.64

Cryptography
For more information about the z15 Crypto Express adapters, see 2.4.5, “Cryptography” on
page 42. In our lab environment, we assigned two crypto adapters and three domains to the
ARIES38 LPAR.

The Adjunct Processor (AP) queues that we used in our lab environment as our virtual
cryptographic resources are listed in Table 5-3.

Table 5-3 AP queues assignment

As described in 2.4.5, “Cryptography” on page 42, the AP queues are a combination of
<crypto card>.<crypto domain>., which are expressed in hexadecimal form.

Consider the following points:

� Domain 40 was used for rdbkkvm4
� Domain 41 was used for kvm4guest1
� Domain 42 was used for kvm4guest2

Crypto domains/Crypto adapters 03 (0x03) 06 (0x6)

40 (0x28) 03.001A 06.001A

41(0x29) 03.004F 06.004F

42(0x2A) 03.0050 06.0050
150 Virtualization Cookbook for IBM Z Volume 5: KVM

5.4 Installing Ubuntu on an LPAR as a KVM host

In this section, we describe how to complete the following tasks:

� Prepare for the installation
� Install Ubuntu on an LPAR
� Prepare the host for virtualization

5.4.1 Preparing the installation

For more information about the use of an FTP server to install Ubuntu on an LPAR, see
“Installing by using FTP” on page 147.

5.4.2 Installing Ubuntu on an LPAR

After all of the prerequisites were met, we started from FTP by using the information that is
described in “Installing by using FTP” on page 147 (see Figure 5-4).

Figure 5-4 Ubuntu load from removable media or server

In the DPM or HMC, when you receive the prompt with the list of .ins files, choose the file
that you created, such as ubuntu.ins (see Figure 5-5).

Figure 5-5 Selecting Ubuntu .ins file

Continue with the installation process and use the Installation In LPAR as guidance.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 151

https://wiki.ubuntu.com/S390X/Installation%20In%20LPAR

5.5 Preparing the host for virtualization

Complete the following steps to enable Ubuntu on IBM Z as a KVM Host:

1. Subscribe the server to the Ubuntu network.

For production environments, is recommended to subscribe the server to the Ubuntu
support. For more information, see this web page.

2. Check whether the LPAR supports virtualization functions.

The LPAR must support Start Interpretive Execution (SIE) instructions. Example 5-1
shows how to check SIE support.

Example 5-1 Checking virtualization support

root@rdbkkvm4:/home/lnxadmin# lscpu | grep sie
Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs te vx vxd vxe gs vxe2 vxp sort dflt sie

Example 5-2 shows how to check whether KVM is available and acceleration can be used.

Example 5-2 Checking KVM availability

root@rdbkkvm4:/home/lnxadmin# kvm-ok

INFO: /dev/kvm exists

KVM acceleration can be used

3. Install the virtualization packages and modules.

In this step, you install the virtualization packages by using the commands that are shown
in Example 5-3.

Example 5-3 Installing KVM packages

root@rdbkkvm4:/home/lnxadmin# sudo apt-get install qemu-kvm libvirt-daemon-system
libvirt-clients bridge-utils virtinst

Example 5-4 shows how to add the required root user by using the adduser command.

Example 5-4 Adding required users

root@rdbkkvm4:/home/lnxadmin# sudo adduser `id -un` libvirt
Adding user `root' to group `libvirt' ...
Adding user root to group libvirt
Done.
root@rdbkkvm4:/home/lnxadmin# sudo adduser `id -un` kvm
Adding user `root' to group `kvm' ...
Adding user root to group kvm
Done.
152 Virtualization Cookbook for IBM Z Volume 5: KVM

https://ubuntu.com/support

4. Validate whether the host is ready for virtualization.

Before working with KVM, run the virt-host-validate command, as shown in
Example 5-5.

Example 5-5 Virtualization verification

root@rdbkkvm4:/home/lnxadmin# virt-host-validate
QEMU: Checking for hardware virtualization : PASS
QEMU: Checking if device /dev/kvm exists : PASS
QEMU: Checking if device /dev/kvm is accessible : PASS
QEMU: Checking if device /dev/vhost-net exists : PASS
QEMU: Checking if device /dev/net/tun exists : PASS
QEMU: Checking for cgroup 'cpu' controller support : PASS
QEMU: Checking for cgroup 'cpuacct' controller support : PASS
QEMU: Checking for cgroup 'cpuset' controller support : PASS
QEMU: Checking for cgroup 'memory' controller support : PASS
QEMU: Checking for cgroup 'devices' controller support : PASS
QEMU: Checking for cgroup 'blkio' controller support : PASS
QEMU: Checking for device assignment IOMMU support : PASS
QEMU: Checking if IOMMU is enabled by kernel : PASS
QEMU: Checking for secure guest support : WARN

(IBM Secure Execution appears to be disabled in kernel. Add prot_virt=1 to kernel cmdline
arguments)
[…]

The warning in the last line of code indicates that this host is not enabled to use secure guest
support.

For more information about secure guest support on IBM z15, see 8.3, “Enabling and
verifying that the CPC is Secure Execution ready” on page 255.

For more information about planning and implementation, see this IBM Documentation web
page.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 153

https://www.ibm.com/docs/en/linux-on-systems?topic=linux-ubuntu-server
https://www.ibm.com/docs/en/linux-on-systems?topic=linux-ubuntu-server

5.6 Configuring the KVM host

This section describes how to enable Ubuntu as the KVM host and set up the devices to be
ready for VM guest usage.

5.6.1 Defining NICs

As described in 5.1, “Defining the target configuration” on page 142, in our lab environment,
we used one NIC through the 1e80-1e82 triplet OSA devices (which is defined in the E8 OSA
channel) for management purposes. For the VM guest network, we used the MacVTap
network that uses a two OSA interfaces (OSA E8 and OSA EE).

As shown in Example 5-6, the only NIC that is configured is the NIC that we used for the
Ubuntu installation.

Example 5-6 Configured networks

root@rdbkkvm4:/home/lnxadmin# znetconf -c
Device IDs Type Card Type CHPID Drv. Name State

0.0.1e80,0.0.1e81,0.0.1e82 1731/01 OSD_10GIG E8 qeth enc1e80 online

By following the architecture that is proposed in our lab environment for the guest network, we
added two NICs (OSA triplets) that use different OSA cards that access the same network
through different switches.

Example 5-7 shows two unconfigured NICs that were added with different OSA cards and
CHPIDs, which provides redundancy for the virtual environment.

Example 5-7 Checking NICS availability

root@rdbkkvm4:/home/lnxadmin# znetconf -u | grep 'e8\|ee'
0.0.1e83,0.0.1e84,0.0.1e85 1731/01 OSA (QDIO) e8 qeth
0.0.1ee3,0.0.1ee4,0.0.1ee5 1731/01 OSA (QDIO) ee qeth

As shown in Example 5-8, we configure the 0.0.1e83-0.0-1e85 device as interface eth0 and
the 0.0.1ee3-0.0.0-1ee5 device as interface eth1.

Example 5-8 Configuring the NICs

root@rdbkkvm4:/home/lnxadmin# chzdev -e qeth 0.0.1e83,0.0.1e84,0.0.1e85 layer2=1
buffer_count=128
QETH device 0.0.1e83:0.0.1e84:0.0.1e85 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - QETH device 0.0.1e83:0.0.1e84:0.0.1e85
update-initramfs: Generating /boot/initrd.img-5.13.0-21-generic

Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: dasda (91de).
Done.

root@rdbkkvm4:/home/lnxadmin#
root@rdbkkvm4:/home/lnxadmin#
154 Virtualization Cookbook for IBM Z Volume 5: KVM

root@rdbkkvm4:/home/lnxadmin# chzdev -e qeth 0.0.1ee3,0.0.1ee4,0.0.1ee5 layer2=1
buffer_count=128
QETH device 0.0.1ee3:0.0.1ee4:0.0.1ee5 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - QETH device 0.0.1ee3:0.0.1ee4:0.0.1ee5
update-initramfs: Generating /boot/initrd.img-5.13.0-21-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: dasda (91de).
Done.

Example 5-9 shows how to check the NICS when the configuration is complete.

Example 5-9 Checking NICS configuration

root@rdbkkvm4:/home/lnxadmin# lsqeth enc1e83
Device name : enc1e83

 card_type : OSD_10GIG
 cdev0 : 0.0.1e83
 cdev1 : 0.0.1e84
 cdev2 : 0.0.1e85
 chpid : E8
 online : 1
 portname : no portname required
 portno : 0
 state : SOFTSETUP
 priority_queueing : disabled
 buffer_count : 128
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 switch_attrs : unknown
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 0
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0

For more information about network configuration on Ubuntu, see IBM Documentation.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 155

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.ubdd/ludd_r_chzdev_cmd.html

5.6.2 Defining the bond interface

First, check whether the bonding module is enabled. If it is not enabled, enable it and make it
persistent after the host is restarted (see Example 5-10).

Example 5-10 Enabling bonding module and make it persistent (adding modules i /etc/modules)

root@rdbkkvm4:/home/lnxadmin# modprobe bonding

root@rdbkkvm4:/home/lnxadmin# cat /etc/modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
bonding

To enable network high availability (HA), we define a bond interface that is named bond0
(master). This interface accesses the physical network through two NIC slave interfaces:
enc1e23 and enc1e43.

Example 5-11 shows how to define a bond interface and set enc1e23 and enc1e43 as slave
interfaces on the bond0 interface. To change the properties of these NICs, the interfaces must
be down.

Example 5-11 Defining bond interface

root@rdbkkvm4:/home/lnxadmin# ip link add bond0 type bond miimon 100 mode
balance-tlb
root@rdbkkvm4:/home/lnxadmin# ip link set enc1e83 down
root@rdbkkvm4:/home/lnxadmin# ip link set enc1ee3 down
root@rdbkkvm4:/home/lnxadmin# ip link set enc1e83 master bond0
root@rdbkkvm4:/home/lnxadmin# ip link set enc1ee3 master bond0
root@rdbkkvm4:/home/lnxadmin# ip link set enc1e83 up
root@rdbkkvm4:/home/lnxadmin# ip link set enc1ee3 up
root@rdbkkvm4:/home/lnxadmin# ip link set bond0 up

If you have dedicated OSAs for the slaves and the suitable configuration in the switches, you
can configure de bound.options as mode=802.3ad miimon=100, which allows you to create
LACP aggregation groups that share the speed and duplex settings.

If you have two OSA Express7s 10 Gb, you can aggregate two 10 Gb per second (Gbps)
ports into a 20 Gbps trunk port. This configuration is equivalent to having one interface with
20 Gbps speed. It also provides fault tolerance and load balancing.

As shown in Example 5-12, we verify that the definition of the bond0 interface is correct.

Example 5-12 Verifying bond interface

root@rdbkkvm4:/home/lnxadmin# cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v5.13.0-21-generic

Bonding Mode: transmit load balancing
Primary Slave: None
Currently Active Slave: enc1e83
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0
156 Virtualization Cookbook for IBM Z Volume 5: KVM

Peer Notification Delay (ms): 0

Slave Interface: enc1e83
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: ea:d1:60:38:33:74
Slave queue ID: 0

Slave Interface: enc1ee3
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: ee:4c:ae:fc:25:f0
Slave queue ID: 0

Next, we must set the bond0 interface and the slave configuration as permanent in the eth*
interfaces.

For this task, we used Netplan. Netplan is a utility that is used to configure network interfaces
on Linux. Netplan uses YAML files for configuring network interfaces and is available in the
official package repository of Ubuntu.

To install Netplan, update your APT package repository cache; then, run the sudo apt
install netplan command.

For more information about interface management through Netplan, see this web page.

Example 5-13 shows the section that must be added in the definition file for the bond interface
(bond0) in the /etc/netplan/01-netcfg.yaml file.

Example 5-13 Making bond0 and slave interfaces permanent

root@rdbkkvm4:/etc/netplan# cat 02-netcfg.yaml
network:
 version: 2
 renderer: networkd
 ethernets:
 enc1e23:
 dhcp4: no
 dhcp6: no
 enc1e43:
 dhcp4: no
 dhcp6: no
 bonds:
 bond0:
 dhcp4: no
 dhcp6: no
 interfaces:
 - enc1e23
 - enc1e43
 parameters:
 mode: balance-tlb
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 157

https://ubuntu.com/blog/ubuntu-bionic-netplan

Example 5-14 shows the command that is used to apply the network configuration that was
created in Example 5-13 on page 157.

Example 5-14 Applying the network configuration

root@rdbkkvm4:/etc/netplan# netplan apply 02-netcfg.yaml

Because we used the VLAN 8 in our lab, we must create a VLAN sub-interface of the bond1
connection (see Example 5-15).

Example 5-15 Creating the bond1.008 VLAN 8 subinterface

root@rdbkkvm4:/etc/netplan# cat 04-netcfg.yaml
network:
 version: 2
 renderer: networkd
 vlans:
 bond0.8:
 dhcp6: no
 dhcp4: no
 accept-ra: no
 id: 8
 link: bond0
link: bond0

Example 5-16 shows the command that is to apply the network configuration that was created
in Example 5-15.

Example 5-16 Applying the network configuration

root@rdbkkvm4:/etc/netplan# netplan apply 04-netcfg.yaml

For more information about bonding, see the IBM publication Linux Channel Bonding Best
Practices and Recommendations.

5.6.3 Defining HiperSockets interfaces

HiperSockets allows memory-to-memory communication between hosts in the same IBM Z
platform. HiperSockets avoids the use of external communications by way of a NIC and
Ethernet switch, which eliminates traditional network latency.

For more information about this feature, see “Network connectivity” on page 6.

As described in 5.1, “Defining the target configuration” on page 142, the HiperSocket CHPID
is F4 and triplet for the encf00 interface definition is 0F00-0F02 in our lab environment.

5.6.4 Defining HiperSocket interface to support VM guest network

We define the encf00 interface on the HiperSocket chpid(f4) to allow VM guests access to
the HiperSocket network.
158 Virtualization Cookbook for IBM Z Volume 5: KVM

http://public.dhe.ibm.com/software/dw/linux390/docu/l0wlcb00.pdf
http://public.dhe.ibm.com/software/dw/linux390/docu/l0wlcb00.pdf

Example 5-17 shows the HiperSocket device availability.

Example 5-17 List of unconfigured HSI devices on F4 CHPID

root@rdbkkvm4:/etc/netplan# znetconf -u | grep " f4 "
0.0.0f00,0.0.0f01,0.0.0f02 1731/05 HiperSockets f4 qeth
0.0.0f03,0.0.0f04,0.0.0f05 1731/05 HiperSockets f4 qeth
0.0.0f06,0.0.0f07,0.0.0f08 1731/05 HiperSockets f4 qeth
0.0.0f09,0.0.0f0a,0.0.0f0b 1731/05 HiperSockets f4 qeth
0.0.0f0c,0.0.0f0d,0.0.0f0e 1731/05 HiperSockets f4 qeth
0.0.0f0f,0.0.0f10,0.0.0f11 1731/05 HiperSockets f4 qeth
0.0.0f12,0.0.0f13,0.0.0f14 1731/05 HiperSockets f4 qeth
0.0.0f15,0.0.0f16,0.0.0f17 1731/05 HiperSockets f4 qeth
0.0.0f18,0.0.0f19,0.0.0f1a 1731/05 HiperSockets f4 qeth
0.0.0f1b,0.0.0f1c,0.0.0f1d 1731/05 HiperSockets f4 qeth

Choose the 0.0.0f00,0.0.0f01,0.0.0f02 devices to create the encf00 interface, as shown in
Example 5-18.

Example 5-18 Configuring the HiperSocket interface and verifying the assigned name

root@rdbkkvm4:/etc/netplan# chzdev -e qeth 0.0.0f00,0.0.0f01,0.0.0f02 layer2=1
buffer_count=128
QETH device 0.0.0f00:0.0.0f01:0.0.0f02 configured
root@rdbkkvm4:/etc/netplan# lsqeth encf00
Device name : encf00

 card_type : HiperSockets
 cdev0 : 0.0.0f00
 cdev1 : 0.0.0f01
 cdev2 : 0.0.0f02
 chpid : F4
 online : 1
 portname : no portname required
 portno : 0
 state : SOFTSETUP
 priority_queueing : disabled
 buffer_count : 128
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 vnicc/bridge_invisible : 0
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 0
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 159

You also can define a HiperSockets interface for KVM use. To define this interface, select the
0.0.0f03,0.0.0f04,0.0.0f05 devices to create interface encf03, as shown in Example 5-19.

Example 5-19 Configuring the HiperSocket interface.

root@rdbkkvm4:/etc/netplan# chzdev -e qeth 0.0.0f03,0.0.0f04,0.0.0f05 layer2=1
buffer_count=128
QETH device 0.0.0f03:0.0.0f04:0.0.0f05 configured
root@rdbkkvm4:/etc/netplan# lsqeth encf03
Device name : encf03

 card_type : HiperSockets
 cdev0 : 0.0.0f03
 cdev1 : 0.0.0f04
 cdev2 : 0.0.0f05
 chpid : F4
 online : 1
 portname : no portname required
 portno : 0
 state : SOFTSETUP
 priority_queueing : disabled
 buffer_count : 128
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 vnicc/bridge_invisible : 0
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 0
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0

Assign the IP address to the interface and start the interface, as shown in Example 5-20.

Example 5-20 Assigning IP and start encf03 interface

root@rdbkkvm4:/home/lnxadmin# ip link set encf03 up
root@rdbkkvm4:/home/lnxadmin# ip a add 100.150.233.70/24 dev encf03

Example 5-13 shows the section that must be added to the definition file for encf03 interface
in the /etc/netplan/01-netcfg.yaml file in ethernets: section.

Example 5-21 Making encf03 interface configuration permanent

root@rdbkkvm4:/etc/netplan# cat 01-netcfg.yaml
[...]
encf03:
 addresses: [100.150.233.70/24]
[...]
160 Virtualization Cookbook for IBM Z Volume 5: KVM

5.6.5 Define HiperSocket Converged Interface

By using HiperSockets Converged Interface (HSCI) connections, a HiperSockets network
interface can be combined with an external OSA- or RoCE port, which creates a single
network interface. By using this interface, the switched network and the intra-CEC
HiperSocket network can be accessed by using the same IP. Both of the devices that
participate in the HSCI interface must have the same physical network (PNET) ID (see
Table 5-4).

Table 5-4 Lab adapters

Example 5-22 - Example 5-27 on page 162 show the steps that are required to define the
HiperSocket Converged Interface.

Example 5-22 Checking the PNET ID of the HiperSocket device

root@rdbkkvm4:/home/lnxadmin/isos# cat /sys/devices/css0/chp0.f2/util_string |
iconv -f IBM-1047 -t ASCII
PERFNET

Example 5-23 Checking the OSA PNET ID

root@rdbkkvm4:/home/lnxadmin/isos# cat /sys/devices/css0/chp0.ee/util_string |
iconv -f IBM-1047 -t ASCII
PERFNET

Example 5-24 Creating HSI and OSA Interfaces

root@rdbkkvm4:/home/lnxadmin# chzdev -e qeth 0.0.0fc9,0.0.0fca,0.0.0fcb layer2=1
buffer_count=12
QETH device 0.0.0fc9:0.0.0fca:0.0.0fcb configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - QETH device 0.0.0fc9:0.0.0fca:0.0.0fcb
update-initramfs: Generating /boot/initrd.img-5.13.0-22-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: dasda (91de).
Done.
root@rdbkkvm4:/home/lnxadmin# chzdev -e qeth 0.0.1ee9,0.0.1eea,0.0.1eeb layer2=1
buffer_count=12
QETH device 0.0.1ee9:0.0.1eea:0.0.1eeb configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - QETH device 0.0.1ee9:0.0.1eea:0.0.1eeb
update-initramfs: Generating /boot/initrd.img-5.13.0-22-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: dasda (91de).
Done.

Device type CHPID Devices PNETID

HiperSockets F2 0.0.0FC9, 0.0.0FCA, 0.0.0FCB PERFNET

OSA Express EE 0.0.01EE9, 0.0.01EEB, 0.0.01EEA PERFNET
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 161

Example 5-25 Creating the HCSI Interface

root@rdbkkvm4:/home/lnxadmin# hsci add encfc9 enc1ee9
Verifying net dev enc1ee9 and HiperSockets dev encfc9
Adding hsci0fc9 with a HiperSockets dev encfc9 and an external dev enc1ee9
Set encfc9 MAC 0e:00:f2:38:00:0b on enc1ee9 and hsci0fc9
Successfully added HSCI interface hsci0fc9

Example 5-26 Creating the VLAN 8 interface from hsci 0FC9 device and assign IP

root@rdbkkvm4:/home/lnxadmin# ip link add dev hsci0fc9.8 link hsci0fc9 type vlan id 8
root@rdbkkvm4:/home/lnxadmin# ip addr add 129.40.23.231/24 dev hsci0fc9.8
root@rdbkkvm4:/home/lnxadmin# ip link set up hsci0fc9.8

Example 5-27 Checking HSCI interface

root@rdbkkvm4:/home/lnxadmin/isos# hsci show
HSCI PNET_ID HiperSockets External
--
hsci0fc9 PERFNET encfc9 enc1ee9

5.6.6 Defining SMC interfaces

SMC-D and SMC-R use shared memory to provide low-latency, high-bandwidth, cross-LPAR
connections for applications. This support is intended to provide application-transparent direct
memory access (DMA) communications to TCP endpoints for socket-based connections.

Installing SMC tools package
To support SMC-D (ISM) and SMC-R (RoCE) you must install the SMC tools package. For
more information about obtaining the packages, see this GitHub web page.

Use the commands that are shown in Example 5-28.

Example 5-28 Installing the SMC-tools package

root@rdbkkvm4:/home/lnxadmin/isos# apt-get install smc-tools

Then, unpack the smc-tools that were downloaded and compile the libraries (see
Example 5-29 and Example 5-29).

Example 5-29 Installing compiler tools

root@rdbkkvm4:/home#apt-get install gcc
root@rdbkkvm4:/home#sudo apt-get install libnl-genl-3-dev

Example 5-30 Compiling smc objects

root@rdbkkvm4:/home/lnxadmin/isos/smc-tools-main# make
162 Virtualization Cookbook for IBM Z Volume 5: KVM

https://github.com/ibm-s390-linux/smc-tools

Enabling SMC-D
In this section, we provide the basic commands to enable SMC-D on the Ubuntu host server.

Example 5-31 shows how to check the ISM device availability.

Example 5-31 Checking PCI devices

root@rdbkkvm4:/home/lnxadmin/isos# lspci
0000:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI
device
0001:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI
device
0002:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI
device
0003:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx
Virtual Function]
0004:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx
Virtual Function]
0005:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx
Virtual Function]
0006:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx
Virtual Function]

As shown in Example 5-32 and Example 5-33, we check the PNET ID in the ISM device and
in the OSA, which should display the same PNET ID.

Example 5-32 Checking PNET ID of the ISM device

root@rdbkkvm4:/home/lnxadmin/isos# cat
/sys/devices/pci0000:00/0000:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
PERFNET

Example 5-33 Checking the OSA PNET ID

root@rdbkkvm4:/home/lnxadmin/isos# cat /sys/devices/css0/chp0.ee/util_string |
iconv -f IBM-1047 -t ASCII
PERFNET

In our lab, we define a NIC in CHPID EE by using the command that is shown in
Example 5-34. For more information, see 5.6.1, “Defining NICs” on page 154.

Example 5-34 Defining OSA and assigning IP

root@rdbkkvm4:/home/lnxadmin/smc-tools# root@rdbkkvm4:/home/lnxadmin/isos# chzdev
-e qeth 0.0.1ee6,0.0.1ee7,0.0.1ee8 layer2=1
QETH device 0.0.1ee6:0.0.1ee7:0.0.1ee8 configured
root@rdbkkvm4:/home/lnxadmin/smc-tools# ip an add 129.40.23.224/24 dev enc1ee6
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 163

To test the communication between rdbkkvm4 and rdbkkvm2 LPARs in the same CPC by using
the SMC-D, we use the iperf3 tool. To install it, run the yum command in each LPAR that is
shown in Example 5-35.

Example 5-35 Installing iperf3 tool

root@rdbkkvm4:/etc/netplan# apt-get install iperf3
[root@rdbkkvm2 home]# yum -y install iperf3

Allow the local firewall to accept connections for iperf3 on the 5201 TCP port on rdbkkvm2
LPAR server (see Example 5-36).

Example 5-36 Allowing firewall port 5201

[root@rdbkkvm2 home]# firewall-cmd --permanent --add-port=5201/tcp
success
[root@rdbkkvm2 home]# firewall-cmd --reload
success
[root@rdbkkvm2 ~]# firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: bond1 bond1.008 enP6p0s0 enP6p0s0.008 enc1e80 enc1e80.008 enc1e83
enc1ee3 enc1ee6 enc1ee6.008 encf00 encf03
 sources:
 services: cockpit dhcpv6-client ssh
 ports: 21/tcp 5901/tcp 5201/tcp
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Start iperf3 in listening mode by using the command on rdbkkvm2 that is shown in
Example 5-37.

Example 5-37 Starting iperf3 using SMC

[root@rdbkkvm2 ~]# smc_run iperf3 -s

Server listening on 5201

Use the command that is shown in Example 5-38 to open another SSH session against the
rdbkkvm2 server and print the SMC sockets information.

Example 5-38 Checking SMC listening on port 5201

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf
Mode
LISTEN 00000 0526700 0.0.0.0:5201
164 Virtualization Cookbook for IBM Z Volume 5: KVM

To test SMC connections, issue the iperf3 command on rdbkkvm4 that is shown in
Example 5-39 and check on rdbkkvm2.

Example 5-39 Running ipfer3 client on rdbkkvm4 to the server on rdbkkvm2

root@rdbkkvm4:/home/lnxadmin# smc_run iperf3 -c 129.40.23.221 -t 10
Connecting to host 129.40.23.221, port 5201
[5] local 129.40.23.198 port 45722 connected to 129.40.23.221 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 4.13 GBytes 35.5 Gbits/sec 0 14.1 KBytes
[5] 1.00-2.00 sec 4.12 GBytes 35.4 Gbits/sec 0 14.1 KBytes
[5] 2.00-3.00 sec 4.13 GBytes 35.4 Gbits/sec 0 14.1 KBytes
[5] 3.00-4.00 sec 3.87 GBytes 33.2 Gbits/sec 0 14.1 KBytes
[5] 4.00-5.00 sec 3.92 GBytes 33.7 Gbits/sec 0 14.1 KBytes
[5] 5.00-6.00 sec 4.03 GBytes 34.6 Gbits/sec 0 14.1 KBytes
[5] 6.00-7.00 sec 4.04 GBytes 34.7 Gbits/sec 0 14.1 KBytes
[5] 7.00-8.00 sec 4.10 GBytes 35.2 Gbits/sec 0 14.1 KBytes
[5] 8.00-9.00 sec 4.08 GBytes 35.1 Gbits/sec 0 14.1 KBytes
[5] 9.00-10.00 sec 4.09 GBytes 35.2 Gbits/sec 0 14.1 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 40.5 GBytes 34.8 Gbits/sec 0 sender
[5] 0.00-10.00 sec 40.5 GBytes 34.8 Gbits/sec receiver

iperf Done.

Example 5-40 shows the command that is used to test the use of the SMC-D.

Example 5-40 Checking the use of SMC-D

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf
Mode
ACTIVE 00000 0326142 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:45722 0000
SMCD
ACTIVE 00000 0326141 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:45718 0000
SMCD
LISTEN 00000 0326139 0.0.0.0:5201
[root@rdbkkvm2 ~]# smcss -D
State UID Inode Local Address Peer Address Intf
Mode GID Token Peer-GID Peer-Token Linkid
ACTIVE 00000 0326142 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:45722 0000
SMCD 12000facb7f88561 0000090e10000000 06000faeb7f88561 0000090f10000000 00000400
ACTIVE 00000 0326141 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:45718 0000
SMCD 12000facb7f88561 0000091010000000 06000faeb7f88561 0000091110000000 00000400

If you receive LD_PRELOAD_error, run the commands that are shown in Example 5-41.

Example 5-41 LD_PRELOAD_error

root@rdbkkvm4:/home# smc_run iperf3 -c 129.40.23.221 -t 10
ERROR: ld.so: object 'libsmc-preload.so' from LD_PRELOAD cannot be preloaded
(cannot open shared object file): ignored.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 165

You must create a symbolic link in /usr/lib for the shared object file libsmc-preload.so (see
Example 5-42).

Example 5-42 Creating a symbolic link for the shared object file

root@rdbkkvm4:/home# cd /usr/lib
root@rdbkkvm4:/usr/lib# sudo ln -s
/home/lnxadmin/isos/smc-tools-main/libsmc-preload.so libsmc-preload.so

You can use de ISM if multiple subnets are used in your configuration on the same CEC.

SMC-R
As described in “Enabling SMC-D” on page 163, SMC also can be enabled between different
CPCs by using a RoCE card that allows remote direct memory access (RDMA) over the
external network (SMC-R).

Example 5-43 shows how to check the RoCE device availability.

Example 5-43 Checking PCI devices

root@rdbkkvm4:/home# lspci
0006:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4
Lx Virtual Function]

In Example 5-33 on page 163, the PNET ID in the OSA card is displayed. Example 5-44
shows the PNET ID in the RoCE device, which should display the same PNET ID.

Example 5-44 Checking RoCE device PNET ID

root@rdbkkvm4:/home# cat /sys/devices/pci0006:00/0006:00:00.0/util_string | iconv
-f IBM-1047 -t ASCII
PERFNET

We use the same configuration as in the SMC-D configuration. However, we use RoCE 2
instead ISM in this case.

Example 5-45 shows a similar example that is shown in Example 5-40. However, the
communication uses SMCR here.

Example 5-45 Test results

[root@rdbkkvm2 ~]# smcss -a
State UID Inode Local Address Peer Address Intf
Mode
ACTIVE 00000 0338408 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:60256 0000
SMCR
ACTIVE 00000 0338407 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:60254 0000
SMCR
LISTEN 00000 0338405 0.0.0.0:5201
[root@rdbkkvm2 ~]# smcss -R
State UID Inode Local Address Peer Address Intf
Mode Role IB-device Port Linkid GID
Peer-GID

Note: Direct Memory Access (SMC-D) is enhanced to remove the same subnet restriction
by using SMC-Dv2.
166 Virtualization Cookbook for IBM Z Volume 5: KVM

ACTIVE 00000 0338408 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:60256 0000
SMCR SERV mlx5_0 01 01 0000:0000:0000:0000:0000:ffff:8128:17df
0000:0000:0000:0000:0000:ffff:8128:17e1
ACTIVE 00000 0338407 ::ffff:129.40.23..:5201 ::ffff:129.40.2..:60254 0000
SMCR SERV mlx5_0 01 01 0000:0000:0000:0000:0000:ffff:8128:17df
0000:0000:0000:0000:0000:ffff:8128:17e1

If multiple subnets exist between IBM z15 CECS, SMC Version 2 (SMCv2) enables multiple
IP subnet capability for SMC. The multiple subnet capability is enabled by updates to the
underlying networking specifications for RoCE (referred to as RoCEv2) and the IBM Z Internal
Shared Memory (ISM) feature (referred to as ISMv2) along with updates to the related
technologies.

For more information about RoCE, see this IBM Documentation web page.

5.6.7 Defining the MacVTap network

This section describes the definition of two MacVTap networks: one for OSA and another for
HiperSockets.

MacVTap for an OSA NIC
Instead of the use of the default network connectivity for the guests network address
translation (NAT) connections, we chose MacVTap in bridge mode. This mode allows the
guests a direct connection with the specified interface in the MacVTap network.

To configure the MacVTap network, we use the virsh command and an XML definition file.

Example 5-46 shows our macvtap-net.xml network definition file.

Example 5-46 macvtap-next.xml

root@rdbkkvm4:/home/lnxadmin/isos# cat macvtap-net1.xml
<network>
 <name>macvtap-net1</name>
 <forward mode="bridge">
 <interface dev="bond0.8"/>
 </forward>
</network>

Example 5-47 shows the virsh command that is used to define a MacVTap network.

Example 5-47 virsh net-define, net-start, and net-autostart commands

root@rdbkkvm4:/home/lnxadmin/isos# virsh net-define macvtap-net1.xml
Network macvtap-net1 defined from macvtap-net1.xml
root@rdbkkvm4:/home/lnxadmin/isos# virsh net-start macvtap-net1
Network macvtap-net1 started
root@rdbkkvm4:/home/lnxadmin/isos# virsh net-autostart macvtap-net1
Network macvtap-net1 marked as autostarted
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 167

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lkdd/lkdd_r_roce_dd.html

MacVTap for HiperSockets NIC
Example 5-48 shows the XML file that is created to define the HiperSockets NIC.

Example 5-48 macvtap-hsi.xml

[root@rdbkkvm4 images]# cat macvtap-hsi0.xml
<network>
 <name>macvtap-hsi0</name>
 <forward mode="bridge">
 <interface dev="hsi0"/>
 </forward>
</network>

Also define, start, and autostart the new macvtap-his1 network, as shown in Example 5-47 on
page 167 and Example 5-48.

5.6.8 Defining crypto adapters and domain

As described in 2.2.4, “Encryption considerations” on page 33, the Crypto Express card
advantages can be used by the KVM hosts and VM guests.

It is important to check the compatibility list for Crypto Express adapters when Ubuntu is used
before beginning the installation. For more information about supported Crypto Express
adapters with your version of Ubuntu, see this IBM Documentation web page.

To make the AP cards available to the KVM guests (see 2.4.5, “Cryptography” on page 42),
use the VFIO mediated device framework to assign cryptographic adapter resources to the
device.

For more information, see Configuring Crypto Express Adapters for KVM Guests,
SC34-7717.

In our lab environment, we assigned two crypto adapters and one domain to the ARIES38
LPAR (see “Cryptography” on page 150). Use the VFIO mediated device framework to assign
cryptographic card resources to the device.

To make this assignment, load the vfio_ap device driver by running the commands that are
shown in Example 5-49 - Example 5-51 on page 169.

Example 5-49 Enabling vfio_ap permanently (adding modules in /etc/modules)

root@rdbkkvm4:/home/lnxadmin# cat /etc/modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
vfio_ap

Example 5-50 Preparing Crypto usage

root@rdbkkvm4:/home/lnxadmin/isos# modprobe vfio_ap
root@rdbkkvm4:/home/lnxadmin/isos# lsmod | grep vfio_ap
vfio_ap 28672 0
mdev 28672 3 vfio_ccw,vfio_mdev,vfio_ap
vfio 45056 4 vfio_ccw,vfio_mdev,vfio_iommu_type1,vfio_ap
168 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.ubdd/ludd_r_supporteddevs.html
http://public.dhe.ibm.com/software/dw/linux390/docu/l198hq00.pdf

Example 5-51 Freeing all cards and domains from the KVM host

root@rdbkkvm4:/home/lnxadmin/isos# echo 0x0 > /sys/bus/ap/apmask
root@rdbkkvm4:/home/lnxadmin/isos# echo 0x0 > /sys/bus/ap/aqmask

Use the lszcrypt command to display information about the crypto adapters, as shown in
Example 5-52.

Example 5-52 Verifying crypto cards

root@rdbkkvm4:/home/lnxadmin# lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
03 CEX7C CCA-Coproc online 1
06 CEX7C CCA-Coproc online 0

Assign AP queues to KVM. Example 5-53 shows the procedure to assign the two crypto
cards (03 and 06) and domain (0x28) to the KVM host.

Example 5-53 Crypto for KVM host

root@rdbkkvm4:/home/lnxadmin# echo +0x03 > /sys/bus/ap/apmask
root@rdbkkvm4:/home/lnxadmin# echo +0x06 > /sys/bus/ap/apmask
root@rdbkkvm4:/home/lnxadmin# echo +0x28 > /sys/bus/ap/aqmask

Example 5-54 shows the verification of the crypto assignment to the KVM host.

Example 5-54 Verifying crypto assignment

root@rdbkkvmu:/home/lnxadmin# lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 2
03.0028 CEX7C CCA-Coproc online 2
06 CEX7C CCA-Coproc online 0
06.0028 CEX7C CCA-Coproc online 0

One way to make the configuration of the cryptos permanent is by running scripts and using
rc.local to run the scripts at start. Example 5-55 shows how to enable rc.local systemd to
run scripts.

Example 5-55 Checking whether rc_local service is running

root@rdbkkvm4:/home/lnxadmin# sudo systemctl status rc-local
? rc-local.service - /etc/rc.local Compatibility
 Loaded: loaded (/lib/systemd/system/rc-local.service; static)
 Drop-In: /usr/lib/systemd/system/rc-local.service.d
 ??debian.conf
 Active: inactive (dead)
 Docs: man:systemd-rc-local-generator(8)
root@rdbkkvm4:/home/lnxadmin# sudo systemctl enable rc-local
The unit files have no installation config (WantedBy=, RequiredBy=, Also=,
Alias= settings in the [Install] section, and DefaultInstance= for template
units). This means they are not meant to be enabled using systemctl.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 169

Example 5-56 - Example 5-60 on page 171 shows the sequence of commands used to create
and make the crypto configuration permanent.

Example 5-56 Creating the rc_local service systemd

root@rdbkkvm4:/home/lnxadmin# sudo nano /etc/systemd/system/rc-local.service
root@rdbkkvm4:/home/lnxadmin# cat /etc/systemd/system/rc-local.service
[Unit]
Description=/etc/rc.local Compatibility
ConditionPathExists=/etc/rc.local

[Service]
Type=forking
ExecStart=/etc/rc.local start
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes
SysVStartPriority=99

[Install]
WantedBy=multi-user.target

Example 5-57 Creating the rc_local file

root@rdbkkvm4:/home/lnxadmin# sudo nano /etc/rc.local
root@rdbkkvm4:/home/lnxadmin# cat /etc/rc.local
#!/bin/sh -e
##
exit 0
root@rdbkkvm4:/home/lnxadmin# sudo chmod -v +x /etc/rc.local

Example 5-58 Enabling and starting the rc_local service

root@rdbkkvm4:/home/lnxadmin# sudo systemctl enable rc-local
Created symlink /etc/systemd/system/multi-user.target.wants/rc-local.service ?
/etc/systemd/system/rc-local.service.
root@rdbkkvm4:/home/lnxadmin# sudo systemctl enable rc-local
Created symlink /etc/systemd/system/multi-user.target.wants/rc-local.service ?
/etc/systemd/system/rc-local.service.
root@rdbkkvm4:/home/lnxadmin# sudo systemctl start rc-local.service
root@rdbkkvm4:/home/lnxadmin# sudo systemctl status rc-local.service
• rc-local.service - /etc/rc.local Compatibility
 Loaded: loaded (/etc/systemd/system/rc-local.service; enabled; vendor preset:
enabled)
 Drop-In: /usr/lib/systemd/system/rc-local.service.d
 --debian.conf
 Active: active (exited) since Tue 2021-11-30 15:08:45 UTC; 3s ago
 Process: 1465 ExecStart=/etc/rc.local start (code=exited, status=0/SUCCESS)
 CPU: 1ms
170 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 5-59 Creating script for freeing the ap and aq queues for crypto enablement

root@rdbkkvm4:/home/lnxadmin/isos# vim crypto_enablement.sh
root@rdbkkvm4:/home/lnxadmin/isos# chmod u+x
/home/lnxadmin/isos/crypto_enablement.sh
root@rdbkkvm4:/home/lnxadmin/isos# cat crypto_enablement.sh
#!/bin/bash
Freeing ap and aq queues for crypto enablement
echo Preparing crypto enviroment
echo 0x0 > /sys/bus/ap/apmask
echo 0x0 > /sys/bus/ap/aqmask
echo +0x03 > /sys/bus/ap/apmask
echo +0x06 > /sys/bus/ap/apmask
echo +0x28 > /sys/bus/ap/aqmask

Example 5-60 Adding the script to rc_local

root@rdbkkvm4:/home/lnxadmin# sudo chmod u+x
/home/lnxadmin/isos/crypto_enablement.sh
root@rdbkkvm4:/home/lnxadmin# sudo nano /etc/rc.local
root@rdbkkvm4:/home/lnxadmin/isos# cat /etc/rc.local
#!/bin/sh -e
##
/home/lnxadmin/isos/crypto_enablement.sh
exit 0

The guest uses the crypto adapter and domains through mediated devices. How to create a
mediated device for vfio_ap si shown in Example 5-61.

Example 5-61 Defining mediated device

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ap'>
<source>

<address uuid='e67ad324-50ad-4321-bba5-ee235ca0e45a'/>
</source>

</hostdev>

Example 5-62 shows how to generate an Universally Unique Identifier (UUID) for the
mediated device, create the mediated device, and assign the crypto cards and crypto
domains to it (for use and control).

Example 5-62 Generating an UUID for VM guest

root@rdbkkvm4:/home/lnxadmin/isos# uuidgen
e67ad324-50ad-4321-bba5-ee235ca0e45a
root@rdbkkvm4:/home/lnxadmin# echo e67ad324-50ad-4321-bba5-ee235ca0e45a
 > /sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/create
root@rdbkkvm4:/home/lnxadmin/isos# echo 0x03 >
/sys/devices/vfio_ap/matrix/e67ad324-50ad-4321-bba5-ee235ca0e45a/assign_adapter
root@rdbkkvm4:/home/lnxadmin/isos# echo 0x06 >
/sys/devices/vfio_ap/matrix/e67ad324-50ad-4321-bba5-ee235ca0e45a/assign_adapter
root@rdbkkvm4:/home/lnxadmin/isos# echo 0x0029 >
/sys/devices/vfio_ap/matrix/e67ad324-50ad-4321-bba5-ee235ca0e45a/assign_domain
root@rdbkkvm4:/home/lnxadmin/isos# echo 0x0029 >
/sys/devices/vfio_ap/matrix/e67ad324-50ad-4321-bba5-ee235ca0e45a/assign_control_domain
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 171

The procedure that is shown in Example 5-63 must be done for each domain that is used by a
VM. In our lab environment, we used domains 41 and 42. Example 5-63 also shows how to
verify the mediated device crypto assignment.

Example 5-63 Verifying mediated device crypto assignment

root@rdbkkvm4:/home/lnxadmin/isos# cat
/sys/devices/vfio_ap/matrix/e67ad324-50ad-4321-bba5-ee235ca0e45a/matrix
03.0029
06.0029

To make the vfio_ap persistent, you must install the mdevctl package and perform the
commands that are shown in Example 5-64 by using the UUID, adapter, and domains that are
used for the mediated device.

Example 5-64 Making vfio_ap mediated device persistent

root@rdbkkvm4:/home/lnxadmin# mdevctl define --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a --parent matrix --type vfio_ap-passthrough
root@rdbkkvm4:/home/lnxadmin# mdevctl modify --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a --addattr=assign_adapter --value=0x03
root@rdbkkvm4:/home/lnxadmin# mdevctl modify --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a --addattr=assign_adapter --value=0x06
root@rdbkkvm4:/home/lnxadmin# mdevctl modify --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a --addattr=assign_domain --value=0x0029
root@rdbkkvm4:/home/lnxadmin# mdevctl modify --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a --addattr=assign_control_domain
--value=0x0029
root@rdbkkvm4:/home/lnxadmin# mdevctl start --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a
root@rdbkkvm4:/home/lnxadmin# mdevctl modify --uuid
e67ad324-50ad-4321-bba5-ee235ca0e45a --auto
root@rdbkkvm4:/home/lnxadmin# mdevctl list
ecded9cd-6fa4-483c-90c0-62203c3d0b11 matrix vfio_ap-passthrough (defined)

Notes: Consider the following points:

� The mediated device must be started after the host is restarted.

� The --auto parameter that is used in the Example 5-64 on page 172 triggers only
autostart after a system restart if the user sets the apmask and aqmask correctly and
loads the vfio_ap driver.
172 Virtualization Cookbook for IBM Z Volume 5: KVM

5.7 Deploying virtual machines on KVM

In this section, we describe the deployment of VMs in the KVM environment. Although a VM
can be created by using several methods, this section describes the use of the virt-install
command and virsh tools.

5.7.1 Creating QCOW2 disk image file

As described in “Disk” on page 149, QCOW2 files are used to create the VM disks.

Example 5-65 shows the command that is used to create a QCOW2 file of 10 GB.

Example 5-65 Creating QCOW2 image file

root@rdbkkvm4:/home/lnxadmin/isos# qemu-img create -f qcow2 kvm4guest01_vol001.img 10G
Formatting 'kvm4guest01_vol001.img', fmt=qcow2 cluster_size=65536 extended_l2=off
compression_type=zlib size=10737418240 lazy_refcounts=off refcount_bits=16

5.7.2 Installing a new guest by using virt-install

The virt-install command-line tool is used for creating VMs on KVM, which uses the
libvirt hypervisor management library.

Example 5-66 shows how to install a VM by using the virt-install command.

Example 5-66 Creating VM guest using virt-install command

root@rdbkkvm4:/home# virt-install --name kvm4guest01 --memory 4000 --vcpus 2
--os-variant ubuntu20.10 --import --disk
path=/home/lnxadmin/isos/kvm4guest01_vol001.img --network network:macvtap-net1
--cdrom /home/lnxadmin/isos/ubuntu-21.10-live-server-s390x.iso

Consider the following points:

� The --name parameter specifies the name of the VM guest.

� The --memory parameter specifies the amount of memory (RAM) that is allocated to the
virtual machine (expressed in megabytes).

� The --vcpus parameter specifies how many vcpus are assigned to the VM.

� The --disk parameter specifies the media to use as storage for the VM guest (kvmsvm01
uses QCOW2 files). If the file was preallocated, specify the --import parameter.
Otherwise, you can omit the --import parameter and use the new file path by using the
parameters’ format and size to allocate the file during the installation.

� The --os-variant parameter specifies which type of operating system is to be installed;
this option is highly recommended when importing a disk image. If it is not provided, the
performance of the created VM is negatively affected. Run the osinfo-query os command
to see a full list of available operating systems.

� The --network parameter specifies the network options for the VM guest. In this case, we
are connecting the guest to the MacVTap network.

� For the installation source, we used a .iso file that uses the --cdrom parameter. You can
also install from other sources, such as an FTP server.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 173

After the command is issued (see Example 5-66 on page 173), the VM installation begins, as
shown in Figure 5-6.

Figure 5-6 VM guest installation process through vrit-install

For more information about the virt-install command, see this Ubuntu wiki web page.

Starting install...
Running text console command: virsh --connect qemu:///system console
kvm4guest01
Connected to domain 'kvm4guest01'
Escape character is ^] (Ctrl +])
[0.082933] Linux version 5.13.0-19-generic (buildd@bos02-s390x-014) (gcc
(Ubuntu 11.2.0-7ubuntu2) 11.2.0, GNU ld (GNU Binutils for Ubuntu) 2.37)
#19-Ubuntu SMP Thu Oct 7 20:16:26 UTC 2021 (Ubuntu 5.13.0-19.19-generic
5.13.14)
[0.082937] setup: Linux is running under KVM in 64-bit mode
[0.084744] setup: The maximum memory size is 4000MB
[0.084792] cpu: 2 configured CPUs, 0 standby CPUs
[0.084871] Write protected kernel read-only data: 16988k
[...]
[4.741581] loop5: detected capacity change from 0 to 488016
[4.778775] overlayfs: "xino" feature enabled using 32 upper inode bits.
done.
[5.052217] systemd[1]: systemd 248.3-1ubuntu8 running in system mode. (+PAM
+AUDIT +SELINUX +APPARMOR +IMA +SMACK +SECCOMP +GCRYPT +GNUTLS -OPENSSL +ACL
+BLKID +CURL +ELFUTILS -FIDO2 +IDN2 -IDN +IPTC +KMOD +LIBCRYPTSETUP -LIBFDISK
+PCRE2 -PWQUALITY -P11KIT -QRENCODE +BZIP2 +LZ4 +XZ +ZLIB +ZSTD -XKBCOMMON
+UTMP +SYSVINIT default-hierarchy=unified)
[5.052464] systemd[1]: Detected virtualization kvm.
[5.052467] systemd[1]: Detected architecture s390x.

Welcome to Ubuntu 21.10!

[5.062870] systemd[1]: Initializing machine ID from random generator.
[5.414334] systemd[837]: /usr/lib/systemd/system-generators/s390-cpi-vars
failed with exit status 1.
[5.470611] systemd[1]: cdrom.mount: Unit is bound to inactive unit
dev-sr0.device. Stopping, too.
[5.471169] systemd[1]: Queued start job for default target Graphical
Interface.
174 Virtualization Cookbook for IBM Z Volume 5: KVM

https://wiki.ubuntu.com/UEFI/virt-install

5.7.3 Cloning a guest using Virsh

The virsh command-line tool is used to manage VM guests and the hypervisor. It also uses
the libvirt hypervisor management library. In this section, we show how to clone a VM from
a previous image installation base.

Example 5-67 shows the first task; that is, copy the QCOW2 file kvmuvm01_vol001.img to
kvmuvm02_vol001.img.

Example 5-67 Copying the QCOW2 file

root@rdbkkvm4:/var/lib/libvirt/images# cp kvm4gues01_vol001.img >
kvm4guest02_vol001.img

Use the dumpxml command to return the guest VM machine’s configuration file. As shown in
Example 5-68, we obtain the XML configuration file, kvmuvm02.xml, from the VM guest,
kvmuvm01.

Example 5-68 Dumping kvmuvm01 guest definition file

root@rdbkkvm4:/var/lib/libvirt/images# virsh dumpxml kvmu4guest01 >
kvm4guest02.xml

Because we are going to clone this VM guest, edit kvm4gues02.xml and make the following
changes:

� Change the VM name from:

<name>kvmsvm01</name>

to:

<name>kvmsvm02</name>

� Delete the following UUID assignment statement:

<uuid>d370d9de-a881-45b7-80a5-94d09b447d15</uuid>

� Change the source file of QCOW2 disk from:

<source file='/home/lnxadmin/isos/kvm4guest01_vol001.img'/>

to:

<source file='/home/lnxadmin/isos/kvm4guest02_vol001.img'/>

� In the <interface type='direct'> section, delete the following statements:

– MAC address: <mac address='52:54:00:57:3a:69'/>
– Target devices statement: <target dev='macvtap3'/>

All deleted information is dynamically generated when the virsh define command is used.

The kvm4guest02 guest is defined, as shown in Example 5-69.

Example 5-69 kvm4guest02 guest definition

root@rdbkkvm4:/home# virsh define kvm4guest02.xml
Domain kvm4guest02 defined from kvm4guest02.xml

To start the new cloned guest, run a virsh start kvm4guest02 command.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 175

You must change the basic parameters of the new guest, such as the IP address and host
name.

Another way for cloning guest is by using the virt-clone command, as shown in
Example 5-70. The guest must be shut down to be cloned.

Example 5-70 Cloning the kvm4guest01 guest

root@rdbkkvm4:/home/lnxadmin/isos# virt-clone --original kvm4guest01 --name
kvm4guest02 --file /home/lnxadmin/isos/kvm4guest02_vol001.img
Allocating 'kvm4guest02_vol001.img'
| 10 GB 00:00:00

Clone 'kvm4guest02' created successfully.

Consider the following points:

� The --original statement indicates the name of the guest (domain) to be cloned.

� The --name statement indicates the name of the new guest (domain) to be created.

� The --file statement indicates the location of the new qcow2 to be allocated for the new
guest.

5.7.4 Adding HiperSockets to the VM guest

To add an NIC, a VM is needed to shut down the guest and edit the domain definition. In this
case, we use a vNIC, macvtap-hsi, which targets the encf00 HiperSocket interface.

Example 5-71 shows the command that is used to edit the VM domain definition in XML
format.

Example 5-71 Editing domain definition

root@rdbkkvm4:/home/lnxadmin# virsh edit kvm4guest01
Domain kvm4guest01 XML configuration edited.

You must also add the definition that is shown in Example in the <devices> </devices>
section.

Example 5-72 Interface definition

<devices>
<interface type='network'>
 <source network='macvtap-hsi1'/>
 <model type='virtio'/>
</interface>
</devices>
176 Virtualization Cookbook for IBM Z Volume 5: KVM

After the domain starts, the VM shows the new interface and that the domain definition was
updated (see Example 5-73).

Example 5-73 Interface verification

At the VM level:

root@kvm4guest01:/etc/netplan# ip a show enc6
3: enc6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
default qlen 1000
 link/ether 52:54:00:dc:96:d9 brd ff:ff:ff:ff:ff:ff
 inet 100.150.233.61/24 brd 100.150.233.255 scope global enc6
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fedc:96d9/64 scope link
 valid_lft forever preferred_lft forever

At the KVM host:

root@rdbkkvm4:/home/lnxadmin/isos# virsh dumpxml kvm4guest01
[...]
 <interface type='direct'>
 <mac address='52:54:00:dc:96:d9'/>
 <source network='macvtap-hsi0' portid='562cf85e-269c-47ed-9719-47bad088d4ab'
dev='encf00' mode='bridge'/>
 <target dev='macvtap5'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0006'/>
 </interface>
[...]

5.7.5 Adding space to guest from ECKD DASD

To add space to a VM in our lab, we added a full volume DASD as a virtio device. You also
can add space by using a logical volume from an LVM pool.

The first step is formatting the volume on the host (see Example 5-74) shows for the ECKD
device 0.0.914C. For this task, we must check whether the device is available for the LPAR
and enabled it before the formatting process.

Example 5-74 DASD formatting

root@rdbkkvm4:/home/lnxadmin/isos# chzdev -e dasd 0.0.914C
ECKD DASD 0.0.914c configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - ECKD DASD 0.0.914c
update-initramfs: Generating /boot/initrd.img-5.13.0-22-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: dasda (91de).
Done.
root@rdbkkvm4:/home/lnxadmin/isos# dasdfmt -b 4096 /dev/disk/by-path/ccw-0.0.914c
-p --label=0x914C
Drive Geometry: 60102 Cylinders * 15 Heads = 901530 Tracks
Device Type: Thinly Provisioned
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 177

I am going to format the device /dev/disk/by-path/ccw-0.0.914c in the following
way:
 Device number of device : 0x914c
 Labelling device : yes
 Disk label : VOL1
 Disk identifier : 0X914C
 Extent start (trk no) : 0
 Extent end (trk no) : 1
 Compatible Disk Layout : yes
 Blocksize : 4096
 Mode : Quick
 Full Space Release : yes

WARNING:
Disk /dev/disk/by-path/ccw-0.0.914c is online on operating system instances in 15
different LPARs.
Ensure that the disk is not being used by a system outside your LPAR.
Note: Your installation might include z/VM systems that are configured to
automatically vary on disks, regardless of whether they are subsequently used.

--->> ATTENTION! <<---
All data of that device will be lost.
Type "yes" to continue, no will leave the disk untouched: yes
Releasing space for the entire device...
Skipping format check due to thin-provisioned device.
Formatting the first two tracks of the device.
Finished formatting the device.
Rereading the partition table... ok

To obtain more I/O performance on the virtual block devices, we can configure one or more
I/O threads for the virtual server and each virtual block device can use one of these I/O
threads (see Example 5-75).

Example 5-75 Creating I/O thread for guest

root@rdbkkvm4:/home/lnxadmin/isos# virsh iothreadadd --domain kvm4guest01 --id 1
--live
root@rdbkkvm4:/home/lnxadmin/isos# virsh iothreadadd --domain kvm4guest01 --id 1
--config

Now, we can define and attach to the guest the new formatted DASD. Remember to always
format the DASD on the host, but create the partitions at the guest level if you plan to assign
the entire disk to the guest (see Example 5-76).

Example 5-76 Defining the virtual block device .xml and attach to the guest

root@rdbkkvm4:/home/lnxadmin/isos# vim kvm4guest01_dasd01.xml
root@rdbkkvm4:/home/lnxadmin/isos# cat kvm4guest01_dasd01.xml
<disk type="block" device="disk">
 <driver name="qemu" type="raw" cache="none" io="native" iothread="1"/>
 <source dev="/dev/disk/by-path/ccw-0.0.914c"/>
 <target dev="vdb" bus="virtio"/>
 <address type="ccw" cssid="0xfe" ssid="0x0" devno="0x00a8"/>
</disk>
178 Virtualization Cookbook for IBM Z Volume 5: KVM

root@rdbkkvm4:/home/lnxadmin/isos# virsh attach-device kvm4guest01
kvm4guest01_dasd01.xml --persistent
Device attached successfully

Example 5-77 shows the KVM and guest commands that are used to verify weather the
virtual block device was successfully created.

Example 5-77 Verification commands

In KVM, we can verify the usage of the virtio device:

root@rdbkkvm4:/home/lnxadmin/isos# virsh domblklist kvm4guest01
Target Source
--
vda /home/lnxadmin/isos/kvm4guest01_vol001.img
vdb /dev/disk/by-path/ccw-0.0.914c
sda -

On the guest, we verify the device availability:

root@kvm4guest01:/home/rdbkuser1# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 53.3M 1 loop /snap/core20/1167
loop1 7:1 0 53.3M 1 loop /snap/core20/1240
loop2 7:2 0 39.2M 1 loop /snap/snapd/14057
loop3 7:3 0 30.2M 1 loop /snap/snapd/13266
loop4 7:4 0 65M 1 loop /snap/lxd/21620
loop5 7:5 0 64.7M 1 loop /snap/lxd/21898
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
--vda1 252:1 0 1G 0 part /boot
--vda2 252:2 0 9G 0 part
 ??ubuntu--vg-ubuntu--lv 253:0 0 9G 0 lvm /
vdb 252:16 0 41.3G 0 disk

5.7.6 Adding DASD space to a guest as a VFIO device

Another way to add DASD to the guest is by using a VFIO pass-through device, which allows
the guest to control the hole DASD as a direct device. To add the DASD to the guest, you
must bring its subchannel under control of the vfio_ccw device driver, create a mediated
device for the DASD and then, assign the mediated device to the guest (see Example 5-78 -
Example 5-84 on page 181).

Example 5-78 Checking the device subchannel

root@rdbkkvm4:/home/lnxadmin# lscss -a | grep 904c
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.904c 0.0.24ea 3390/0c 3990/e9 f0 f0 ff 40424143 00000000

Example 5-79 Formatting the DASD device

root@rdbkkvm4:/home/lnxadmin# dasdfmt -b 4096 /dev/disk/by-path/ccw-0.0.904c -p
--label=0x904C
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 179

Example 5-80 Unbinding the device from host and creating the mediated device for DASD

root@rdbkkvm4:/home/lnxadmin# echo 0.0.904C >
/sys/bus/ccw/drivers/dasd-eckd/unbind
root@rdbkkvm4:/home/lnxadmin# echo 0.0.24ea >
/sys/bus/css/devices/0.0.24ea/driver/unbind
root@rdbkkvm4:/home/lnxadmin# echo 0.0.24ea > /sys/bus/css/drivers/vfio_ccw/bind
root@rdbkkvm4:/home/lnxadmin# uuidgen
4d56cc2f-f614-4549-934d-656eef9926f5
root@rdbkkvm4:/home/lnxadmin# echo 4d56cc2f-f614-4549-934d-656eef9926f5>
/sys/bus/css/devices/0.0.24ea/mdev_supported_types/vfio_ccw-io/create

Example 5-81 Adding the mediated device to the definition in the device section

[root@rdbkkvm4 by-path]# virsh edit kvm1guest01
 <hostdev mode="subsystem" type="mdev" model="vfio-ccw">
 <source>
 <address uuid="4d56cc2f-f614-4549-934d-656eef9926f5"/>
 </source>
 <address type="ccw" cssid="0xfe" ssid="0x0" devno="0x00b1"/>
 </hostdev>

Example 5-82 Checking at the guest level

root@kvm4guest01:/home/rdbkuser1# lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.0002 0.0.0000 0000/00 3832/08 yes 80 80 ff 00000000 00000000
0.0.0003 0.0.0001 0000/00 3832/03 yes 80 80 ff 00000000 00000000
0.0.0000 0.0.0002 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.0001 0.0.0003 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.0006 0.0.0004 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.0004 0.0.0005 0000/00 3832/05 yes 80 80 ff 00000000 00000000
0.0.00b1 0.0.0008 3390/0c 3990/e9 f0 f0 7f 50525153 00000000
0.0.0005 0.0.0006 0000/00 3832/04 yes 80 80 ff 00000000 00000000
0.0.00a8 0.0.0007 0000/00 3832/02 yes 80 80 ff 00000000 00000000

Example 5-83 Enabling the DASD on the guest

root@kvm4guest01:/home/rdbkuser1# chzdev -e dasd 0.0.00b1
ECKD DASD 0.0.00b1 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
 - ECKD DASD 0.0.00b1
update-initramfs: Generating /boot/initrd.img-5.13.0-22-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Adding IPL section 'ubuntu' (default)
Preparing boot device: vda (0000).
Done.
180 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 5-84 Verifying the device availability at guest level

root@kvm4guest01:/home/rdbkuser1# lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.00b1 active dasda 94:0 ECKD (ESE) 4096 42259MB 10818360
root@kvm1guest1:/home/rdbkuser1# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop1 7:1 0 53.3M 1 loop /snap/core20/1240
loop2 7:2 0 39.2M 1 loop /snap/snapd/14057
loop3 7:3 0 65M 1 loop /snap/lxd/21620
loop4 7:4 0 30.2M 1 loop /snap/snapd/13639
loop5 7:5 0 64.7M 1 loop /snap/lxd/21898
loop6 7:6 0 53.4M 1 loop /snap/core20/1272
sr0 11:0 1 1024M 0 rom
dasda 94:0 0 41.3G 0 disk

> dasda1 94:1 0 41.3G 0 part
 active dasda 94:0 ECKD (ESE) 4096 42259MB 10818360
root@kvm4guest01:/home/rdbkuser1# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
dasda 94:0 0 41.3G 0 disk

> dasda1 94:1 0 41.3G 0 part

To make the vfio_ccw persistent, you must install the mdevctl and driverctl packages and
then, run the commands that are shown in Example 5-85 by using the UUID and the
subchannel selected for this device.

Example 5-85 Making vfio _ccw mediated device persistent

root@rdbkkvm4:/home/lnxadmin# mdevctl define -u
fef02213-6b37-4434-9158-c4105c8d2b6f -p 0.0.24ea -t vfio_ccw-io
root@rdbkkvm4:/home/lnxadmin# mdevctl start --uuid
fef02213-6b37-4434-9158-c4105c8d2b6f
root@rdbkkvm4:/home/lnxadmin# mdevctl modify --uuid
fef02213-6b37-4434-9158-c4105c8d2b6f --auto
root@rdbkkvm4:/home/lnxadmin# mdevctl list
fef02213-6b37-4434-9158-c4105c8d2b6f 0.0.24ea vfio_ccw-io (defined)

Notes: Consider the following points:

� Mediated devices can be configured manually by using sysfs operations.

� The mdevctl utility is used for managing and persisting devices in the mediated device
framework of the Linux kernel. For more information, see this GitHub web page.

� The driverctl device driver is a control utility for Linux. For more information, see this
GitLab web page.
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 181

https://github.com/medvctl/mdevctl
https://github.com/mdevctl/mdevctl
https://github.com/medvctl/mdevctl
https://gitlab.com/driverctl/driverctl
https://github.com/medvctl/mdevctl
https://gitlab.com/druverctk/driverctl

5.7.7 Adding LUNs if you have FCP Storage

To add space to a VM, we must map the target LUN. In this case, we choose an available
LUN to identify the device ID that we enable in the VM.

As described in 2.2.2, “Storage considerations” on page 27, the following options are
available:

� Entire disk (LUN or ECKD DASD)
� Partition of the disk or
� A logical volume

It is important to map the device ID by using the multipath ID. In some installations, this
mapping can be achieved by using multipath-friendly names such as mpathX. To be read by
VM migrations, the recommendation is avoid the use of multipath-friendly names.

Example 5-86 shows how to identify the target LUN.

Example 5-86 LUN identification

root@rdbkkvm4:/home/lnxadmin# multipath -ll | grep
36005076309ffd145000000000000010a
mpathi (36005076309ffd145000000000000010a) dm-7 IBM,2107900

Example 5-87 shows the identification by device ID.

Example 5-87 Device mapper mpath identification by device ID

root@rdbkkvm4:/dev/disk/by-id# ls | grep 36005076309ffd145000000000000010a
dm-uuid-mpath-36005076309ffd145000000000000010a
scsi-36005076309ffd145000000000000010a

After identifying the target LUN and the device ID for our lab environment, the target disk is
shown in the following example:

/dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000010a

You must assign a target device in the domain. You also must check which devices are being
used. Example 5-88 shows how to list the used devices in the domain.

Example 5-88 Device list example

root@rdbkkvm4:/var/lib/libvirt/images# virsh domblklist kvmuvm01
 Target Source

 vda /var/lib/libvirt/images/kvmuvm01_vol001.img
182 Virtualization Cookbook for IBM Z Volume 5: KVM

With this information available, the next step is to create an XML file to attach the disk that is
free. The commands that are used in Example 5-89 show that the vdb device is available.

Example 5-89 Device mapper mpath identification by device ID

root@rdbkkvm4:/var/lib/libvirt/images# vim kvmuvm01_block1.xml
root@rdbkkvm4:/var/lib/libvirt/images# cat kvmuvm01_block1.xml
 <disk type="block" device="disk">
 <driver name="qemu" type="raw" cache="none" io="native"/>
 <source
dev="/dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000010a"/>
<target dev='vdb' bus='virtio'/>
 </disk>

Define the disk to the VM guest, as shown in Example 5-90.

Example 5-90 Attaching disk on kvm4guest01 guest

root@rdbkkvm4:/var/lib/libvirt/images# virsh attach-device kvm4guest01
kvmuvm01_block1.xml --persistent
Device attached successfully

Validate the host and the guest, as shown in Example 5-91.

Example 5-91 Attaching disk verification

From KVM host:

root@rdbkkvm4:/var/lib/libvirt/images# virsh domblklist kvmuvm01
 Target Source

 vda /var/lib/libvirt/images/kvm4guest01_vol001.img
 vdb /dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000010a

From kvm4guest01 guest:

root@kvm4guest01:/home/lnxadmin# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 10G 0 disk
••vda1 252:1 0 10G 0 part
 ••kvmuvm01--vg-root 253:0 0 9G 0 lvm /
 ••kvmuvm01--vg-swap_1 253:1 0 976M 0 lvm [SWAP]
vdb 252:16 0 40G 0 disk
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 183

5.7.8 Adding cryptography support to the VM guest

In 5.6.8, “Defining crypto adapters and domain” on page 168, the crypto adapters and domain
were defined. The AP queues were then assigned for use by KVM. The vfio_ap mediated
device was created to enable the assignment of the crypto device to a VM guest.

Complete the following steps to add cryptography support to the VM guest:

1. In the VM domain definition, edit the XML file (see Example 5-92).

Example 5-92 Editing VM definitions using virsh

root@rdbkkvm4:/var/lib/libvirt/images# virsh edit kvm4guest01
Domain kvm4guest01 XML configuration edited.

2. Locate the <devices> section and add the <hostdev> section, as shown in Example 5-93.

Example 5-93 Mediated device definition

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ap'>
 <source>
 <address uuid='e67ad324-50ad-4321-bba5-ee235ca0e45a'/>
 </source>
</hostdev>

The true random number generator (TRNG) feature can be used to generate random
numbers. You can enable this feature as shown in Example 5-94. For more information,
see Chapter 2, “Planning for the Kernel-based Virtual Machine host and guest” on
page 21.

Example 5-94 Statement to use TRNG

<rng model='virtio'>
 <backend model='random'>/dev/trng</backend>
</rng>

When you start the guest, you might see the message that is shown in the Example 5-95.

Example 5-95 Error in /dev/trng

root@rdbkkvm4:/home/lnxadmin/isos# virsh start kvm4guest01 --console
error: Failed to start domain kvm4guest01
error: internal error: process exited while connecting to monitor:
2021-11-29T14:33:05.316521Z qemu-system-s390x: -object
rng-random,id=objrng0,filename=/dev/trng: Could not open '/dev/trng': Permission
denied

A Permission denied message can occur because this specific device does not have read
or write permission. To check the condition, run the command that is shown in
Example 5-96.

Example 5-96 Error in /dev/trng

root@rdbkkvm4:/home/lnxadmin/isos# dmesg | grep /dev/trng
[4310.601112] audit: type=1400 audit(1638225131.437:75): apparmor="DENIED"
operation="open" profile="libvirt-f27ac39f-0833-43d1-ab06-e5618bb0981d"
name="/dev/trng" pid=12908 comm="qemu-system-s39" requested_mask="r"
denied_mask="r" fsuid=64055 ouid=0
184 Virtualization Cookbook for IBM Z Volume 5: KVM

Correct this condition by adding “/dev/trng rw,” in the file
/etc/apparmor.d/abstractions/libvirt-qemu. Reload the apparmor service by using the
service apparmor reload command.

For more information, see Ubuntu AppArmor.

3. Recycle the VM and verify the definitions by running the commands that are shown in
Example 5-97.

Example 5-97 Verification commands

In KVM we verify the usage of TRNG:

root@rdbkkvm4:/home/lnxadmin/isos# cat /sys/devices/virtual/misc/trng/byte_counter
trng: 16
hwrng: 16
arch: 1920
total: 1952

On the guest we verify the crypto availability:

root@kvm4guest01:/home/rdbkuser1# lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS

03 CEX7C CCA-Coproc online 1
03.0029 CEX7C CCA-Coproc online 1
06 CEX7C CCA-Coproc online 0
06.0029 CEX7C CCA-Coproc online 0

Upon completion of these steps, the crypto card is available to be used in the entire
environment, including the KVM host and the VMs.

For more information, see Linux on Z and LinuxONE: Configuring Crypto Express Adapters
for KVM Guests, SC34-7717.

5.7.9 Using the Integrated Accelerator for zEnterprise Data Compression

The Integrated Accelerator for zEnterprise Data Compression (zEDC) with the IBM z15
replaces the zEDC Express adapter with on-chip compression, which provides increased
throughput and capacity. It also reduces the cost of storing, processing, and transporting
data.

The acceleration with the on-chip Integrated Accelerator for zEDC is available to applications
that use zlib or gzip in user space and to the kernel zlib.

To check whether your platform can use the Integrated zEDC, you must check whether you
have the dflt feature available by using the command that is shown in Example 5-98.

Example 5-98 Checking dflt feature

kvm4guest01:/home/lnxadmin # lscpu | grep dflt
Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs te vx vxd vxe gs vxe2 vxp sort dflt
Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use 185

https://ubuntu.com/server/docs/security-apparmor
http://public.dhe.ibm.com/software/dw/linux390/docu/l198hq00.pdf

The dflt feature its available in our lab because we use a z15. To use this feature, we must
update the DFLTCC_LEVEL_MASK environmental variable that establishes the compression
level.

You can update this environmental variable for a command, a session, or the entire system.
For this example, we show the variable update for a session level by using a session level that
uses a 5.8 Gb text file that is called operlog.txt.

By using higher levels of compression, you can save almost 30x more CPU time and 23x
more elapsed time; however, the ratio compression can be lower (in this case, only 2.7%)

Table 5-5 lists the compression statistics.

Table 5-5 Compression statistics

Figure 5-7 shows reports of compression exercises.

Figure 5-7 Compression exercises

Compression level Compression ratio Elapsed time Total CPU time

0x0000 91.6% 1m 24.713s 1m 23641s

0x0002 91.65% 1m 24.212s 1m 14.829s

0x007E 88.9% 0m 3.441s 0m 2.848s

0x01FF 88.9% 0m 4.376s 0m 2.760s

root@kvm4guest01:/home# rm -rf operlog1_nohw.gz
root@kvm4guest01:/home# export DFLTCC_LEVEL_MASK=0x0000
root@kvm4guest01:/home# time gzip -v -c operlog.txt > operlog1_nohw.gz
operlog.txt: 91.6%
real 1m24.713s
user 1m21.485s
sys 0m2.156s

root@kvm4guest01:/home# export DFLTCC_LEVEL_MASK=0x0002
root@kvm4guest01:/home# time gzip -v -c operlog.txt > operlog1_lvl_0x0002.gz
operlog.txt: 91.6%
real 1m24.212s
user 1m21.683s
sys 0m2.146s

root@kvm1guest1:/home/rdbkuser1# export DFLTCC_LEVEL_MASK=0x007e
root@kvm4guest01:/home# export DFLTCC_LEVEL_MASK=0x007e
root@kvm4guest01:/home# time gzip -v -c operlog.txt > operlog1_lvl_0x007e.gz
operlog.txt: 88.9%
real 0m3.441s
user 0m0.447s
sys 0m2.401s

root@kvm4guest01:/home# time gzip -v -c operlog.txt > operlog1_lvl_0x01ff.gz
operlog.txt: 88.9%
real 0m4.376s
user 0m0.445s
sys 0m2.315s
186 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 6. Managing the Kernel-based
Virtual Machine environment

After the Kernel-based Virtual Machine (KVM) environment is running, other tasks must be
done, such as changing the environment, recovering data, and keeping the environment
secure.

This chapter reviews various tools that can be used in the KVM environment for the main
enterprise distributions for the following management domains:

� Resources management: The process of assigning real and virtual resources to different
entities and making configuration changes to virtual machines (VMs).

� Recovery management: An approach for backing up data and running data recovery in a
timely and reliable fashion.

� Security management: A practice that ensures authorized access to data, systems, and
resources is secure and that an audit trail exists if any violations occur.

This chapter does not include High Availability because most of those concepts are not
unique to KVM and can be used in other virtualization environments.

This chapter includes the following topics:

� 6.1, “Managing resources” on page 188
� 6.2, “Recovery management” on page 197
� 6.3, “Security management” on page 201

6

© Copyright IBM Corp. 2022. All rights reserved. 187

6.1 Managing resources

A virtualized environment consists of real and virtual resources, such as CPUs, memory,
network interfaces, networks, and storage. The purpose of a resource management tool is to
allow efficient workflows for defining, assigning, modifying, and removing such resources.

This section covers the following open source resource management tools:

� Virsh
� Virt-manager
� Cockpit
� OpenStack

6.1.1 Virsh

Virsh is the main command line interface (CLI) of libvirt for managing VMs and other
resources. Typically, virsh uses XML as the definition language for the VMS, networks, and
other resources.

Example 6-1 shows part of a VM definition (domain) in the XML file (content suppressed).

Example 6-1 Virsh domain definition

[root@rdbkkvm2 /]# virsh dumpxml guestVM1
<domain type='kvm' id='11'>
 <name>guestVM1</name>
 <uuid>9e2bc4ee-77d6-4928-8639-83317da0eb64</uuid>
 <metadata>
 <libosinfo:libosinfo
xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1.0">
 <libosinfo:os id="http://ubuntu.com/ubuntu/20.10"/>
<domain type='kvm' id='10'>
 </cpu>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
[...]
</domain>

Note: The virsh CLI can be installed as follows for the different distributions:

� RHEL: yum install libvirt
� Ubuntu: apt-get install libvirt-bin
� SUSE: zypper install libvirt
188 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 6-2 and Example 6-3 show other useful commands for virsh.

Example 6-2 Listing host information by using virsh

[root@rdbkkvm2]# sudo virsh nodeinfo
CPU model: s390x
CPU(s): 16
CPU frequency: 5200 MHz
CPU socket(s): 1
Core(s) per socket: 16
Thread(s) per core: 2
NUMA cell(s): 1
Memory size: 263046652 KiB

Example 6-3 Virsh maintenance commands

Get Domain List
[root@rdbkkvm2 /]# virsh list --all
 Id Name State

 11 guestVM1 running

Get domain detail info
[root@rdbkkvm2 /]# virsh dominfo guestVM1
setlocale: No such file or directory
Id: 11
Name: guestVM1
UUID: 9e2bc4ee-77d6-4928-8639-83317da0eb64
OS Type: hvm
State: running
CPU(s): 2
CPU time: 19.8s
Max memory: 4194304 KiB
Used memory: 4194304 KiB
Persistent: yes
Autostart: enable
Managed save: no
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_t:s0:c121,c280 (enforcing)

Get virtual network list
[root@rdbkkvm2 /]# virsh net-list
 Name State Autostart Persistent

 default active yes yes
 macvtap-net1 active yes yes
 OpenNet active no yes
[root@rdbkkvm2 /]# virsh vol-list default
 Name Path
--
 guestVM1-datavol /var/lib/libvirt/images/guestVM1-datavol
 GuestVM1-Vol1 /var/lib/libvirt/images/GuestVM1-Vol1
 GuestVM1-vol1 /var/lib/libvirt/images/GuestVM1-vol1
 Vol1 /var/lib/libvirt/images/Vol1
Chapter 6. Managing the Kernel-based Virtual Machine environment 189

For more information about available commands for IBM Z, see Linux on Z and LinuxONE:
KVM Virtual Server Management, SC34-2752.

6.1.2 Virtual Machine Manager

Virtual Machine Manager (virt-manager) is a graphical user interface (GUI) that you can use
to manage VMs through libvirt. It covers the following areas:

� Monitoring

Virt-manager shows an overview of performance and use statistics for each VM and their
CPU, memory, and I/O.

� Life-cycle management

You can use virt-manager to create, start, stop, change, and delete a VM. It provides
graphical wizards for creating a VM.

� Resource management

You can use virt-manager to define, modify, or delete virtual hardware resources for VMs.

� Control

Provides easy access to a console of a running VM from virt-manager.

Note: The virt-manager GUI can be installed for the following distributions:

� RHEL: yum install virt-manager
� Ubuntu: apt-get install virt-manager
� SUSE: zypper install virt-manager
190 Virtualization Cookbook for IBM Z Volume 5: KVM

http://public.dhe.ibm.com/software/dw/linux390/docu/l19bva05.pdf

As shown in Figure 6-1, the virt-manager GUI can connect to a remote KVM through an IP or
host name. This feature allows virt-manager to manage several KVM hosts from a single
desktop.

Figure 6-1 Virt-manager with remote KVM host
Chapter 6. Managing the Kernel-based Virtual Machine environment 191

By using virt-manager, you can define, create, and modify resources that the VM needs, such
as disks, network interfaces, and other devices. Some basic resources that virt-manager
shows are shown in Figure 6-2.

Figure 6-2 virt-manager resources

For more information about virt-manager, see this website.

6.1.3 Cockpit

Cockpit is a web-based interface that is used to easily administrate the servers. Although it
does not cover all of the features of the virsh command line, it is an alternative to manage the
environment by Web interface instead of acquiring commercial software.

Cockpit concepts extend the features of servers administration by creating plug-ins that can
be customized according to business purposes.

Cockpit includes an extension that is called cockpit-machines with which Cockpit can
manage, create, and monitor VMs from the web interface that provides the functions:

� Manage multiple servers in a single Cockpit console
� Access terminal shell
� Manage systems resources (memory and CPU)
� Create, delete, clone VMs
� Manage system services
� Add and edit storage
192 Virtualization Cookbook for IBM Z Volume 5: KVM

https://virt-manager.org
https://cockpit-project.org/

� Add and edit network interfaces
� Collect system performance information
� Install extensions to manage different features, including KVM, Docker, and Kubernetes

Installing and using Cockpit
Use the following command to enable Cockpit:

sudo systemctl enable --now cockpit.socket

Use the following computer or server IP on port 9090 to use Cockpit:

https://yourhostname:9090

Figure 6-3 shows an example of how to create a VM from the Cockpit console. By using the
console, you can connect to the VM shell, list disks, and mange networks and the status of
the VM.

Figure 6-3 Creating a VM

Note: Cockpit is available for Red Hat and Ubuntu. It can be installed by using the following
commands:

� RHEL: yum install cockpit cockpit-machines
� Ubuntu: apt-get install cockpit cockpit-machines
Chapter 6. Managing the Kernel-based Virtual Machine environment 193

Figure 6-4 shows how to clone a VM by using Cockpit.

Figure 6-4 Cloning a VM by using Cockpit

The Figure 6-5 shows a sample of creating and attaching a virtual storage volume
(GuestVM1-datavol) by using the Cockpit manager console.

Figure 6-5 Creating a virtual volume for the KVM guest

For more information about Cockpit, see this website.

6.1.4 OpenStack

The OpenStack project is a global collaboration community of developers and cloud
computing technologists who are working to create an open source, cloud computing platform
for public, private, and hybrid clouds. The cloud computing platform is integrated by a list of
interrelated services that provides different management features for the cloud infrastructure.

OpenStack services provide an IaaS or PaaS solution. Each OpenStack service offers an API
that facilitates its integration. Based on its service needs, you can install some or all services.
194 Virtualization Cookbook for IBM Z Volume 5: KVM

https://cockpit-project.org/

OpenStack can be deployed on IBM Z under the Ubuntu distribution. For the example in this
IBM Redbooks publication, OpenStack was installed on Ubuntu 18.04 with an architecture of
one controller node and one compute node.

For more information about the full installation process, see this web page.

The deployed version is Stein that includes the following services:

� Keystone: Provides authentication and authorizations for all OpenStack services
� Glance: Provides a catalog and repository for virtual disk images
� Placement: Provides an API to track resource provider inventories and usages
� Nova: Provides VMs on demand
� Neutron: Provides network management
� Horizon: Provides a web-based user interface

Example 6-4 shows how to create a VM on OpenStack by using the CLI.

Example 6-4 Creating a server on OpenStack

root@rdbkkvm4:~# openstack server create --flavor m1.small0 --image bionicCloud --nic
net-id=provider --security-group test --key-name mykey provider-instance2Z
+-------------------------------------+---+
| Field | Value
+-------------------------------------+---+
| OS-DCF:diskConfig | MANUAL
| OS-EXT-AZ:availability_zone |
| OS-EXT-SRV-ATTR:host | None
| OS-EXT-SRV-ATTR:hypervisor_hostname | None
| OS-EXT-SRV-ATTR:instance_name |
| OS-EXT-STS:power_state | NOSTATE
| OS-EXT-STS:task_state | scheduling
| OS-EXT-STS:vm_state | building
| OS-SRV-USG:launched_at | None
| OS-SRV-USG:terminated_at | None
| accessIPv4 |
| accessIPv6 |
| addresses |
| adminPass | eKQuE5sb8FMD
| config_drive |
| created | 2019-12-02T15:12:35Z
| flavor | m1.small0 (2)
| hostId |
| id | d2ae87dc-5a27-49f9-a894-6230d85f4470
| image | bionicCloud (d7cc628b-3e1a-473c-afd6-e25518f20b60)
|
| key_name | mykey name | provider-instance2Z
| progress | 0
| project_id | 530e2bfeaefd4d8d86de1bd914ed6a36
| properties |
| security_groups | name='9319eea2-0ae5-4d84-bf27-af57c7a447db'
|
| status | BUILD
| updated | 2019-12-02T15:12:35Z

Note: During the installation process, an error occurred in which the etcd service did not
start. To solve this problem, export the variable ETCD_UNSUPPORTED_ARCH by using the
following command:

export ETCD_UNSUPPORTED_ARCH=s390x
Chapter 6. Managing the Kernel-based Virtual Machine environment 195

https://docs.openstack.org/install-guide

| user_id | a5c3201248b444e3adc6f83e340a9f60
| volumes_attached |
+-------------------------------------+---+

A VM also can be created by using the dashboard, as shown in Figure 6-7.

Figure 6-6 Creating a VM in OpenStack through Dashboard

6.1.5 Choosing the correct tool

Each of the tools that are described in this publication (see Table 6-1 on page 197) includes
its own advantages. Each advantage features different considerations, depending on the
needs and the distribution that is used:

� Virsh is a shell around libvirt that can be powerful, but it is only a CLI tool and can be
complex for some tasks. It is supported on all the distributions that are presented in this
IBM Redbooks publication.

� VM Manager (VMM) provides many functions through a GUI. It can be used to connect to
multiple KVM hosts. It is supported on all the distributions that are presented in this
publication.

� Cockpit is a powerful and intuitive tool to work with servers; however, on the KVM side, it is
not as complete as Virsh or VMM. Cockpit-machines are more oriented to creating and
monitoring a VM, but other complex tasks are limited. Cockpit is supported on RHEL and
Ubuntu.

� OpenStack is a complete and open solution to manage VMs and all of the different
resources that are needed around it, such as networking, storage, and security. As of this
writing, OpenStack is supported on Ubuntu.
196 Virtualization Cookbook for IBM Z Volume 5: KVM

Table 6-1 Resource management tools overview

6.2 Recovery management

After an environment is set up, it is important to protect the data that it contains. Therefore,
backup and restore procedures must be part of installing any KVM and Linux environment.

Approaches for backup depend on many varying requirements, including the following
examples:

� What to back up

Do you back up data only or also operating system and middleware or database
configuration files? Is it easier to reinstall and modify only several configuration files or is
an image copy of the whole disk easier?

� Recovery objective

What type of risk is acceptable? Several methods are available to recover from a crash
state by using journals or must a full backup be available at any time?

� Recovery time

Is it acceptable if a recovery takes days (applying journals on large databases)? If you are
recovering an operating system, is it faster to reinstall or recover?

� On which level the backup is occurring

In a virtualized environment, disk images of VMs can be backed up from the hypervisor.
However, if the VM is active, data in its cache is not backed up. Is it acceptable to shut
down the VM for backup or use tools inside it to perform a backup?

� Different tools for different purposes

Tools are available to back up disk images, and other tools to create file-level backups.
Database systems have their own backup solutions because they understand what is
occurring inside the database system.

Task Virsh VMM Cockpit OpenStack

Interface CLI GUI GUI GUI, CLI

Access method SSH client or console Linux X Window
System application

Web browser Web browser, SSH
client, or API

Manage VM lifecycle Yes Yes Yes Yes

Configure resources
available to KVM

Yes Yes No No

Add ECKD volumes
to KVM

Yes No No No

Add resources to
VMs

Yes Yes No Yes

Overview system
performance

No Yes Yes Yes

Console access VM Console VM Console VM Console VM Console

Distribution RHEL, Ubuntu, and
SUSE

RHEL, Ubuntu, and
SUSE

RHEL and Ubuntu Ubuntu
Chapter 6. Managing the Kernel-based Virtual Machine environment 197

6.2.1 Snapshot

A snapshot is a copy of the VM disk at a specific time. It is useful to take a snapshot of a VM
before changing to the VM because a VM can be restored to the same state it was when the
snapshot was taken. However, a snapshot alone does not provide a backup.

The Example 6-5 shows the process of creating a snapshot by using virsh commands.
Remember that qcow2 storage must be used for snapshots to work. If a snapshot is taken
while the VM is running, the snapshot takes only the state of the disk, not the state of the
memory.

Example 6-5 Creating a snapshot with virsh

root@rdbkkvm2:/home/lnxadmin# virsh snapshot-create-as --domain RHEL84 --name
"snapshotRedbook" --description "Snapshot before upgrading"
Domain snapshot snapshotRedbook created

root@rdbkkvm2:/home/lnxadmin# virsh snapshot-list --domain RHEL84
 Name Creation Time State
--
 snapshotRedbook 2019-11-27 11:20:58 -0500 running

Example 6-6 shows how to revert a VM to a specific snapshot. As shown in the example, the
VM is running again after the snapshot is restored.

Example 6-6 Reverting to a snapshot with virsh

root@rdbkkvm2:/home/lnxadmin# virsh shutdown --domain RHEL84
Domain RHEL77 is being shutdown

root@rdbkkvm2:/home/lnxadmin# virsh snapshot-revert --domain RHEL84
--snapshotname snapshotRedbook --running

root@rdbkkvm2:/home/lnxadmin# virsh list
 Id Name State

 1 RHEL84 running

6.2.2 Compressing data and backup

One of the frequent administration tasks for Linux and the application is to compress the logs
to save disk space and backup them daily by using a backup tool. Several backup tools for
Linux are available in commercial and open software.

The IBM z15 machine features a new hardware feature that is called Integrated Accelerator
for zEnterprise Data Compression (zEDC) to accelerate file compression. zEDC enables
Linux on IBM Z and LinuxONE machines to run the gzip compression in the IFL processors
and offload the main processors.

To enable the supported Linux versions (RHEL 8.2, SLE15, Ubuntu 20.04, and newer), the
only step is to set an environment variable that controls which compression levels must be
accelerated. To permanently enable the feature, add this information in the /etc/bashrc
directory.
198 Virtualization Cookbook for IBM Z Volume 5: KVM

The environment variable DFLTCC_LEVEL_MASK includes a binary value. Each bit
corresponds to one compression level, including the following examples:

� DFLTCC_LEVEL_MASK=0x0000 (disable hardware acceleration)
� DFLTCC_LEVEL_MASK=0x0002 (enable hardware acceleration for compression level 1)
� DFLTCC_LEVEL_MASK=0x007e (enable hardware acceleration for compression level 1 - 6)
� DFLTCC_LEVEL_MASK=0x01ff (enable hardware acceleration for compression level 0 - 8)

Starting with the last two lines of Example 6-7, the gzip compression and zero main
processor consumption are greatly improved.

Example 6-7 LAB Test1: Setting up level without acceleration

[root@rdbkkvm2 isos]# time gzip operlog1.txt
real 1m23.633s
user 1m21.878s
sys 0m1.673s
[root@rdbkkvm2 isos]# ls -alh operlog1.txt.gz
-rw-r--r--. 1 root root 467M Nov 22 08:23 operlog1.txt.gz

The system spent 1 minute and 23 seconds to complete the compression and allocated
100% of CPU(IFL) for 1 minute and 23 seconds (see Example 6-8).

Example 6-8 Output of top command

[root@rdbkkvm2 /]# top
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
407160 root 20 0 3064 1716 1148 R 100.0 0.0 1:23.12 gzip

Example 6-9 shows the improvements in processing time when hardware acceleration is
used.

Example 6-9 LAB test2: Setting up level by using hardware acceleration

[root@rdbkkvm2 isos]# time gzip operlog1.txt
Real 0m1.883s
user 0m0.430s
sys 0m1.453s
[root@rdbkkvm2 isos]# ls -alh operlog1.txt.gz
-rw-r--r--. 1 root root 621M Nov 22 08:23 operlog1.txt.gz

The system spent 1.8 seconds to complete the compression of the same file and did not
allocate CPU(IFL) time. However, the compression tax is a small (15%).

6.2.3 IBM FlashCopy

IBM FlashCopy is supported by many IBM Storage subsystems. With the FlashCopy function,
the data on target volumes is replaced by data from source volumes when the copy operation
starts. FlashCopy can be referred to by other names, including Time-Zero copy (T 0),
point-in-time copy, or snapshot copy.

The primary objective of FlashCopy is to create a copy of a source volume on the target
volume. This copy is called a point-in-time copy. Access to the point-in-time copy of the data
on the source volume is through reading the data from the target volume. The point-in-time
data that is read from the target volume might not be physically stored on the target volume.
Chapter 6. Managing the Kernel-based Virtual Machine environment 199

When a FlashCopy relationship is established (more specifically, when the initialization
process for a FlashCopy is established and started by using the FCESTABL command), the
point-in-time data is available for reading from the target volume.

However, if data is written to a track that is a target track in a FlashCopy relationship and the
updated target track is read later, the data that is returned is user-updated data and not the
point-in-time source track data. Target tracks are withdrawn from a FlashCopy relationship
when an application writes to these tracks.

The FlashCopy is a feature of the DS8000 storage family and can be used when backing up a
Linux guest that is running under KVM on its own SCSI LUN. You use the FlashCopy feature
on an IBM SAN Volume Controller to create an exact copy of the device on which the guest is
running by using FlashCopy.

Example 6-10 shows how to connect to a SAN Volume Controller and create a FlashCopy.
For this example, a FlashCopy of the disk 0110 is created into the disk 0111.

Example 6-10 Creating a FlashCopy

[root@localhost dscli]# dscli -hmc1 IP-user USER -passwd PASSWORD

dscli> lsfbvol
Date/Time: December 5, 2019 6:17:05 AM EST IBM DSCLI Version: 7.8.50.497 DS:
IBM.2107-75KCG71
Name ID accstate datastate configstate deviceMTM datatype extpool cap
(2^30B) cap (10^9B) cap (blocks)
==
===============================
RB_KVM_ARIES_ 0005 Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 0006 Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 0007 Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 0008 Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 0009 Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 000A Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 000B Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 000C Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 000D Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 000E Online Normal Normal 2107-900 FB 512 P2
40.0 - 83886080
RB_KVM_ARIES_ 0108 Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 0109 Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 010A Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 010B Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
200 Virtualization Cookbook for IBM Z Volume 5: KVM

RB_KVM_ARIES_ 010C Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 010D Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 010E Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 010F Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 0110 Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080
RB_KVM_ARIES_ 0111 Online Normal Normal 2107-900 FB 512 P3
40.0 - 83886080

dscli> mkflash -dev IBM.2107-75KCG71 0110:0111
Date/Time: December 5, 2019 6:19:50 AM EST IBM DSCLI Version: 7.8.50.497 DS:
IBM.2107-75KCG71
CMUC00137I mkflash: FlashCopy pair 0110:0111 successfully created.

While the FlashCopy is being made, the status of the process can be seen by using the
lsflash -dev IBM.2107-75KCG71 -l 0110:0111 command.

After the FlashCopy is created on the disk, you can restore it by copying back the contents of
the copied disk into the source disk. This process can be done by using FlashCopy, but the
direction of the copy is swapped.

6.3 Security management

Security is a key aspect of every IT environment. Ignoring good security practices can lead to
a breach and make a platform ineligible for consideration for specific workloads.

The tools and facilities that are used to secure a KVM environment are the same tools that
you might use for the Linux VMs. The components that are described in this section do not
overlap, but address different facets of the overall security needs, such as authentication,
auditing, and network access control.

The following tools are described in this section:

� FreeIPA
� sVirt
� App Armor
� Linux Audit

6.3.1 FreeIPA

FreeIPA is an integrated security Information Management solution that combines multiple
web-based and command-line administration tools. It provides a centralized authentication,
authorization, and account information by storing data about users, groups hosts, and other
objects. It is built on Open Source components and protocols to ease the management and
automation of configuration tasks.

FreeIPA features the following components:

� 389 Directory Server

An Open Source LDAP server for Linux. It stores identities, groups, and organization data.
Chapter 6. Managing the Kernel-based Virtual Machine environment 201

� Kerberos

A computer-network authentication protocol that is based on tickets allows communication
between nodes over a non-secure network, which proves their identity to one another in a
secure manner.

� Dogtag Certificate System

Dogtag Certificate System is an enterprise-class certificate authority. It supports all
aspects of certificate lifecycle management.

� System Security Services Daemon

Provides a set of daemons to manage access to the different FreeIPA components, such
as LDAP and Kerberos.

FreeIPA features the following benefits:

� Centralize identities in one place
� Apply policies to multiple machines uniformly and at the same time
� Set different access levels for users and groups
� Reduce risks of passwords being written down or stored insecurely

After installing the FreeIPA packages, the command ipa-server-install guides you through
the configuration. Example 6-11 shows a basic configuration for the tool.

Example 6-11 FreeIPA server configuration

[root@server ~]# ipa-server-install

The log file for this installation can be found in /var/log/ipaserver-install.log
==
This program will set up the IPA Server.
Version 4.7.1

This includes:
 * Configure a stand-alone CA (dogtag) for certificate management
 * Configure the NTP client (chronyd)
 * Create and configure an instance of Directory Server
 * Create and configure a Kerberos Key Distribution Center (KDC)
 * Configure Apache (httpd)
 * Configure the KDC to enable PKINIT

To accept the default shown in brackets, press the Enter key.

Do you want to configure integrated DNS (BIND)? [no]:

Enter the fully qualified domain name of the computer
on which you're setting up server software. Using the form
<hostname>.<domainname>
Example: master.example.com.

Server host name [server.redbook.com]:

The domain name has been determined based on the host name.

Please confirm the domain name [redbook.com]:

The kerberos protocol requires a Realm name to be defined.
202 Virtualization Cookbook for IBM Z Volume 5: KVM

This is typically the domain name converted to uppercase.

Please provide a realm name [REDBOOK.COM]:
Certain directory server operations require an administrative user.
This user is referred to as the Directory Manager and has full access
to the Directory for system management tasks and will be added to the
instance of directory server created for IPA.
The password must be at least 8 characters long.

Directory Manager password:
Password (confirm):

The IPA server requires an administrative user, named 'admin'.
This user is a regular system account used for IPA server administration.

IPA admin password:
Password (confirm):

The IPA Master Server will be configured with:
Hostname: server.redbook.com
IP address(es): 9.76.61.189
Domain name: redbook.com
Realm name: REDBOOK.COM

The CA will be configured with:
Subject DN: CN=Certificate Authority,O=REDBOOK.COM
Subject base: O=REDBOOK.COM
Chaining: self-signed

Continue to configure the system with these values? [no]: yes

The following operations may take some minutes to complete.
Please wait until the prompt is returned.

Synchronizing time
No SRV records of NTP servers found and no NTP server or pool address was
provided.
Using default chrony configuration.
Attempting to sync time with chronyc.
Process chronyc waitsync failed to sync time!
Unable to sync time with chrony server, assuming the time is in sync. Please check
that 123 UDP port is opened, and any time server is on network.
Warning: IPA was unable to sync time with chrony!
 Time synchronization is required for IPA to work correctly
Configuring directory server (dirsrv). Estimated time: 30 seconds
Done configuring directory server (dirsrv).
Done configuring Kerberos KDC (krb5kdc).
Configuring kadmin
Done configuring kadmin.
Configuring ipa-custodia
Done configuring ipa-custodia.
Configuring certificate server (pki-tomcatd). Estimated time: 3 minutes
Done configuring certificate server (pki-tomcatd).
Configuring directory server (dirsrv)
Chapter 6. Managing the Kernel-based Virtual Machine environment 203

Done configuring directory server (dirsrv).
Configuring ipa-otpd
Done configuring ipa-otpd.
Configuring the web interface (httpd)
Done configuring the web interface (httpd).
Configuring Kerberos KDC (krb5kdc)
Done configuring Kerberos KDC (krb5kdc).
Applying LDAP updates
Upgrading IPA:. Estimated time: 1 minute 30 seconds
Done.
Restarting the KDC
Configuring client side components
This program will set up IPA client.
Version 4.7.1

Using existing certificate '/etc/ipa/ca.crt'.
Client hostname: server.redbook.com
Realm: REDBOOK.COM
DNS Domain: redbook.com
IPA Server: server.redbook.com
BaseDN: dc=redbook,dc=com

Configured sudoers in /etc/nsswitch.conf
Configured /etc/sssd/sssd.conf
Adding SSH public key from /etc/ssh/ssh_host_ecdsa_key.pub
Adding SSH public key from /etc/ssh/ssh_host_ed25519_key.pub
Adding SSH public key from /etc/ssh/ssh_host_rsa_key.pub
Could not update DNS SSHFP records.
SSSD enabled
Configured /etc/openldap/ldap.conf
Configured /etc/ssh/ssh_config
Configured /etc/ssh/sshd_config
Configuring redbook.com as NIS domain.
Client configuration complete.
The ipa-client-install command was successful
204 Virtualization Cookbook for IBM Z Volume 5: KVM

After the FreeIPA server is configured, the server can be managed centrally from a
web-based interface. Figure 6-7shows an example of user management.

Figure 6-7 FreeIPA console on RHEL

FreeIPA is available for RHEL 8.0 and higher. For more information about FreeIPA, see this
web page.

6.3.2 sVirt

The sVirt project is a community effort that is attempting to integrate Mandatory Access
Control (MAC) security and Linux-based virtualization (KVM) that is built on SELinux. This
integration aims to provide an infrastructure to allow an administrator to define policies for VM
isolation.

SVirt ensures that a VM’s resources cannot be accessed by any other process (or VM). The
system administrator can extend this feature to define fine-grained permissions; for example,
to group VMs to share resources.

Example 6-12 shows the virtualization-related Booleans that can be configured.

Example 6-12 sVirt Booleans

[root@server ~]# getsebool -a | grep virt
staff_use_svirt --> off
unprivuser_use_svirt --> off
use_virtualbox --> off
virt_read_qemu_ga_data --> off
virt_rw_qemu_ga_data --> off
virt_sandbox_share_apache_content --> off
virt_sandbox_use_all_caps --> on
virt_sandbox_use_audit --> on
virt_sandbox_use_fusefs --> off
virt_sandbox_use_mknod --> off
virt_sandbox_use_netlink --> off
Chapter 6. Managing the Kernel-based Virtual Machine environment 205

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-server-installation_installing-identity-management
https://www.freeipa.org/page/Main_Page
https://www.freeipa.org/page/Main_Page

virt_sandbox_use_sys_admin --> off
virt_transition_userdomain --> off
virt_use_comm --> off
virt_use_execmem --> off
virt_use_fusefs --> off
virt_use_glusterd --> off
virt_use_nfs --> on
virt_use_pcscd --> off
virt_use_rawip --> off
virt_use_samba --> off
virt_use_sanlock --> off
virt_use_usb --> on
virt_use_xserver --> off

6.3.3 AppArmor

AppArmor is a Linux kernel security module that is used to confine programs to a limited set
of resources. The key to its security model is to blind access control attributes to a program
rather than to users. AppArmor is installed and active by default on Ubuntu server.

AppArmor uses profiles of an application to determine what permission it needs. With the
package libvird-daemon-system, AppArmor includes profiles that are related to QEMU, KVM,
and libvirtd. If a VM is created, AppArmor automatically applies the policies to it and enforces
those policies.

Example 6-13 shows the profiles that are enforced on an Ubuntu host (libvirtd and the VMs
that are created are in enforce mode).

Example 6-13 AppArmor status on Ubuntu

root@rdbkkvm4:/var/lib/libvirt/images# apparmor_status
apparmor module is loaded.
37 profiles are loaded.
35 profiles are in enforce mode.
 /sbin/dhclient
 /usr/bin/evince
 /usr/bin/evince-previewer
 /usr/bin/evince-previewer//sanitized_helper
 /usr/bin/evince-thumbnailer
 /usr/bin/evince//sanitized_helper
 /usr/bin/lxc-start
 /usr/bin/man
 /usr/lib/NetworkManager/nm-dhcp-client.action
 /usr/lib/NetworkManager/nm-dhcp-helper
 /usr/lib/connman/scripts/dhclient-script
 /usr/lib/cups/backend/cups-pdf
 /usr/lib/snapd/snap-confine
 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper
 /usr/sbin/chronyd
 /usr/sbin/cups-browsed
 /usr/sbin/cupsd
 /usr/sbin/cupsd//third_party
 /usr/sbin/ippusbxd
 /usr/sbin/libvirtd
 /usr/sbin/libvirtd//qemu_bridge_helper
206 Virtualization Cookbook for IBM Z Volume 5: KVM

 /usr/sbin/tcpdump
 libreoffice-senddoc
 libreoffice-soffice//gpg
 libreoffice-xpdfimport
 libvirt-0a01d085-11a7-4cd6-934c-f1f72c0f9a83
 libvirt-ca749820-a20a-40f2-9a63-33c72272cc92
 libvirt-d2ae87dc-5a27-49f9-a894-6230d85f4470
 lxc-container-default
 lxc-container-default-cgns
 lxc-container-default-with-mounting
 lxc-container-default-with-nesting
 man_filter
 man_groff
 virt-aa-helper
2 profiles are in complain mode.
 libreoffice-oopslash
 libreoffice-soffice
7 processes have profiles defined.
7 processes are in enforce mode.
 /usr/sbin/chronyd (2004)
 /usr/sbin/cups-browsed (201682)
 /usr/sbin/cupsd (201681)
 /usr/sbin/libvirtd (2182)
 libvirt-0a01d085-11a7-4cd6-934c-f1f72c0f9a83 (60044)
 libvirt-ca749820-a20a-40f2-9a63-33c72272cc92 (10999)
 libvirt-d2ae87dc-5a27-49f9-a894-6230d85f4470 (145003)
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.

6.3.4 Linux Audit

Linux Audit is a security tool that creates audit records for operations that occur within a Linux
system. It does not protect or prevent problems from occurring on the system; instead, it only
logs what occurs. The Linux Audit package is included in all three main distributions; however,
it is enabled by default on RHEL and SLES only.

Linux Audit includes the following primary use cases:

� File access watches
� Commands that are run by a specific user
� Recording system call activity
� Network activity through firewall rich rules
� Security event recording
� Searching and reporting on the audit logs

One of the concerns that might prevent the adoption of Linux Audit is the issue of
performance. However, the same issue can occur in other operating systems if too high of a
level of recording is selected.

Suitable planning and testing can help avoid Linux Audit-related performance issues. Testing
also must be done to ensure that the rules are implemented to capture the events that you
want recorded and evaluate any potential performance effects.

Note: To install auditd on Ubuntu, run the apt-get install auditd command.
Chapter 6. Managing the Kernel-based Virtual Machine environment 207

Rules can be configured on the /etc/audit/rules.d/ path on all three distributions. When a
modification is done, the service must be restarted by using the systemctl restart auditd
command.

Example 6-14 shows an example of a report of Linux audit.

Example 6-14 Linux audit report

rdbkkvms:~ # aureport --summary

Summary Report
======================
Range of time in logs: 20/11/19 17:06:55.350 - 03/12/19 10:08:33.415
Selected time for report: 20/11/19 17:06:55 - 03/12/19 10:08:33.415
Number of changes in configuration: 887
Number of changes to accounts, groups, or roles: 3
Number of logins: 46
Number of failed logins: 4
Number of authentications: 110
Number of failed authentications: 21
Number of users: 3
Number of terminals: 21
Number of host names: 19
Number of executables: 10
Number of commands: 0
Number of files: 0
Number of AVC's: 0
Number of MAC events: 0
Number of failed syscalls: 0
Number of anomaly events: 128
Number of responses to anomaly events: 0
Number of crypto events: 856
Number of integrity events: 0
Number of virt events: 1261
Number of keys: 0
Number of process IDs: 449
Number of events: 4840
208 Virtualization Cookbook for IBM Z Volume 5: KVM

By using Linux Audit, a report can be built with the virtualization events on the machine.
Example 6-15 shows a report of a VM being restarted on the system.

Example 6-15 Linux audit on virtualization

root@rdbkkvm4:~# aureport --virt

Virtualization Report
==============================
date time type success event
==============================
1. 12/03/2019 10:03:49 VIRT_CONTROL yes 111
2. 12/03/2019 10:05:31 VIRT_MACHINE_ID yes 119
3. 12/03/2019 10:05:31 VIRT_MACHINE_ID yes 120
4. 12/03/2019 10:05:31 VIRT_RESOURCE yes 124
5. 12/03/2019 10:05:31 VIRT_RESOURCE yes 125
6. 12/03/2019 10:05:32 VIRT_RESOURCE yes 127
7. 12/03/2019 10:05:32 VIRT_RESOURCE yes 128
8. 12/03/2019 10:05:32 VIRT_RESOURCE yes 129
9. 12/03/2019 10:05:32 VIRT_RESOURCE yes 130
10. 12/03/2019 10:05:32 VIRT_RESOURCE yes 131
11. 12/03/2019 10:05:32 VIRT_RESOURCE yes 132
12. 12/03/2019 10:05:32 VIRT_RESOURCE yes 133
13. 12/03/2019 10:05:32 VIRT_RESOURCE yes 134
14. 12/03/2019 10:05:32 VIRT_RESOURCE yes 135
15. 12/03/2019 10:05:32 VIRT_RESOURCE yes 136
16. 12/03/2019 10:05:32 VIRT_RESOURCE yes 137
17. 12/03/2019 10:05:32 VIRT_RESOURCE yes 138
18. 12/03/2019 10:05:32 VIRT_RESOURCE yes 139
19. 12/03/2019 10:05:32 VIRT_RESOURCE yes 140
20. 12/03/2019 10:05:32 VIRT_RESOURCE yes 141
21. 12/03/2019 10:05:32 VIRT_CONTROL yes 142
Chapter 6. Managing the Kernel-based Virtual Machine environment 209

210 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 7. High Availability for IBM General
Parallel File System

The IBM General Parallel File System (GPFS) is a cluster file system that provides concurrent
access to a single file system or set of file systems from multiple nodes. These nodes can all
be SAN attached or a mix of SAN and network attached. This configuration enables high
performance access to this common set of data to support a scale-out solution or provides a
high availability platform.

This chapter discusses how to set up IBM Spectrum Scale or GPFS for a two-node cluster,
Kernel-based Virtual Machine (KVM) Compute hosts. For more information about how to
install IBM Spectrum Scale on the Red Hat Operating System, see this web page.

KVM Compute hosts support two types of shared storage: NFS and IBM Spectrum Scale.
This IBM Redbooks publication covers the configuration for IBM Spectrum Scale. Throughout
this chapter, a step-by-step sequence approach shows the commands and their expected
output to achieve the objective of creating the environment.

After the installation is complete, follow the steps to set up IBM Cloud Infrastructure Center
that are described in 9.1, “Installing IBM Cloud Infrastructure Center” on page 322.

7

Note: Consider the following points:

� Changing a shared storage path after the host is managed is not supported.

� Ensure that the IBM Spectrum Scale or NFS storage server is always active; otherwise,
the host fails to be added for timeout exception and the virtual machine (VM)
deployment might fail for permission deny.

� Ensure that the shared storage path always is mounted to the share storage server;
otherwise, the local storage of the host is used and the VM deployment might fail for
permission deny.
© Copyright IBM Corp. 2022. All rights reserved. 211

https://www.ibm.com/products/spectrum-scale
https://www.ibm.com/products/spectrum-scale

This chapter includes the following topics:

� “Environment overview” on page 213
� “Zoning and LUN masking” on page 214
� “Downloading IBM Spectrum Scale from IBM Fix Central” on page 219
� “Installing IBM Spectrum Scale” on page 221
� “Building the GPFS portability layer” on page 225
� “Handling Linux kernel updates” on page 226
� “GPFS general configuration” on page 228
� “Working with the General Parallel File System” on page 241
212 Virtualization Cookbook for IBM Z Volume 5: KVM

7.1 Environment overview

Figure 7-1 shows the GPFS folder that is created for our two KVM hosts. The LUN disks are
shared with all KVM hosts and the file system is managed by IBM Spectrum Scale.

Figure 7-1 KVM Hosts GPSF Shared Folder

Note: The LUN that is highlighted in red in Figure 7-1 is used for the tiebreaker disk. How it
is configured is described in 7.8.6, “Setting up a tiebreaker disk” on page 249.
Chapter 7. High Availability for IBM General Parallel File System 213

7.2 Zoning and LUN masking

In our environment, the SAN infrastructure was defined by using four CHPIDs that are
connected to four different FICON directors (switches). As a result, ranges of FCP devices are
created by using NPIV, as shown in Figure 7-2.

Figure 7-2 SAN infrastructure

The I/O definition of FCP CHPIDs and devices are listed in Table 7-1.

Table 7-1 FCP CHPIDS and devices

z/VM SAN/FCP CHPIDS CEC#1

CHPIDS LPARS ADDRESSES DEVICES

50 LPAR1 F000-F0EF 240

51 LPAR1 F100-F1EF 240

52 LPAR 1 F200-F2EF 240

53 LPAR1 F300-F3EF 240

z/VM SAN/FCP CHPIDS CEC#2

CHPIDS LPARS ADDRESSES DEVICES

50 LPAR2 F000-F0EF 240

51 LPAR2 F100-F1EF 240

52 LPAR2 F200-F2EF 240

53 LPAR2 F300-F3EF 240
214 Virtualization Cookbook for IBM Z Volume 5: KVM

The following FCP devices were assigned logical WWPNs by using NPIV that was generated
by HMC/SE:

� LPAR1,04,07,50,00,f000,c05076dbdc003000,On,Yes,0168,c05076dbdc001681
� LPAR1,04,07,51,00,f100,c05076dbdc003300,On,Yes,0105,c05076dbdc001051
� LPAR2,04,07,50,00,f000,c05076d6a4003000,On,Yes,0168,c05076d6a4001681
� LPAR2,04,07,51,00,f100,c05076d6a4003300,On,Yes,0105,c05076d6a4001051
� LPAR2,04,07,52,00,f200,c05076d6a4003600,On,Yes,0170,c05076d6a4001701
� LPAR2,04,07,53,00,f300,c05076d6a4003900,On,Yes,0229,c05076d6a4002291

Complete the following steps to set up the LUN masking for a DS8K storage:

1. Access the storage (https://x.x.x.x, where x.x.x.x represents the Storage IP address)
by using your storage administrator credentials.

2. Click the Hosts section and then, click Create Host (see Figure 7-3).

Figure 7-3 Creating a host

3. Complete the form with information about your KVM LPAR name and WWPNs (repeat
these steps for all LPARs).
Chapter 7. High Availability for IBM General Parallel File System 215

4. Use the filter feature to search for your hosts (see Figure 7-4).

Figure 7-4 Searching your hosts by using filters

5. Click Create Cluster. A dialog window opens. Enter the cluster name and then, click
Create (see Figure 7-5).

Figure 7-5 Creating a cluster
216 Virtualization Cookbook for IBM Z Volume 5: KVM

6. Select the two KVM hosts (see Figure 7-6).

Figure 7-6 Selecting the KVM Host

7. Assign the KVM hosts to the cluster (see Figure 7-7 and Figure 7-8 on page 218).

Figure 7-7 Assigning hosts to cluster (1)
Chapter 7. High Availability for IBM General Parallel File System 217

Figure 7-8 Assigning hosts to cluster (2)

8. In the Volumes Section on the left side of the window, click Create Volumes. Under Quick
Volume Creation, select Open Systems. Then, select the storage pools, enter the Name
prefix, enter the wanted disk capacity and then, Create (see Figure 7-9).

Figure 7-9 Creating volumes and selecting storage pools
218 Virtualization Cookbook for IBM Z Volume 5: KVM

9. Confirm that disks were created and assigned to the KVM LPARs, as shown in
Figure 7-10.

Figure 7-10 Assigning created disks to KVM LPARs

7.3 Downloading IBM Spectrum Scale from IBM Fix Central

Complete the following steps to download IBM Spectrum Scale from IBM Fix Central:

1. Go to https://www.ibm.com/support/fixcentral/.

2. Search for the IBM Spectrum Scale product then Select the Installed Version and the
Platform by using the window pull-down menus, then click Continue. (see Figure 7-11).

Figure 7-11 IBM Fix Central product selection
Chapter 7. High Availability for IBM General Parallel File System 219

https://www.ibm.com/support/fixcentral/

3. When the Selected fixes page appears, scroll down to the Standard section then select
the latest Spectrum Scale Standard (version) for s390x-Linux. (see Figure 7-12). Then,
click Continue.

Figure 7-12 Selecting IBM Spectrum Scale

4. Select your preferred download method and click Continue (see Figure 7-13).

Figure 7-13 Selecting the download method
220 Virtualization Cookbook for IBM Z Volume 5: KVM

5. Download all files to a local folder (see Figure 7-14).

Figure 7-14 Selecting download options

7.4 Installing IBM Spectrum Scale

Complete the following steps to install IBM Spectrum Scale:

1. Create the /opt/spectrum_gpfs folder:

mkdir -pv /opt/spectrum_gpfs

2. Copy the downloaded file:

(Spectrum_Scale_Standard-5.1.2.1-s390x-Linux-install) to /opt/spectrum_gpfs

3. Ensure that the following prerequisite Linux packages are installed:

/usr/bin/yum -y install cpp selinux-policy-base selinux-policy-targeted
nfs-utils boost-regex ethtool rpcbind nfs-utils psmisc iputils m4 ksh
postgresql-contrib postgresql-server make kernel-devel gcc-c++

4. Extract the files and Execute Spectrum Installation on KVM COMPUTE that you are
installing (see Example 7-1).

Example 7-1 Installing IBM Spectrum Scale

cd /opt/spectrum_gpfs

chmod +x Spectrum_Scale_Standard-5.1.2.1-s390x-Linux-install

Note: We used --silent option below to accept the product license

./Spectrum_Scale_Standard-5.1.2.1-s390x-Linux-install --silent

Extracting License Acceptance Process Tool to /usr/lpp/mmfs/5.1.2.1 ...
tail -n +648 ./Spectrum_Scale_Standard-5.1.2.1-s390x-Linux-install | tar -C
/usr/lpp/mmfs/5.1.2.1 -xvz --exclude=installer --exclude=*_rpms --exclude=*_debs
--exclude=*rpm --exclude=*tgz --exclude=*deb --exclude=*tools* 1> /dev/null
Chapter 7. High Availability for IBM General Parallel File System 221

Installing JRE ...

If directory /usr/lpp/mmfs/5.1.2.1 has been created or was previously created during
another extraction,
.rpm, .deb, and repository-related files in it (if there were) will be removed to avoid
conflicts with the ones being extracted.

tail -n +648 ./Spectrum_Scale_Standard-5.1.2.1-s390x-Linux-install | tar -C
/usr/lpp/mmfs/5.1.2.1 --wildcards -xvz ibm-java*tgz 1> /dev/null
tar -C /usr/lpp/mmfs/5.1.2.1/ -xzf /usr/lpp/mmfs/5.1.2.1/ibm-java*tgz

Invoking License Acceptance Process Tool ...
/usr/lpp/mmfs/5.1.2.1/ibm-java-s390x-71/jre/bin/java -cp
/usr/lpp/mmfs/5.1.2.1/LAP_HOME/LAPApp.jar com.ibm.lex.lapapp.LAP -l
/usr/lpp/mmfs/5.1.2.1/LA_HOME -m /usr/lpp/mmfs/5.1.2.1 -s /usr/lpp/mmfs/5.1.2.1 -t 5

License Agreement Terms accepted.

Extracting Product RPMs to /usr/lpp/mmfs/5.1.2.1 ...
tail -n +648 ./Spectrum_Scale_Standard-5.1.2.1-s390x-Linux-install | tar -C
/usr/lpp/mmfs/5.1.2.1 --wildcards -xvz Public_Keys ansible-toolkit ganesha_rpms/rhel7
ganesha_rpms/rhel8 ganesha_rpms/sles15 gpfs_rpms/rhel7 gpfs_rpms/rhel8 gpfs_rpms/sles15
smb_rpms/rhel7 smb_rpms/rhel8 smb_rpms/sles15 tools/repo zimon_rpms/rhel7 zimon_rpms/rhel8
zimon_rpms/sles15 gpfs_rpms manifest 1> /dev/null
 - Public_Keys
 - ansible-toolkit
 - ganesha_rpms/rhel7
 - ganesha_rpms/rhel8
 - ganesha_rpms/sles15
 - gpfs_rpms/rhel7
 - gpfs_rpms/rhel8
 - gpfs_rpms/sles15
 - smb_rpms/rhel7
 - smb_rpms/rhel8
 - smb_rpms/sles15
 - tools/repo
 - zimon_rpms/rhel7
 - zimon_rpms/rhel8
 - zimon_rpms/sles15
 - gpfs_rpms
 - manifest

Removing License Acceptance Process Tool from /usr/lpp/mmfs/5.1.2.1 ...
rm -rf /usr/lpp/mmfs/5.1.2.1/LAP_HOME /usr/lpp/mmfs/5.1.2.1/LA_HOME

Removing JRE from /usr/lpp/mmfs/5.1.2.1 ...
rm -rf /usr/lpp/mmfs/5.1.2.1/ibm-java*tgz
==
Product packages successfully extracted to /usr/lpp/mmfs/5.1.2.1

222 Virtualization Cookbook for IBM Z Volume 5: KVM

7.4.1 Working with clusters and deploying protocols

For more information about the steps that are described in this section, see IBM Spectrum
Scale Concepts, Planning and Installation Guide, SC28-3161.

The following tasks are described in this section:

� Install a cluster
� Upgrade a cluster
� Add nodes to a cluster
� Deploy protocols

Installing a cluster
To install a cluster or deploy protocols with the IBM Spectrum Scale Installation Toolkit, run
the following command:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale -h

To install a cluster manually, use the GPFS packages that are in the following location:

/usr/lpp/mmfs/5.1.2.1/gpfs_<rpms/debs>

Upgrading a cluster
Complete the following steps to upgrade a cluster by using the IBM Spectrum Scale
Installation Toolkit:

1. Review and update the configuration:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale config update

2. Update the cluster configuration to reflect the current cluster configuration:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale config populate -N <node>

3. Run the upgrade:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale upgrade -h

Adding nodes to a cluster
Complete the following steps to add nodes to a cluster by using the IBM Spectrum Scale
Installation Toolkit:

1. Add nodes to the cluster definition file:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale node add -h

2. Install IBM Spectrum Scale on the new nodes:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale install -h

3. Deploy protocols on the new nodes:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale deploy -h

Adding NSD or file systems to a cluster:
Complete the following steps to add Network Shared Disks (NSDs) or file systems to a cluster
by using the IBM Spectrum Scale Installation Toolkit:

1. Add NSDs or file systems to the cluster definition:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale nsd add -h

2. Install the NSDs or file systems:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale install -h
Chapter 7. High Availability for IBM General Parallel File System 223

Updating the cluster definition
To update the cluster definition to reflect the current cluster configuration, run the following
command:

/usr/lpp/mmfs/5.1.2.1/ansible-toolkit/spectrumscale config populate -N <node>

For more information, see IBM Spectrum Scale Protocols Quick Overview.

Kernel-devel installed version verification
Ensure that installed Kernel-devel versions are compatible with Linux Kernel.

Run the following commands to verify whether the Kernel-devel versions that are installed in
the rdbkkvm2 and rdbkkvm3 virtual machine instances are the same as the version that is
running in the Linux Kernel:

� For rdbkkvm2:

uname -a
Linux rdbkkvm2.az12.dal.cpc.ibm.com 4.18.0-348.2.1.el8_5.s390x #1 SMP Mon Nov 8
10:08:25 EST 2021 s390x s390x s390x GNU/Linux

rpm -q kernel-devel
kernel-devel-4.18.0-348.2.1.el8_5.s390x

� For rdbkkvm3:

uname -a
Linux rdbkkvm3.az12.dal.cpc.ibm.com 4.18.0-348.2.1.el8_5.s390x #1 SMP Mon Nov 8
10:08:25 EST 2021 s390x s390x s390x GNU/Linux

rpm -q kernel-devel
kernel-devel-4.18.0-348.2.1.el8_5.s390x

7.4.2 Configuring IBM Spectrum Scale

Run the command that is shown in Example 7-2 to install the RPMs.

Example 7-2 Installing the RPMs

cd /usr/lpp/mmfs/5.1.2.1/gpfs_rpms
rpm -ivh
/usr/lpp/mmfs/5.1.2.1/zimon_rpms/rhel8/gpfs.gss.pmcollector-5.1.2-1.el8.s390x.rpm
rpm -ivh gpfs*rpm

Note: For <node>, pick a node in the cluster for the toolkit to use for automatic
configuration.
224 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en/STXKQY_5.1.2/pdf/scale_povr.pdf
https://www.ibm.com/docs/en/STXKQY_5.1.2/pdf/scale_povr.pdf

7.5 Building the GPFS portability layer

Before starting GPFS, you must build and install the GPFS portability layer. The GPFS
portability layer is a loadable kernel module that allows the GPFS daemon to interact with the
operating system.

Run the following command to install GPFS portability layer:

/usr/lpp/mmfs/bin/mmbuildgpl

The output that is shown in Example 7-3 is displayed.

Example 7-3 Installing GPFS portability layer command output

--
mmbuildgpl: Building GPL (5.1.2.1) module begins at Fri Nov 26 12:24:29 UTC 2021.
--
Verifying Kernel Header...
 kernel version = 41800348 (418000348002001, 4.18.0-348.2.1.el8_5.s390x,
4.18.0-348.2.1)
 module include dir = /lib/modules/4.18.0-348.2.1.el8_5.s390x/build/include
 module build dir = /lib/modules/4.18.0-348.2.1.el8_5.s390x/build
 kernel source dir = /usr/src/linux-4.18.0-348.2.1.el8_5.s390x/include
 Found valid kernel header file under
/usr/src/kernels/4.18.0-348.2.1.el8_5.s390x/include
Getting Kernel Cipher mode...
 Will use blkcipher routines
Verifying Compiler...
 make is present at /bin/make
 cpp is present at /bin/cpp
 gcc is present at /bin/gcc
 g++ is present at /bin/g++
 ld is present at /bin/ld
Verifying Additional System Headers...
 Verifying kernel-headers is installed ...
 Command: /bin/rpm -q kernel-headers
 The required package kernel-headers is installed
make World ...
make InstallImages ...
--
mmbuildgpl: Building GPL module completed successfully at Fri Nov 26 12:24:43 UTC
2021.
--
Chapter 7. High Availability for IBM General Parallel File System 225

7.6 Handling Linux kernel updates

The GPFS portability layer must be rebuilt on every node that undergoes a Linux kernel
update. Apply the kernel, restart, and rebuild the GPFS portability layer on each node by
using one of the following commands:

� /usr/lpp/mmfs/bin/mmbuildgp
� mmchconfig autoBuildGPL=yes
� mmstartup

The mmchconfig command was used in the example that is shown in Example 7-4.

Example 7-4 mmchconfig command

/usr/lpp/mmfs/bin/mmchconfig autoBuildGPL=yes
mmchconfig: Command successfully completed
mmchconfig: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

/usr/lpp/mmfs/bin/mmlsconfig
Configuration data for cluster rdbkkvm_cluster1.spectrum:

clusterName rdbkkvm_cluster1.spectrum
clusterId 15364531426110283948
dmapiFileHandleSize 32
minReleaseLevel 5.1.2.0
ccrEnabled yes
cipherList AUTHONLY
sdrNotifyAuthEnabled yes
tiebreakerDisks 3600507630affd0580000000000000003
autoload yes
autoBuildGPL yes
adminMode central

File systems in cluster rdbkkvm_cluster1.spectrum:
--
/dev/gpfs1

Create a work directory for GPFS configuration:

mkdir -p /root/gpfs/

Configure Firewall for Spectrum Scale (if local Linux firewall is active):

rdbkkvm2:quorum

rdbkkvm3:quorum

Tip: You can configure a cluster to automatically rebuild the GPL whenever a new level of
the Linux kernel or IBM Spectrum Scale are installed. This feature is available on the
Linux operating system only. For more information, see this IBM Documentation web page.
226 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en/STXKQY_5.1.2/com.ibm.spectrum.scale.v5r10.doc/bl1adm_mmchconfig.html

On rdbkkvm2
Complete the following steps:

1. Create SSH key pairs using ssh-keygen:

ssh-keygen -t rsa -b 2048 -N '' -f /root/.ssh/id_rsa.gpfs

The output that is shown in Example 7-5 is displayed.

Example 7-5 Output of ssh-keygen

Generating public/private rsa key pair.
Your identification has been saved in /root/.ssh/id_rsa.gpfs.
Your public key has been saved in /root/.ssh/id_rsa.gpfs.pub.
The key fingerprint is:
SHA256:yCJm3x6WA/f8JfvQ8tilVHLcZmSLFutqFvpGjVVycGU
root@rdbkkvm2.az12.dal.cpc.ibm.com
The key's randomart image is:
+---[RSA 2048]----+
| ...E|
| ..+ |
| .+ o|
| . . o++.|
| + o + S =++.+|
| o o = + =o= o |
| . * o * =.. |
| o o o #.o |
| . O+= |
+----[SHA256]-----+

2. Create the ~/.ssh/config file:

cat > ~/.ssh/config << EOF
Host *
 IdentityFile ~/.ssh/id_rsa.gpfs
 StrictHo
stKeyChecking no
EOF

3. Confirm whether the ~/.ssh/config file was created:

cat ~/.ssh/config
Host *
 IdentityFile ~/.ssh/id_rsa.gpfs
 StrictHostKeyChecking no

Attention: Before you start GPFS cluster configuration, it is critical to create the SSH keys
and deploy the public key into authorized_keys. The reason is because GPFS uses
SSH/SCP to communicate with the cluster nodes.
Chapter 7. High Availability for IBM General Parallel File System 227

4. Authorize the SSH key:

cat ~/.ssh/id_rsa.gpfs.pub > ~/.ssh/authorized_keys

5. Copy the ~/.ssh/ folder to rdbkkvm3:

scp -r /root/.ssh/ root@rdbkkvm3:/root/

6. Update the /etc/hosts file so that each node interface that is to be used by GPFS
appears only once in the file (highlighted in bold):

cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
9.214.220.201 rdbkkvm3
9.214.220.202 rdbkkvm2

7. Confirm whether SSH is working between the nodes without prompting for a password:

– On rdbkkvm2:

ssh root@rdbkkvm3 date
Fri Nov 26 12:52:05 UTC 2021

– On rdbkkvm3:

ssh root@rdbkkvm2 date
Fri Nov 26 12:58:47 UTC 2021

7.7 GPFS general configuration

Run the following command to create a GPFS cluster from a set of nodes by using nodes.txt:

/usr/lpp/mmfs/bin/mmcrcluster -N /root/gpfs/nodes.txt --ccr-enable -r /usr/bin/ssh
-R /usr/bin/scp -C rdbkkvm_cluster1.spectrum

The following output that is shown in Example 7-6 is produced.

Example 7-6 Output of command to create a GPFS cluster

mmcrcluster: Performing preliminary node verification ...
mmcrcluster: Processing quorum and other critical nodes ...
mmcrcluster: Finalizing the cluster data structures ...
mmcrcluster: Command successfully completed
mmcrcluster: Warning: Not all nodes have proper GPFS license designations.
 Use the mmchlicense command to designate licenses as needed.
mmcrcluster: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

Note: If the server is not the primary, you must copy id_rsa and id_rsa.pub to the
target server.

Note: The -C parameter specifies the cluster name. As a convention, we defined our
cluster name as: rdbkkvm_cluster1.
228 Virtualization Cookbook for IBM Z Volume 5: KVM

7.7.1 Installing the licensing

Run the command that is shown in Example 7-7 to install the licensing.

Example 7-7 Installing licensing command

/usr/lpp/mmfs/bin/mmchlicense server --accept -N rdbkkvm2,rdbkkvm3

The following nodes will be designated as possessing server licenses:
rdbkkvm2
rdbkkvm3

mmchlicense: Command successfully completed
mmchlicense: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

7.7.2 Validating or listing the cluster configuration

Run the command that is shown in Example 7-8 to validate or list the cluster configuration.

Example 7-8 Validating or listing the cluster configuration

/usr/lpp/mmfs/bin/mmlscluster

GPFS cluster information
========================
 GPFS cluster name: rdbkkvm_cluster1.spectrum
 GPFS cluster id: 15364531426110283948
 GPFS UID domain: rdbkkvm_cluster1.spectrum
 Remote shell command: /usr/bin/ssh
 Remote file copy command: /usr/bin/scp
 Repository type: CCR

 Node Daemon node name IP address Admin node name Designation

 1 rdbkkvm2 9.214.220.202 rdbkkvm2 quorum
 2 rdbkkvm3 9.214.220.201 rdbkkvm3 quorum

Note: When installing the Licensing, the -N parameter requires the list of the GPFS nodes,
which are separated by a comma.
Chapter 7. High Availability for IBM General Parallel File System 229

7.7.3 Displaying the state of GPFS cluster

Run the command that is shown in Example 7-9 to display the state of the cluster.

Example 7-9 Displaying the cluster state

/usr/lpp/mmfs/bin/mmgetstate -a

 Node number Node name GPFS state

 1 rdbkkvm2 down
 2 rdbkkvm3 down

/usr/lpp/mmfs/bin/mmgetstate -N rdbkkvm2,rdbkkvm3

 Node number Node name GPFS state

 1 rdbkkvm2 down
 2 rdbkkvm3 down

7.7.4 Changing the range ports that are used for command execution

Run the following command to change the range ports that are used for command execution:

mmchconfig tscCmdPortRange=60000-61000

7.7.5 Configuring FCP Channels to all KVM Compute (GPFS cluster) servers

In our environment, the IBM Z server was defined with FCP F000/F100/F200/F300
addresses. After removing them from the Driver Blacklist, map all LUNS and remove them
from LVM in sequence.

Removing FXXX FCP Channels from the driver blacklist
Run the command that is shown in Example 7-10 to remove FXXX FCP channels from the
driver blacklist.

Example 7-10 Removing FXXX FCP channels from driver blacklist

cio_ignore -r f000
cio_ignore -r f100
cio_ignore -r f200
cio_ignore -r f300

Enable FXXX FTP Channels:

chzdev -e zfcp-host f000
FCP device 0.0.f000 configured

chzdev -e zfcp-host f100
FCP device 0.0.f100 configured
230 Virtualization Cookbook for IBM Z Volume 5: KVM

chzdev -e zfcp-host f200
FCP device 0.0.f200 configured

chzdev -e zfcp-host f300
FCP device 0.0.f300 configured

The sequence that is shown in Example 7-11 maps LUNs, makes them persistent, removes
physical volumes, and validates the configuration.

Example 7-11 Mapping and persisting LUNs, removing physical volumes, and validating configuration

lsluns
Scanning for LUNs on adapter 0.0.f000

at port 0x500507630a399058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a3c9058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

Scanning for LUNs on adapter 0.0.f100
at port 0x500507630a319058:

0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a349058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

Scanning for LUNs on adapter 0.0.f200
at port 0x500507630a099058:

0x4000400300000000
0x4000400400000000
Chapter 7. High Availability for IBM General Parallel File System 231

0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a1c9058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

Scanning for LUNs on adapter 0.0.f300
at port 0x500507630a019058:

0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a149058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400300000000
0x4001400400000000

0x4001400500000000

Enabling disk paths
Run the commands that are shown in Example 7-12 to enable each disk path.

Example 7-12 Commands used to enable each disk path

For f000:

chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4001400500000000

chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4001400500000000

For f100:
232 Virtualization Cookbook for IBM Z Volume 5: KVM

chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4001400500000000

chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4001400500000000

For f200:

chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4001400500000000

chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4001400500000000

For f300:

chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4001400500000000

chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4000400300000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4000400400000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4000400500000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4001400300000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4001400400000000
chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4001400500000000
Chapter 7. High Availability for IBM General Parallel File System 233

Enabling multipath by using the mpathconf command
Run the following command to enable multipathing:

/sbin/mpathconf --enable
multipath
multipath -ll

The output that is shown in Example 7-13 is displayed.

Example 7-13 Output of mpathconf command

pathe (3600507630affd0580000000000000005) dm-12 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074085888 sdc 8:32 active ready running
 |- 0:0:1:1074085888 sdi 8:128 active ready running
 |- 1:0:0:1074085888 sdu 65:64 active ready running
 |- 1:0:1:1074085888 sdo 8:224 active ready running
 |- 2:0:0:1074085888 sdaa 65:160 active ready running
 |- 2:0:1:1074085888 sdag 66:0 active ready running
 |- 3:0:0:1074085888 sdam 66:96 active ready running
 `- 3:0:1:1074085888 sdas 66:192 active ready running
mpathd (3600507630affd0580000000000000104) dm-11 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074020353 sde 8:64 active ready running
 |- 0:0:1:1074020353 sdk 8:160 active ready running
 |- 1:0:0:1074020353 sdw 65:96 active ready running
 |- 1:0:1:1074020353 sdq 65:0 active ready running
 |- 2:0:0:1074020353 sdac 65:192 active ready running
 |- 2:0:1:1074020353 sdai 66:32 active ready running
 |- 3:0:0:1074020353 sdao 66:128 active ready running
 `- 3:0:1:1074020353 sdau 66:224 active ready running
mpathc (3600507630affd0580000000000000004) dm-10 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074020352 sdb 8:16 active ready running
 |- 0:0:1:1074020352 sdh 8:112 active ready running
 |- 1:0:0:1074020352 sdt 65:48 active ready running
 |- 1:0:1:1074020352 sdn 8:208 active ready running
 |- 2:0:0:1074020352 sdz 65:144 active ready running
 |- 2:0:1:1074020352 sdaf 65:240 active ready running
 |- 3:0:0:1074020352 sdal 66:80 active ready running
 `- 3:0:1:1074020352 sdar 66:176 active ready running
mpathb (3600507630affd0580000000000000103) dm-9 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1073954817 sdd 8:48 active ready running
234 Virtualization Cookbook for IBM Z Volume 5: KVM

 |- 0:0:1:1073954817 sdj 8:144 active ready running
 |- 1:0:0:1073954817 sdv 65:80 active ready running
 |- 1:0:1:1073954817 sdp 8:240 active ready running
 |- 2:0:0:1073954817 sdab 65:176 active ready running
 |- 2:0:1:1073954817 sdah 66:16 active ready running
 |- 3:0:0:1073954817 sdan 66:112 active ready running
 `- 3:0:1:1073954817 sdat 66:208 active ready running
mpatha (3600507630affd0580000000000000003) dm-8 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=active
 |- 0:0:0:1073954816 sda 8:0 active ready running
 |- 0:0:1:1073954816 sdg 8:96 active ready running
 |- 1:0:0:1073954816 sds 65:32 active ready running
 |- 1:0:1:1073954816 sdm 8:192 active ready running
 |- 2:0:0:1073954816 sdy 65:128 active ready running
 |- 2:0:1:1073954816 sdae 65:224 active ready running
 |- 3:0:0:1073954816 sdak 66:64 active ready running
 `- 3:0:1:1073954816 sdaq 66:160 active ready running
mpathf (3600507630affd0580000000000000105) dm-13 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074085889 sdf 8:80 active ready running
 |- 0:0:1:1074085889 sdl 8:176 active ready running
 |- 1:0:0:1074085889 sdx 65:112 active ready running
 |- 1:0:1:1074085889 sdr 65:16 active ready running
 |- 2:0:0:1074085889 sdad 65:208 active ready running
 |- 2:0:1:1074085889 sdaj 66:48 active ready running
 |- 3:0:0:1074085889 sdap 66:144 active ready running
 `- 3:0:1:1074085889 sdav 66:240 active ready running
[root@rdbkkvm2 ~]# multipath -ll
mpathe (3600507630affd0580000000000000005) dm-12 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074085888 sdc 8:32 active ready running
 |- 0:0:1:1074085888 sdi 8:128 active ready running
 |- 1:0:0:1074085888 sdu 65:64 active ready running
 |- 1:0:1:1074085888 sdo 8:224 active ready running
 |- 2:0:0:1074085888 sdaa 65:160 active ready running
 |- 2:0:1:1074085888 sdag 66:0 active ready running
 |- 3:0:0:1074085888 sdam 66:96 active ready running
 `- 3:0:1:1074085888 sdas 66:192 active ready running
mpathd (3600507630affd0580000000000000104) dm-11 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074020353 sde 8:64 active ready running
 |- 0:0:1:1074020353 sdk 8:160 active ready running
Chapter 7. High Availability for IBM General Parallel File System 235

 |- 1:0:0:1074020353 sdw 65:96 active ready running
 |- 1:0:1:1074020353 sdq 65:0 active ready running
 |- 2:0:0:1074020353 sdac 65:192 active ready running
 |- 2:0:1:1074020353 sdai 66:32 active ready running
 |- 3:0:0:1074020353 sdao 66:128 active ready running
 `- 3:0:1:1074020353 sdau 66:224 active ready running
mpathc (3600507630affd0580000000000000004) dm-10 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074020352 sdb 8:16 active ready running
 |- 0:0:1:1074020352 sdh 8:112 active ready running
 |- 1:0:0:1074020352 sdt 65:48 active ready running
 |- 1:0:1:1074020352 sdn 8:208 active ready running
 |- 2:0:0:1074020352 sdz 65:144 active ready running
 |- 2:0:1:1074020352 sdaf 65:240 active ready running
 |- 3:0:0:1074020352 sdal 66:80 active ready running
 `- 3:0:1:1074020352 sdar 66:176 active ready running
mpathb (3600507630affd0580000000000000103) dm-9 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1073954817 sdd 8:48 active ready running
 |- 0:0:1:1073954817 sdj 8:144 active ready running
 |- 1:0:0:1073954817 sdv 65:80 active ready running
 |- 1:0:1:1073954817 sdp 8:240 active ready running
 |- 2:0:0:1073954817 sdab 65:176 active ready running
 |- 2:0:1:1073954817 sdah 66:16 active ready running
 |- 3:0:0:1073954817 sdan 66:112 active ready running
 `- 3:0:1:1073954817 sdat 66:208 active ready running
mpatha (3600507630affd0580000000000000003) dm-8 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=active
 |- 0:0:0:1073954816 sda 8:0 active ready running
 |- 0:0:1:1073954816 sdg 8:96 active ready running
 |- 1:0:0:1073954816 sds 65:32 active ready running
 |- 1:0:1:1073954816 sdm 8:192 active ready running
 |- 2:0:0:1073954816 sdy 65:128 active ready running
 |- 2:0:1:1073954816 sdae 65:224 active ready running
 |- 3:0:0:1073954816 sdak 66:64 active ready running
 `- 3:0:1:1073954816 sdaq 66:160 active ready running
mpathf (3600507630affd0580000000000000105) dm-13 IBM,2107900
size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw
`-+- policy='service-time 0' prio=50 status=enabled
 |- 0:0:0:1074085889 sdf 8:80 active ready running
 |- 0:0:1:1074085889 sdl 8:176 active ready running
 |- 1:0:0:1074085889 sdx 65:112 active ready running
 |- 1:0:1:1074085889 sdr 65:16 active ready running
236 Virtualization Cookbook for IBM Z Volume 5: KVM

 |- 2:0:0:1074085889 sdad 65:208 active ready running
 |- 2:0:1:1074085889 sdaj 66:48 active ready running
 |- 3:0:0:1074085889 sdap 66:144 active ready running
 `- 3:0:1:1074085889 sdav 66:240 active ready running

Configuring the Spectrum Network Shared Disk
For our Network Shared Disk (NSD), we use the nomenclature that is in /dev/disk/by-id/.

The following Device Names were used for our environment:

ls -la /dev/disk/by-id/scsi-*
lrwxrwxrwx. 1 root root 10 Nov 26 18:58
/dev/disk/by-id/scsi-3600507630affd0580000000000000003 -> ../../dm-8
lrwxrwxrwx. 1 root root 11 Nov 26 18:58
/dev/disk/by-id/scsi-3600507630affd0580000000000000004 -> ../../dm-10
lrwxrwxrwx. 1 root root 11 Nov 26 18:58
/dev/disk/by-id/scsi-3600507630affd0580000000000000005 -> ../../dm-12
lrwxrwxrwx. 1 root root 10 Nov 26 18:58
/dev/disk/by-id/scsi-3600507630affd0580000000000000103 -> ../../dm-9
lrwxrwxrwx. 1 root root 11 Nov 26 18:58
/dev/disk/by-id/scsi-3600507630affd0580000000000000104 -> ../../dm-11
lrwxrwxrwx. 1 root root 11 Nov 26 18:58
/dev/disk/by-id/scsi-3600507630affd0580000000000000105 -> ../../dm-13

/dev/disk/by-id/scsi-3600507630affd0580000000000000003
/dev/disk/by-id/scsi-3600507630affd0580000000000000004
/dev/disk/by-id/scsi-3600507630affd0580000000000000005
/dev/disk/by-id/scsi-3600507630affd0580000000000000103
/dev/disk/by-id/scsi-3600507630affd0580000000000000104
/dev/disk/by-id/scsi-3600507630affd0580000000000000105

Storage Area Network
Update the following command with the device names that are found in the Device Names
output that is shown in the previous section. The NSD name cannot include the folder path for
the device, as shown in Example 7-14.

Example 7-14 SAN

cat > ~/gpfs/disk.nsd << EOF
%nsd:
device=/dev/disk/by-id/scsi-3600507630affd0580000000000000003
nsd=3600507630affd0580000000000000003
usage=dataAndMetadata

%nsd:
device=/dev/disk/by-id/scsi-3600507630affd0580000000000000004

Note: The multipath commands that are shown in Example 7-13 on page 234 on the other
node.
Chapter 7. High Availability for IBM General Parallel File System 237

nsd=3600507630affd0580000000000000004
usage=dataAndMetadata

%nsd:
device=/dev/disk/by-id/scsi-3600507630affd0580000000000000005
nsd=3600507630affd0580000000000000005
usage=dataAndMetadata

%nsd:
device=/dev/disk/by-id/scsi-3600507630affd0580000000000000103
nsd=3600507630affd0580000000000000103
usage=dataAndMetadata

%nsd:
device=/dev/disk/by-id/scsi-3600507630affd0580000000000000104
nsd=3600507630affd0580000000000000104
usage=dataAndMetadata

%nsd:
device=/dev/disk/by-id/scsi-3600507630affd0580000000000000105
nsd=3600507630affd0580000000000000105
usage=dataAndMetadata
EOF

Confirm whether the file was created by using the following command:

~/gpfs/disk.nsd

Updating VMALLOC kernel values
Before starting GPFS, complete the following steps on each Linux on Z node:

1. Use the grubby utility to add vmalloc=4096G for all boot entries on your node, as shown in
the following example:

grubby --update-kernel=ALL --args="vmalloc=4096G"

2. Run the zipl command.

3. Restart the node.

For more information, see this IBM Documentation web page.
238 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en/spectrum-scale/5.1.2?topic=nodes-linux-z-changing-kernel-settings

Creating NSD resources
On rdbkkvm2, run the following command to create the NSD resources:

/usr/lpp/mmfs/bin/mmcrnsd -F ~/gpfs/disk.nsd

The output that is shown in Example 7-15 is displayed.

Example 7-15 Output of /usr/lpp/mmfs/bin/mmcrnsd -F ~/gpfs/disk.nsd command

mmcrnsd: Processing disk disk/by-id/scsi-3600507630affd0580000000000000003
mmcrnsd: Processing disk disk/by-id/scsi-3600507630affd0580000000000000004
mmcrnsd: Processing disk disk/by-id/scsi-3600507630affd0580000000000000005
mmcrnsd: Processing disk disk/by-id/scsi-3600507630affd0580000000000000103
mmcrnsd: Processing disk disk/by-id/scsi-3600507630affd0580000000000000104
mmcrnsd: Processing disk disk/by-id/scsi-3600507630affd0580000000000000105
mmcrnsd: Propagating the cluster configuration data to all affected nodes. This
is an asynchronous process.

Starting GPFS on all nodes
Run the following command to start GPFS on all nodes:

/usr/lpp/mmfs/bin/mmgetstate -a

 Node number Node name GPFS state

 1 rdbkkvm2 down
 2 rdbkkvm3 down

/usr/lpp/mmfs/bin/mmstartup -a

Fri Nov 26 19:28:30 UTC 2021: mmstartup: Starting GPFS ...
/usr/lpp/mmfs/bin/mmgetstate -a

Node number Node name GPFS state

 1 rdbkkvm2 arbitrating

 2 rdbkkvm3 arbitrating

After a few minutes, the status should change to active:

/usr/lpp/mmfs/bin/mmgetstate -a
Node number Node name GPFS state

 1 rdbkkvm2 active
 2 rdbkkvm3 active

Note: Wait a few minutes for the process to complete. The cluster takes some time to fully
start. In our environment, we waited approximately 5 minutes. If you run the mmgetstate
command without waiting, you might see the GPFS state as arbitrating.
Chapter 7. High Availability for IBM General Parallel File System 239

7.7.6 Using tiebreaker disks

When running on small GPFS clusters, you might want to have the cluster remain online with
only one surviving node.

To achieve this single node, you must add a tiebreaker disk to the quorum configuration. This
disk allows you to run with as little as one quorum node available if you can access most of
the quorum disks.

Enabling node quorum by using tiebreaker disks starts by designating one or more nodes as
quorum nodes (in our case, two quorum nodes are used). Then, 1 - 3 disks are defined as
tiebreaker disks by using the tiebreakerDisks parameter in the mmchconfig command.

In our case, we selected a tiebreaker disk that is part of a GPFS file system.

The following tiebreaker disk was selected:

3600507630affd0580000000000000003

/usr/lpp/mmfs/bin/mmchconfig tiebreakerDisks= 3600507630affd0580000000000000003

The following output is shown:

mmchconfig: Command successfully completed
mmchconfig: Propagating the cluster configuration data to all

 affected nodes. This is an asynchronous process.

Adding tiebreaker disks

You can check whether the tiebreaker disk is set up by using the command that is shown in
Example 7-16.

Example 7-16 Checking whether tiebreaker disk is set up

/usr/lpp/mmfs/bin/mmlsconfig
Configuration data for cluster rdbkkvm_cluster1.spectrum:

clusterName rdbkkvm_cluster1.spectrum
clusterId 15364531426110283948
autoload no
dmapiFileHandleSize 32
minReleaseLevel 5.1.2.0
ccrEnabled yes
cipherList AUTHONLY
sdrNotifyAuthEnabled yes
tiebreakerDisks 3600507630affd0580000000000000003
adminMode central

Tip: Consider the following points when tiebreaker disks are added:

� If the tiebreaker disks are part of a file system, GPFS should be running.
� If the tiebreaker disks are not part of a file system, GPFS can be running or shut down.
240 Virtualization Cookbook for IBM Z Volume 5: KVM

File systems in cluster rdbkkvm_cluster1.spectrum:
--
(none)

7.7.7 Displaying the NSD information

Run the following command to list all NSD resources that were created:

/usr/lpp/mmfs/bin/mmlsnsd -X

Disk name NSD volume ID Device Devtype Node name or Class Remarks

3600507630affd0580000000000000003 DCCA09D661A13374 /dev/dm-8 dmm rdbkkvm2
3600507630affd0580000000000000004 DCCA09D661A13375 /dev/dm-11 dmm rdbkkvm2
3600507630affd0580000000000000005 DCCA09D661A13376 /dev/dm-15 dmm rdbkkvm2
3600507630affd0580000000000000103 DCCA09D661A13377 /dev/dm-9 dmm rdbkkvm2
3600507630affd0580000000000000104 DCCA09D661A13379 /dev/dm-13 dmm rdbkkvm2
3600507630affd0580000000000000105 DCCA09D661A1337A /dev/dm-17 dmm rdbkkvm2

Run the following command only if you must delete a NSD resource:

/usr/lpp/mmfs/bin/mmdelnsd <disk_name>

For more information about NSD, see this IBM Documentation web page.

7.8 Working with the General Parallel File System

In this section, we describe working with GPFS in various capacities.

7.8.1 Creating and configuring GPFS

To create and configure GPFS, connect as root on rdbkkvm2 and then, run the following
command:

/usr/lpp/mmfs/bin/mmcrfs gpfs1 -F /root/gpfs/disk.nsd -T /gpfs

The output that is shown in Example 7-17 is displayed.

Example 7-17 Output of command

The following disks of gpfs1 will be formatted on node
rdbkkvm2.az12.dal.cpc.ibm.com:
 3600507630affd0580000000000000003: size 262144 MB
 3600507630affd0580000000000000004: size 262144 MB
 3600507630affd0580000000000000005: size 262144 MB
 3600507630affd0580000000000000103: size 262144 MB
 3600507630affd0580000000000000104: size 262144 MB
 3600507630affd0580000000000000105: size 262144 MB
Formatting file system ...
Disks up to size 3.06 TB can be added to storage pool system.
Creating Inode File
Creating Allocation Maps
Chapter 7. High Availability for IBM General Parallel File System 241

https://www.ibm.com/docs/en/linux-on-systems?topic=configurations-network-shared-disk-nsd
https://www.ibm.com/docs/en/linux-on-systems?topic=configurations-network-shared-disk-nsd

Creating Log Files
Clearing Inode Allocation Map
Clearing Block Allocation Map
Formatting Allocation Map for storage pool system
Completed creation of file system /dev/gpfs1.
mmcrfs: Propagating the cluster configuration data to all affected nodes.
This is an asynchronous process.

7.8.2 Mounting and validating the GPFS

Run the following command to mount and validate the GPFS:

/usr/lpp/mmfs/bin/mmmount gpfs1 -a
Fri Nov 26 19:47:20 UTC 2021: mmmount: Mounting file systems ...

7.8.3 Configuring the SELinux file’s context

Run the following command to configure the SELinux file’s context:

Configuring SELinux Context Files Permissions:
add the nfs_t
semanage fcontext -a -t nfs_t "/gpfs(/.*)?"

restore permissions
restorecon -Rv /gpfs/

The output that is shown in Example 7-18 is displayed.

Example 7-18 Configuring SELinux file’s context command output

Relabeled /gpfs from system_u:object_r:unlabeled_t:s0 to
system_u:object_r:nfs_t:s0
restorecon: Could not set context for /gpfs/.snapshots: Operation not permitted

validate /gpfs/
ls -alZ /gpfs/

total 257
drwxr-xr-x. 2 root root system_u:object_r:nfs_t:s0 262144 Nov 26 19:46 .
dr-xr-xr-x. 18 root root system_u:object_r:root_t:s0 236 Nov 26 19:46 ..
dr-xr-xr-x. 2 root root system_u:object_r:unlabeled_t:s0 8192 Jan 1 1970
.snapshots

drwxr-xr-x. 7 nova nova system_u:object_r:nfs_t:s0 262144 Nov 4 20:41 .

Note: The fcontext configuration affects the entire cluster.
242 Virtualization Cookbook for IBM Z Volume 5: KVM

if you want to validate the new SELinux Context, issue command below
semanage fcontext --list |grep ^/gpfs

For more information, see this Red Hat Documentation web page.

7.8.4 Starting GPFS automatically

You can specify whether to start the GPFS daemon automatically on a node when it is
started.

Whether GPFS automatically starts is determined by using the autoload parameter of the
mmchconfig command. The default setting is to not automatically start GPFS on all nodes.

This setting can be changed by specifying autoload=yes with the mmchconfig command. This
change eliminates the need to start GPFS by running the mmstartup command when a node
is started.

The autoload=yes parameter can be set individually for each node in the cluster. For
example, it can be helpful to set autoload=no on a node that is undergoing maintenance
because operating system upgrades and other software often can require multiple restarts to
be completed.

Run the following command to automatically start GPFS:

/usr/lpp/mmfs/bin/mmchconfig autoload=yes

mmchconfig: Command successfully completed
mmchconfig: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

For more information about uninstalling GPFS, see this IBM Documentation web page.

7.8.5 Tiebreaker disk recommendations

During the GPFS installation, we did not allocate a 1 GB disk to be used exclusively for the
tiebreaker disk function. It is recommended to reserve this disk space to avoid GDPS from
using application disks as tiebreakers.

Therefore, we needed to create a 1 GB disk and assign it to all GPFS nodes. Complete the
steps that described in “Adding tiebreaker disks” on page 240 to add this disk to the storage.

Then, run the command that is shown in Example 7-19 on rdbkkvm2 server to replace the
tiebreaker disk.

Example 7-19 Replacing the tiebreaker disk

/usr/lpp/mmfs/bin/mmchconfig

clusterId 15364531426110283948

dmapiFileHandleSize 32

minReleaseLevel 5.1.2.0

ccrEnabled yes
Chapter 7. High Availability for IBM General Parallel File System 243

https://www.ibm.com/docs/en/spectrum-scale/5.0.5?topic=installing-steps-permanently-uninstall-gpfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/sect-security-enhanced_linux-selinux_contexts_labeling_files-persistent_changes_semanage_fcontext

cipherList AUTHONLY

sdrNotifyAuthEnabled yes

tiebreakerDisks 3600507630affd0580000000000000003

autoload yes

autoBuildGPL yes

adminMode central

Checking file systems in cluster rdbkkvm_cluster1.spectrum
First, enter /dev/gpfs1 to select the rdbkkvm_cluster1.spectrm cluster.

Then, issue the lsluns command as shown in Example 7-20 to verify whether the new disk is
listed in all FCP devices. The new disks are highlighted in bold.

Example 7-20 Issuing lsluns

lsluns

Scanning for LUNs on adapter 0.0.f000
at port 0x500507630a399058:

0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a3c9058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

Scanning for LUNs on adapter 0.0.f100
at port 0x500507630a319058:

0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000
244 Virtualization Cookbook for IBM Z Volume 5: KVM

at port 0x500507630a349058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

Scanning for LUNs on adapter 0.0.f200
at port 0x500507630a099058:

0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a1c9058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

Scanning for LUNs on adapter 0.0.f300
at port 0x500507630a019058:

0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000
0x4001400500000000

at port 0x500507630a149058:
0x4000400300000000
0x4000400400000000
0x4000400500000000
0x4001400100000000
0x4001400300000000
0x4001400400000000

0x4001400500000000

Run the commands that are shown in Example 7-21 to enable the new disk.
Chapter 7. High Availability for IBM General Parallel File System 245

Example 7-21 Enabling the new disk

chzdev -e zfcp-lun 0.0.f000:0x500507630a399058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f000:0x500507630a3c9058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f100:0x500507630a319058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f100:0x500507630a349058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f200:0x500507630a099058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f200:0x500507630a1c9058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f300:0x500507630a019058:0x4001400100000000

chzdev -e zfcp-lun 0.0.f300:0x500507630a149058:0x4001400100000000

Run the multipath -ll command to get the multipath Linux device name.

The output is highlighted in bold in Example 7-22.

Example 7-22 Output of multipath -11 command

mpathe (3600507630affd0580000000000000005) dm-15 IBM,2107900

size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:0:1074085888 sdc 8:32 active ready running

 |- 0:0:1:1074085888 sdi 8:128 active ready running

 |- 1:0:0:1074085888 sdo 8:224 active ready running

 |- 1:0:1:1074085888 sdu 65:64 active ready running

 |- 2:0:0:1074085888 sdaa 65:160 active ready running

 |- 2:0:1:1074085888 sdag 66:0 active ready running

 |- 3:0:0:1074085888 sdam 66:96 active ready running

 `- 3:0:1:1074085888 sdas 66:192 active ready running

mpathd (3600507630affd0580000000000000104) dm-13 IBM,2107900

size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:0:1074020353 sde 8:64 active ready running

Note: You must run these commands on all GPFS nodes to make the new disk available
on all FCP devices.
246 Virtualization Cookbook for IBM Z Volume 5: KVM

 |- 0:0:1:1074020353 sdk 8:160 active ready running

 |- 1:0:0:1074020353 sdq 65:0 active ready running

 |- 1:0:1:1074020353 sdw 65:96 active ready running

 |- 2:0:0:1074020353 sdac 65:192 active ready running

 |- 2:0:1:1074020353 sdai 66:32 active ready running

 |- 3:0:0:1074020353 sdao 66:128 active ready running

 `- 3:0:1:1074020353 sdau 66:224 active ready running

mpathc (3600507630affd0580000000000000004) dm-11 IBM,2107900

size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:0:1074020352 sdb 8:16 active ready running

 |- 0:0:1:1074020352 sdh 8:112 active ready running

 |- 1:0:0:1074020352 sdn 8:208 active ready running

 |- 1:0:1:1074020352 sdt 65:48 active ready running

 |- 2:0:0:1074020352 sdz 65:144 active ready running

 |- 2:0:1:1074020352 sdaf 65:240 active ready running

 |- 3:0:0:1074020352 sdal 66:80 active ready running

 `- 3:0:1:1074020352 sdar 66:176 active ready running

mpathb (3600507630affd0580000000000000103) dm-9 IBM,2107900

size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:0:1073954817 sdd 8:48 active ready running

 |- 0:0:1:1073954817 sdj 8:144 active ready running

 |- 1:0:0:1073954817 sdp 8:240 active ready running

 |- 1:0:1:1073954817 sdv 65:80 active ready running

 |- 2:0:0:1073954817 sdab 65:176 active ready running

 |- 2:0:1:1073954817 sdah 66:16 active ready running

 |- 3:0:0:1073954817 sdan 66:112 active ready running

 `- 3:0:1:1073954817 sdat 66:208 active ready running

mpatha (3600507630affd0580000000000000003) dm-8 IBM,2107900
Chapter 7. High Availability for IBM General Parallel File System 247

size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:0:1073954816 sda 8:0 active ready running

 |- 0:0:1:1073954816 sdg 8:96 active ready running

 |- 1:0:0:1073954816 sdm 8:192 active ready running

 |- 1:0:1:1073954816 sds 65:32 active ready running

 |- 2:0:0:1073954816 sdy 65:128 active ready running

 |- 2:0:1:1073954816 sdae 65:224 active ready running

 |- 3:0:0:1073954816 sdak 66:64 active ready running

 `- 3:0:1:1073954816 sdaq 66:160 active ready running

mpathg (3600507630affd0580000000000000101) dm-20 IBM,2107900

size=1.0G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:1:1073823745 sdaw 67:0 active ready running

 |- 0:0:0:1073823745 sdax 67:16 active ready running

 |- 1:0:1:1073823745 sday 67:32 active ready running

 |- 1:0:0:1073823745 sdaz 67:48 active ready running

 |- 2:0:0:1073823745 sdba 67:64 active ready running

 |- 2:0:1:1073823745 sdbb 67:80 active ready running

 |- 3:0:0:1073823745 sdbc 67:96 active ready running

 `- 3:0:1:1073823745 sdbd 67:112 active ready running

mpathf (3600507630affd0580000000000000105) dm-17 IBM,2107900

size=256G features='1 queue_if_no_path' hwhandler='1 alua' wp=rw

`-+- policy='service-time 0' prio=50 status=active

 |- 0:0:0:1074085889 sdf 8:80 active ready running

 |- 0:0:1:1074085889 sdl 8:176 active ready running

 |- 1:0:0:1074085889 sdr 65:16 active ready running

 |- 1:0:1:1074085889 sdx 65:112 active ready running

 |- 2:0:0:1074085889 sdad 65:208 active ready running

 |- 2:0:1:1074085889 sdaj 66:48 active ready running
248 Virtualization Cookbook for IBM Z Volume 5: KVM

 |- 3:0:0:1074085889 sdap 66:144 active ready running

 `- 3:0:1:1074085889 sdav 66:240 active ready running

7.8.6 Setting up a tiebreaker disk

Complete the following steps to use 3600507630affd0580000000000000101 to set up as
tiebreaker disk:

1. Create ~/gpfs/tiebreak.nsd file with the following content:

%nsd:

device=/dev/disk/by-id/scsi-3600507630affd0580000000000000101

nsd=3600507630affd0580000000000000101

usage=dataAndMetadata

2. Add the new NSD disk into GPFS:

/usr/lpp/mmfs/bin/mmcrnsd -F ~/gpfs/tiebreak.nsd

3. Update GPFS configuration with the new tiebreaker disk:

/usr/lpp/mmfs/bin/mmchconfig
tiebreakerDisks=3600507630affd0580000000000000101
mmchconfig: Command successfully completed
mmchconfig: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

4. Confirm whether the tiebreaker disk configuration was updated:

/usr/lpp/mmfs/bin/mmlsconfig
Configuration data for cluster rdbkkvm_cluster1.spectrum:

clusterName rdbkkvm_cluster1.spectrum
clusterId 15364531426110283948
dmapiFileHandleSize 32
minReleaseLevel 5.1.2.0
ccrEnabled yes
cipherList AUTHONLY
sdrNotifyAuthEnabled yes
autoload yes
autoBuildGPL yes
tiebreakerDisks 3600507630affd0580000000000000101
adminMode central

7.8.7 Enabling Persistent Reserve

GPFS can use Persistent Reserve (PR) to improve failover times, but with the following
restrictions:

� PR is supported on AIX and Linux nodes. However, consider the following points:

– If the disks include defined NSD servers, the NSD server nodes all must be running
AIX, or they all must be running Linux.

– If the disks are SAN-attached to all nodes, the SAN-attached nodes in the cluster all
must be running AIX, or they all must be running Linux.

� The disk subsystems must support PR.
Chapter 7. High Availability for IBM General Parallel File System 249

� GPFS supports a mix of PR disks and other disks. However, you realize improved failover
times only if all of the disks in the cluster support PR.

� GPFS supports only PR in the local cluster. Remote mounts must access the disks
through an NSD server.

� When you enable or disable PR, you must stop GPFS on all nodes.

� Before enabling PR, ensure that all disks are in the same initial state.

Complete the following steps to enable PR steps:

1. Shutdown GPFS cluster on all nodes:

Sat Dec 11 19:14:42 UTC 2021: mmshutdown: Starting force unmount of GPFS file
systems

Sat Dec 11 19:14:47 UTC 2021: mmshutdown: Shutting down GPFS daemons

Sat Dec 11 19:14:55 UTC 2021: mmshutdown: Finished

2. Run the mmchconfig command to enable PR:

/usr/lpp/mmfs/bin/mmchconfig usePersistentReserve=yes

Verifying GPFS is stopped on all nodes ...

mmchconfig: Processing disk 3600507630affd0580000000000000003

mmchconfig: Processing disk 3600507630affd0580000000000000004

mmchconfig: Processing disk 3600507630affd0580000000000000005

mmchconfig: Processing disk 3600507630affd0580000000000000103

mmchconfig: Processing disk 3600507630affd0580000000000000104

mmchconfig: Processing disk 3600507630affd0580000000000000105

mmchconfig: Processing disk 3600507630affd0580000000000000101

mmchconfig: Command successfully completed

mmchconfig: Propagating the clusber configuration data to all
affected nodes. This is an asynchronous process.

3. Set the recovery times by issuing the following command:

/usr/lpp/mmfs/bin/mmchconfig failureDetectionTime=10

Verifying GPFS is stopped on all nodes ...

mmchconfig: Command successfully completed

mmchconfig: Propagating the cluster configuration data to all

 affected nodes. This is an asynchronous process.

Note: For fast recovery times with PR, you also must set the failureDetectionTime
configuration parameter with a recommended value is 10.
250 Virtualization Cookbook for IBM Z Volume 5: KVM

4. Confirm whether the usePersistentReserve and failure-DetectionTime values were set:

/usr/lpp/mmfs/bin/mmlsconfig

Configuration data for cluster rdbkkvm_cluster1.spectrum:

clusterName rdbkkvm_cluster1.spectrum

clusterId 15364531426110283948

dmapiFileHandleSize 32

minReleaseLevel 5.1.2.0

ccrEnabled yes

cipherList AUTHONLY

sdrNotifyAuthEnabled yes

autoload yes

autoBuildGPL yes

tiebreakerDisks 3600507630affd0580000000000000101

usePersistentReserve yes

failureDetectionTime 10

adminMode central

5. Determine whether the disks on the servers and the disks of a specific node have PR
enabled by running the following command from the node:

/usr/lpp/mmfs/bin/mmlsnsd -X

The system responds with output that is similar to the following example:

Disk name NSD volume ID Device Devtype Node name or Class Remarks

 3600507630affd0580000000000000003 DCCA09D661A13374 /dev/dm-8 dmm rdbkkvm2 pr=yes

 3600507630affd0580000000000000004 DCCA09D661A13375 /dev/dm-11 dmm rdbkkvm2 pr=yes

 3600507630affd0580000000000000005 DCCA09D661A13376 /dev/dm-15 dmm rdbkkvm2 pr=yes

 3600507630affd0580000000000000101 DCCA09D661B4E6CD /dev/dm-20 dmm rdbkkvm2 pr=yes

 3600507630affd0580000000000000103 DCCA09D661A13377 /dev/dm-9 dmm rdbkkvm2 pr=yes

 3600507630affd0580000000000000104 DCCA09D661A13379 /dev/dm-13 dmm rdbkkvm2 pr=yes

 3600507630affd0580000000000000105 DCCA09D661A1337A /dev/dm-17 dmm rdbkkvm2 pr=yes

Note: If the GPFS daemon was started on all the nodes in the cluster and the file
system was mounted on all nodes that have direct access to the disks, pr=yes must be
set on all hdisks. A problem exists if you do not see the pr=yes flag.

For more information, about PR errors, see this IBM Documentation web page.
Chapter 7. High Availability for IBM General Parallel File System 251

https://www.ibm.com/docs/it/STXKQY_5.1.0/com.ibm.spectrum.scale.v5r10.doc/pdf/scale_pdg.pdf?view=kc

252 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 8. Using IBM Secure Execution

This chapter describes the value of IBM Secure Execution, discusses how it works, and
contains implementation examples for the reader. It also describes some optional steps that
you might want to take to further secure your Kernel-based Virtual Machine (KVM)-based
virtual server.

This chapter includes the following topics:

� “Introduction to IBM Secure Execution” on page 254
� “How IBM Secure Execution works” on page 255
� “Enabling and verifying that the CPC is Secure Execution ready” on page 255
� “KVM host and guest software requirements” on page 256
� “Enabling an Ubuntu 20.04 LTS KVM host for IBM Secure Execution” on page 257
� “Enabling an SLES 15 SP2 KVM host for IBM Secure Execution” on page 258
� “Enabling an Ubuntu 20.04 KVM Guest for IBM Secure Execution” on page 261
� “Enabling a SLES 15 SP2 KVM Guest for IBM Secure Execution” on page 279
� “Enabling a RHEL KVM Guest for Secure Execution” on page 304

8

© Copyright IBM Corp. 2022. 253

8.1 Introduction to IBM Secure Execution

One potential inhibitor to cloud adoption is trust. Trust of the cloud service provider and its
administrators, software, and procedures. Theft of intellectual capital, customer-sensitive
personal information, financial information, or classified data can be devastating.

However, what if virtual servers can be hosted in manner where the hypervisor had no access
to any of the virtual server data?

In this case, you do not have to worry about the following issues:

� Trusting the hypervisor administrator not to correctly access your data

� That the hypervisor administrator correctly secured the hypervisor environment from
malicious insider and outsider threats

� About a software defect that allows unauthorized access into the hypervisor and a
malicious individual stealing data from within your virtual server

� Accusations of theft by way of the hypervisor if you are the cloud provider because no
access exists to the virtual servers data

IBM Secure Execution is designed to protect against the following threats:

� Guest data theft or corruption by way of malicious operations from the Hardware
Management Console (HMC) or Support Element (SE) consoles

� Guest data theft or corruption by way of malicious operation of the hypervisor through
malicious or negligent operation

� Guest data theft or corruption by way of a hacked or corrupted hypervisor environment

IBM Secure Execution does not protect against the following threats:

� Damage because of inappropriate physical access and operation
� Physical theft and inspection of hardware such as memory
� Denial of service attacks
� Improper configuration or operation of the guest by the guest administrators
� Theft of guest information through unsecured I/O channels
� Loading of malicious code into the guest over the network
254 Virtualization Cookbook for IBM Z Volume 5: KVM

8.2 How IBM Secure Execution works

Each IBM LinuxONE III has a key pair for which the private key is accessible only in the IBM
LinuxONE hardware and firmware.

A customer can prepare an encrypted and integrity protected Linux image. Consider the
following points:

� The encrypted image can be run on only a virtual machine (VM) in the hosts to which it
was built to run.

� The Linux image cannot be decrypted on any other hosts.

� The secure guest owner must be sure to encrypt the disk and network communications of
the guest. This process can be accomplished by using different methods.

The IBM LinuxONE hardware and firmware; that is, Ultravisor (UV), ensures that unencrypted
memory or processor state of a running secure execution guest cannot be accessed by the
Linux KVM hypervisor, SEcannot, or HMC.

The IBM LinuxONE UV hardware and firmware detects when memory integrity of a running
secure execution guest is violated.

8.3 Enabling and verifying that the CPC is Secure Execution
ready

The IBM Secure Execution keys must be installed before IBM Secure Execution can be used.
A key bundle must be installed at the time of the machine installation by the IBM service
representative.

8.3.1 Importing a key bundle into LinuxONE

To use IBM Secure Execution, you must import the key bundle first. To perform this task, you
need service role authorization. If you log in without the service role authorization, you do not
see the Update buttons.

Complete the following steps:

1. Log in to the IBM LinuxONE Support Element or HMC.

2. Open System Details and select the Instance Information tab (see Figure 8-1 on
page 256).

3. If the Host key shows as not installed, click Update.

Note: You must import the key only once because it persists across a power-on reset.
Chapter 8. Using IBM Secure Execution 255

Figure 8-1 CPC Instance information

8.4 KVM host and guest software requirements

In this section, we describe the minimum software requirements for the KVM host and KVM
guests.

KVM host software features the following minimum requirements:

� Ubuntu 20.04 LTS
� SLES 15 SP2
� Red Hat Enterprise Linux 8.2

KVM guest software features the following minimum requirements:

� RHEL 7.8
� RHEL 8.2
� SLES 12 SP5
� SLES 15 SP2
� Ubuntu 20.04
256 Virtualization Cookbook for IBM Z Volume 5: KVM

Because the host is not allowed to access guest memory and state, specific KVM features are
not supported, including the following examples:

� Live migration (offline migration is possible if the guest is built for more than one host).
� Save to and restore from disk.
� Hypervisor-initiated memory dump.
� Pass-through of host devices; for example, PCI, CCW, and crypto AP.
� The use of large memory pages on the host for backing guest memory.
� Memory ballooning through a virtio-balloon device.

8.5 Enabling an Ubuntu 20.04 LTS KVM host for IBM Secure
Execution

The tasks that are described in this section typically are performed by the KVM host system
administrator or cloud provider.

To enable the KVM host for IBM Secure Execution, add the following statement to the kernel
parameters line of the zipl.conf file:

prot_virt=1

Complete the following steps to add the parameter to the kernel:

1. Add the kernel parameter to the RHEL host:

[root@rdbkkvm1 entries]# grubby --update-kernel=ALL --args="prot_virt=1"
[root@rdbkkvm1 entries]# dracut -f

2. Run the zipl command and then, restart your KVM hypervisor.

3. Validate that the kernel parameter addition was successful by checking the contents of
dmesg for the ultravisor message, as shown in Example 8-1.

Example 8-1 Validating that the kernel parameter change took effect

[root@rdbkkvm1 ~]# dmesg | grep -i ultra
[0.422350] prot_virt: Reserving 578MB as ultravisor base storage
Chapter 8. Using IBM Secure Execution 257

You also can check the partition details instance information for the Secure Execution
status, as shown in Figure 8-2.

Figure 8-2 Partition Instance information

8.6 Enabling an SLES 15 SP2 KVM host for IBM Secure
Execution

The SUSE boot loader process is different than the Ubuntu process. SLES 15 uses two boot
loaders: first, it uses zipl and then, it uses grub2. Two boot loaders require some changes
that you might need to make to both boot loaders.

Complete the following steps to enable the SLES 15 host for IBM Secure Execution:

1. To add an entry to the /etc/grub.d/40_custom file, complete the following steps:

a. Copy the first boot entry from the /boot/grub2/config/grub.cfg file and find the line
that includes:

BEGIN /etc/grub.d/10_linux

b. Copy the menu entry starting after that line. The contents should be similar to the
contents that is shown in Example 8-2 on page 259.

Note: The zipl.conf or grub configuration file cannot be edited. These files are
automatically rebuilt by scripts; therefore, you must update the templates that are provided
by SLES 15.
258 Virtualization Cookbook for IBM Z Volume 5: KVM

Example 8-2 Menu entry to be copied to the /etc/grub.d/40_custom file

menuentry 'SLES 15-SP2' --hotkey=1 --class sles --class gnu-linux --class gnu
--class os $menuentry_id_option
'gnulinux-simple-741778d7-a0d2-4d1b-ad45-5e19f7d9eb39' {
 set gfxpayload=text
 insmod gzio
 echo 'Loading Linux 5.3.18-22-default ...'
 linux ${btrfs_subvol}/boot/image-5.3.18-22-default
root=UUID=741778d7-a0d2-4d1b-ad45-5e19f7d9eb39 ${extra_cmdline} hvc_iucv=8
TERM=dumb mitigations=auto cio_ignore=all,!ipldev,!condev
 echo 'Loading initial ramdisk ...'
 initrd ${btrfs_subvol}/boot/initrd-5.3.18-22-defaul}

c. After you paste the menu entry that is shown in Example 8-2 into
/etc/grub.d/40_custom, complete the following required modifications:

• Change the name of the entry in the menu from SLES 15-SP2 to something unique.

• Update the $menuentry_id_option to be unique for this new entry.

• Update the echo message to remove the specific kernel level.

• Change the Linux and initrd lines to start to the generic symlinks of /boot/image
and /boot/initrd, rather than have the specific levels. This change must be made
because the grub menu is rebuilt every time that the server is patched and includes
new kernel levels.

d. Add prot_virt=1 to the kernel parameter line. A modified version is shown in
Example 8-3.

Example 8-3 Making the changes to enable Secure Execution

!/bin/sh
exec tail -n +3 $0
This file provides an easy way to add custom menu entries. Simply type the
menu entries you want to add after this comment. Be careful not to change
the 'exec tail' line above.

menuentry 'SLES 15-SP2 Ultravisor' --hotkey=5 --class sles --class gnu-linux
--class gnu --class os $menuentry_id_option
'gnulinux-simple-741778d7-a0d2-4d1b-ad45-5e19f7d9eb39ultra' {
 set gfxpayload=text
 insmod gzio
 echo 'Loading Linux 5.x ...'
 linux ${btrfs_subvol}/boot/image
root=UUID=741778d7-a0d2-4d1b-ad45-5e19f7d9eb39 ${extra_cmdline} hvc_iucv=8
TERM=dumb mitigations=auto cio_ignore=all,!ipldev,!condev prot_virt=1
 echo 'Loading initial ramdisk ...'
 initrd ${btrfs_subvol}/boot/initrd}
Chapter 8. Using IBM Secure Execution 259

2. After the custom grub entry is completed, run grub2-mkconfig, as shown in Example 8-4.

Example 8-4 Generating grub configuration file

grub2-mkconfig -o /boot/grub2/grub.cfg
Generating grub configuration file ...
Found linux image: /boot/image-5.3.18-22-default
Found initrd image: /boot/initrd-5.3.18-22-default
done

3. Confirm the grub2 menu entry for the custom configuration. In Example 8-5 you can see
grube2-once --enum is run to determine the number for the custom grub2 entry (menu
entry number 2, in this example).

Example 8-5 Creating a grub2 menu item

rdbkkvms:/etc/grub.d # grub2-once --enum
0 SLES 15-SP2
1>0 Advanced options for SLES 15-SP2>SLES 15-SP2, with Linux 5.3.18-22-default
1>1 Advanced options for SLES 15-SP2>SLES 15-SP2, with Linux 5.3.18-22-default
(recovery mode)
2 SLES 15-SP2 Ultravisor
3>0 --hotkey=s>--hotkey=1
3>1 --hotkey=s>--hotkey=2
3>2 --hotkey=s>--hotkey=3

4. The KVM host must be IPLed with the new grub kernel parameter. Use the HMC Load
parameter to select the zipl and grub menu selection. In Figure 8-3, the value of 0G2 is
shown; that is, the zipl entry 0 and grub entry number is 2.

Figure 8-3 HMC Load parameter with grub2 menu selection

After the KVM host is IPLed, validate that the parameter took effect and the IBM Secure
Execution Ultravisor is active. In Figure 8-4, you can see that prot_virt=1 is part of the active
kernel parameter and the Ultravisor reserved some memory during start.
260 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-4 Ultravisor verification

8.7 Enabling an Ubuntu 20.04 KVM Guest for IBM Secure
Execution

The tasks in this section all are performed by the KVM Guest virtual server administrator. The
one exception might that the domain XML for the guest must be edited to include iommu=’on’
on each virtio device. This task is performed by the KVM Host administrator or cloud provider.

In this example, we perform the following steps:

1. Install a standard Linux guest on encrypted disk storage.
2. Update KVM guest /etc/crypttab to avoid entering password at start.
3. Edit the domain.xml to include iommu=’on’.
4. Obtain the host key documents for the CEC.
5. Validate the key material.
6. Build a secured initrd image file by using genprotimg on KVM guest.
7. Update guest zipl to start with a secured image in Secure Execution mode.
8. Remove any start option that is not in Secure Execution mode.
9. Remove unencrypted, older artifacts from /boot.

These steps are described next.

8.7.1 Installing a standard Linux guest on encrypted disk storage

We used virt-install to deploy a guest in a single command. This process created an 8 Gb
qcow2 image file (see Figure 8-5).

Figure 8-5 One line installation command

� To simplify initial installation, we chose to auto-configure networking by using DHCP
(autoconfig networking [DHCP]).

� To simplify the disk installation, we chose the following Guided selection for disk storage,
which uses the entire disk, and setup encrypted Logical Volume Manager (LVM).

cat /proc/cmdline
root=UUID=741778d7-a0d2-4d1b-ad45-5e19f7d9eb39 hvc_iucv=8 TERM=dumb
mitigations=auto cio_ignore=all,!ipldev,!condev prot_virt=1
dmesg | grep -i ultra
[0.338818] prot_virt: Reserving 98MB as ultravisor base storage

Note: We do not use the Pervasive Encryption approach with protected key technology
because Crypto AP pass-through is not supported by IBM Secure Execution at the time of
this writing.

virt-install --name secguest1 --memory 4096 --disk size=8 \

> --cdrom /var/lib/libvirt/images/ubuntu-20.04-legacy-server-s390x.iso
Chapter 8. Using IBM Secure Execution 261

We also provided an Encryption Phrase. Store this phase in a safe place because this phrase
is used to decrypt the root file system.

After the installation completes, the server restarts and you must supply the pass phrase
when prompted so the root file system is decrypted, as shown in Figure 8-6. This manual
process is temporary because we are automating this aspect.

Figure 8-6 Passphrase prompt to decrypt

At this stage, you have a virtual server with the root partition encrypted (/boot is not
encrypted). While the root partition in encrypted, we are not yet operating in a Secure
Execution mode.

Next, we shut down the virtual server and copy the qcow2 file as a backup in case any
unrecoverable mistakes were made (see Figure 8-7). After the qcow2 file is copied, we restart
the server.

Figure 8-7 Backup of new virtual server

8.7.2 Updating KVM guest /etc/crypttab to avoid entering a password at start

From a security and operational perspective, we do not want any manual prompts at start to
which a user must respond. To address this issue, we created a Linux Unified Key Setup
(LUKs) key file and updated /etc/cryptab to use it.

Although these components initially are in /filesystem, you must rebuild initrd/initramfs
to include them. With a standard initrd/initramfs, these components are stored in the clear
and present a secure risk.

With IBM Secure Execution, this information is encrypted and can be decrypted only in a valid
Secure Execution environment.

Begin: Running /scripts/init-premount ... done.

Begin: Mounting root file system ... Begin: Running /scripts/local-top ...
Volume group "vgsecguest1" not found

 Cannot process volume group vgsecguest1

Please unlock disk vda6_crypt:

root@rdbkubu4:/var/lib/libvirt/images# cp secguest1.qcow2
secguest1.qcow2.backup
root@rdbkubu4:/var/lib/libvirt/images#
262 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-8 shows that the volume group for root and swap is derived from vda6_crypt.

Figure 8-8 Linux Block devices

With cryptsetup status, we can see that vda6_crypt is a LUKS2 device with aes-xts
encryption (see Figure 8-9).

Figure 8-9 cryptsetup status

Complete the following steps:

1. Create a key file that we can use in /etc/crypttab. In Figure 8-10, see that the /etc/luks
directory is created, a key file is created, and permissions are set on the directory and file;
therefore, only root has read access to this file.

Figure 8-10 New LUKS key file

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 252:0 0 8G 0 disk
••vda1 252:1 0 512M 0 part
••vda2 252:2 0 1K 0 part
••vda5 252:5 0 731M 0 part /boot
••vda6 252:6 0 6.8G 0 part
 ••vda6_crypt 253:0 0 6.8G 0 crypt
 ••vgsecguest1-root 253:1 0 5.8G 0 lvm /
 ••vgsecguest1-swap_1 253:2 0 980M 0 lvm [SWAP]

cryptsetup -v status vda6_crypt
/dev/mapper/vda6_crypt is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/vda6
 sector size: 512
 offset: 32768 sectors
 size: 14190592 sectors
 mode: read/write
 flags: discards
Command successful.

mkdir /etc/luks
root@secguest1:/etc# dd if=/dev/urandom of=/etc/luks/boot_os.keyfile bs=4096
count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.000128036 s, 32.0 MB/s
root@secguest1:/etc# chmod u=rx,go-rwx /etc/luks
root@secguest1:/etc# chmod u=r,go-rwx /etc/luks/boot_os.keyfile
Chapter 8. Using IBM Secure Execution 263

2. By using cryptsetup luksDump, inspect the partition that is holding the encrypted data (in
this case, /dev/vda6). Figure 8-11 shows that only a single key slot is use. LUKs supply
multiple keys, each in a different slot. You must have the passphrase that was used at
installation for the disk encryption.

Figure 8-11 The cryptsetup luksDump with single key slot used

cryptsetup luksDump /dev/vda6
LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: f3eb33ab-7503-41d4-aee3-4e286a1e881d
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt

offset: 16777216 [bytes]
length: (whole device)
cipher: aes-xts-plain64
sector: 512 [bytes]

Keyslots:
 0: luks2

Key: 512 bits
Priority: normal
Cipher: aes-xts-plain64
Cipher key: 512 bits
PBKDF: argon2i
Time cost: 4
Memory: 354693
Threads: 2
Salt: 9b 41 28 6f 4b a5 a8 ac 42 eb f0 37 4e ba 18 06
 b2 d5 a7 62 15 8d d3 0f ad b5 06 0e a1 96 1f 37
AF stripes: 4000
AF hash: sha256
Area offset:32768 [bytes]
Area length:258048 [bytes]
Digest ID: 0

Tokens:
Digests:
-------- Output truncated for readability ---------
264 Virtualization Cookbook for IBM Z Volume 5: KVM

3. Add the new key file to an empty LUKS key slot. Figure 8-12 shows this process that uses
the crpytsetup luksAddKey command. Again, you need the passphrase that was used at
installation and is used at start to decrypt the root file system.

Figure 8-12 cryptsetup luksAddKey

4. After the new key is added, run cryptsetup luksDump again. Now, two key slots are used
(see Figure 8-13 on page 266).

cryptsetup luksAddKey /dev/vda6 /etc/luks/boot_os.keyfile
Enter any existing passphrase:

Chapter 8. Using IBM Secure Execution 265

Figure 8-13 Two key slots in use

cryptsetup luksDump /dev/vda6
LUKS header information
Version: 2
Epoch: 4
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: f3eb33ab-7503-41d4-aee3-4e286a1e881d
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)
Data segments:
 0: crypt

offset: 16777216 [bytes]
length: (whole device)
cipher: aes-xts-plain64
sector: 512 [bytes]

Keyslots:
 0: luks2

Key: 512 bits
Priority: normal
Cipher: aes-xts-plain64
Cipher key: 512 bits
PBKDF: argon2i
Time cost: 4
Memory: 354693
Threads: 2
Salt: 9b 41 28 6f 4b a5 a8 ac 42 eb f0 37 4e ba 18 06
 b2 d5 a7 62 15 8d d3 0f ad b5 06 0e a1 96 1f 37
AF stripes: 4000
AF hash: sha256
Area offset:32768 [bytes]
Area length:258048 [bytes]
Digest ID: 0

 1: luks2
Key: 512 bits
Priority: normal
Cipher: aes-xts-plain64
Cipher key: 512 bits
PBKDF: argon2i
Time cost: 4
Memory: 585601
Threads: 2
Salt: 0c 5b f4 d3 20 b8 5e e9 9a f4 63 62 5a 0c ad d7
 48 41 85 53 97 1d c2 6d 48 39 1d 43 94 bd 93 b3
AF stripes: 4000
AF hash: sha256
Area offset:290816 [bytes]
Area length:258048 [bytes]
Digest ID: 0

Tokens:
Digests:
---- Output truncated for readability -----
266 Virtualization Cookbook for IBM Z Volume 5: KVM

5. Add the KEYFILE_PATTERN to the /etc/cryptsetup-initramfs/conf-hook and set the
permissions (see Figure 8-14). Notice that the pattern does not call out a single file;
instead, all files that end in .keyfile are called out.

Figure 8-14 Setup initramfs hook

6. The /etc/crypttab is updated to include the new key file. The before and after contents
are shown in Figure 8-15 for this modification. Check your /etc/crypttab because a
mistake might leave your system in a condition in which it cannot be started.

Figure 8-15 Update /etc//crypttab

7. Update the initrd (initramfs), as shown in Figure 8-16. Notice how zipl is automatically
run at the end of this process. Whenever the initrd is rebuilt, zipl must be run to pick up
the newly built initrd.

Figure 8-16 Update initramfs

Now, you should be able to restart your server and not be prompted for a passphrase. If you
are prompted, review these steps.

It is important not to stop here. While the root file system is encrypted, the key to decrypt it is
stored in the initrd in the clear. When you use the genprotimg command, you encrypt this
initrd so that the key cannot be stolen.

echo "KEYFILE_PATTERN=/etc/luks/*.keyfile" >>
/etc/cryptsetup-initramfs/conf-hook
echo "UMASK=0077" >> /etc/initramfs-tools/initramfs.conf

root@secguest1:/etc# cat /etc/crypttab
vda6_crypt UUID=f3eb33ab-7503-41d4-aee3-4e286a1e881d none luks,discard
root@secguest1:/etc# vi /etc/crypttab
root@secguest1:/etc# cat /etc/crypttab
vda6_crypt UUID=f3eb33ab-7503-41d4-aee3-4e286a1e881d /etc/luks/boot_os.keyfile
luks,discard

update-initramfs -u
update-initramfs: Generating /boot/initrd.img-5.4.0-42-generic
Using config file '/etc/zipl.conf'
Building bootmap in '/boot'
Building menu 'menu'
Adding #1: IPL section 'ubuntu' (default)
Adding #2: IPL section 'old'
Preparing boot device: vda (0000).
Done.

Chapter 8. Using IBM Secure Execution 267

8.7.3 Editing the domain.xml to include iommu=’on’

Every virtio device in the domain XML definition must have iommu=’on’ added to it. Also,
memballon and Crypto AP pass-through are unsupported in a Secure Execution environment.
Before making any changes, we backed up our current domain .xml, as shown in Figure 8-17.

Figure 8-17 Back up domain .xml

Next, by using virsh edit, the domain .xml was customized to have iommu=’on’ for every virtio
device. The memory balloon was disabled, and the QEMU guest agent definition removed.
Because we did not plan to use the random number generator, that generator also was
removed.

The modified version of the domain .xml devices section is shown in Figure 8-18.

Figure 8-18 Tailored domain xml example

virsh dumpxml secguest1 > secguest1-original.xml

<devices>
 <emulator>/usr/bin/qemu-system-s390x</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none' io='native' iommu='on'/>
 <source file='/var/lib/libvirt/images/secguest1.qcow2' index='1'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0000'/>
 </disk>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <interface type='network'>
 <mac address='52:54:00:3e:65:4c'/>
 <source network='default' portid='51695453-c4a4-444a-9195-a603f26dc0cb'
bridge='virbr0'/>
 <target dev='vnet0'/>
 <model type='virtio'/>
 <driver name='qemu' iommu='on'/>
 <alias name='net0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0001'/>
 </interface>
 <console type='pty' tty='/dev/pts/0'>
 <source path='/dev/pts/0'/>
 <target type='sclp' port='0'/>
 <alias name='console0'/>
 </console>
 <memballoon model='none'/>
 <panic model='s390'/>
 </devices>
268 Virtualization Cookbook for IBM Z Volume 5: KVM

8.7.4 Obtaining the host key documents for the CEC

The following host key documents are needed for this process:

� The host key document that you received from your cloud provider, HKD-<mmmm-nnnn>.crt
or downloaded from IBM Resource Link. (See: obtaining a host key document from
Resource Link).

� The DigiCert CA certificate, DigicertCA.crt

� The IBM Z signing key, ibm-z-host-key.crt

� The certificate revocation list (CRL), ibm-z-host-key.crl

You can download the CA certificate, the signing key, and the CRL from this IBM Resource
Link web page.

Use the sample script that is available from s390-tools to perform the verification steps.

8.7.5 Validating the key material

It is important to validate the key material for your host and guest. For more information, see
this IBM Documentation web page.

There is also a script available to aid with this process at this GitHub web page.

Begin with the openssl verify operations, as shown in Figure 8-19. The openssl verify is
performed on the Certificate Authority and signing key certificate. It also shows extracting the
public key from the certificate in the last command.

Figure 8-19 openssl verify

Figure 8-20 on page 270 shows the following steps:

� Extracting the public signing key into a .pem file

� Extracting the host key signature from the host key document

� The use of the resulting value <n> to extract the host key signature into a file that is called
signature

� Extracting the host key document body into a file that is called body

� Verifying the signature by using the signature and body files

root@secguest1:~/secure_execution# ls
DigiCertCA.crt HKD-8561-022B7F8.crt ibm-z-host-key.crl
ibm-z-host-key-signing.crt
root@secguest1:~/secure_execution# openssl verify -crl_download -crl_check
DigiCertCA.crt
DigiCertCA.crt: OK
root@secguest1:~/secure_execution# openssl verify -crl_download -crl_check
-untrusted DigiCertCA.crt ibm-z-host-key-signing.crt
ibm-z-host-key-signing.crt: OK
root@secguest1:~/secure_execution#
Chapter 8. Using IBM Secure Execution 269

https://www-40.ibm.com/servers/resourcelink/lib03060.nsf/0/75E4C39CCF5E6AA08525853400663703?OpenDocument
https://github.com/ibm-s390-tools/s390-tools/tree/master/genprotimg/samples/check_hostkeydoc
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_t_verify.html
https://github.com/ibm-s390-tools/s390-tools/tree/master/genprotimg/samples/check_hostkeydoc
https://www-40.ibm.com/servers/resourcelink/lib03060.nsf/0/75E4C39CCF5E6AA08525853400663703?OpenDocument
https://www-40.ibm.com/servers/resourcelink/lib03060.nsf/0/75E4C39CCF5E6AA08525853400663703?OpenDocument

Figure 8-20 Verifying the signature of the host key document

The next step is to verify the signature of the host key document issuer. Figure 8-21 shows
these steps. The expected output of the last command is shown in the following example:

subject= /C=US/ST=New York/L=Poughkeepsie/O=International Business Machines
Corporation/OU=IBM Z Host Key Signing Service/CN=International Business Machines
Corporation

Any other value is considered suspect.

Figure 8-21 Verifying host key document issuer

Validating the dates of the signing certificate is shown in Figure 8-22.

Figure 8-22 Validating dates of the signing certificate

root@secguest1:~/secure_execution# openssl x509 -in ibm-z-host-key-signing.crt
-pubkey -noout > pubkey.pem

root@secguest1:~/secure_execution# openssl asn1parse -in HKD-8561-022B7F8.crt
| tail -1 | cut -d : -f 1
 837

root@secguest1:~/secure_execution# openssl asn1parse -in HKD-8561-022B7F8.crt
-out signature -strparse 837 -noout

root@secguest1:~/secure_execution# openssl asn1parse -in HKD-8561-022B7F8.crt
-out body -strparse 4 -noout
root@secguest1:~/secure_execution# openssl sha512 -verify pubkey.pem -signature
signature body
Verified OK

root@secguest1:~/secure_execution# openssl x509 -in HKD-8561-022B7F8.crt
--issuer -noout
issuer=C = US, O = International Business Machines Corporation, OU = IBM Z Host
Key Signing Service, L = Poughkeepsie, ST = New York, CN = International
Business Machines Corporation
root@secguest1:~/secure_execution# openssl x509 -in ibm-z-host-key-signing.crt
-subject -noout
subject=C = US, ST = New York, L = Poughkeepsie, O = International Business
Machines Corporation, OU = IBM Z Host Key Signing Service, CN = International
Business Machines Corporation

root@secguest1:~/secure_execution# openssl x509 -in ibm-z-host-key-signing.crt
-dates -noout
notBefore=Apr 17 00:00:00 2020 GMT
notAfter=Apr 22 12:00:00 2022 GMT
root@secguest1:~/secure_execution#
270 Virtualization Cookbook for IBM Z Volume 5: KVM

Validating the CRL is shown in Figure 8-23.

Figure 8-23 Validate the CRL

8.7.6 Building a secured initrd image file by using genprotimg on KVM guest

This secured initrd image file is encrypted by using the key material that can be decrypted
only by the specific machine with the corresponding keys. This process is done by the IBM Z
or IBM LinuxONE by using the host public key during the start process.

To generate a protected image file, we must add to the command-line parameter. Figure 8-24
shows the original kernel parameter line.

Figure 8-24 Kernel parameters

In Figure 8-25, the required swiotbl keyword is added to the text file that is called parmfile.
This parmfile is added to the genprotimg program.

Figure 8-25 Adding swiotlb keyword

root@secguest1:~/secure_execution# openssl crl -in ibm-z-host-key.crl -issuer
-noout
issuer=C = US, O = International Business Machines Corporation, OU = IBM Z Host
Key Signing Service, L = Poughkeepsie, ST = New York, CN = International
Business Machines Corporation
root@secguest1:~/secure_execution# openssl crl -in ibm-z-host-key.crl
-lastupdate -nextupdate -noout
lastUpdate=May 12 14:08:42 2020 GMT
nextUpdate=Jun 15 04:00:00 2020 GMT
root@secguest1:~/secure_execution#
root@secguest1:~/secure_execution# openssl crl -in ibm-z-host-key.crl -text
-noout | grep "Serial Number"
 Serial Number: 23AC1FB677F8932BF8
root@secguest1:~/secure_execution# openssl x509 -in HKD-8561-022B7F8.crt
-serial -noout
serial=16525232812EFD90F5
root@secguest1:~/secure_execution#

root@secguest1:~# cat /proc/cmdline
root=/dev/mapper/vgsecguest1-root crashkernel=196M
root@secguest1:~#

root@secguest1:~# cat parmfile
root=/dev/mapper/vgsecguest1-root crashkernel=196M swiotlb=262144
Chapter 8. Using IBM Secure Execution 271

Next, we run the genprotimg command. The -i parameter is the Linux kernel image that you
want to supply as input. The optional -r parameter points to the initial RAM disk to be used as
input.

The required -k parameter supplies the input host key documents. You must supply at least
one host-key document. The -o parameter is the output file name for your protected
virtualization image. An example is shown in Figure 8-26.

Figure 8-26 genprotimg execution

Whenever you regenerate the protect image file /boot/secure-linux or any initrd file, you
must run the zipl command to update the boot information. Because we are making zipl boot
menu changes in the next section, we defer that process for now.

8.7.7 Updating guest zipl to boot with secured image in IBM Secure Execution
mode

Because we are new to IBM Secure Execution, we decided to initially build a zipl menu that
defaults to IBM Secure Execution (but can also be overridden) to start without IBM Secure
Execution. It is important to remove this configuration file later on when we are sure we can
start successfully.

Leaving start options that start an unprotected image makes you vulnerable. For example,
your encryption or decryption key might be stolen. Figure 8-27 on page 273 shows the
original guest zipl.conf.

genprotimg -i /boot/vmlinuz -r /boot/initrd.img -p parmfile -k
./secure_execution/HKD-8561-022B7F8.crt -o /boot/secure-linux --no-verify -V

WARNING: host-key document verification is disabled. Your workload is not
secured.
 kernel:0x000000015000 (8093696 / 8090168 Bytes)
 parmline:0x0000007cd000 (4096 / 66 Bytes)
 ramdisk:0x0000007ce000 (23719936 / 23715997 Bytes)
 stage3b:0x000001e6d000 (8192 / 5498 Bytes)
 stage3a:0x000000010000 (20480 / 20480 Bytes)

272 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-27 Original guest zipl.conf

root@secguest1:/etc# cat zipl.conf
[defaultboot]
defaultmenu = menu

:menu
target = /boot
1 = ubuntu
2 = old
default = 1
prompt = 1
timeout = 10

[ubuntu]
target = /boot
image = /boot/vmlinuz
ramdisk = /boot/initrd.img
parameters = root=/dev/mapper/vgsecguest1-root crashkernel=196M

[old]
target = /boot
image = /boot/vmlinuz.old
ramdisk = /boot/initrd.img.old
parameters = root=/dev/mapper/vgsecguest1-root crashkernel=196M
optional = 1
root@secguest1:/etc#
Chapter 8. Using IBM Secure Execution 273

Figure 8-28 shows the modified version. In the modified version, you see the new section that
is called [secure].

Figure 8-28 zipl.conf with default to IBM Secure Execution

Now that the start menu is modified, the zipl command must be run to write out the new zipl
start information. Figure 8-29 on page 275 shows running zipl with the -V (verbose)
parameter.

root@secguest1:/etc# cat zipl.conf
[defaultboot]
defaultmenu = menu

:menu
target = /boot
1 = secure
2 = ubuntu
3 = old
default = 1
prompt = 1
timeout = 15

[secure]
target = /boot
image = /boot/secure-linux

[ubuntu]
target = /boot
image = /boot/vmlinuz
ramdisk = /boot/initrd.img
parameters = root=/dev/mapper/vgsecguest1-root crashkernel=196M

[old]
target = /boot
image = /boot/vmlinuz.old
ramdisk = /boot/initrd.img.old
parameters = root=/dev/mapper/vgsecguest1-root crashkernel=196M
optional = 1
root@secguest1:/etc#
274 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-29 Running zipl -V

root@secguest1:/etc# zipl -V
Using config file '/etc/zipl.conf'
Target device information
 Device..........................: fc:00
 Partition.......................: fc:05
 Device name.....................: vda
 Device driver name..............: virtblk
 Type............................: disk partition
 Disk layout.....................: SCSI disk layout
 Geometry - start................: 1052672
 File system block size..........: 4096
 Physical block size.............: 512
 Device size in physical blocks..: 1497088
Building bootmap in '/boot'
Building menu 'menu'
Adding #1: IPL section 'secure' (default)
 kernel image......: /boot/secure-linux
 component address:
 heap area.......: 0x00002000-0x00005fff
 stack area......: 0x0000f000-0x0000ffff
 internal loader.: 0x0000a000-0x0000dfff
 parameters......: 0x00009000-0x000091ff
 kernel image....: 0x00010000-0x01e7efff
Adding #2: IPL section 'ubuntu'
 initial ramdisk...: /boot/initrd.img
 kernel image......: /boot/vmlinuz
 kernel parmline...: 'root=/dev/mapper/vgsecguest1-root crashkernel=196M'
 component address:
 heap area.......: 0x00002000-0x00005fff
 stack area......: 0x0000f000-0x0000ffff
 internal loader.: 0x0000a000-0x0000dfff
 parameters......: 0x00009000-0x000091ff
 kernel image....: 0x00010000-0x007c6fff
 parmline........: 0x007c8000-0x007c81ff
 initial ramdisk.: 0x007d0000-0x01e6e1ff
Adding #3: IPL section 'old'
 initial ramdisk...: /boot/initrd.img.old
 kernel image......: /boot/vmlinuz.old
 kernel parmline...: 'root=/dev/mapper/vgsecguest1-root crashkernel=196M'
 component address:
 heap area.......: 0x00002000-0x00005fff
 stack area......: 0x0000f000-0x0000ffff
 internal loader.: 0x0000a000-0x0000dfff
 parameters......: 0x00009000-0x000091ff
 kernel image....: 0x00010000-0x007c6fff
 parmline........: 0x007c8000-0x007c81ff
 initial ramdisk.: 0x007d0000-0x01e6e1ff
Preparing boot device: vda (0000).
Detected SCSI PCBIOS disk layout.
Writing SCSI master boot record.
Syncing disks...
Done.
Chapter 8. Using IBM Secure Execution 275

Now, you should be fully shutting down your guest and restarting it in Secure Execution
mode. At this stage, we are performing an initial test. If you fail to start, remember you can
select start option #2 to start in normal mode.

If you are successful, do not stop here. Some remaining steps must be completed to further
secure the configuration because we left the start loader menu entries in place that start
without IBM Secure Execution and are unencrypted.

8.7.8 Removing any boot option that is not in Secure Execution mode

After Secure Execution mode is successfully running, it is important to always to remove any
option that might not be in Secure Execution.

In Example 8-6. you can see that only the single boot entry exists for our protected image,
which is called secure-linux.

Example 8-6 Single boot entry for protected image

root@secguest1:/etc# cat zipl.conf
[defaultboot]
defaultmenu = menu

:menu
target = /boot
1 = secure
default = 1
prompt = 0
timeout = 1

[secure]
target = /boot
image = /boot/secure-linux

8.7.9 Further Ubuntu guest hardening

To further harden this guest, we disabled the emergency and rescue shells. In Example 8-7,
you can see that we masked the systemd services for emergency and rescue.

Example 8-7 Masking systemd services

root@secguest1:/etc# systemctl mask emergency.service
Created symlink /etc/systemd/system/emergency.service • /dev/null.
root@secguest1:/etc# systemctl mask emergency.target
Created symlink /etc/systemd/system/emergency.target • /dev/null.
root@secguest1:/etc# systemctl mask rescue.service
Created symlink /etc/systemd/system/rescue.service • /dev/null.
root@secguest1:/etc# systemctl mask rescue.target
Created symlink /etc/systemd/system/rescue.target • /dev/null.
root@secguest1:/etc#

Note: It is important to run the zipl command because the zipl configuration file was
changed.
276 Virtualization Cookbook for IBM Z Volume 5: KVM

We added loglevel=0 and systemd.show_status=no to the parmfile, which is input to
genprotimg. The modified parmfile is shown in Example 8-8.

Example 8-8 Modified parmfile

root@secguest1:~# cat parmfile
root=/dev/mapper/vgsecguest1-root crashkernel=196M swiotlb=262144 loglevel=0
systemd.show_status=no

Only secure remote login can be enforced. SSHD and the SSH keys can be set up and login
on kernel consoles can be disabled by disabling serial and virtual TTYs. However, your Linux
virtual server cannot be reached if TCP/IP becomes unavailable.

Incorporate the following systemd changes to update the parmfile:

cat /etc/systemd/system/serial-getty@.service.d/disable.conf

[Unit]

ConditionKernelCommandLine=allowlocallogin

cat /etc/systemd/system/autovt@.service.d/disable.conf

[Unit]

ConditionKernelCommandLine=allowlocallogin

Because the parmfile was updated, the secure-linux image must be rebuilt. The process that
is shown in Example 8-9 is the same as is described in 8.7.6, “Building a secured initrd
image file by using genprotimg on KVM guest” on page 271.

Example 8-9 Rebuilding secure-linux image

genprotimg -i /boot/vmlinuz -r /boot/initrd.img-5.4.0-42-generic -p
/root/parmfile -k /root/secure_execution/HKD-8561-022B7F8.crt -o
/boot/secure-linux --no-verify -V
WARNING: host-key document verification is disabled. Your workload is not secured.
 kernel:0x000000015000 (8093696 / 8090168 Bytes)
 parmline:0x0000007cd000 (4096 / 100 Bytes)
 ramdisk:0x0000007ce000 (23719936 / 23716354 Bytes)
 stage3b:0x000001e6d000 (8192 / 5498 Bytes)
 stage3a:0x000000010000 (20480 / 20480 Bytes)

Note: Because the secure-linux image is now rebuilt, you must run the zipl program
again.
Chapter 8. Using IBM Secure Execution 277

8.7.10 Removing older unencrypted artifacts from the /boot partition

Because the /boot partition is unencrypted, it is important to remove files that a malicious
individual can use to attempt to start the virtual server without the use of IBM Secure
Execution.

Before removing files from /boot, it suggested to place a copy somewhere that is secure. For
this purpose, we created a directory that is called /root/boot and copied the entire contents
of /boot in to this new directory. The file system that is in /root is fully encrypted. In this way,
the necessary input files are available if you want to regenerate secure-linux.

Next, we use the srm program to securely erase files in /boot that are no longer needed.
These files include the initrd and vmlinuz files and related symbolic links.

In Example 8-10, you can see the final contents of the /boot file system. The only file in /boot
that contains the encryption and decryption key is secure-linux, which is encrypted. The
others are “securely” deleted with the srm program.

Example 8-10 Final /boot file system

root@secguest1:/boot# ls -la
total 34284
drwxr-xr-x 3 root root 4096 Sep 8 15:56 .
drwxr-xr-x 19 root root 4096 Aug 3 13:33 ..
-rw------- 1 root root 43520 Sep 8 15:53 bootmap
-rw-r--r-- 1 root root 90430 Jul 9 19:50 config-5.4.0-42-generic
drwx------ 2 root root 16384 Aug 3 13:27 lost+found
-rw-r--r-- 1 root root 31911936 Sep 8 15:51 secure-linux
-rw------- 1 root root 3088846 Jul 9 19:50 System.map-5.4.0-42-generic
root@secguest1:/boot#
278 Virtualization Cookbook for IBM Z Volume 5: KVM

8.8 Enabling a SLES 15 SP2 KVM Guest for IBM Secure
Execution

All of the tasks that are described in this section are to be performed by the KVM Guest virtual
server administrator. The one exception is the domain XML for the guest must be edited to
include iommu=’on’ on each virtio device. This task is performed by the KVM Host
administrator or cloud provider.

Be aware that more steps are needed to be performed with SUSE SLES than with other Linux
distributions. These extra steps are needed is because the process uses grub2 and zipl
bootloaders. Because they both use the same image and are built with the same process, we
must secure both of these bootloaders.

In this example, we use the following process:

� Install a standard Linux guest on encrypted disk storage.
� Update KVM guest /etc/crypttab to avoid entering password at start.
� Edit the domain.xml to include iommu=’on’.
� Obtain the host key documents for the CEC.
� Validate the key material.
� Build a secured initrd image file by using genprotimg on KVM guest.
� Update the guest zipl to start with a secured image in Secure Execution mode.
� Update the guest grub2 configuration to start with the secure image.
� Remove any start option that is not in Secure Execution mode.
� Remove older unencrypted artifacts from /boot.

The steps in this process are described next.

Note: We do not use the Pervasive Encryption approach with protected key technology
because Crypto AP pass-through is not supported by IBM Secure Execution at the time of
this writing.
Chapter 8. Using IBM Secure Execution 279

8.8.1 Installing a standard Linux guest on encrypted disk storage

We used virt-install to deploy a guest in a single command. This process created an 8 Gb
qcow2 image file (see Figure 8-30).

Figure 8-30 One line installation command

virt-install --name secguest2q --memory 4096 --disk size=8 --cdrom
/var/lib/libvirt/images/SLE-15-SP2-Full-s390x-GM-Media1.iso
WARNING CDROM media does not print to the text console by default, so you
likely will not see text install output. You might want to use --location. See
the man page for examples of using --location with CDROM media

Starting install...
Allocating 'secguest2q.qcow2'
| 8.0 GB 00:00:00
Connected to domain secguest2q
Escape character is ^]
[0.090584] Linux version 5.3.18-22-default (geeko@buildhost) (gcc version
7.5.0 (SUSE Linux)) #1 SMP Wed Jun 3 12:16:43 UTC 2020 (720aeba)
[0.090586] setup: Linux is running under KVM in 64-bit mode
[0.090596] setup: The maximum memory size is 4096MB
[0.090614] numa: NUMA mode: plain
[0.090656] cpu: 1 configured CPUs, 0 standby CPUs
[0.090717] Write protected kernel read-only data: 10300k
[0.090758] Zone ranges:
280 Virtualization Cookbook for IBM Z Volume 5: KVM

During the installation process, we needed to specially tailor the installation. In Figure 8-31 on
page 281, you see that we started with the current proposal and custom tailored the
partitioning. We needed to make the /partition encrypted.

Figure 8-31 Starting with the current proposal

Note: The installation figures that are used in this section show a graphical installation.
Therefore, the VNC in the guest must be configured. For more information about installing
VNC, see this SUSE Documentation web page.
Chapter 8. Using IBM Secure Execution 281

https://documentation.suse.com/sles/15-SP1/html/SLES-all/cha-vnc.html

In Figure 8-32 on page 282, you can see we selected the Encrypt Device option. Although
you might want to make other customizations, the partition was not changed in any other way.

Figure 8-32 Encrypt device selected
282 Virtualization Cookbook for IBM Z Volume 5: KVM

You must supply a passphrase to decrypt the /partition, as shown in Figure 8-33. You need
this passphrase later to initially start the server. Because the server is to be updated later, you
do not need to manually supply this password during start.

Figure 8-33 Supplying the passphrase
Chapter 8. Using IBM Secure Execution 283

The partition layout for /dev/vda is shown on Figure 8-34. In addition to the /partition, the
other partition is /boot/zipl. This partition remains unencrypted, but contains only the zipl
boot loader artifacts. The grub2 bootloader artifacts are in /boot/ and /boot/grub2. Both of
these are in the encrypted /filesystem. Also, the zipl boot loader phase is responsible for
decrypting the /filesystem.

Figure 8-34 Partition layout

It is important to understand that the initial ramdisk (initrd) that is used by grub2 and zipl is
the same. The SLES 15 installation and maintenance processes update both of these, which
include LUKs keys to the boot disk. Therefore, both must be secured with genprotimg.

You might also note no swap partition or device are defined. You can optionally add swap
later, but this swap must be encrypted to help keep you virtual server secured. You can
encrypt swap disks with random ephemeral Protected Keys. (No CryptoExpress Adapter is
required for these keys because they are ephemeral.)

After the installation completes, the server restarts and you must supply the passphrase
when prompted to decrypt the root file system. The need to enter the passphrase is
temporary because the process is to be automated later.
284 Virtualization Cookbook for IBM Z Volume 5: KVM

In Example 8-11, you can see we are starting a server and supplying the passphrase.

Example 8-11 Passphrase prompt to decrypt

rdbkkvms:~ # virsh start secguest2q --console
Domain secguest2q started
Connected to domain secguest2q
Escape character is ^]
[1.276394] hypfs: The hardware system does not support hypfs
[1.276405] hypfs: Initialization of hypfs failed with rc=-61
Please enter passphrase for disk cr_root!

After supplying the passphrase, you are presented with the grub2 bootloader menu. After
you proceed past this menu and the start is continuing, you see a second prompt for the
passphrase to decrypt the root file system (see Example 8-12).

Example 8-12 Second passphrase prompt

[OK] Started udev Coldplug all Devices.
 Starting Show Plymouth Boot Screen...
 Starting dracut initqueue hook...
[1.738250] virtio_blk virtio2: [vda] 16777216 512-byte logical blocks (8.59
GB/8.00 GiB)
[1.748446] vda: vda1 vda2
[1.767375] scsi host0: Virtio SCSI HBA
[1.767711] scsi 0:0:0:0: CD-ROM QEMU QEMU CD-ROM 2.5+ PQ:
0 ANSI: 5
[OK] Found device /dev/disk/by-path/ccw-0.0.0000-part2.
 Starting Cryptography Setup for cr_root...
[1.783038] scsi 0:0:0:0: Attached scsi generic sg0 type 5
[1.784359] sr 0:0:0:0: Power-on or device reset occurred
[1.784547] sr 0:0:0:0: [sr0] scsi3-mmc drive: 16x/50x cd/rw xa/form2 cdda tray
[1.784549] cdrom: Uniform CD-ROM driver Revision: 3.20

Please enter passphrase for disk cr_root!:[1.978996] alg: No test for crc32be
(crc32be-vx)
[2.024672] EXT4-fs (vda1): mounting ext2 file system using the ext4 subsystem
[2.026416] EXT4-fs (vda1): mounted filesystem without journal. Opts: (null)

This latest prompt might not be the last message that you receive because of the parallel
nature of the Linux start process. However, the start process stops until the correct
passphrase is supplied. (The process of manually supplying the decryption phase or key also
is planned to be automated.)

Although you now have a virtual server with the root partition encrypted, the /boot/zipl is
not encrypted (see 8.8.11, “Removing unencrypted older artifacts from /boot/zipl and
encrypted artifacts from /boot” on page 302).

Although the root partition is encrypted, we are not operating in a Secure Execution mode yet.
Chapter 8. Using IBM Secure Execution 285

At this point, we shut down the virtual server and made a copy of the qcow2 file as a backup in
case any unrecoverable mistakes were made. After the qcow is copied, we restarted the
server. Our backup is shown in Figure 8-35.

Figure 8-35 Backup of new virtual Server

8.8.2 Updating KVM guest /etc/crypttab to avoid entering a password at start

From a security and operational perspective, we do not want any manual prompts at start to
which a user must respond. To address this issue, we created a LUKS key file and updated
/etc/cryptab to use it. Although initially they both are in the /filesystem, you must rebuild
the initrd/initramfs to include them.

With a standard initrd/initramfs, the LUKS key file and updated /etc/cryptab are stored in
the clear and present a secure risk. With IBM Secure Execution, this information is encrypted
and can be decrypted only in a valid IBM Secure Execution environment.

Figure 8-36 shows the root file system (/), which is derived from cr_roo and /dev/vda2.

Figure 8-36 Linux Block devices

By using cryptsetup status, we can see that cr_root is a LUKS device with aes-xts
encryption (see Figure 8-37).

Figure 8-37 Status of cryptsetup

rdbkkvms:/var/lib/libvirt/images # cp secguest2q.qcow2 secguest2q.qcow2.backup

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 8G 0 disk
••vda1 253:1 0 300M 0 part /boot/zipl
••vda2 253:2 0 7.7G 0 part
 ••cr_root 254:0 0 7.7G 0 crypt /

cryptsetup -v status cr_root
/dev/mapper/cr_root is active and is in use.
 type: LUKS1
 cipher: aes-xts-plain64
 keysize: 256 bits
 key location: dm-crypt
 device: /dev/vda2
 sector size: 512
 offset: 4096 sectors
 size: 16156639 sectors
 mode: read/write
Command successful.
286 Virtualization Cookbook for IBM Z Volume 5: KVM

The next step is to create a key file that we can use in /etc/crypttab. In Figure 8-38, see
that the /etc/luks directory and a key file are created, and permissions are set on the
directory and file; therefore, only root has read access to this file.

Figure 8-38 New LUKS key file

Next, by using cryptsetup luksDump, inspect the partition that holds the encrypted data (in
this case, /dev/vda2). Figure 8-39 shows that only a single key slot is used. LUKS allows
users to supply multiple keys, each in a different slot. You the pass phrase that was used at
installation for the disk encryption.

Figure 8-39 cryptsetup luksDump with single key slot in use

secguest2q:/ # mkdir /etc/luks
secguest2q:/ # dd if=/dev/urandom of=/etc/luks/boot_os.keyfile bs=4096 count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 4.8087e-05 s, 85.2 MB/s
secguest2q:/ # chmod u=rx,go-rwx /etc/luks
secguest2q:/ # chmod u=r,go-rwx /etc/luks/boot_os.keyfile

secguest2q:/ # cryptsetup luksDump /dev/vda2
LUKS header information for /dev/vda2

Version: 1
Cipher name: aes
Cipher mode: xts-plain64
Hash spec: sha256
Payload offset:4096
MK bits: 256
MK digest: 29 49 1f f6 48 b9 36 f8 b8 42 07 ff e7 e6 6c f7 8a d9 a0 a7
MK salt: 7d ea ea 97 4c 6f c7 23 b2 c5 b6 3a ec d1 e3 92
 ee 34 f8 4b 8d 2c b5 c2 ec 8f 16 5a 54 d9 3a 17
MK iterations: 156038
UUID: 9325f775-6172-4f72-a56f-1002b0646349

Key Slot 0: ENABLED
Iterations: 2473056
Salt: cb b6 36 25 fc da f1 a2 ef 88 88 06 d1 5e 4d 72
 22 b8 73 8f 34 8e 8c 57 64 59 69 a3 16 30 d7 66
Key material offset:8
AF stripes: 4000

Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED
secguest2q:/ #
Chapter 8. Using IBM Secure Execution 287

The next step is to add our new key file to an empty LUKS key slot. Figure 8-40 shows this
addition with the crpytsetup luksAddKey command. Again, you must supply the pass phrase
that is used at installation and is being used at start to decrypt the root file system.

Figure 8-40 cryptsetup luksAddKey

After the new key is added, you can run cryptsetup luksDump again. Two key slots are now
used.

Figure 8-41 Two key slots in use

secguest2q:/ # cryptsetup luksAddKey /dev/vda2 /etc/luks/boot_os.keyfile
Enter any existing passphrase:
secguest2q:/ #

secguest2q:/ # cryptsetup luksDump /dev/vda2
LUKS header information for /dev/vda2

Version: 1
Cipher name: aes
Cipher mode: xts-plain64
Hash spec: sha256
Payload offset:4096
MK bits: 256
MK digest: 29 49 1f f6 48 b9 36 f8 b8 42 07 ff e7 e6 6c f7 8a d9 a0 a7
MK salt: 7d ea ea 97 4c 6f c7 23 b2 c5 b6 3a ec d1 e3 92
 ee 34 f8 4b 8d 2c b5 c2 ec 8f 16 5a 54 d9 3a 17
MK iterations: 156038
UUID: 9325f775-6172-4f72-a56f-1002b0646349

Key Slot 0: ENABLED
Iterations: 2473056
Salt: cb b6 36 25 fc da f1 a2 ef 88 88 06 d1 5e 4d 72
 22 b8 73 8f 34 8e 8c 57 64 59 69 a3 16 30 d7 66
Key material offset:8
AF stripes: 4000

Key Slot 1: ENABLED
Iterations: 2467236
Salt: 85 6a 94 4f 3d 19 1d 2e 5a e1 8f e3 f0 91 11 21
 6a aa 8f 5c bf 0c 6d c5 fb fb c8 f7 78 86 63 fd
Key material offset:264
AF stripes: 4000

Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED
secguest2q:/ #
288 Virtualization Cookbook for IBM Z Volume 5: KVM

Next, we need to have dracut include our new LUKS key file in the initrd when a new initrd
is generated. We accomplish this task by adding a new file that is called 99-root-key.conf to
the /etc/dracut.conf.d directory. This file contains the instructions to include our new LUKS
key file (see Figure 8-42).

Figure 8-42 Setting up dracut to include the key file.

Next, /etc/crypttab is updated to include our new key file. Both the before and after contents
are shown in Figure 8-43 for this modification.

Figure 8-43 Updating /etc//cryptab

secguest2q:/etc/dracut.conf.d # cat 99-root-key.conf
install_items+=" /etc/luks/boot_os.keyfile "
secguest2q:/etc/dracut.conf.d #

Note: Check your /etc/crypttab because a mistake can leave your system in a condition
in which is cannot be restarted.

secguest2q:/etc # cat crypttab
cr_root /dev/disk/by-path/ccw-0.0.0000-part2
secguest2q:~/test # cat /etc/crypttab
cr_root /dev/disk/by-path/ccw-0.0.0000-part2 /etc/luks/boot_os.keyfile luks
Chapter 8. Using IBM Secure Execution 289

The next step is to update the initrd (see Figure 8-44). Notice how zipl is not run
automatically at the end of this process. Whenever the initrd is rebuilt, zipl must be run to
pickup the newly built initrd. Also, note the update location; it does not include /boot/zipl.

Figure 8-44 Updating initrd with dracut

Thus far, the grub2 boot loader was addressed and those prompts eliminate; however, the
zipl boot loader must also be addressed.

To address the zipl boot loader, the new initrd and image must placed into /boot/zipl
and the zipl program run to write the updated information. Although you can perform these
steps manually, grub2-install.

secguest2q:/ # dracut -v -f
dracut: Executing: /usr/bin/dracut -v -f
dracut: dracut module 'dmraid' will not be installed, because command 'dmraid'
could not be found!
dracut: dracut module 'dmsquash-live-ntfs' will not be installed, because
command 'ntfs-3g' could not be found!
dracut: dracut module 'biosdevname' will not be installed, because command
'biosdevname' could not be found!
dracut: dracut module 'dmraid' will not be installed, because command 'dmraid'
could not be found!
dracut: dracut module 'dmsquash-live-ntfs' will not be installed, because
command 'ntfs-3g' could not be found!
dracut: *** Including module: bash ***
dracut: *** Including module: systemd ***
dracut: *** Including module: systemd-initrd ***

<<Lines omitted for readability>>

dracut: lrwxrwxrwx 1 root root 6 Aug 28 13:29 var/run ->
../run
dracut: drwxr-xr-x 1 root root 0 Aug 28 13:29 var/tmp
dracut:
==
dracut: *** Creating initramfs image file '/boot/initrd-5.3.18-22-default' done

secguest2q:/ #
290 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-45 shows the grub2-install execution. In addition to populating a fresh initrd and
image in /boot/zipl, you can see at the end of the output that it is running the zipl
command. The grub2-install requires the initrd and images from /boot. If you remove
them from /boot, grub2-install fails.

Figure 8-45 grub2-install

Now, you should be able to restart your server and not be prompted for a passphrase at start.
If you are prompted, check your steps.

secguest2q:/ # grub2-install
Installing for s390x-emu platform.
dracut: Executing: /usr/bin/dracut --hostonly --force
/boot/zipl/initrd-5.3.18-22-default 5.3.18-22-default
dracut: dracut module 'dmraid' will not be installed, because command 'dmraid'
could not be found!
dracut: dracut module 'dmsquash-live-ntfs' will not be installed, because
command 'ntfs-3g' could not be found!
dracut: dracut module 'biosdevname' will not be installed, because command
'biosdevname' could not be found!
dracut: dracut module 'dmraid' will not be installed, because command 'dmraid'
could not be found!
dracut: dracut module 'dmsquash-live-ntfs' will not be installed, because
command 'ntfs-3g' could not be found!
dracut: *** Including module: bash ***
dracut: *** Including module: systemd ***

<<<text omitted for readability>>>

dracut: *** Generating early-microcode cpio image ***
dracut: *** Store current command line parameters ***
dracut: Stored kernel commandline:
dracut: rd.luks.uuid=luks-9325f775-6172-4f72-a56f-1002b0646349
dracut: rd.zipl=/dev/disk/by-path/ccw-0.0.0000-part1
dracut: root=/dev/mapper/cr_root rootfstype=btrfs
rootflags=rw,relatime,space_cache,subvolid=256,subvol=/@,subvol=@
dracut: *** Creating image file '/boot/zipl/initrd-5.3.18-22-default' ***
dracut: *** Creating initramfs image file '/boot/zipl/initrd-5.3.18-22-default'
done ***
Using config file '/boot/zipl/config' (from command line)
Building bootmap in '/boot/zipl'
Building menu 'menu'
Adding #1: IPL section 'grub2' (default)
Adding #2: IPL section 'skip-grub2'
Adding #3: IPL section 'grub2-mem1G'
Adding #4: IPL section 'se'
Preparing boot device: vda (0000).
Done.
Installation finished. No error reported.
secguest2q:/ #

Note: It is important not to stop here. Although the root file system is encrypted, the key to
decrypt it is stored in the initrd that is in the clear. When you use the genprotimg
command, you encrypt this initrd so the key cannot be stolen.
Chapter 8. Using IBM Secure Execution 291

8.8.3 Editing the domain.xml to include iommu=’on’

Every virtio device in the domain XML definition must have iommu=’on’ added to it. Also,
memballon and Crypto AP pass-through are unsupported in an IBM Secure Execution
environment. Before making any changes, we made a backup copy of our current domain
.xml, as shown in Figure 8-46

Figure 8-46 Backup domain xml

Next, by using virsh edit, the domain xml was tailored to have iommu=’on’ for every virtio
device. The memory balloon was disabled, and the QEMU guest agent definition removed.
Also, the random number generator was removed because we did not plan to use it. The
modified version of the domain XML devices section is shown in Figure 8-47.

Figure 8-47 Tailored domain xml example

virsh dumpxml secguest2q > secguest2q-original.xml

 <devices>
 <emulator>/usr/bin/qemu-system-s390x</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none' io='native' iommu='on'/>
 <source file='/var/lib/libvirt/images/secguest2q.qcow2' index='1'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0000'/>
 </disk>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <interface type='network'>
 <mac address='52:54:00:f5:f7:8c'/>
 <source network='default' portid='93bfb1c3-efc1-4b41-b253-b592f98fc3f0'
bridge='virbr0'/>
 <target dev='vnet1'/>
 <model type='virtio'/>
 <driver name='qemu' iommu='on'/>
 <alias name='net0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0001'/>
 </interface>
 <console type='pty' tty='/dev/pts/3'>
 <source path='/dev/pts/3'/>
 <target type='sclp' port='0'/>
 <alias name='console0'/>
 </console>
 <memballoon model='none'/>
 <panic model='s390'/>
 </devices>
292 Virtualization Cookbook for IBM Z Volume 5: KVM

8.8.4 Obtaining the host key documents for the CEC

The following host key documents are needed:

� The host key document that you received from your cloud provider, HKD-<mmmm-nnnn>.crt,
or downloaded from Resource Link, see this IBM Resource Link web page.

� The DigiCert CA certificate, DigicertCA.crt.

� The IBM Z signing key, ibm-z-host-key-signing.cr.

� The certificate revocation list (CRL), ibm-z-host-key.cr.

The CA certificate, the signing key, and the CRL are available from this IBM Resource Link
web page.

Use the sample script that is available from s390-tools to perform the verification steps.

8.8.5 Validating the key material

For more information about the process that is used to validate the key material, see 8.7.5,
“Validating the key material” on page 269. This process is the same for all Linux distributions.

8.8.6 Building a secured initrd image file by using genprotimg on KVM guest

This secured initrd image file is encrypted by using the key material that can be decrypted
only by using the specific machine with the corresponding keys. This process is done by IBM
Z or LinuxONE during the start process.

To generate a protected image file, we must make add the statements that are shown in
Figure 8-48 to the command line parameter. Figure 8-48 shows the original kernel parameter
line.

Figure 8-48 Kernel cmdline

In Figure 8-49, the required swiotbl keyword is added to the text file that is called parmfile.
This parmfile is incorporated into the genprotimg program.

Figure 8-49 Adding swiotlb keyword

Next, we run the genprotimg command. Consider the following points:

� The -i parameter is the Linux kernel image that you want to supply as input.

� The optional -r parameter point to the initial ram disk to be used as input.

secguest2q:/ # cat /proc/cmdline
root=UUID=637e330e-efd7-4442-8318-701ec6930bd2 TERM=linux console=ttyS0
console=ttyS1 mitigations=auto crashkernel=191M

secguest2q:/ # cat parmfile
root=UUID=637e330e-efd7-4442-8318-701ec6930bd2 TERM=linux console=ttyS0
console=ttyS1 mitigations=auto crashkernel=191M swiotlb=262144
Chapter 8. Using IBM Secure Execution 293

https://github.com/ibm-s390-tools/s390-tools/tree/master/genprotimg/samples/check_hostkeydoc
https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/IBM-Secure-Execution-for-Linux/
https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/IBM-Secure-Execution-for-Linux/

� The required -k parameter supplies the input host key documents. You need to supply at
least one host-key document.

� The -o parameter is the output file name for your protected virtualization image. An
example is shown in Figure 8-50.

Figure 8-50 genprotimg execution

Whenever you regenerate the protect image file /boot/secure-linux or any initrd file, you
must run the zipl command to update the start information. For more information, see
Updating guest zipl to boot with secured image in IBM Secure Execution mode.

8.8.7 Updating guest zipl to boot with secured image in IBM Secure Execution
mode

Because we are new to IBM Secure Execution, we decided to initially build a zipl menu that
defaults to IBM Secure Execution (but also can be overridden) to boot without IBM Secure
Execution. It is important to remove this menu later on when we are sure we can boot
successfully.

Leaving boot options that boot an unprotected image makes you vulnerable. For example,
your encryption or decryption key can be stolen.

secguest2q:~/secure_execution # genprotimg -i /boot/image -r /boot/initrd -p
parmfile -k ./HKD-8561-022B7F8.crt -o /boot/secure-linux --no-verify -V
WARNING: host-key document verification is disabled. Your workload is not
secured.
 kernel:0x000000015000 (6262784 / 6259256 Bytes)
 parmline:0x00000060e000 (4096 / 135 Bytes)
 ramdisk:0x00000060f000 (9904128 / 9902200 Bytes)
 stage3b:0x000000f81000 (8192 / 5594 Bytes)
 stage3a:0x000000010000 (20480 / 20480 Bytes)
secguest2q:~/secure_execution #

Note: The secure-linux file also must be copied from /boot to /boot/zipl for the zipl
boot loader to pick it up.
294 Virtualization Cookbook for IBM Z Volume 5: KVM

With SUSE SLES 15, the zipl configuration file is generated by the system. Figure 8-51 on
page 295 shows the beginning of the original /etc/default/zipl2grub.conf.in that is
used to generate the guest zipl configuration file.

Figure 8-51 Beginning of original zipl2grub.conf.in

We must add an entry to the thiszipl2grub.conf.in template to boot with IBM Secure
Execution. Figure 8-52 on page 296 shows our modified version of zipl2grub.conf.in, which
contains a new section that is call [se] that points to our secure-linux file.

This is the template for '@zipldir@/config' and is subject to
rpm's %config file handling in case of grub2-s390x-emu package update.

[defaultboot]
defaultmenu = menu

[grub2]
 target = @zipldir@
 ramdisk = @zipldir@/initrd,0x2000000
 image = @zipldir@/image
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0 "

[grub2-mem1G]
 target = @zipldir@
 image = @zipldir@/image
 ramdisk = @zipldir@/initrd,0x2000000
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0
mem=1G "
Chapter 8. Using IBM Secure Execution 295

Figure 8-52 Beginning of modified zipl2grub.conf.in

In addition to modifying the beginning of the zipl2grub.conf.in, the end of the file must be
updated to include the new [se] section in the menu. The end of the original
zipl2grub.conf.in is shown in Figure 8-53.

Figure 8-53 End of original zipl2grub.conf.in

This is the template for '@zipldir@/config' and is subject to
rpm's %config file handling in case of grub2-s390x-emu package update.

[defaultboot]
defaultmenu = menu

[se]
 target = @zipldir@
 image = @zipldir@/secure-linux
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0 "
[grub2]
 target = @zipldir@
 ramdisk = @zipldir@/initrd,0x2000000
 image = @zipldir@/image
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0 "

[grub2-mem1G]
 target = @zipldir@
 image = @zipldir@/image
 ramdisk = @zipldir@/initrd,0x2000000
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0
mem=1G "

:menu
 target = @zipldir@
 timeout = 60
 default = 1
 prompt = 0
 secure = @SUSE_SECURE_BOOT@
 1 = grub2
 2 = skip-grub2
 3 = grub2-mem1G
#@ 4 = grub2-previous
#@ 5 = skip-grub2-previous
#@ 6 = grub2-mem1G-previous
296 Virtualization Cookbook for IBM Z Volume 5: KVM

The modified version with the new se entry is shown in Figure 8-54 on page 297. Notice that
we did not change the default entry to boot from (it remains default=1).

Figure 8-54 End of modified zipl2grub.conf.in

Now, we run the grub2-install command again. By doing so, the zipl configuration file
(/boot/zipl/config) is rebuilt and the zipl command runs against it.

We are not ready to start in Secure Execution mode yet. We updated only the zipl boot
loader and not the grubg boot loader, which is described next.

8.8.8 Updating guest grub2 to boot with secured image in IBM Secure
Execution mode

Like the zipl boot loader configuration, the grub2 boot loader also is built from a template. To
add our customized entry to this template, update 40_custom in the /etc/grub.d directory. A
similar process was used for the SUSE SLES KVM host, but the contents of the updates are
different.

Figure 8-55 shows the contents of an unmodified 40_custom file.

Figure 8-55 Original 40_custom grub2 file

:menu
 target = @zipldir@
 timeout = 60
 default = 1
 prompt = 0
 secure = @SUSE_SECURE_BOOT@
 1 = grub2
 2 = skip-grub2
 3 = grub2-mem1G
 4 = se
#@ 4 = grub2-previous
#@ 5 = skip-grub2-previous
#@ 6 = grub2-mem1G-previous

!/bin/sh
exec tail -n +3 $0
This file provides an easy way to add custom menu entries. Simply type the
menu entries you want to add after this comment. Be careful not to change
the 'exec tail' line above.
Chapter 8. Using IBM Secure Execution 297

To add our new entry, complete the following steps:

1. Copy a section of the /boot/grub2/grub.cfg file. After the line that contains: ### BEGIN
/etc/grub.d/10_linux ###, copy the approximate nine lines of information, ending with
the closing “}” bracket. (This information is at the bottom of the 40_custom file.)

2. Update the pasted in content to have a unique menuentry name. Figure 8-56 shows that
“SE” was added to the end of the name. The hot key number then is updated to be unique
(in our example, a value of 6).

For the menuentry_id_option, a long string value is included. In our example, we added
“se” to the end.

3. Update the echo “Loading Linux” with a specific kernel level to read “Loading Linux
secure-linux”.

4. Update the line that begins with Linux to point the “/boot/secure-linux” file name, and
remove the “initrd” line.

Figure 8-56 Customized 40_custom grub2 file

5. Build a new grub2 configuration. Figure 8-57 shows running grub2-mkconfig.

Figure 8-57 grub2-mkconfig in guest

6. Run grub2-once --enum to determine the boot menu entry for IBM Secure Execution. In
Figure 8-58 on page 299, you can see this entry is grub2 menu entry number 2.

#!/bin/sh
exec tail -n +3 $0
This file provides an easy way to add custom menu entries. Simply type the
menu entries you want to add after this comment. Be careful not to change
the 'exec tail' line above.

menuentry 'SLES 15-SP2 SE' --hotkey=6 --class sles --class gnu-linux --class
gnu --class os $menuentry_id_option
'gnulinux-simple-637e330e-efd7-4442-8318-701ec6930bd2se' {
 set gfxpayload=text
 insmod gzio
 echo 'Loading Linux secure-linux ...'
 linux ${btrfs_subvol}/boot/secure-linux
root=UUID=637e330e-efd7-4442-8318-701ec6930bd2 ${extra_cmdline} TERM=linux co
nsole=ttyS0 console=ttyS1 mitigations=auto crashkernel=191M
}

secguest2q:/etc/grub.d # grub2-mkconfig -o /boot/grub2/grub.cfg
Generating grub configuration file ...
Found linux image: /boot/image-5.3.18-22-default
Found initrd image: /boot/initrd-5.3.18-22-default
done
secguest2q:/etc/grub.d #
298 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-58 grub2-once

As described in 8.8.7, “Updating guest zipl to boot with secured image in IBM Secure
Execution mode” on page 294, you added the zipl menu entry number 4 for IBM Secure
Execution; for grub2, the menu entry number is 2. (We did not change the default settings
from which menu entry to boot.)

To select both of these entry numbers at boot, specify loadparm 4g2. From the KVM host, use
virsh edit to update the domain XML and specify loadparm 4g2, as shown in Figure 8-59.
(Loadparm is part of the boot XML tag.)

To use this entry on a disk, you must remove any boot specification from the operating system
section of the domain XML.

Figure 8-59 loadparm in domain xml

Now, fully shut down your guest and restart it in Secure Execution mode. At this stage, we are
performing an initial test. If the start fails, remove the loadparm specification and start the
previous configuration mode.

Some other steps must be completed to further secure the configuration because we left boot
loader menu entries in place that start without Secure Execution and are unencrypted.

Before making any further changes, you might want to make another backup copy of your
qcow2 image file. Several updates were made, which should be done while the guest is shut
down. Figure 8-60 shows a new backup being made.

Figure 8-60 qcow backup

secguest2q:/etc/grub.d # grub2-once --enum

0 SLES 15-SP2

1>0 Advanced options for SLES 15-SP2>SLES 15-SP2, with Linux
5.3.18-22-default

1>1 Advanced options for SLES 15-SP2>SLES 15-SP2, with Linux
5.3.18-22-default (recovery mode)

2 SLES 15-SP2 SE

secguest2q:/etc/grub.d

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none' io='native' iommu='on'/>
 <source file='/var/lib/libvirt/images/secguest2q.qcow2'/>
 <target dev='vda' bus='virtio'/>
 <boot order='1' loadparm='4g2'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0000'/>
</disk>

rdbkkvms:/var/lib/libvirt/images # cp secguest2q.qcow2 secguest2q.qcow2.backup2
Chapter 8. Using IBM Secure Execution 299

8.8.9 Removing any start option that is not Secure Execution mode

After the guest starts successfully in Secure Execution mode, it is important to always remove
any option that is not in Secure Execution. For SUSE SLES, this requirement applies to the
zipl and grub2 boot loaders.

Start by updating the zipl configuration. In Example 8-13, /etc/default/zipl2grub.conf.in
was updated so that the image line for every menu entry points to secure-linux. (The
example shows only the update portion, not the entire file.)

Example 8-13 Updated zipl2grub.conf.in

[defaultboot]
defaultmenu = menu

[se]
 target = @zipldir@
 image = @zipldir@/secure-linux
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0 "
[grub2]
 target = @zipldir@
 image = @zipldir@/secure-linux
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0 "

[grub2-mem1G]
 target = @zipldir@
 image = @zipldir@/secure-linux
 parameters = "root=@GRUB_DEVICE@ @GRUB_EMU_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ initgrub quiet splash=silent plymouth.enable=0 mem=1G
"

[skip-grub2]
 target = @zipldir@
 image = @zipldir@/secure-linux
 parameters = "root=@GRUB_DEVICE@ @GRUB_CONMODE@ @GRUB_CMDLINE_LINUX@
@GRUB_CMDLINE_LINUX_DEFAULT@ "
#@

Also, be sure to update the entries in zipl2grub.conf.in that look like comments. They
feature Linux that contains image = @zipldir@/image.prev, which you also must update to
point to secure-linux. Also, remove the ramdisk lines in each entry.

After making the updates that are shown in Example 8-13, re-run grub2-install for the
changes to take effect. After that process is complete, update the grub2 boot loader.

Modifying the process that automatically builds /boot/grub2/grub.cfg takes some planning.
The grub2 programs, such as grub2-mkconfig, expect to find initrd and image files in
/boot. They also have initialmenu entries that are not intended to be customized. The
process allows you to add only customized entries.
300 Virtualization Cookbook for IBM Z Volume 5: KVM

By editing one line in /etc/grub.d/10_linux as shown in Example 8-14, grub2-mkconfig
builds all new menu entries with secure-linux.

Example 8-14 Customized 10_linux

case "x$machine" in
 xi?86 | xx86_64) klist="/boot/vmlinuz-* /vmlinuz-* /boot/kernel-*" ;;
 xaarch64) klist="/boot/Image-* /Image-* /boot/kernel-*" ;;
 xarm*) klist="/boot/zImage-* /zImage-* /boot/kernel-*" ;;
 xs390 | xs390x) klist="/boot/secure-linux* /boot/secure-linux*" ;;
) klist="/boot/vmlinuz- /boot/vmlinux-* /vmlinuz-* /vmlinux-* \
 /boot/kernel-*" ;;
esac

After updating 10_linux, run grub2-mkconfig, as shown in Example 8-15. It should recognize
only the secure-linux image.

Example 8-15 grub2-mkconfig

grub2-mkconfig -o /boot/grub2/grub.cfg
Generating grub configuration file ...
Found linux image: /boot/secure-linux
done

Now, no menu entries point to any image or initrd other than secure-linux. This statement
is true for zipl and grub2.

8.8.10 Further SLES 15 guest hardening

To further harden this guest, we disabled the emergency and rescue shells. In Example 8-16,
you can see that we masked the systemd services for emergency and rescue.

Example 8-16 Mask emergency and rescue

secguest2q:/ # systemctl mask emergency.service
Created symlink /etc/systemd/system/emergency.service • /dev/null.
secguest2q:/ # systemctl mask emergency.target
Created symlink /etc/systemd/system/emergency.target • /dev/null.
secguest2q:/ # systemctl mask rescue.service
Created symlink /etc/systemd/system/rescue.service • /dev/null.
secguest2q:/ # systemctl mask rescue.target
Created symlink /etc/systemd/system/rescue.target • /dev/null.
secguest2q:/ #

We also added loglevel=0 and systemd.show_status=no to the parmfile, which is input to
genprotimg. The modified parmfile is shown in Example 8-17.

Example 8-17 Customized parmfile

secguest2q:~/secure_execution # cat parmfile
root=UUID=637e330e-efd7-4442-8318-701ec6930bd2 TERM=linux console=ttyS0
console=ttyS1 mitigations=auto crashkernel=191M swiotlb=262144 loglevel=0
systemd.show_status=no
Chapter 8. Using IBM Secure Execution 301

You can enforce secure remote login only. You can set up SSHD and the SSH keys and
disable login on kernel consoles by disabling serial and virtual TTYs. However, you cannot
reach your Linux virtual server if TCP/IP becomes unavailable.

Incorporate the following systemd changes to update the parmfile:

cat /etc/systemd/system/serial-getty@.service.d/disable.conf

[Unit]

ConditionKernelCommandLine=allowlocallogin

cat /etc/systemd/system/autovt@.service.d/disable.conf

[Unit]

ConditionKernelCommandLine=allowlocallogin

Because the parmfile was updated, the secure-linux image must be rebuilt. The process that
is shown in Example 8-18 is the same as you performed as described in 8.7.6, “Building a
secured initrd image file by using genprotimg on KVM guest” on page 271.

Example 8-18 Final genprotimg

secguest2q:~/secure_execution # genprotimg -i /boot/image -r /boot/initrd -p
parmfile -k ./HKD-8561-022B7F8.crt -o /boot/secure-linux --no-verify -V
WARNING: host-key document verification is disabled. Your workload is not secured.
 kernel:0x000000015000 (6262784 / 6259256 Bytes)
 parmline:0x00000060e000 (4096 / 169 Bytes)
 ramdisk:0x00000060f000 (9904128 / 9902200 Bytes)
 stage3b:0x000000f81000 (8192 / 5594 Bytes)
 stage3a:0x000000010000 (20480 / 20480 Bytes)
secguest2q:~/secure_execution #

You must manually copy the secure-linux file from /boot to /boot/zipl , as shown in
Example 8-19.

Example 8-19 Copying secure-linux file

secguest2q:~/secure_execution # cp /boot/secure-linux /boot/zipl/secure-linux
secguest2q:~/secure_execution #

Because the secure-linux image is now rebuilt, you must run the zipl program again by
running grub2-install.

8.8.11 Removing unencrypted older artifacts from /boot/zipl and encrypted
artifacts from /boot

The /boot/zipl partition is unencrypted. It is important to remove files that a malicious
individual might use to try and start the virtual server without Secure Execution.

Before removing files from /boot, it is suggested to place a copy in a secure place. To do this,
we created a directory that is called /root/boot and copied the entire contents of /boot into it
(the file system in which /root is stored is fully encrypted). If you want to regenerate
secure-linux, you have the necessary input files.
302 Virtualization Cookbook for IBM Z Volume 5: KVM

Next, we use the program shred to securely erase files in /boot/zipl that are no longer
needed. These files include the initrd and image files and related symbolic links.

The original contents of the /boot/zipl file system is shown in Example 8-20.

Example 8-20 Final /boot/zipl filesystem

secguest2q:/boot/zipl # ls -la
total 32366
drwxr-xr-x 3 root root 1024 Sep 10 17:13 .
drwxr-xr-x 1 root root 512 Sep 10 16:39 ..
-rw-r--r-- 1 root root 0 Aug 27 19:58 active_devices.txt
-rw------- 1 root root 306176 Sep 10 17:13 bootmap
-rw-r--r-- 1 root root 2114 Sep 10 17:13 config
lrwxrwxrwx 1 root root 23 Sep 10 17:13 image -> image-5.3.18-22-default
-rw-r--r-- 1 root root 6259256 Sep 10 10:33 image-5.3.18-22-default
lrwxrwxrwx 1 root root 12 Sep 10 16:36 image.prev -> secure-linux
lrwxrwxrwx 1 root root 24 Sep 10 17:13 initrd -> initrd-5.3.18-22-default
-rw------- 1 root root 10221580 Sep 10 17:13 initrd-5.3.18-22-default
lrwxrwxrwx 1 root root 24 Sep 10 10:34 initrd.prev ->
initrd-5.3.18-22-default
drwx------ 2 root root 12288 Aug 27 19:54 lost+found
-rw-r--r-- 1 root root 16265216 Sep 10 17:12 secure-linux
secguest2q:/boot/zipl #

In Example 8-21, you can see the shredding and removal of files and symbolic links, and the
final contents of /boot/zipl.

The only remaining file in /boot/zipl that contains the encryption and decryption key is
secure-linux, which is encrypted. The other files were securely deleted by using the shred
program.

Example 8-21 Shred and final /boot/zip

secguest2q:/boot/zipl # shred -u initrd-5.3.18-22-default
secguest2q:/boot/zipl # shred -u image-5.3.18-22-default
secguest2q:/boot/zipl # rm image
secguest2q:/boot/zipl # rm initrd
secguest2q:/boot/zipl # rm initrd.prev
secguest2q:/boot/zipl # ls -la
total 16205
drwxr-xr-x 3 root root 1024 Sep 10 17:22 .
drwxr-xr-x 1 root root 512 Sep 10 16:39 ..
-rw-r--r-- 1 root root 0 Aug 27 19:58 active_devices.txt
-rw------- 1 root root 306176 Sep 10 17:13 bootmap
-rw-r--r-- 1 root root 2114 Sep 10 17:13 config
lrwxrwxrwx 1 root root 12 Sep 10 16:36 image.prev -> secure-linux
drwx------ 2 root root 12288 Aug 27 19:54 lost+found
-rw-r--r-- 1 root root 16265216 Sep 10 17:12 secure-linux
secguest2q:/boot/zipl #
Chapter 8. Using IBM Secure Execution 303

Although the contents of /boot is encrypted, it is possible to interact with grub and attempt a
start from AN initrd or image and initrd/image without IBM Secure Execution.

As an added safety measure, run shred -u against the initrd and image files that are in
/boot (remembering that you stored a backup copy in a safe place).

Example 8-22 shows the extra steps that were taken.

Example 8-22 Running a shred command against initrd

secguest2q:/boot # shred -u image-5.3.18-22-default
secguest2q:/boot # shred -u initrd-5.3.18-22-default
secguest2q:/boot # shred -u initrd-5.3.18-22-default-kdump
secguest2q:/boot # rm image
secguest2q:/boot # rm initrd

8.9 Enabling a RHEL KVM Guest for Secure Execution

The tasks in this section are performed by the KVM Guest virtual server administrator with
perhaps the exception of one task. The domain XML for the guest must be edited to include
iommu='on' on each virtio device. This task is performed by the KVM Host administrator or
Cloud provider.

In this example, we perform the following tasks, which are described next:

� Install a standard Linux guest on encrypted disk storage
� Update KVM guest /etc/crypttab to avoid entering password at boot
� Edit the domain.xml to include iommu='on'
� Obtain the host key documents for the CEC
� Validate the key material
� Build a secured initrd image file by using genprotimg on the KVM guest
� Update guest zipl to start with secured image in Secure Execution mode
� Remove securely the original unprotected kernel, initrd, and parmfile files
� Further harden RHEL guest
� Remove unencrypted legacy artifacts from /boot

Note: We do not use the Pervasive Encryption approach with protected key technology
because Crypto AP pass-through is not supported by IBM Secure Execution at the time of
this writing.
304 Virtualization Cookbook for IBM Z Volume 5: KVM

8.9.1 Installing a standard Linux guest on encrypted disk storage

Complete the following steps:

1. Create you qcow2 file as disk for the secured guest (see Example 8-61).

Figure 8-61 Creating the qcow2 file

2. Use virt-install to deploy a guest in a single command (see Example 8-62).

Figure 8-62 One line installation command

[root@rdbkkvm1 isos]# qemu-img create -f qcow2 kvm1secguest01_vol001.img 10G
Formatting 'kvm1secguest01_vol001.img', fmt=qcow2 size=10737418240
cluster_size=65536 lazy_refcounts=off refcount_bits=16

root@rdbkkvm1 isos]# virt-install --name kvm1secguest02 --memory 4000 --vcpus 2
--os-variant rhel8.4 --import --disk path=/home/isos/kvm1secguest01_vol001.img
--network network:macvtap-net1 --location
/var/ftp/pub/RHEL-8.4.0-20210503.1-s390x-dvd1.iso --boot
kernel=/mnt/rhel84/images/kernel.img,initrd=/mnt/rhel84/images/initrd.img
--extra-args "ip=129.40.23.201::129.40.23.254:255.255.255.0::enc1:none"

Note: For a VNC graphical installation, you must pass extra kernel parameters (ip=
statement). Therefore, you must specify the kernel and initrd location (they are in the
image directory of the .iso file)
Chapter 8. Using IBM Secure Execution 305

To simplify the disk installation, we chose the guided selection for disk storage that is
shown in Example 8-63. You must select the Encrypt my data option.

Figure 8-63 Selecting Encrypt my data option

The installation process through the VNC is shown in Example 8-64, including the
encryption of the /dev/vda2 for the root file system.

Figure 8-64 /dev/vda2 encrypted for the root file system
306 Virtualization Cookbook for IBM Z Volume 5: KVM

We provided an Encryption Phrase. You must remember to store this phase in a safe
place. With this phrase, your root file system can be decrypted (lnx4rdbk21).

After the installation finishes, you must remove the kernel and initrd parameters from the
guest definition by using virsh edit to start normally, as shown in Figure 8-65.

Figure 8-65 Removing the kernel and the initrd statements from the domain definition

3. After the installation completes, the server restarts and you must supply the pass phrase
when prompted to decrypt the root file system, as shown in Example 8-66. However, this
process is temporary because it is to be automated later.

Figure 8-66 Passphrase prompt to decrypt disk

You now have a virtual server with the root partition encrypted (/boot is not encrypted)
Although. Although the root partition in encrypted, we are not operating in a Secure
Execution mode yet.

4. Shut down the virtual server and make a copy of the qcow2 file as a backup in case any
unrecoverable mistakes were made. After the qcow2 file is copied, restart the server as a
back up, as shown in Figure 8-67.

Figure 8-67 Executing a backup of new virtual server

<os>
 <type arch='s390x' ma-chine='s390-ccw-virtio-rhel8.2.0'>hvm</type>
 <kernel>/mnt/rhel84/images/kernel.img</kernel>
 <initrd>/mnt/rhel84/images/initrd.img</initrd>
 <boot dev='hd'/>
 </os>

[root@rdbkkvm1 images]# virsh start kvm1secguest02 --console
Domain kvm1secguest02 started
Connected to domain kvm1secguest02
Escape character is ^]

Please enter passphrase for disk luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac!:

[root@rdbkkvm1 isos]# cp kvm1secguest01_vol001.img
kvm1secguest01_vol001.img.bkp
Chapter 8. Using IBM Secure Execution 307

8.9.2 Updating KVM guest /etc/crypttab to avoid entering password at boot

From a security and an operational perspective, we do not want any manual prompts at start
to which a user must respond. To address this issue, we created a LUKS key file and updated
/etc/cryptab to use it.

Although both of these files are in /filesystem, you must rebuild the initrd/initramfs to
include them.

With a standard initrd/initramfs, these are stored in the clear and present a secure risk.
With Secure Execution, this information is encrypted and can be decrypted only in a valid IBM
Secure Execution environment.

Figure 8-68 shows that the volume group for root and swap are derived from
luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac.

Figure 8-68 Linux Block devices

By using cryptsetup status, we can see that vda6_crypt is a LUKS2 device with aes-xts
encryption, as shown in Figure 8-69.

Figure 8-69 cryptsetup status

[root@kvm1secguest02 ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE
MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
??vda1 252:1 0 1G 0 part /boot
??vda2 252:2 0 9G 0 part
 ??luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac 253:0 0 9G 0 crypt
 ??rhel-root 253:1 0 8G 0 lvm /
 ??rhel-swap 253:2 0 1G 0 lvm [SWAP]

[root@kvm1secguest02 ~]# cryptsetup -v status
luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac
/dev/mapper/luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/vda2
 sector size: 512
 offset: 32768 sectors
 size: 18839552 sectors
 mode: read/write
 flags: discards
Command successful.
308 Virtualization Cookbook for IBM Z Volume 5: KVM

Next, we create a key file that can be used in /etc/crypttab. As shown in Figure 8-70, the
/etc/luks directory and a key file are created, and permissions are set on the directory and
file so that only root has read access to this file.

Figure 8-70 New lucks key file

Next, by using cryptsetup luksDump, inspect the partition that is holding the encrypted data
(in our example /dev/vda2). Figure 8-71 on page 310 shows that only a single key slot is
currently uses. LUKS allows use to supply multiple keys each in a different slot. You need the
pass phrase that is used during installation for the disk encryption.

root@kvm1secguest02 ~]# mkdir /etc/luks
[root@kvm1secguest02 ~]# dd if=/dev/urandom of=/etc/luks/boot_os.keyfile
bs=4096 count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 7.8801e-05 s, 52.0 MB/s
root@secguest1:/etc# chmod u=rx,go-rwx /etc/luks
root@secguest1:/etc# chmod u=r,go-rwx /etc/luks/boot_os.keyfile
Chapter 8. Using IBM Secure Execution 309

Figure 8-71 cryptsetup luksDump with single key slot in use

The next step is to add our new key file to an empty luks key slot. Figure 8-72 shows this
addition with the crpytsetup luksAddKey command. Again, you must supply the pass phrase
that was used at installation and is used now at start to decrypt the root file system.

Figure 8-72 cryptsetup luksAddKey

After the new key is added, you can run cryptsetup luksDump again. Now, two key slots are
used (see Figure 8-73 on page 311).

[root@kvm1secguest02 ~]# cryptsetup luksDump /dev/vda2
LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 8898ca51-2780-4c6e-a959-75ad7ecb4eac
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]

Keyslots:
 0: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
 Cipher key: 512 bits
 PBKDF: argon2i
 Time cost: 4
 Memory: 542037
 Threads: 2
 Salt: 1f 1c 8d 03 30 f9 1a 90 50 b8 fe 3c 43 44 fe 9b
 db c9 11 fb 83 62 06 5a a0 90 43 79 67 3f 43 6e
 AF stripes: 4000
 AF hash: sha256
 Area offset:32768 [bytes]
 Area length:258048 [bytes]
 Digest ID: 0
-------- Output truncated for readability ---------

[root@kvm1secguest02 ~]# cryptsetup luksAddKey /dev/vda2
/etc/luks/boot_os.keyfile
Enter any existing passphrase:
310 Virtualization Cookbook for IBM Z Volume 5: KVM

Figure 8-73 Two key slots in use

[root@kvm1secguest02 ~]# cryptsetup luksDump /dev/vda2
LUKS header information
Version: 2
Epoch: 4
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 8898ca51-2780-4c6e-a959-75ad7ecb4eac
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]

Keyslots:
 0: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
 Cipher key: 512 bits
 PBKDF: argon2i
 Time cost: 4
 Memory: 542037
 Threads: 2
 Salt: 1f 1c 8d 03 30 f9 1a 90 50 b8 fe 3c 43 44 fe 9b
 db c9 11 fb 83 62 06 5a a0 90 43 79 67 3f 43 6e
 AF stripes: 4000
 AF hash: sha256
....... Area offset:32768 [bytes]
 Area length:258048 [bytes]
 Digest ID: 0
 1: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
 Cipher key: 512 bits
 PBKDF: argon2i
 Time cost: 4
 Memory: 541560
 Threads: 2
 Salt: 24 d6 ae 6f 3d ac aa 01 3d c0 2e db 0d 95 6b 90
 1d e6 52 bb cb 43 95 c1 06 f5 d9 a8 e5 8b 0f 70
 AF stripes: 4000
 AF hash: sha256
 Area offset:290816 [bytes]
 Area length:258048 [bytes]
 Digest ID: 0
---- Output truncated for readability -----
Chapter 8. Using IBM Secure Execution 311

The next step is to include /etc/luks/boot_os.keyfile in the initrd to avoid the prompting
of the root file system encrypting password. You must add a file in the /etc/dracut.conf.d
directory to prepare the addition of the key file into the initrd (see Figure 8-74).

Figure 8-74 Adding configuration file to the dracut

Next, /etc/crypttab is updated to include our new key file. The before and after contents are
shown in Figure 8-75 for this modification. Recheck your /etc/crypttab because a mistake
can leave your system in a condition in which it cannot be started.

Figure 8-75 Update /etc/cryptab

The next step is to update the initrd (that is, initramfs) by using the dracut command and
update the zipl (see Figure 8-76).

Figure 8-76 Update initramfs and run the zipl

Now, you should be able to restart your server and not be prompted for a passphrase at start.
If you are prompted, recheck your steps.

While the root file system is encrypted, the key to decrypt it is stored in the initrd in the clear.
When you use the genprotimg command, you encrypt this initrd so that the key cannot be
stolen.

8.9.3 Editing the domain.xml to include iommu=’on’

Every virtio device in the domain XML definition must have iommu='on' added to it. Also,
memballon and Crypto AP pass-through are unsupported in a Secure Execution
environment. Before making any changes, backed up our domain .xml, as shown in
Figure 8-77.

Figure 8-77 Copy of current domain xml

[root@kvm1secguest02 ~]# cat /etc/dracut.conf.d/99-root-key.conf
install_items+="/etc/luks/boot_os.keyfile"

------ BEFORE ---------
[root@kvm1secguest02 ~]# cat /etc/crypttab
luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac
UUID=8898ca51-2780-4c6e-a959-75ad7ecb4eac none luks,discard
------ AFTER ----------
[root@kvm1secguest02 ~]# vim /etc/crypttab
[root@kvm1secguest02 ~]# cat /etc/crypttab
luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac
UUID=8898ca51-2780-4c6e-a959-75ad7ecb4eac /etc/luks/boot_os.keyfile
luks,discard

[root@kvm1secguest02 dracut.conf.d]# dracut -f
[root@kvm1secguest02 dracut.conf.d]# zipl -V

[root@rdbkkvm1 isos]# virsh dumpxml kvm1secguest02 >
kvm1secguest02-original.xml
312 Virtualization Cookbook for IBM Z Volume 5: KVM

Next, by using virsh edit, the domain .xml was tailored to have iommu='on' for every virtio
device. The memory balloon was disabled, and the QEMU guest agent definition was
removed.

Also, the random number generator was removed because we did not plan to use it. The
modified version of the domain XML devices section is shown in Figure 8-78.

Figure 8-78 Tailored domain xml example

8.9.4 Obtaining the host key documents from the CEC

The following four host key documents are need for this task:

� The host key document that you received from your cloud provider (HKD-<mmmm-nnnn>.crt)
or downloaded from the Resource Link.

� DigiCert CA certificate: DigicertCA.crt

� IBM Z signing key: ibm-z-host-key-signing.crt

� Certificate revocation list (CRL): ibm-z-host-key.crl

You can download the CA certificate, signing key, and CRL from this IBM Resource Link web
page.

 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' iommu='on'/>
 <source file='/home/isos/kvm1secguest01_vol001.img' index='1'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0000'/>
 </disk>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <interface type='direct'>
 <mac address='52:54:00:87:89:9d'/>
 <source network='macvtap-net1'
portid='e31abc8d-6c0f-46f2-b721-95fc90da0bdd' dev='bond1.008' mode='bridge'/>
 <target dev='macvtap36'/>
 <model type='virtio'/>
 <driver name='qemu' iommu='on'/>
 <alias name='net0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0001'/>
 </interface>
 <console type='pty' tty='/dev/pts/1'>
 <source path='/dev/pts/1'/>
 <target type='sclp' port='0'/>
 <alias name='console0'/>
 </console>
 <memballoon model='none'/>
 <panic model='s390'/>
 </devices>
Chapter 8. Using IBM Secure Execution 313

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/IBM-Secure-Execution-for-Linux/
https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/IBM-Secure-Execution-for-Linux/
https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/IBM-Secure-Execution-for-Linux/

Use the sample script that is available from this GitHub web page to perform the verification
steps.

8.9.5 Validating the key material

It is important to validate the key material for your host and guest. For more information, see
this IBM Documentation web page.

A script also is available to aid with this process at this GitHub web page.

Begin with the openssl verify operations that are shown in Figure 8-79. The openssl
verification process is performed on the Certificate Authority and signing key certificate. It
also shows extracting the public key from the certificate in the last command.

Figure 8-79 Opening SSLverification

Figure 8-80 shows the following next steps:

� Extracting the public signing key into a .pem file
� Extracting the host key signature from the host key document
� Using the resulting value <n> to extract the host key signature into a file called signature
� Extracting the host key document body into a file that is called body
� Verifying open SSL verification
� The signature by using the signature and body files

Figure 8-80 Verifying the signature of the host key document

[root@kvm1secguest02 root]# ls
DigiCertCA.crt HKD-8561-022B7F8.crt ibm-z-host-key.crl
ibm-z-host-key-revocation-list ibm-z-host-key-signing.crt
[root@kvm1secguest02 root]# openssl verify -crl_download -crl_check
DigiCertCA.crt
[root@kvm1secguest02 root]# openssl verify -crl_download -crl_check -untrusted
DigiCertCA.crt ibm-z-host-key-signing.crt
ibm-z-host-key-signing.crt: OK

[root@kvm1secguest02 root]# openssl x509 -in ibm-z-host-key-signing.crt
-pubkey -noout > pubkey.pem
[root@kvm1secguest02 root]# openssl asn1parse -in HKD-8561-022B7F8.crt | tail
-1 | cut -d : -f 1
 837
[root@kvm1secguest02 root]# openssl asn1parse -in HKD-8561-022B7F8.crt -out
signature -strparse 837 -noout
[root@kvm1secguest02 root]# openssl asn1parse -in HKD-8561-022B7F8.crt -out
body -strparse 4 -noout
[root@kvm1secguest02 root]# openssl sha512 -verify pubkey.pem -signature
signature body
Verified OK
314 Virtualization Cookbook for IBM Z Volume 5: KVM

https://github.com/ibm-s390-tools/s390-tools/blob/master/genprotimg/samples/check_hostkeydoc
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_t_verify.html
https://github.com/ibm-s390-tools/s390-tools/tree/master/genprotimg/samples/check_hostkeydoc

The next steps are to verify the signature of the host key document issuer. Figure 8-81 shows
these steps. The expected output of the last command is:

subject= /C=US/ST=New York/L=Poughkeepsie/O=International Business Machines
Corporation/OU=IBM Z Host Key Signing Service/CN=International Business Machines
Corporation

Any other value is considered suspect.

Figure 8-81 Verifying host key document issuer

Any other value is considered suspect (see Figure 8-82).

Figure 8-82 Validating the CRL

[root@kvm1secguest02 root]# openssl x509 -in HKD-8561-022B7F8.crt --issuer
-noout
issuer=C = US, O = International Business Machines Corporation, OU = IBM Z Host
Key Signing Service, L = Poughkeepsie, ST = New York, CN = International
Business Machines Corporation
[root@kvm1secguest02 root]# openssl x509 -in ibm-z-host-key-signing.crt
-subject -noout
subject=C = US, ST = New York, L = Poughkeepsie, O = International Business
Machines Corporation, OU = IBM Z Host Key Signing Service, CN = International
Business Machines Corporation
[root@kvm1secguest02 root]# openssl x509 -in ibm-z-host-key-signing.crt -dates
-noout
notBefore=Apr 17 00:00:00 2020 GMT
notAfter=Apr 22 12:00:00 2022 GMT

[root@kvm1secguest02 root]# openssl crl -in ibm-z-host-key.crl -issuer -noout
issuer=C = US, O = International Business Machines Corporation, OU = IBM Z Host
Key Signing Service, L = Poughkeepsie, ST = New York, CN = International
Business Machines Corporation
[root@kvm1secguest02 root]# openssl crl -in ibm-z-host-key.crl -lastupdate
-nextupdate -noout
lastUpdate=Nov 13 05:00:16 2021 GMT
nextUpdate=Dec 15 05:00:00 2021 GMT
[root@kvm1secguest02 root]# openssl crl -in ibm-z-host-key.crl -text -noout |
grep "Serial Number"
 Serial Number: 23AC1FB677F8932BF8
[root@kvm1secguest02 root]# openssl x509 -in HKD-8561-022B7F8.crt -serial
-noout
serial=16525232812EFD90F5
Chapter 8. Using IBM Secure Execution 315

8.9.6 Building a secured initrd image file using gemproting on KVM guest

This secured initrd image file is encrypted by using the key material that can be decrypted
only by the specific machine with the corresponding keys. This process is done by IBM Z or
LinuxONE during the start process.

To generate a protected image file, we must add to the command line parameter. Figure 8-83
shows the original kernel parameter line.

Figure 8-83 Original kernel parameters

In Figure 8-84, the required swiotbl keyword is added to the text file called parmfile, which is
imported into the genprotimg program.

Figure 8-84 Creating a parmfile with swiotlb added parameter

Next, we run the genprotimg command, which can include the following parameters:

� The -i parameter is the Linux kernel image that you want to supply as input.

� The optional -r parameter points to the initial ram disk to be used as input.

� The required -k parameter supplies the input host key documents. You must supply at
least one host-key document.

� The -o parameter is the output file name for your protected virtualization image. An
example is shown in Figure 8-85.

Figure 8-85 genprotimg execution

Whenever you regenerate the protect image file /boot/secure-linux or any initrd file, you
must update the start options that point to the protected image and run the zipl to update the
start menu. Because we are changing the zipl start menu as described next section, we
defer that save for now.

[root@kvm1secguest02 root]# cat /proc/cmdline
root=/dev/mapper/rhel-root crashkernel=auto
rd.luks.uuid=luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap

[root@kvm1secguest02 root]# vim parmfile
[root@kvm1secguest02 root]# cat parmfile
root=/dev/mapper/rhel-root crashkernel=auto swiotlb=262144
rd.luks.uuid=luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap

[root@kvm1secguest02 root]# genprotimg -i /boot/vmlinuz-4.18.0-305.el8.s390x -r
/boot/initramfs-4.18.0-305.el8.s390x.img -p /home/root/parmfile -k
/home/root/HKD-8561-022B7F8.crt -o /boot/secure-linux --no-verify -V
WARNING: host-key document verification is disabled. Your workload is not
secured.
 kernel: 0x000000015000 (7221248 / 7217637 Bytes)
 parmline: 0x0000006f8000 (4096 / 154 Bytes)
 ramdisk: 0x0000006f9000 (28921856 / 28920502 Bytes)
 stage3b: 0x00000228e000 (8192 / 5386 Bytes)
 stage3a: 0x000000010000 (20480 / 20480 Bytes)
316 Virtualization Cookbook for IBM Z Volume 5: KVM

8.9.7 Updating guest zipl to boot with secured image in Secure Execution
mode

Because we are new to IBM Secure Execution, we decided to initially build a zipl menu that
defaults to Secure Execution. We update the only start option to be secure so that no
unsecured start options exist. Figure 8-86 shows the original boot loader entries.

Figure 8-86 Checking the latest boot configuration

Figure 8-87 shows the modified version.

Figure 8-87 Modified boot entry

Now that the start menu was modified, the zipl command is run to write out the new zipl
start information.

[root@kvm1secguest02 ~]# ls /boot/loader/entries -l
total 8
-rw-r--r--. 1 root root 545 Dec 9 16:58
9a84c2b961c340c492dcf817435f5a74-0-rescue.conf
-rw-r--r--. 1 root root 455 Dec 9 19:21
9a84c2b961c340c492dcf817435f5a74-4.18.0-305.el8.s390x.conf

[root@kvm1secguest02 entries]# cat
9a84c2b961c340c492dcf817435f5a74-4.18.0-305.el8.s390x.conf
title Red Hat Enterprise Linux (4.18.0-305.el8.s390x) 8.4 (Ootpa)
version 4.18.0-305.el8.s390x
linux /boot/vmlinuz-4.18.0-305.el8.s390x
initrd /boot/initramfs-4.18.0-305.el8.s390x.img
options root=/dev/mapper/rhel-root crashkernel=auto swiotlb=262144
rd.luks.uuid=luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap
id rhel-20210429132122-4.18.0-305.el8.s390x
grub_users $grub_users
grub_arg --unrestricted
grub_class kernel

[root@kvm1secguest02 ~]# cat
/boot/loader/entries/9a84c2b961c340c492dcf817435f5a74-4.18.0-305.el8.s390x.conf
title Red Hat Enterprise Linux (4.18.0-305.el8.s390x) 8.4 (Ootpa)
version 4.18.0-305.el8.s390x
linux /boot/secure-linux
id rhel-20210429132122-4.18.0-305.el8.s390x
grub_users $grub_users
grub_arg --unrestricted
grub_class kernel
Chapter 8. Using IBM Secure Execution 317

Figure 8-88 shows running zipl with the -V (verbose) parameter.

Figure 8-88 Running zipl -V

[root@kvm1secguest02 entries]# zipl -V
Using config file '/etc/zipl.conf'
Using BLS config file
'/boot/loader/entries/9a84c2b961c340c492dcf817435f5a74-4.18.0-305.el8.s390x.con
f'
Using BLS config file
'/boot/loader/entries/9a84c2b961c340c492dcf817435f5a74-0-rescue.conf'
Target device information
 Device..........................: fc:00
 Partition.......................: fc:01
 Device name.....................: vda
 Device driver name..............: virtblk
 Type............................: disk partition
 Disk layout.....................: SCSI disk layout
 Geometry - start................: 2048
 File system block size..........: 4096
 Physical block size.............: 512
 Device size in physical blocks..: 2097152
Building bootmap in '/boot'
Building menu 'zipl-automatic-menu'
Adding #1: IPL section 'Red Hat Enterprise Linux (4.18.0-305.el8.s390x) 8.4
(Ootpa)' (default)
 kernel image......: /boot/secure-linux
 component address:
 heap area.......: 0x00002000-0x00005fff
 stack area......: 0x0000f000-0x0000ffff
 internal loader.: 0x0000a000-0x0000dfff
 parameters......: 0x00009000-0x000091ff
 kernel image....: 0x00010000-0x0229ffff
Adding #2: IPL section 'Red Hat Enterprise Linux
(0-rescue-9a84c2b961c340c492dcf817435f5a74) 8.4 (Ootpa)'
 initial ramdisk...:
/boot/initramfs-0-rescue-9a84c2b961c340c492dcf817435f5a74.img
 kernel image......: /boot/vmlinuz-0-rescue-9a84c2b961c340c492dcf817435f5a74
 kernel parmline...: 'root=/dev/mapper/rhel-root crashkernel=auto
rd.luks.uuid=luks-8898ca51-2780-4c6e-a959-75ad7ecb4eac rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap'
 component address:
 heap area.......: 0x00002000-0x00005fff
 stack area......: 0x0000f000-0x0000ffff
 internal loader.: 0x0000a000-0x0000dfff
 parameters......: 0x00009000-0x000091ff
 kernel image....: 0x00010000-0x006f1fff
 parmline........: 0x006f3000-0x006f31ff
 initial ramdisk.: 0x00700000-0x0360dbff
Preparing boot device: vda (0000).
Detected SCSI PCBIOS disk layout.
Writing SCSI master boot record.
Syncing disks...
Done.
318 Virtualization Cookbook for IBM Z Volume 5: KVM

8.9.8 Securely removing the original unprotected kernel, initrd, and parmfile
files

The original boot image, initial RAM image, and kernel parameter file are unprotected.
Therefore, if they are not removed, VMs that have Secure Execution enabled can still be
vulnerable to hacking attempts or sensitive data mining.

Figure 8-89 shows how to remove the vulnerabilities.

Figure 8-89 Removing files from boot image

8.9.9 Further RHEL guest hardening

To further harden this guest, we disabled the emergency and rescue shells. In Figure 8-90,
you can see that we masked the systemd services for emergency and rescue.

Figure 8-90 Disabling emergency and rescue shells

[root@kvm1secguest02 ~]# shred /boot/initramfs-4.18.0-305.el8.s390x.img
[root@kvm1secguest02 ~]# shred /boot/vmlinuz-4.18.0-305.el8.s390x
[root@kvm1secguest02 ~]# shred /home/root/parmfile

[root@kvm1secguest02 ssh]# systemctl mask emergency.service
Created symlink /etc/systemd/system/emergency.service ? /dev/null.
[root@kvm1secguest02 ssh]# systemctl mask emergency.target
Created symlink /etc/systemd/system/emergency.target ? /dev/null.
[root@kvm1secguest02 ssh]# systemctl mask rescue.service
Created symlink /etc/systemd/system/rescue.service ? /dev/null.
[root@kvm1secguest02 ssh]# systemctl mask rescue.target
Created symlink /etc/systemd/system/rescue.target ? /dev/null
Chapter 8. Using IBM Secure Execution 319

8.9.10 Removing unencrypted, older artifacts from /boot

The /boot partition is unencrypted. It is important to remove files that a malicious individual
might use to attempt to start our virtual server without IBM Secure Execution.

Before removing files from /boot, it suggested to place a copy somewhere that is secure. For
this purpose, we created a directory that is called /root/boot and copied the entire contents
of /boot in to it. Keep in mind that the file system that /root is in is fully encrypted. In this way,
if you want to regenerate secure-linux, the necessary input files are available.

Next, we use the srm program to securely erase files in /boot that are no longer needed. This
process includes the initrd and vmlinuz files and related symbolic links.

In Example 8-23, you can see the final contents of the /boot file system. The only file in /boot
contains the encryption and decryption key is secure-linux, and it is encrypted. The other files
were securely deleted by using the srm program.

Example 8-23 Final /boot file system

root@secguest02:/boot# ls -la
total 34284
drwxr-xr-x 3 root root 4096 Sep 8 15:56 .
drwxr-xr-x 19 root root 4096 Aug 3 13:33 ..
-rw------- 1 root root 43520 Sep 8 15:53 bootmap
-rw-r--r-- 1 root root 90430 Jul 9 19:50 config-5.4.0-42-generic
drwx------ 2 root root 16384 Aug 3 13:27 lost+found
-rw-r--r-- 1 root root 31911936 Sep 8 15:51 secure-linux
-rw------- 1 root root 3088846 Jul 9 19:50 System.map-5.4.0-42-generic
root@secguest02:/boot#
320 Virtualization Cookbook for IBM Z Volume 5: KVM

Chapter 9. IBM Cloud Infrastructure Center
on Kernel-based Virtual
Machines

This chapter provides information about installing and operating IBM Cloud Infrastructure
Center on Kernel-based Virtual Machines (KVM).

This chapter includes the following topics:

� 9.1, “Installing IBM Cloud Infrastructure Center” on page 322
� 9.2, “Configuring IBM Cloud Infrastructure Center” on page 335
� 9.3, “Creating a bond for KVM administration network interfaces” on page 365

For more information about the hardware and software requirements for an IBM Cloud
Infrastructure Center installation on KVM, see this IBM Documentation web page.

9

© Copyright IBM Corp. 2022. 321

https://www.ibm.com/docs/en/cic/1.1.4?topic=requirements-hardware-software-kvm-system

9.1 Installing IBM Cloud Infrastructure Center

Complete the following steps to install IBM Cloud Infrastructure Center by using IBM ShopZ:

1. Sign in to the IBM Shopz web page by using your customer account.

2. Search for “Linux on Z - Standalone products” and fixes (see Figure 9-1).

Figure 9-1 IBM ShopZ Products

Note: You must use your customer number to purchase the software. In the ShopZ figures
that are included here, our internal customer number is hidden.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 322

https://www.ibm.com/software/shopzseries/ShopzSeries_public.wss

3. Create an order (see Figure 9-2).

Figure 9-2 Creating an order

4. Select the system on which the product is to run (see Figure 9-3).

Figure 9-3 Selecting the system on which the product runs
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 323

The list of available products that are based on your search are shown (see Figure 9-4).

Figure 9-4 List of available products based on your search

5. Select the package based on the license that you want to purchase (see Figure 9-5).

Figure 9-5 Selecting a package

6. Click Continue and you receive the output to validate the order (see Figure 9-6). Click
Continue.

Figure 9-6 Selecting new licenses
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 324

7. Select the method that you want to use to receive the product; for example, by way of the
internet. Click Next (see Figure 9-7).

Figure 9-7 Delivery media

Now, you can download the package to your machine (see Figure 9-8).

Figure 9-8 Order contents

8. Upload the downloaded file to the /opt/icic_install folder on the controller node (that is,
rdbkkvm1.az12.dal.cpc.ibm.com). Ensure that enough space is available to upload this
file.

If the /opt/icic_install folder is not created, use the following command:

mkdir -pv /opt/icic_install folder
 mkdir: created directory '/opt/icic_install'
 mkdir: created directory 'folder'

9. Upload file to the /opt/icic_install folder:

scp IBM_Cloud_Infrastructure_Center_1.1.4.tar.gz
root@rdbkkvm1.az12.dal.cpc.ibm.com:/opt/icic_install/
root@rdbkkvm1.az12.dal.cpc.ibm.com's password:
IBM_Cloud_Infrastructure_Center_1.1.4.tar.gz
100% 345MB 368.2MB/s 00:00
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 325

10.Ensure that the required dnf repositories for IBM Cloud Infrastructure Center installation
are working. Also, verify that dnf correctly added BaseOS, AppStream, and CodeReady
repositories, as shown in Example 9-1.

Example 9-1 Verifying that dnf correctly added repositories

Figure 9-9 on page 337[root@rdbkkvm1 ~]# dnf repolist
Updating Subscription Management repositories.
repo id
repo name
codeready-builder-for-rhel-8-s390x-rpms
Red Hat CodeReady Linux Builder for RHEL 8 IBM z Systems (RPMs)
rhel-8-for-s390x-appstream-rpms
Red Hat Enterprise Linux 8 for IBM z Systems - AppStream (RPMs)
rhel-8-for-s390x-baseos-rpms
Red Hat Enterprise Linux 8 for IBM z Systems - BaseOS (RPMs)

[root@rdbkkvm2 ~]# dnf repolist
Updating Subscription Management repositories.
repo id
repo name
codeready-builder-for-rhel-8-s390x-rpms
Red Hat CodeReady Linux Builder for RHEL 8 IBM z Systems (RPMs)
rhel-8-for-s390x-appstream-rpms
Red Hat Enterprise Linux 8 for IBM z Systems - AppStream (RPMs)
rhel-8-for-s390x-baseos-rpms
Red Hat Enterprise Linux 8 for IBM z Systems - BaseOS (RPMs)

[root@rdbkkvm3 ~]# dnf repolist
Updating Subscription Management repositories.
repo id
repo name
codeready-builder-for-rhel-8-s390x-rpms
Red Hat CodeReady Linux Builder for RHEL 8 IBM z Systems (RPMs)
rhel-8-for-s390x-appstream-rpms
Red Hat Enterprise Linux 8 for IBM z Systems - AppStream (RPMs)
rhel-8-for-s390x-baseos-rpms
Red Hat Enterprise Linux 8 for IBM z Systems - BaseOS (RPMs)

11.Use subscription-manager to list available repositories:

subscription-manager repos

In our KVM environment, we needed to enable several Red Hat repositories. Use
subscription-manager if you need to enable them, as shown in Example 9-2.

Example 9-2 Enabling Red Hat repositories

subscription-manager repos --list-enabled
+--+
 Available Repositories in /etc/yum.repos.d/redhat.repo
+--+
Repo ID: rhel-8-for-s390x-baseos-rpms
Repo Name: Red Hat Enterprise Linux 8 for IBM z Systems - BaseOS (RPMs)
Repo URL: https://cdn.redhat.com/content/dist/rhel8/$releasever/s390x/baseos/os
Enabled: 1

Repo ID: rhel-8-for-s390x-appstream-rpms
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 326

Repo Name: Red Hat Enterprise Linux 8 for IBM z Systems - AppStream (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel8/$releasever/s390x/appstream/os
Enabled: 1

Repo ID: codeready-builder-for-rhel-8-s390x-rpms
Repo Name: Red Hat CodeReady Linux Builder for RHEL 8 IBM z Systems (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel8/$releasever/s390x/codeready-builder/os
Enabled: 1

12.Configure the firewall settings on the controller, as shown in Example 9-3.

Example 9-3 Configuring firewall settings

systemctl status firewalld
? firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor
preset: enabled)
 Active: active (running) since Thu 2021-11-25 17:53:26 UTC; 3 days ago
 Docs: man:firewalld(1)
 Main PID: 1643 (firewalld)
 Tasks: 2 (limit: 3355442)
 Memory: 32.7M
 CGroup: /system.slice/firewalld.service
 ??1643 /usr/libexec/platform-python -s /usr/sbin/firewalld --nofork
--nopid

Nov 25 17:53:26 rdbkkvm1.az12.dal.cpc.ibm.com systemd[1]: Starting firewalld -
dynamic firewall daemon...
Nov 25 17:53:26 rdbkkvm1.az12.dal.cpc.ibm.com systemd[1]: Started firewalld -
dynamic firewall daemon.
Nov 25 17:53:26 rdbkkvm1.az12.dal.cpc.ibm.com firewalld[1643]: W

[root@rdbkkvm1 ~]# firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: encb80
 sources:
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 forward: no
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

13.Open the firewall ports for IBM Cloud Infrastructure Center.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 327

The outbound ports are not required to be configured in the local firewall, as shown in
Example 9-4.

Example 9-4 Outbound ports that are not required to be configured in local firewall

[root@rdbkkvm1 ~]# firewall-cmd --permanent
--add-port={80/tcp,443/tcp,5000/tcp,5470/tcp,5671/tcp,8080/tcp,8428/tcp,8774/tcp,8
770/tcp,8998/tcp,9000/tcp,9292/tcp,9696/tcp,35357/tcp,8041/tcp,8778/tcp,4369/tcp,9
191/tcp,8775/tcp,50110/tcp,6200/tcp,6201/tcp,6202/tcp,6080/tcp}
success

[root@rdbkkvm1 ~]# firewall-cmd --reload
success

[root@rdbkkvm1 ~]# firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: encb80
 sources:
 services: cockpit dhcpv6-client ssh
ports: 80/tcp 443/tcp 5000/tcp 5470/tcp 5671/tcp 8080/tcp 8428/tcp 8774/tcp
8770/tcp 8998/tcp 9000/tcp 9292/tcp 9696/tcp 35357/tcp 8041/tcp 8778/tcp 4369/tcp
9191/tcp 8775/tcp 50110/tcp 6200/tcp 6201/tcp 6202/tcp 6080/tcp
 protocols:
 forward: no
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

14.Confirm that KVM controller (rdbkkvm1) can ping both KVM compute nodes, as shown in
Example 9-5.

Example 9-5 Confirming KVM controller ping

ping -c2 rdbkkvm2.az12.dal.cpc.ibm.com
PING rdbkkvm2.az12.dal.cpc.ibm.com (9.214.220.202) 56(84) bytes of data.
64 bytes from rdbkkvm2.az12.dal.cpc.ibm.com (9.214.220.202): icmp_seq=1 ttl=64
time=0.269 ms
64 bytes from rdbkkvm2.az12.dal.cpc.ibm.com (9.214.220.202): icmp_seq=2 ttl=64
time=0.079 ms

--- rdbkkvm2.az12.dal.cpc.ibm.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1039ms
rtt min/avg/max/mdev = 0.079/0.174/0.269/0.095 ms

ping -c2 rdbkkvm3.az12.dal.cpc.ibm.com
PING rdbkkvm3.az12.dal.cpc.ibm.com (9.214.220.201) 56(84) bytes of data.

Note: For more information about the firewall ports that are used by IBM Cloud
Infrastructure Center, see this IBM Documentation web page.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 328

https://www.ibm.com/docs/en/cic/1.1.4?topic=security-ports-used-by-cloud-infrastructure-center

64 bytes from rdbkkvm3.az12.dal.cpc.ibm.com (9.214.220.201): icmp_seq=1 ttl=64
time=0.193 ms
64 bytes from rdbkkvm3.az12.dal.cpc.ibm.com (9.214.220.201): icmp_seq=2 ttl=64
time=0.098 ms

--- rdbkkvm3.az12.dal.cpc.ibm.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1010ms
rtt min/avg/max/mdev = 0.098/0.145/0.193/0.049 ms

15.Check whether the controller node can access KVM compute nodes on port 22/tcp, as
shown in Example 9-6.

Example 9-6 Confirming whether controller node can access KVM compute nodes

nc -z -v -w 1 rdbkkvm2.az12.dal.cpc.ibm.com 22
Ncat: Version 7.70 (https://nmap.org/ncat)
Ncat: Connected to 9.214.220.202:22.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.

nc -z -v -w 1 rdbkkvm3.az12.dal.cpc.ibm.com 22
Ncat: Version 7.70 (https://nmap.org/ncat)
Ncat: Connected to 9.214.220.201:22.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.

16.Set up the IBM Cloud Infrastructure Center configuration file.

Before installing IBM Cloud Infrastructure Center, create a directory that is named icic in
/etc, and create a file within it that is named config.properties. This
/etc/icic/config.properties file should include configurations that are customized to
your deployment environments, as shown in the following configuration properties
example (be sure to specify only one property):

[icic configs]
compute_instance_template=ins%05x

The virtual machine (VM) user IDs that are generated by the
compute_instance_template must be 8 characters. For example, when the value is
specified as ins%05x, the VM user IDs are generated with ins as the prefix and followed by
the index ins00000, ins00001 - insfffff (ensure that no conflict exists between the VM to
be created and existing VMs), which means the total VM capacity is 1048576.

Carefully determine the compute_instance_template value to ensure sufficient VM
capacity because you cannot change compute_instance_template after the management
node is installed.

Note: If the nc package is not installed, run the yum install nmap-ncat command.

Note: The installation fails if one the following conditions exist:

� The config.properties file is missing.
� The compute_instance_template property is missing.
� The generated VM user IDs length is not 8.
� Any non-alphanumeric characters are in the prefix.
� Less than 4 bytes are used for the index.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 329

Create a directory to install IBM Cloud Infrastructure Center by using the following
commands:

[root@rdbkkvm1 ~]# mkdir -pv /etc/icic
mkdir: created directory '/etc/icic'

[root@rdbkkvm1 ~]# cat /etc/icic/config.properties
[icic configs]
compute_instance_template=ins%05x

9.1.1 Before you install IBM Cloud Infrastructure Center

Complete the following steps before installing:

1. Check the operating system Red Hat version on all nodes, as shown in Example 9-7.

Example 9-7 Checking Red Hat version on all nodes

Controller:
[root@rdbkkvm1 ~]# cat /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.4 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.4"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.4 (Ootpa)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:8.4:GA"
HOME_URL="https://www.redhat.com/"
DOCUMENTATION_URL="https://access.redhat.com/documentation/red_hat_enterprise_linu
x/8/"
BUG_REPORT_URL="https://bugzilla.redhat.com/"

REDHAT_BUGZILLA_PRODUCT="Red Hat Enterprise Linux 8"
REDHAT_BUGZILLA_PRODUCT_VERSION=8.4
REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux"
REDHAT_SUPPORT_PRODUCT_VERSION="8.4"
Red Hat Enterprise Linux release 8.4 (Ootpa)
Red Hat Enterprise Linux release 8.4 (Ootpa)

Compute nodes:
[root@rdbkkvm2 ~]# cat /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.4 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.4"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.4 (Ootpa)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:8.4:GA"
HOME_URL="https://www.redhat.com/"
DOCUMENTATION_URL="https://access.redhat.com/documentation/red_hat_enterprise_linu
x/8/"
BUG_REPORT_URL="https://bugzilla.redhat.com/"
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 330

REDHAT_BUGZILLA_PRODUCT="Red Hat Enterprise Linux 8"
REDHAT_BUGZILLA_PRODUCT_VERSION=8.4
REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux"
REDHAT_SUPPORT_PRODUCT_VERSION="8.4"
Red Hat Enterprise Linux release 8.4 (Ootpa)
Red Hat Enterprise Linux release 8.4 (Ootpa)

[root@rdbkkvm3 ~]# cat /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.4 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.4"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.4 (Ootpa)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:8.4:GA"
HOME_URL="https://www.redhat.com/"
DOCUMENTATION_URL="https://access.redhat.com/documentation/red_hat_enterprise_linu
x/8/"
BUG_REPORT_URL="https://bugzilla.redhat.com/"

REDHAT_BUGZILLA_PRODUCT="Red Hat Enterprise Linux 8"
REDHAT_BUGZILLA_PRODUCT_VERSION=8.4
REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux"
REDHAT_SUPPORT_PRODUCT_VERSION="8.4"
Red Hat Enterprise Linux release 8.4 (Ootpa)
Red Hat Enterprise Linux release 8.4 (Ootpa)

By default, IBM Cloud Infrastructure Center uses eth0 for its network interface (for more
information, see this IBM Documentation web page.

IBM Cloud Infrastructure Center on a KVM management node requires a dedicated
network interface for communicating with compute nodes. If you want to use eth0 for
communicating with compute nodes, or if you want to use a different network interface to
host the web UI for any other reason, you can set the environment variable
HOST_INTERFACE before running the installation script; for example, export
HOST_INTERFACE=eth1.

In our environment, all Red Hat Linux servers were configured with the encb80 as the NIC
interface, as shown in Example 9-8.

Example 9-8 Red Hat Linux servers configured with the encb80 NIC interface

lsqeth
Device name : encb80

 card_type : OSD_25GIG
 cdev0 : 0.0.0b80
 cdev1 : 0.0.0b81
 cdev2 : 0.0.0b82
 chpid : B8
 online : 1
 portname : no portname required
 portno : 0
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 331

https://www.ibm.com/docs/en/cic/1.1.4?topic=requirements-hardware-software-kvm-system

 state : UP (LAN ONLINE)
 priority_queueing : disabled
 buffer_count : 64
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 switch_attrs : unknown
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 0
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0

IBM Cloud Infrastructure Center requires the en_US.UTF-8 locale. Ensure that the
command locale can be run without any warning, and that the locale environment
variables are set to en_US.UTF-8, as shown in the following example:

locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

Default values of LC_CTYPE=en_US.UTF-8 and LANG=en_US.UTF-8 are used if these variables
are not set before the installation.

2. Ensure that the correct locale setting is defined by using the following command on the
controller node:

export LC_CTYPE=en_US.UTF-8

3. Unpack the installation components. The process varies depending on which type of
installer package was downloaded.

Note: Changing the management node’s hostname after IBM Cloud Infrastructure
Center is installed can cause the service the become unavailable or operations to time
out. Ensure that you set your hostname before IBM Cloud Infrastructure Center is
installed.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 332

4. Complete the following steps to extract the installation files:

a. Switch to the /opt/icic_install directory:

cd /opt/icic_install/

b. Extract the installation files:

tar zxvfp IBM_Cloud_Infrastructure_Center_1.1.4.tar.gz
icic-install-s390x-rhel-1.1.4.0.tgz
icic-install-1.1.4.0.tgz.sig
icicpublickey
readme.txt

After you mount the ISO or extract the installation package, the following files are
available:

• icic-install-s390x-rhel-1.1.4.0.tgz
• icic-install-1.1.4.0.tgz.sig
• icicpublickey
• readme.txt

c. Run the following command to extract the icic-install-s390x-rhel-1.1.4.0.tgz
compressed binary file:

tar -xzvf icic-install-s390x-rhel-1.1.4.0.tgz

d. Change directory to /opt/icic_install/icic-1.1.4.0:

cd /opt/icic_install/icic-1.1.4.0

e. Export the HOST_INTERFACE variable. Remember to use the interface name that was
collected previously (in our case, encb80):

export HOST_INTERFACE=encb80

5. Incorporate the following required SELinux settings:

./install -s -k
###
Starting the IBM Cloud Infrastructure Center 1.1.4.0 installation on:
2021-12-02T16:49:35+00:00
###

Note: Before unpacking, ensure that you obtained an installer that matches your licensing
model. As of Version 1.1.4.0, IBM Cloud Infrastructure Center is offered with Per Virtual
Server or Per Engine licensing.

Note: SELINUX is not enforced. Enable and enforce SELINUX and then, attempt to
install again. The installation exits with error code 266.

To enable it, edit the /etc/selinux/config file by using vim editor and update the
following parameter:

SELINUX=enforcing
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 333

6. Restart your controller node after this update completes. After server is running, export
the variables:

export HOST_INTERFACE=encb80
export LC_CTYPE=en_US.UTF-8

7. Install the management node.

The installer verifies that the environment meets all of the prerequisites during execution.
If any errors are reported during the verification steps of the installation process, correct
the reported issues and attempt the installation again.

As a root user, start the installation by using one of the following methods:

a. Run the following command to start the installation:

./install -k

You are prompted to respond to some questions during the installation.

b. Press Enter to continue viewing the license agreement, or, enter one of the following
choices:

• 1 to accept the agreement
• 2 to decline the agreement
• 3 to print the agreement
• 4 to read non-IBM terms
• 99 to return to the previous window

For our example, we choose the 1 to accept the agreement option.

c. You are prompted to decide whether you want the IBM Cloud Infrastructure Center
setup to configure the firewall (1 for Yes, 2 for No). For our example, we choose 2.

d. You are prompted whether you want to continue with the installation (1 for Yes, 2 for
No). For our example, we choose 1.

e. Run the following command to start a silent installation:

/install -s -k

You should receive the following output when the installation completes:

The validation of IBM Cloud Infrastructure Center services post install was
successful.

IBM Cloud Infrastructure Center installation successfully completed at
2021-12-02T18:41:25+00:00.

For more information, see the
/opt/ibm/icic/log/icic_install_2021-12-02-183208.log file.

The following URL is used to access IBM Cloud Infrastructure Center:
https://9.214.220.203 (replace this URL with your own server IP)

Note: The firewall service is disabled because the iptables service is used by IBM
Cloud Infrastructure Center.

Note: The -c option must be passed for the installer to configure firewall settings
automatically during a silent installation. Otherwise, you must manually set up the
firewall rules. The -c option disables and stops the firewall first and then, enables,
configures, and starts iptables.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 334

Firewall configuration might be required to use IBM Cloud Infrastructure
Center.

8. After the installation completes, run the following command to ensure that the status of
services is active:

/opt/ibm/icic/bin/icic-services status

If the installation fails, see this IBM Documentation web page to determine whether the
problem you encountered is a known issue.

During the installation of the IBM Cloud Infrastructure Center, the allow_lun_scan on the
management node is turned off, as shown in following output:

cat /sys/module/zfcp/parameters/allow_lun_scan

If any volumes are mapped to your management node with the allow_lun_scan disabled, the
system restart causes a volume loss because other kernel no longer performs a LUN scan
automatically. Refer to FCP LUNs that are part of the root file system or FCP LUNs that are
not part of the root file system to add and persist the volume.

For information about Performing a standard RHEL 8 installation, see this Red Hat installation
documentation web page.

For more information about IBM Cloud Infrastructure Center installation, see this IBM
Documentation web page.

9.2 Configuring IBM Cloud Infrastructure Center

Before adding the KVM compute nodes into IBM Cloud Infrastructure Center, ensure that the
network OSA devices are active before OpenVswitch is enabled. Also, you must define the
OSA devices to be a bridge port, which allows it to act as a member of a Linux software
bridge.

This process that is described next must be completed or the compute nodes (KVM LPAR)
cannot be added into IBM Cloud Infrastructure Center.

Complete the following steps to confirm that the two OSA cards are available on the KVM
compute nodes:

1. Connect to the KVM compute host and issue the following commands to set b00 and b10:

– Make devices visible in Linux:

cio_ignore -r b00-b02
cio_ignore -r b10-b12

Note: The installation log file is available at: /opt/ibm/icic/log.

Note: Use the bridge_role attribute of a network device in Layer 2 so that it can receive all
traffic with unknown destination MAC addresses. For more information, see this IBM
Documentation web page.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 335

https://www.ibm.com/docs/en/cic/1.1.4?topic=troubleshooting
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fdocumentation%2Fen-us%2Fred_hat_enterprise_linux%2F8%2Fhtml%2Fperforming_a_standard_rhel_installation%2Fconfiguring-a-linux-instance-on-ibm-z_installing-rhel%23fcp-luns-that-are-part-of-the-root-file-system_configuring-a-linux-instance-on-ibm-z
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fdocumentation%2Fen-us%2Fred_hat_enterprise_linux%2F8%2Fhtml%2Fperforming_a_standard_rhel_installation%2Fconfiguring-a-linux-instance-on-ibm-z_installing-rhel%23fcp-luns-that-are-part-of-the-root-file-system_configuring-a-linux-instance-on-ibm-z
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fdocumentation%2Fen-us%2Fred_hat_enterprise_linux%2F8%2Fhtml%2Fperforming_a_standard_rhel_installation%2Fconfiguring-a-linux-instance-on-ibm-z_installing-rhel%23fcp-luns-that-are-part-of-the-root-file-system_configuring-a-linux-instance-on-ibm-z
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel?_ga=2.102227521.1734401298.1644957456-718070149.1644587418#fcp-luns-that-are-part-of-the-root-file-system_configuring-a-linux-instance-on-ibm-z
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fdocumentation%2Fen-us%2Fred_hat_enterprise_linux%2F8%2Fhtml%2Fperforming_a_standard_rhel_installation%2Fconfiguring-a-linux-instance-on-ibm-z_installing-rhel%23fcp-luns-that-are-part-of-the-root-file-system_configuring-a-linux-instance-on-ibm-z
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fdocumentation%2Fen-us%2Fred_hat_enterprise_linux%2F8%2Fhtml%2Fperforming_a_standard_rhel_installation%2Fconfiguring-a-linux-instance-on-ibm-z_installing-rhel%23fcp-luns-that-are-part-of-the-root-file-system_configuring-a-linux-instance-on-ibm-z
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#installing-rhel-on-ibm-z
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#installing-rhel-on-ibm-z
https://www.ibm.com/docs/en/cic/1.1.4?topic=kvm-installing-cloud-infrastructure-center
https://www.ibm.com/docs/en/cic/1.1.4?topic=kvm-installing-cloud-infrastructure-center
https://www.ibm.com/docs/en/linux-on-systems?topic=linuxonibm/com.ibm.linux.z.ludd/ludd_t_qeth_wrk_hsbrdg.html
https://www.ibm.com/docs/en/linux-on-systems?topic=linuxonibm/com.ibm.linux.z.ludd/ludd_t_qeth_wrk_hsbrdg.html
https://www.ibm.com/docs/en/linux-on-systems?topic=linuxonibm/com.ibm.linux.z.ludd/ludd_t_qeth_wrk_hsbrdg.html

– Check whether devices are visible:

lscss | grep <dev_number>

2. Create the configuration for b00 and b10 network adapters:

znetconf -A

Scanning for network devices...

Successfully configured device 0.0.0b00 (encb00)

Successfully configured device 0.0.0b10 (encb10)

3. Update the OSA configuration to support the bridge:

lszdev 0.0.0b00 --columns ATTR:bridge_state

lszdev 0.0.0b10 --columns ATTR:bridge_state

4. Disable zDev channels 0b00 and 0b10:

chzdev --disable qeth 0.0.0b00

chzdev --disable qeth 0.0.0b10

chzdev qeth 0.0.0b10 layer2=1 bridge_role=primary

chzdev qeth 0.0.0b00 layer2=1 bridge_role=primary

chzdev -a 0.0.0b10 bridge_role=primary

chzdev -a 0.0.0b00 bridge_role=primary

chzdev --enable qeth 0.0.0b10

chzdev --enable qeth 0.0.0b00

lszdev 0.0.0b00 --columns ATTR:bridge_role

lszdev 0.0.0b10 --columns ATTR:bridge_role

9.2.1 Other tasks

Access the UI to perform the following tasks:

� Add Hosts (Compute nodes)
� Add Networks
� Add Images
� Add Storage Providers

These tasks are described next.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 336

Adding hosts (compute nodes)
Complete following steps to add the KVM hosts to IBM Cloud Infrastructure Center:

1. Access the UI at https://9.214.220.203 (replace this URL with your own server IP), as
shown in Figure 9-9.

Figure 9-9 Log-in window

2. Log in by using the root ID and password (see Figure 9-10).

Figure 9-10 Adding Host
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 337

3. Click in the Hosts section (see Figure 9-11).

Figure 9-11 Add Host option

Figure 9-12 on page 339 - Figure 9-19 on page 343 show the sequence that is used to add
and connect to a host, and log in to and define the host networks.

4. Click Add Host to add the first compute node (see Figure 9-11).
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 338

5. Enter the information about your compute node (see Figure 9-12).

Figure 9-12 Add host details

6. Click Connect when you receive the dialog message shown in Figure 9-13.

Figure 9-13 Connecting to host
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 339

After several minutes, your compute node is added to the host section, as shown in
Figure 9-14.

Figure 9-14 Host added

7. Complete the following steps to configure the OpenVswitch on rdbkkvm2 and rdbkkvm3 to
use LACP and VLAN tagging:

a. Delete the existing IBM Cloud Infrastructure Center definitions for default:

ovs-vsctl del-br default

b. Create the new definitions by using LACP:

ovs-vsctl add-br default0# Add Virtual Switch Bond: VLANs 201, 214
ovs-vsctl add-bond default0 bond0 encb00 encb10 bond_mode=balance-tcp
other_config:bond-detect-mode=miimon other_config:bond-miimon-interval=100
other_config:trunks=201,214 other_config:bond_updelay=10
other_config:lacp-time=fast other-config:stp_enable=false

c. Trunk VLANs 201, 214:

ovs-vsctl setport bond0 trunks=201,214 tag=1 vlan_mode=native-untagged

d. Set LACP as active:

ovs-vsctl setport bond0 lacp=active

e. Restart openvswitch:

stemctl restart openvswitch

f. Validate the bond configuration:

ovs-vsctl list port
ovs-appctl bond/show bond0
ovs-appctl lacp/show

Repeat these steps on the other compute node (rdbkkvm3).

Note: Replace the values that are in bold to match your network infrastructure.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 340

Complete the following steps add networks to IBM Cloud Infrastructure Center:

1. Access the UI at https://9.214.220.203, as shown in Figure 9-15.

Figure 9-15 Host Login window

2. Log in by using the root ID and password.

3. Click the Networks icon, as shown in Figure 9-16.

Figure 9-16 Selecting the Networks icon
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 341

4. Click Add Network (see Figure 9-17).

Figure 9-17 Selecting the Add Network option
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 342

5. Enter the information about your network subnet, as shown in Figure 9-18.

Figure 9-18 Adding network information and then, clicking the Add Network option

6. Repeat these steps to include all other network subnets. After the subnets are added, your
networks are listed as shown in Figure 9-19.

Figure 9-19 Networks added
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 343

9.2.2 Creating and adding images

The steps that are described in this section, we provide a quick method to create a Red Hat
8.4 image for IBM Cloud Infrastructure Center by way of the Red Hat Kickstart process.

For more information about Red Hat Kickstart, see this Red Hat Documentation web page.

Complete the following steps on only the first KVM compute node (rdbkkvm2):

1. Run the following command to create an encrypted password (it is used later to update the
kickstart file):

python -c 'import crypt,getpass;pw=getpass.getpass();print(crypt.crypt(pw) if
(pw==getpass.getpass("Confirm: ")) else exit())'

2. Create /gpfs/img folder:

mkdir -pv /gpfs/img

3. Upload the Red Hat DVD image. (If you do not have the image, download it from this
Red Hat web page):

ls -la /gpfs/img/rhel-8.4-s390x-dvd.iso

-rw-r--r--. 1 root root 3783262208 Dec 3 11:14 /gpfs/img/rhel-8.4-s390x-dvd.iso

4. Create the /gpfs/rhel-8.4-s390x-CLONE.cfg file by using the contents that is shown in
Example 9-9. You must update the settings that are highlighted in bold with the encrypted
root password that was created in Step 1 and update the IP address of the new virtual
server.

Example 9-9 Configuration file contents

text

lang en_US.UTF-8

keyboard us

rootpw
6y9kVIF0tWVCHn3JO$qPP9arflAhlVRB4BJCbXALMYrKGJGSmzD.6xGfUSnFAmB9cyUbrD7e4d56y
T.L1fC52ptHatKMxrmhT2Ox/eM1 --iscrypted

timezone America/New_York

poweroff

zerombr

ignoredisk --only-use=vda

clearpart --all

part /boot --fstype=xfs --size=1024 --asprimary

part pv.0 --fstype=lvmpv --size=8192 --grow

volgroup systemvg --pesize=8192 pv.0

logvol / --vgname=systemvg --name=root --fstype=xfs --size=1024

Note: When you are prompted to enter the initial password that is used for root ID,
make a note of the encrypted password because it is used later.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 344

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/kickstart-commands-and-options-reference_installing-rhel-as-an-experienced-user
https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/guide/234ad6fb-71bc-4ebd-b8cc-88729dff2d0f
https://access.redhat.com/downloads/
https://access.redhat.com/downloads/

logvol /usr --vgname=systemvg --name=usr --fstype=xfs --size=4096

logvol /home --vgname=systemvg --name=home --fstype=xfs --size=128

logvol /opt --vgname=systemvg --name=opt --fstype=xfs --size=128

logvol /tmp --vgname=systemvg --name=tmp --fstype=xfs --size=128

logvol /var --vgname=systemvg --name=var --fstype=xfs --size=1024

logvol swap --vgname=systemvg --name=swap --fstype=swap --size=1024

syspurpose --role="Red Hat Enterprise Linux Server" --sla="Standard"
--usage="Development/Test"

auth --passalgo=sha512

selinux --permissive

firewall --disabled

skipx

firstboot --disable

%packages

@^server-product-environment

kexec-tools

bind-utils

device-mapper-multipath

e2fsprogs

git

iproute

ksh

net-tools

cloud-init

cloud-utils-growpart

procps

unzip

vim

zip

file

perl-Net-Ping

binutils

wget

rsync

postfix

gettext

yum

%end
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 345

%post

subscription-manager unregister

touch /etc/sudo.env

cat /dev/null > /etc/multipath/bindings

cat /dev/null > /etc/multipath/wwids

cat /usr/share/doc/device-mapper-multipath-0.4.9/multipath.conf > /etc/multipath.conf

sed -i -e '/^users:$/,/^ - default$/d' -e 's/^disable_root: 1/disable_root: 0/' -e
's/^ssh_pwauth: 0/ssh_pwauth: 1/' /etc/cloud/cloud.cfg

echo "Installation completed."

%end

5. Export BASH variables to help create the VMs:

export ISO="/gpfs/img/rhel-8.4-s390x-dvd.iso"

export MachineName='rhel84_kvm'

ISO contains the path for the Red Hat 8.4 DVD .iso file, which you must download). The
MachineName parameter includes the name of the VM that is created in IBM Cloud
Infrastructure Center.

6. Create the QCOW2 file. In the following command, a 10 GB QCOW2 file is created for our
root disk. We decided to use 10 GB because this size is the minimum disk size for the
default IBM Cloud Infrastructure Center compute templates:

qemu-img create -f qcow2 -o preallocation=metadata /gpfs/${MachineName}.qcow2
10G

7. Ensure that the virt-install package is installed:

yum install -y virt-install

8. Run the following command to automatically create the Red Hat VM:

virt-install --virt-type=kvm --name=${MachineName} --vcpus=2 --memory=4096
--location="${ISO}" --disk path=/gpfs/${MachineName}.qcow2,format=qcow2
--network default --noreboot --initrd-inject=/gpfs/rhel-8.4-s390x-CLONE.cfg
--extra-args "inst.ks=file:/rhel-8.4-s390x-CLONE.cfg"

Note: the installation takes some minutes to complete. Wait until the process is
completed. You should receive the output that is shown in Figure 9-20.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 346

Figure 9-20 shows the messages that indicate that the installation completed.

Figure 9-20 Installation completed message

9. After Kickstart completes the Linux installation, a Red Hat VM with 10 GB is available. Run
the following command to compress this image. Doing so reduces the image size from
10 GB to a much smaller size (it is always better to work with small images files):

qemu-img convert -c -O qcow2 /gpfs/${MachineName}.qcow2
/gpfs/${MachineName}_compressed.qcow2

After converting the image, you can verify the size of the new compressed file. The file
size should be reduced from 10 GB to approximately 1.1 GB.

du -hs /gpfs/${MachineName}_compressed.qcow2

1.1G/gpfs/rhel84_kvm_compressed.qcow2

10.Upload the compressed file to /opt/icic_install on KVM controller server (rdbkkvm1):

scp /gpfs/${MachineName}_compressed.qcow2 root@rdbkkvm1:/opt/icic_install

root@rdbkkvm1's password:

rhel84_kvm_compressed.qcow2
100% 1038MB 826.2MB/s 00:01

11.Connect to KVM controller server (rdbkkvm1) and issue the following commands:

a. Authenticate to IBM Cloud Infrastructure Center and provide the root password:

source /opt/ibm/icic/icicrc root

Enter the password for root:

b. Import the Red Hat 8.4 image into IBM Cloud Infrastructure Center by using the
following commands:

cd /opt/icic_install

openstack image create --min-disk 10 --file rhel84_kvm_compressed.qcow2
rhel-84-kvm-10g

openstack image set --property image_type_xcat=linux --property
hypervisor_type=kvm --property architecture=s390x --property os_name=Linux
--property os_version=rhel84 rhel-84-kvm-10g

openstack image set --property os_distro='Rhel8' --property os_version=8
rhel-84-kvm-10g
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 347

openstack image set --shared rhel-84-kvm-10g

openstack image set --public rhel-84-kvm-10g

c. Return to UI and verify that the new imported image is listed in Images section (see
Figure 9-21).

Figure 9-21 Adding Images

Although the image can be imported by using UI, it can take longer than the process that was
described here if your internet connection is slow. The reason is because you must download
the Red Hat compressed file to your machine and then, upload it to the KVM controller node.

Alternatively, you can manually perform the Red Hat traditional installation by completing the
following steps:

1. Export some BASH variables to help create the VM:

export ISO="/gpfs/img/rhel-8.4-s390x-dvd.iso"

export MachineName='rhel84_kvm'

ISO contains the path of the Red Hat 8.4 DVD .iso file. The MachineName parameter
includes the name of the VM that is created in KVM.

2. Create the QCOW2 file for the VM by using the following command:

qemu-img create -f qcow2 -o preallocation=metadata /gpfs/${MachineName}.qcow2
10G

3. Ensure that the virt-install package is installed:

yum install -y virt-install

4. Run the following command to automatically create the Red Hat VM:

virt-install --name=${MachineName} --vcpus=2 --memory=4096 --disk
path=/gpfs/${MachineName}.qcow2,format=qcow2 --import --network network:VLAN214
--cdrom="${ISO}"

The installer starts and you are prompted to respond several questions. When the
installation is complete, go to the next step.

5. Repeat steps 9 and 10 on page 346 to compress and import the Red Hat image into IBM
Cloud Infrastructure Center.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 348

9.2.3 Adding storage providers

Complete the following steps to add an IBM DS8K storage to IBM Cloud Infrastructure
Center. The provided storage allows you to attach and manage SAN disks for the Linux VMs:

1. Ensure that you are logged in to IBM Cloud Infrastructure Center with a privileged user
(that is, root) in the UI.

2. Click in the Storage Providers section (see Figure 9-22).

Figure 9-22 Storage providers

3. Click Add Storage (see Figure 9-23).

Figure 9-23 Add Storage option
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 349

4. Complete the information about the added storage and click Connect (see Figure 9-24).

Figure 9-24 Storage added details

5. Click Accept to accept the IBM DS8000 SSL certificate (see Figure 9-25).

Figure 9-25 Connecting to storage
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 350

6. Select the storage pool that is to be used as default and then, click Add Storage (see
Figure 9-26).

Figure 9-26 Adding storage

7. After the process completes, the DS800 storage is listed in the Storage Providers section,
as shown in Figure 9-27.

Figure 9-27 Storage is added
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 351

9.2.4 Extending the root file system

Initially, the Red Hat Linux image that was created in the previous section was defined with a
10 GB disk. Therefore, any VM that is created with a compute template (t-shirt size) that is not
tiny requires that more space is made available.

The IBM Cloud Infrastructure Center installation defined the default compute templates that
are shown in Figure 9-28. The disk size is highlighted to show only tiny has 10 GB that is
defined in disk size. Any other compute template that is selected to provision a new VM
requires manual steps to make the added space available.

Figure 9-28 Sizing storage

Complete the following steps to simulate a required resize:

1. Build a large VM.

2. Connected to the VM by using the lsblk command. Notice that the VM total disk capacity
is now 80 GB (it was 10 GB):

]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sr0 11:0 1 476K 0 rom

vda 252:0 0 80G 0 disk

|-vda1 252:1 0 1G 0 part /boot

`-vda2 252:2 0 9G 0 part

 |-systemvg-root 253:0 0 1G 0 lvm /

 |-systemvg-swap 253:1 0 1G 0 lvm [SWAP]

 |-systemvg-usr 253:2 0 4G 0 lvm /usr

 |-systemvg-var 253:3 0 1G 0 lvm /var

 |-systemvg-tmp 253:4 0 128M 0 lvm /tmp

 |-systemvg-opt 253:5 0 128M 0 lvm /opt

 `-systemvg-home 253:6 0 128M 0 lvm /home
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 352

3. Complete the following steps to extend the operating system partition, refer to the next
steps:

a. Run the growpart command to extend the vda partition 2:

growpart /dev/vda 2
CHANGED: partition=2 start=2099200 old: size=18872320 end=20971520 new:
size=165672927 end

b. Resize the physical volume

pvscan
 PV /dev/vda2 VG systemvg lvm2 [8.99 GiB / <1.62 GiB free]
 Total: 1 [8.99 GiB] / in use: 1 [8.99 GiB] / in no VG: 0 [0]
pvresize /dev/vda2
 Physical volume "/dev/vda2" changed
 1 physical volume(s) resized or updated / 0 physical volume(s) not resized
pvscan
 PV /dev/vda2 VG systemvg lvm2 [78.99 GiB / <71.62 GiB free]
 Total: 1 [78.99 GiB] / in use: 1 [78.99 GiB] / in no VG: 0 [0]

Now, LVM commands can be used to extend any LVM logical volume.

9.2.5 User tasks

If you are assigned the administrator role to a project in IBM Cloud Infrastructure Center, in
addition to starting, stopping, restarting, and deleting a VM, you can resize or capture a VM,
or attach or detach a volume to it. Other user roles might not be allowed to do these
operations.

You also can perform a live migration, cold migration, or a suspend/pause/resume operation
to a KVM VM. Users can perform the following tasks, which are described next:

� Create VMs
� Live migrate VMs
� Resize Virtual Machines
� Attach volumes to VMs
� Detach volumes to VMs
� Delete volumes
� Delete VMs
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 353

Creating virtual machines
You can use a Deploy Template to create a VM. Complete the following steps:

1. Log in to the suitable project and open the Images window (see Figure 9-29).

Figure 9-29 Creating an image

2. Select the image that you want to use and click Deploy (see Figure 9-30).

Figure 9-30 Deploying an image
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 354

3. Specify the requested details in the window that opens (see Figure 9-31).

Figure 9-31 Deploying images

4. Click Deploy. The request is submitted to IBM Cloud Infrastructure Center. To monitor the
new deployment, click the Virtual Machines page. The VM should be listed (see
Figure 9-32).

Figure 9-32 Virtual machines listed
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 355

5. Optionally, you can acquire the IP address and attempt to connect to the server by using
SSH keys.

Live migrating virtual machines
The IBM Cloud Infrastructure Center supports live migrating an instance from one compute
node to another.

Complete the following steps to live migrate an instance on the UI:

1. On the Virtual Machines page, select the VM that you want to use (see Figure 9-33).

Figure 9-33 Selecting the VM

2. Click Live Migrate at the top of the UI (see Figure 9-34).

Figure 9-34 Virtual machines

Note: If you want to use SSH keys to connect to the new VMs, follow the steps that are
described at this IBM Documentation web page. Here, you also learn how to create
your own SSH keys and add them into IBM Cloud Infrastructure Center.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 356

3. The destination hosts are listed in the Migrate dialog. Generally, two kinds of hosts are
available: host group and host. Choose one of these types to migrate.

If you choose a host group, a host in the group is automatically chosen as the destination
for this migration. If you choose a host, the host is the destination for this migration.

Figure 9-35 Migrating a VM

4. The status of the VM appear as Migrating. The process can take several seconds to
complete. When the process is complete, confirm whether the KVM LPAR name changed
in the Host column (see Figure 9-36).

Figure 9-36 Migrating VM

Creating snapshots
Snapshots can be used to help prepare your environment for recovery. A snapshot allows for
a complete copy of a VM at a point in time to be created. IBM Cloud Infrastructure Center
provides the snapshot feature for the VMs.

You can create a snapshot of the VM that was created or deployed in IBM Cloud
Infrastructure Center. Assume that all the IBM Cloud Infrastructure Center services are
available and one or more VMs were created on the host.

Note: The VMs are created by using the RHCOS 4.2 or RHCOS 4.3 image do not support
snapshots.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 357

Complete the following steps to create the snapshot of the expected VM:

1. On the Virtual Machines page, select the VM that you want to use (see Figure 9-37).

Figure 9-37 Virtual Machine migrated

2. Click Capture. In the pop-up window, enter the name of the capture result or do not enter
any information to accept the default name.

Figure 9-38 Snapshot creation

3. Click Capture to start the capture. The task state of the captured VM shows Capturing.

The Capture state is displayed in the Images window. If the capture is successful, the final
state turns to Active. Other information includes the name of the captured image,
operating system, description, and the last updated time for the image.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 358

In the Virtual Machines window, the state of the captured VM changes to Shutoff for the VMs
that are deployed from local disks. For the VMs that are deployed from volumes, the state of
the captured VM does not change (see Figure 9-39).

Figure 9-39 Image Snapshot display

4. The captured image that is the snapshot can be used to deploy a new VM, similar to other
uploaded images.

Resizing virtual machines
Resizing is the ability to change the type of a VM, which allows it to upscale or downscale
according to a user’s needs. You can resize a VM only when its status is in ACTIVE or SHUTOFF.

On the KVM hypervisor, the resize features the following behavior:

� VMs are resized to other KVM hosts or the same host on which they are originally located.

� The KVM resize is not a live resize. If VMs are active before resizing, they are stopped first
and then captured. Then, they are deployed with the new type to the best fit candidate
host. After the resizing finishes, the VMs are returned back to active state.

� For all memory, the CPU or disks of VMs can be changed, but the disks cannot be resized
down.

Note: The VM that is deployed from local disk is stopped during the capture, and the
VM state remains Shutoff after it is captured. The state of the VM that is deployed from
the remote volume remains Active after it is captured.

Note: As of this writing, resizing on KVM is implemented by transferring the images
between compute nodes over SSH. For KVM, you need host names to correctly resolve
and passwordless the SSH access between your compute hosts.

Direct access from one compute host to another is needed to copy the VM file from one
host to another. For more information, see this IBM Documentation web page.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 359

https://www.ibm.com/docs/en/cic/1.1.5?topic=machines-resizing-virtual

Complete the following steps to resize a VM. In this example, we resize a server from Large to
Extra-Large (scale in):

1. In the Virtual Machines window, select the VM that you want to use (see Figure 9-40).

Figure 9-40 Resizing a VM

2. Click Resize. In the pop-up window, select the suitable Compute Template and then, click
Resize (see Figure 9-41).

Figure 9-41 Resizing details
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 360

3. The status of the VM changes, as shown in Figure 9-42.

Figure 9-42 Resize in progress

4. After the resize process completes, click the server for more information, as shown in
Figure 9-43. The extra server information is shown in Figure 9-44 on page 362.

Figure 9-43 Resize complete
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 361

You see that the physical unit (PU), memory, and disk were changed to new values. The
Host also might change because IBM Cloud Infrastructure Center redeploys the VM and
another LPAR can be selected to accommodate the new size (see Figure 9-44).

Figure 9-44 VM Larger Server

5. Complete the steps that are described in 9.2.4, “Extending the root file system” on
page 352 to increase the disk and PV sizes.

Attaching volumes to virtual machines
Before you can attach volume to VM, ensure that the FCP devices are set up for the compute
node.

To check whether the FCP devices exist on the compute node, run the lszfcp command, as
shown in the following example:

[root@rdbkkvm2 ~]# lszfcp

0.0.f000 host0

0.0.f100 host1

0.0.f200 host2

0.0.f300 host3

[root@rdbkkvm3 ~]# lszfcp

0.0.f000 host0

0.0.f100 host1

0.0.f200 host2

0.0.f300 host3
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 362

Complete the following steps in the UI to attach volumes:

1. Open the Virtual Machines window.

2. Select the VM to which you want to attach volumes.

3. Click Attach Volume and you see a pop-up window that shows the volumes that you
created.

4. Select a volume and click Attach to attach it to the VM.

5. Wait until the volume is in In-Use status.

Deleting volumes
Complete the following steps to delete volumes:

1. In the Data Volumes window of the Storage Providers window, select one or more volumes
and click Delete.

2. Click OK in the confirm dialog.

3. Wait until the volumes are removed.

Deleting virtual machines
Complete the following steps to remove a VM:

1. Select the Virtual Machines icon to open the Virtual Machines window (see Figure 9-45).

Figure 9-45 VM icon

Note: Some types of volumes cannot be deleted, such as a volume that is in use, or the
volume includes an associated snapshot. In this case, the Delete option is not available or
error dialog is displayed after the Delete option is clicked.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 363

2. Select the VM that is to be removed and then, click Delete. A pop-up window opens (see
Figure 9-46).

Figure 9-46 Confirming the deletion

3. Review your options and then, click Delete to remove the VM.

The VM disappears after few minutes if the process was successful.

Note: The VM does not have SAN volumes. Therefore, IBM Cloud Infrastructure Center
disables the volume deletion options.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 364

9.3 Creating a bond for KVM administration network interfaces

This section describes commands to enable the two OSA cards that are used for
administering KVMs.

As shown in Figure 9-47, we define b80 and b90 OSA cards into an active-backup bonding for
high availability. The other two OSAs (b00 and b10) are used by the Linux VMs.

Figure 9-47 OSA bonding for high availability

This architectural decision was made so that the b80 and b90 OSA cards can be shared with
any other KVM LPAR in the cluster and costs are reduced to avoid dedicating OSA cards to
perform only KVM administration tasks.

The following commands were used to enable the network devices (b80, b90, and bond0) and
set up the IP address on the bond0 interface:

� Define b80 and b90 OSA cards into an active-backup bonding for high availability:

cio_ignore -r b80-b82

cio_ignore -r b90-b92

znetconf -A

chzdev --enable qeth 0.0.0b80

chzdev --enable qeth 0.0.0b90

Note: Use HMC to run these commands because the SSH connection is lost when the
KVM administration interfaces are redefined.
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 365

� Delete and redefine the network connections by using nmcli:

nmcli connection down 'System encb80'

nmcli connection delete 'System encb80'

nmcli connection down 'System encb90'

nmcli connection delete 'System encb90'

nmcli connection add type bond con-name bond0 ifname bond0 bond.options
"mode=active-backup,miimon=1000"

nmcli connection add type ethernet slave-type bond con-name bond0-port1 ifname
encb80 master bond0

nmcli connection add type ethernet slave-type bond con-name bond0-port2 ifname
encb90 master bond0

� Set the IP address, default GW and other IP settings:

nmcli connection modify bond0 ipv4.addresses '9.214.220.201/23'

nmcli connection modify bond0 ipv4.gateway '9.214.220.1'

nmcli connection modify bond0 ipv4.dns '9.0.128.50'

nmcli connection modify bond0 ipv4.dns-search 'az12.dal.cpc.ibm.com'

nmcli connection modify bond0 ipv4.dns-options 'single-request-reopen'

nmcli connection modify bond0 ipv4.method manual

� Verify the new bond connection:

nmcli connection up bond0

nmcli device

� Make auto-connection feature available for the slave interfaces:

nmcli connection modify bond0 connection.autoconnect-slaves 1

nmcli connection up bond0

� Confirm that bonding is up and operational:

cat /proc/net/bonding/bond0

� Make the auto-connection feature available for slave interfaces:

nmcli connection modify bond0 connection.autoconnect-slaves 1

� Confirm that bonding is up and operational:

cat /proc/net/bonding/bond0

You should receive the following output if bonding is operational:

Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: fault-tolerance (active-backup)

Primary Slave: None

Currently Active Slave: encb80

MII Status: up

MII Polling Interval (ms): 1000

Up Delay (ms): 0

Down Delay (ms): 0
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 366

Peer Notification Delay (ms): 0

Slave Interface: encb80

MII Status: up

Speed: 25000 Mbps

Duplex: full

Link Failure Count: 0

Permanent HW addr: 96:14:39:0a:c3:64

Slave queue ID: 0

Slave Interface: encb90

MII Status: up

Speed: 25000 Mbps

Duplex: full

Link Failure Count: 0

Permanent HW addr: 9a:2b:41:c1:6b:95

Slave queue ID: 0
Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 367

Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines 368

Appendix A. Live Virtual Server Migration

This appendix describes a solution with which customers that are running Linux on
Kernel-based Virtual Machine (KVM) can use the Live Migrate function that is offered in KVM
hypervisor to relocate Linux guests around the KVM cluster.

This appendix includes the following topics:

� “Introduction” on page 370
� “Live migration phases” on page 370
� “Provisioning two servers” on page 371
� “Performing a live migration” on page 375

A

© Copyright IBM Corp. 2022. All rights reserved. 369

https://access.redhat.com/downloads/
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_t_virshCommandReference.html
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_r_virsh_migrate.html
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_r_virsh_migrate_setmaxdowntime.html
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_r_virsh_migrate_setmaxdowntime.html
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_r_virsh_migrate_setspeed.html

Introduction

A KVM cluster consists of KVM Linux systems in which all members can access shared
resources, including DASD volumes, Ethernet LAN segments, and storage area networks
(SANs). System management becomes easier because the members can be serviced,
managed, and administered as though they are one integrated system.

KVM clustering helps to meet horizontal growth of Z workload. With Live Migrate feature,
Linux virtual servers (guest virtual machines [VMs]) can be relocated to another member in
the cluster.

That way, organizations can roll out hardware and software maintenance and upgrades
without disrupting the business. This capability makes a significant contribution to continuous
availability.

To achieve higher levels of system, application, and data availability, organizations can
consider transitioning from stand-alone KVM systems to a KVM cluster.

You also can consider implementing Linux Health Checker to identify issues before they
cause problems. It helps to detect configuration errors, deviations from best practices, single
point-of-failures, unused accelerator hardware, hardware that is running in degraded mode,
and so on.

To migrate a running virtual server between hosts without affecting the virtual servers, the
source and destination hosts must be connected and access the same or equivalent systems
resources, storage devices, and networks.

For more information about live migration, see this IBM Documentation web page.

Live migration phases

The migration of a virtual server from a source to a destination host consists of two phases:
the live phase and the stopped phase.

These phases are described next.

Live phase
While the virtual server is running, its memory pages are transferred to the destination host.
During the live phase, the virtual server might continue to modify memory pages. These
pages are called dirty pages, which must be retransmitted.

QEMU continuously estimates the time that it needs to complete the migration during the
stopped phase. If this estimated time is less than the specified maximum downtime for
the virtual server, the virtual server enters the stopped phase of the migration.

If the virtual server changes memory pages faster than the host can transfer them to the
destination, the migration command option --auto-converge can be used to throttle down the
CPU time of the virtual server until the estimated downtime is less than the specified
maximum downtime. If you do not specify this option, the virtual server might never enter the
stopped phase because too many dirty pages must be migrated.
370 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_r_virsh_migrate_getspeed.html
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ldva/ldva_r_virsh_migrate_getspeed.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/kickstart-commands-and-options-reference_installing-rhel-as-an-experienced-user
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/kickstart-commands-and-options-reference_installing-rhel-as-an-experienced-user
https://www.ibm.com/docs/en/linux-on-systems?topic=migration-live
https://www.ibm.com/links?url=http%3A%2F%2Flibvirt.org%2Fremote.html

This mechanism works for average virtual server workloads. Workloads that are memory
intensive might require the extra specification of the --timeout option. This option suspends
the virtual server after a specified amount of time and avoids the situation where throttling
down the CPU cannot catch up with the memory activity and thus, in the worst case, the
migration operation never stops.

Stopped phase
During the stopped phase, the virtual server is paused. The host uses this downtime to
transfer the rest of the dirty pages and the virtual server’s system image to the destination.

If the virtual server makes use of storage keys, they are also migrated during this phase.

Provisioning two servers

This section describes how to deploy two Red Hat Linux VMs by using Red Hat Kickstart.

Before starting, the following prerequisites must be met:

� Red Hat Enterprise Linux DVD1 is available

� Two hostname names and two IP addresses are available for the subnet where the VMs
are to be deployed. In our case, we chose 9.214.232.208 for kvm-vm-001 and
9.214.232.209 for kvm-vm-002 servers.

The steps that are listed in this section provide a quick method to create a Red Hat 8.4 VM by
using Red Hat Kickstart process.

For more information about Red Hat Kickstart, see this Red Hat Documentation web page.

Complete the following steps on only the first KVM compute node (rdbkkvm2). It deploys a
new VM:

1. Run the following command to create an encrypted password, which is used later to
update the Red Hat Kickstart file:

python -c 'import crypt,getpass;pw=getpass.getpass();print(crypt.crypt(pw) if
(pw==getpass.getpass("Confirm: ")) else exit())'

2. Create the /gpfs/img folder:

mkdir -pv /gpfs/img

3. Upload the Red Hat DVD image. (If you do not have the image, download it from this
Red Hat web page):

ls -la /gpfs/img/rhel-8.4-s390x-dvd.iso
-rw-r--r--. 1 root root 3783262208 Dec 3 11:14
/gpfs/img/rhel-8.4-s390x-dvd.iso

Note: When prompted, enter the initial password that is to be used for the root ID.
Make a note of this encrypted password because it is need later.
Appendix A. Live Virtual Server Migration 371

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_8_installation/performing_an_automated_installation_using_kickstart
https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/guide/234ad6fb-71bc-4ebd-b8cc-88729dff2d0f
https://access.redhat.com/downloads/
https://access.redhat.com/downloads/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/kickstart-commands-and-options-reference_installing-rhel-as-an-experienced-user

4. Create the /gpfs/rhel-8.4-s390x-VM.cfg file by using the content that is shown in
Example A-1. You must update the settings that are highlighted in bold with the encrypted
root password that was created in Step 1 and update the IP address of the new virtual
server.

Example A-1 Content for /gpfs/rhel-8.4-s390x-VM.cfg file

text
lang en_US.UTF-8
keyboard us
rootpw
6y9kVIF0tWVCHn3JO$qPP9arflAhlVRB4BJCbXALMYrKGJGSmzD.6xGfUSnFAmB9cyUbrD7e4d56y
T.L1fC52ptHatKMxrmhT2Ox/eM1 --iscrypted
timezone America/New_York
poweroff
zerombr
ignoredisk --only-use=vda
clearpart --all
Static IP address with gateway to allow network communication - Update this
section
network --hostname=kvm-vm-001 --bootproto=static --ip=9.214.232.208
--netmask=255.255.255.0 --gateway=9.214.232.1 --nameserver=9.0.128.50

part /boot --fstype=xfs --size=1024 --asprimary

part pv.0 --fstype=lvmpv --size=8192 --grow
volgroup systemvg --pesize=8192 pv.0
logvol / --vgname=systemvg --name=root --fstype=xfs --size=1024
logvol /usr --vgname=systemvg --name=usr --fstype=xfs --size=4096
logvol /home --vgname=systemvg --name=home --fstype=xfs --size=128
logvol /opt --vgname=systemvg --name=opt --fstype=xfs --size=128
logvol /tmp --vgname=systemvg --name=tmp --fstype=xfs --size=128
logvol /var --vgname=systemvg --name=var --fstype=xfs --size=1024
logvol swap --vgname=systemvg --name=swap --fstype=swap --size=1024

syspurpose --role="Red Hat Enterprise Linux Server" --sla="Standard"
--usage="Development/Test"
auth --passalgo=sha512
selinux --permissive
firewall --disabled
skipx
firstboot --disable

%packages
@^server-product-environment
kexec-tools
bind-utils
device-mapper-multipath
e2fsprogs
git
iproute
ksh
net-tools
cloud-init
cloud-utils-growpart
procps
372 Virtualization Cookbook for IBM Z Volume 5: KVM

unzip
vim
zip
file
perl-Net-Ping
binutils
wget
rsync
postfix
gettext
yum
%end

%post
subscription-manager unregister
touch /etc/sudo.env
cat /dev/null > /etc/multipath/bindings
cat /dev/null > /etc/multipath/wwids
cat /usr/share/doc/device-mapper-multipath-0.4.9/multipath.conf >
/etc/multipath.conf

sed -i -e '/^users:$/,/^ - default$/d' -e 's/^disable_root: 1/disable_root: 0/'
-e 's/^ssh_pwauth: 0/ssh_pwauth: 1/' /etc/cloud/cloud.cfg

echo "Installation completed."

%end

5. Export BASH variables to help create the VM creation. Update MachineName for the name
of the VM that you are deploying now.

export ISO="/gpfs/img/rhel-8.4-s390x-dvd.iso"
export MachineName='kvm-vm-001'

Consider the following points:

– ISO contains the path for the Red Hat 8.4 DVD .iso file, which must be downloaded.

– MachineName contains the name of the VM that is created in IBM Cloud Infrastructure
Center.

6. Ensure that the virt-install package is installed:

yum install -y virt-install

7. Create the QCOW2 file:

qemu-img create -f qcow2 -o preallocation=metadata /gpfs/${MachineName}.qcow2
10G

8. Use the following command to automatically create the Red Hat VM:

virt-install --virt-type=kvm --name=${MachineName} --vcpus=2 --memory=4096
--location="${ISO}" --disk path=/gpfs/${MachineName}.qcow2,format=qcow2
--network default --noreboot --initrd-inject=/gpfs/rhel-8.4-s390x-VM.cfg
--extra-args "inst.ks=file:/rhel-8.4-s390x-VM.cfg"
Appendix A. Live Virtual Server Migration 373

Figure A-1 Progress output

9. Repeat the steps that are shown in Step 8 for the second VM. Remember to update the
content that is highlighted in bold in Example A-1 on page 372 with the kvm-vm-002 name
and IP address.

10.Now that kvm-vm-001 and kvm-vm-002 are deployed, start the servers:

virsh list --all
Id Name State

 - kvm-vm-001 shut off
 - kvm-vm-002 shut off
virsh start kvm-vm-001
Domain kvm-vm-001 started
virsh start kvm-vm-002
Domain kvm-vm-002 started
virsh list --all
 Id Name State

 18 kvm-vm-001 running
 19 kvm-vm-002 running

If problems occur in building the servers, run the following commands to shut down and
remove the definition of the servers before attempting the installation again:
virsh shutdown kvm-vm-001
virsh undefine kvm-vm-001

Note: The installation takes some minutes to complete. Wait until the process is
completed, at which time you receive the following output that is shown in Figure A-1.
374 Virtualization Cookbook for IBM Z Volume 5: KVM

Performing a live migration

The commands that are described in this section are useful in the context of a live migration.

Procedure

Complete the following steps to perform a live migration:

1. Verify the default tolerable downtime for the virtual servers:

virsh migrate-getmaxdowntime kvm-vm-001
300
virsh migrate-getmaxdowntime kvm-vm-002

300

2. Use the maxdowntime value if problems are encountered while migrating a server. This
value might be too low for the migration to complete.

You can still issue the following command during the migration process:

virsh migrate-setmaxdowntime <VS> <milliseconds>

To set or modify the maximum bandwidth, use the virsh migrate-setspeed command (see
this IBM Documentation web page):

virsh migrate-setspeed <VS> --bandwidth <mebibyte-per-second>

You can display the maximum bandwidth that is used during a migration by using the
virsh migrate-getspeed command (see this IBM Documentation web page):

virsh migrate-getspeed <VS>

3. Start a live migration of a virtual server from rdbkkvm2 to rdbkkvm3 by using the
virsh migrate command with the --live option:

virsh --keepalive-interval 10 migrate --live --persistent --undefinesource
--timeout 1200 --verbose kvm-vm-001 qemu+ssh://rdbkkvm3/system
Migration: [100 %]

The command uses the following syntax:

virsh migrate --live <command-options> <VS>
qemu+ssh://<destination-host>/system

Where:

– <command-options> are the virsh migrate command options.

– <destination-host> is the name of the destination host.

Optional: You can specify a tolerable downtime for a virtual server during a migration
operation by using the virsh migrate-setmaxdowntime command. The specified value is
used to estimate the point in time when to enter the stopped phase.

Optional: You might want to limit the bandwidth that is provided for a migration.

Note: When virsh connects to the destination host by way of SSH, you are prompted
to enter a password. For more information about avoiding the need to enter a
password, see this web page.
Appendix A. Live Virtual Server Migration 375

https://www.ibm.com/docs/en/linux-on-systems?topic=domain-migrate-setspeed
https://www.ibm.com/docs/en/linux-on-systems?topic=domain-migrate-setspeed
https://www.ibm.com/docs/en/linux-on-systems?topic=domain-migrate-getspeed
https://www.ibm.com/docs/en/linux-on-systems?topic=domain-migrate-getspeed
libvirt.org/remote.html
https://www.ibm.com/docs/en/linux-on-systems?topic=domain-migrate-setspeed

– <mebibyte-per-second> is the migration bandwidth limit in MiBps.

– <milliseconds> is the number of milliseconds that is used to estimate the point in time
when the virtual server enters the stopped phase.

– <VS> is the name of the virtual server as specified in its domain configuration-XML file.

Consider the following points:

� Optional: The use of the --auto-converge and the --timeout options ensure that the
migration operation completes.

� Optional: To avoid connectivity loss during a time-consuming migration process, increase
the virsh keepalive interval (see this web page):

virsh --keepalive-interval <interval-in-seconds>

� The use of the virsh --keepalive-interval and --keepalive-count options preserves
the communication connection between the host that initiates the migration and the libvirtd
service on the source host during time-consuming processes.

� Use the keepalive options if:

– The virtual server is running a memory-intensive workload so that it might need to be
suspended to complete the migration.

– You can use an increased timeout interval. The following default values are used:

• keepalive interval: 5 seconds
• keepalive count: 6

These defaults can be changed in /etc/libvirt/libvirtd.conf, as shown in the
following example:

virsh --keepalive-interval 10 migrate --live --persistent
--undefinesource \
--timeout 1200 --verbose vserv1 qemu+ssh://kvmhost/system

This example shows an increase of 10 seconds in the keepalive interval of the
connection to the host.

� Optional: Perform disk migration for any virtual block devices that are backed by local
resources on the source host. Such local host resource can be, for example, image files in
the host file system or PCIe-attached NVMe devices.

Specify the --copy-storage-all or --copy-storage-inc option with the
--migrate-disks option to copy image files or file systems on NVMe devices to the
destination host.

Restriction

Disk migration is possible for writable virtual disks only.

Example 1
One example of a read-only disk is a virtual DVD. If in doubt, check your domain
configuration-XML. If the disk device attribute of a disk element is configured as cdrom, or
contains a read-only element, the disk cannot be migrated.

Consider the following example in which the qcow2 image /var/libvirt/images/vdd.qcow2 is
copied to the destination host (assuming that the VDD is configured as shown here:

<disk type="file" device="disk">
 <driver name="qemu" type="qcow2" io="native" cache="none"/>
 <source file="/var/lib/libvirt/images/vdd.qcow2"/>
376 Virtualization Cookbook for IBM Z Volume 5: KVM

https://www.ibm.com/docs/en/linux-on-systems?topic=reference-selected-virsh-commands
https://www.ibm.com/docs/en/linux-on-systems?topic=reference-selected-virsh-commands
https://www.ibm.com/docs/en/linux-on-systems?topic=reference-selected-virsh-commands

 <target dev="vdd" bus="virtio"/>
 <address type="ccw" cssid="0xfe" ssid="0x0" devno="0x0004"/>
</disk>

First, a qcow2 image is created on the destination host:

[root@destination]# qemu-img create -f qcow2 \
/var/lib/libvirt/images/vdd.qcow2 1G

Then, the virsh migrate command is run on the source host:

[root@source]# virsh migrate --live
--copy-storage-all --migrate-disks vdd \
vserv2 qemu+ssh://zhost/system

Results
The virtual server is not destroyed on the source host until it is migrated to the destination
host.

If an error occurs during migration, the resources on the destination host are cleaned up and
the virtual server continues to run on the source host.

Example 2
In this example, a live migration of the virtual server vserv3 to the destination host zhost is
started.

The virtual server is transient on zhost; that is, after vserv3 is stopped on zhost, its definition
is deleted. After a successful migration, the virtual server is destroyed on the source host, but
still is defined.

If the migration operation is not ended within 300 seconds, the virtual server is suspended
while the migration continues.:

virsh migrate --live --auto-converge --timeout 300 vserv3
qemu+ssh://zhost/system

Next steps
You can verify whether the migration completed successfully by looking for a running status of
the virtual server on the destination; for example, by using the virsh list command:

virsh list
Id Name State

 5 kvm-vm-001 running

You also can cancel an on-going migration operation by using the virsh domjobabort
command:

virsh domjobabort <VS>
Appendix A. Live Virtual Server Migration 377

378 Virtualization Cookbook for IBM Z Volume 5: KVM

Appendix B. Kernel-based Virtual Machine
LPAR live migration

This appendix describes an example of a virtual machine (VM) live migration between two
different logical partitions (LPARs) in the same physical machine.

B

© Copyright IBM Corp. 2022. All rights reserved. 379

Overview

Figure B-1 shows an overview of the environment that was used for our example.

Figure B-1 Live migration physical resources

Before you attempt this example, see 2.2.7, “Linux virtual machine live migration” on page 36
for more information about planning.

For more information about live migration, see Linux on Z and LinuxONE: KVM Virtual Server
Management.

In this example, we move the kvmlive01 VM guest from the KVM host, rdbkkvmv, to rdbkkvmu
by using the live migration feature.

The following information was collected for this example:

� rdbkkvmv KVM host:

– Management IP address: 9.76.61.179

– HiperSockets IP address: 100.150.233.43

– MacVTap network: macvtap-net

– OSA IP address with the same physical network (PNET) ID as ISM interface:
129.40.23.242

– FCP device adapters: B90B and C90B
380 Virtualization Cookbook for IBM Z Volume 5: KVM

http://public.dhe.ibm.com/software/dw/linux390/docu/l19bva05.pdf
http://public.dhe.ibm.com/software/dw/linux390/docu/l19bva05.pdf

� rdbkkvmu KVM host:

– Management IP address: 9.76.61.184
– HiperSockets IP address: 100.150.233.42
– MacVTap network: macvtap-net
– OSA IP address with the same PNET ID as ISM interface: 129.40.23.243
– FCP device adapters: B90A and C90A

� kvmlive01 VM guest:

– vNIC IP address: 9.76.61.40
– LUN used by the operating system: 4001400F00000000

Considerations for our environment
On IBM Z, it is possible to proceed with live migration on all available interfaces: SMC-R
(RoCE), OSA, SMC-D (ISM), or HiperSocket.

In this lab, we perform the live migration between two different LPARs in the same Z platform
by using ISM (SMC-D) devices to communicate.

The VM network interface, macvtap-net, must have the same name in both LPARs.
Example B-1 shows the (domain) network definition of the VM guest.

Example B-1 kvmlive01 network definition

<interface type='direct'>
 <mac address='52:54:00:08:cd:b9'/>
 <source network='macvtap-net' dev='bond0' mode='bridge'/>
 <target dev='macvtap1'/>
 <model type='virtio'/>
 <alias name='net0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0001'/>
 </interface>

The VM guest uses a block device as a disk source with the same dm-uuid in both LPARs.
Example B-2 shows the (domain) disk definition of the kvmlive01 VM guest.

Example B-2 kvmlive01 disk definition

<disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native'/>
 <source
dev='/dev/disk/by-id/dm-uuid-mpath-36005076309ffd145000000000000010f'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0000'/>
 </disk>
Appendix B. Kernel-based Virtual Machine LPAR live migration 381

The source and destination KVM requires access to the VM guest disks. Example B-3 shows
the disk device is present on both machines.

Example B-3 Verifying device access

root@rdbkkvmu:/dev/disk/by-id# ls | grep 10f
dm-uuid-mpath-36005076309ffd145000000000000010f
root@rdbkkvmv:/dev/disk/by-id# ls | grep 10f
dm-uuid-mpath-36005076309ffd145000000000000010f

Performing live migration
This example shows how to perform live migration by using the SMC-D feature. For more
information about how to enable an SMC-D environment between KVM hosts, see “Enabling
SMC-D” on page 70.

For this example, the SSHD service on rdbkkvmu was enabled also to listen on the ISM
(SMC-D) interface by using similar steps that are described in “Enabling SMC-D” on page 70.
Example B-4 shows the command that is used to perform a live migration from rdbkkvmv to
rdbkkvmu.

Example B-4 Live migration command

root@rdbkkvmv:/home/lnxadmin# virsh migrate kvmlive01
qemu+ssh://129.40.23.243/system

Example B-5 shows the SMC-D feature use during the live migration process.

Example B-5 Live migration by using SMC-D

root@rdbkkvmu:/home/lnxadmin/smc-tools/smc-tools-1.2.0# ./smcss -a
State UID Inode Local Address Peer Address Intf
Mode
INIT 00000 0000000
ACTIVE 00000 0462309 129.40.23.243:22 129.40.23.242:40804 0000
SMCD
INIT 00000 0000000
LISTEN 00000 0405985 0.0.0.0:22
382 Virtualization Cookbook for IBM Z Volume 5: KVM

Example B-6 shows the kvmlive01 migrated between two different KVM hosts. It reflects
being shut off in the previous host (rdbkkvmv) and running in the new one (rdbkkvmu).

Example B-6 Live migration verification

root@rdbkkvmu:/home/lnxadmin/smc-tools/smc-tools-1.2.0# virsh list --all
 Id Name State

12 kvmlive01 running
root@rdbkkvmu:/home/lnxadmin/smc-tools/smc-tools-1.2.0# virsh domstate kvmlive01
--reason
running (migrated)

root@rdbkkvmv:/home/lnxadmin# virsh list --all
 Id Name State

 3 RHEL77 running
 12 instance-00000010 running
 - kvmlive01 shut off
root@rdbkkvmv:/home/lnxadmin# virsh domstate kvmlive01 --reason
shut off (migrated)

Example B-7 shows the connectivity during the live migration.

Example B-7 Connectivity test during live migration

C:\Users\user10>ping 9.76.61.40 -t

Pinging 9.76.61.40 with 32 bytes of data:
Reply from 9.76.61.40: bytes=32 time=18ms TTL=48
Reply from 9.76.61.40: bytes=32 time=18ms TTL=48
Reply from 9.76.61.40: bytes=32 time=18ms TTL=48
Request timed out.
Reply from 9.76.61.40: bytes=32 time=27ms TTL=48
Reply from 9.76.61.40: bytes=32 time=18ms TTL=48
Appendix B. Kernel-based Virtual Machine LPAR live migration 383

384 Virtualization Cookbook for IBM Z Volume 5: KVM

Appendix C. Scripts for SLES guest
installation

This appendix describes the scripts that help you to simplify the set up for an AutoYAST
installation and includes the following topics:

� “Preparing and setting up for AutoYAST installation” on page 386
� “AutoYAST configuration file for KVM guest” on page 387

C

© Copyright IBM Corp. 2022. All rights reserved. 385

Preparing and setting up for AutoYAST installation

Use script that is shown in Example C-1 to install a SLES KVM virtual machine.

Example C-1 prep-for-install.sh

#!/bin/bash

KVM Host variables
AUTOYAST_FILE=/root/autoyast.xml
ISO_FILE=/var/lib/libvirt/images/isos/SLE-12-SP5-Server-DVD-s390x-GM-DVD1.iso
INSTALL_DIR=/var/lib/libvirt/images/sles12sp5-install

oracle19c VM variables
VM_OS_DISK=/dev/disk/by-path/ccw-0.0.fa00-fc-0x500507630703d3b3-lun-0x4001403d00000000
VM_ORACLE_DISK=/dev/disk/by-path/ccw-0.0.fa00-fc-0x500507630703d3b3-lun-0x4001403e00000000
VM_ORACLEDB_DISK=/dev/disk/by-path/ccw-0.0.fa01-fc-0x500507630703d3b3-lun-0x4001403f0000000
0
VEPA_NIC=eth1
VEPA_NIC_DEVNO=0x0810

if test ! -e ${ISO_FILE}; then
 echo
 echo "Please copy $(basename ${ISO_FILE}) to $(dirname ${ISO_FILE})."
 echo "Quitting..."
 exit 1
fi
if test ! -e ${AUTOYAST_FILE}; then
 echo
 echo "Please copy $(basename ${AUTOYAST_FILE}) to $(dirname ${AUTOYAST_FILE})."
 echo "Quitting..."
 exit 1
fi

echo "Setting up environment for autoyast installation."
mkdir -p ${INSTALL_DIR}
TMP_MNT=$(mktemp -d)
mount ${ISO_FILE} ${TMP_MNT} > /dev/null 2>&1
cp ${TMP_MNT}/boot/s390x/linux ${INSTALL_DIR}
cp ${TMP_MNT}/boot/s390x/initrd ${INSTALL_DIR}
umount ${TMP_MNT}
rmdir ${TMP_MNT}
mkisofs -quiet ${AUTOYAST_FILE} > ${INSTALL_DIR}/autoyast.iso

echo "Generating oracle19c virtual machine xml file for SLES installation."
for disk in ${VM_OS_DISK} ${VM_ORACLE_DISK} ${VM_ORACLEDB_DISK}; do
 if test ! -e ${disk}; then
 echo
 echo "${disk} is not defined."
 echo "Quitting..."
 exit 1
 fi
done
if test $(lsqeth | grep -c ${VEPA_NIC}) -eq 0; then
 echo
 echo "${VEPA_NIC} is not defined."
 echo "Quitting..."
 exit 1
fi
virt-install --name oracle19c --vcpus 4 --memory 4096 \
386 Virtualization Cookbook for IBM Z Volume 5: KVM

--disk path=${VM_OS_DISK},cache=none,io=native,target=vda \
--disk path=${VM_ORACLE_DISK},cache=none,io=native,target=vdb \
--disk path=${VM_ORACLEDB_DISK},cache=none,io=native,target=vdc \
--network
type=direct,source=${VEPA_NIC},address.type=ccw,address.cssid=0xfe,address.ssid=0x0,address
.devno=${VEPA_NIC_DEVNO} \
--cdrom ${ISO_FILE} \
--disk path=${INSTALL_DIR}/autoyast.iso,device=cdrom \
--boot kernel=${INSTALL_DIR}/linux,initrd=${INSTALL_DIR}/initrd,\
kernel_args="self_update=0 install=cd:/ autoyast=device://sr1/autoyast.xml" \
--print-xml 1 > /root/ora_install.xml

echo "Defining oracle19c virtual machine for runtime administration."
virsh -q define /root/ora_install.xml
virt-xml -q oracle19c --remove-device --disk path=${INSTALL_DIR}/autoyast.iso,device=cdrom
virt-xml -q oracle19c --edit --boot kernel=,initrd=,kernel_args=
virt-xml -q oracle19c --edit --events on_reboot=restart

exit 0

AutoYAST configuration file for KVM guest

Example C-2 shows the autoyast.xml file that is used to automatically install SLES 12 SP5.

Example C-2 autoyast.xml

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns"
xmlns:config="http://www.suse.com/1.0/configns">
 <add-on>
 <add_on_products config:type="list"/>
 </add-on>
 <dasd>
 <devices config:type="list"/>
 <format_unformatted config:type="boolean">false</format_unformatted>
 </dasd>
 <deploy_image>
 <image_installation config:type="boolean">false</image_installation>
 </deploy_image>
 <firewall>
 <enable_firewall config:type="boolean">false</enable_firewall>
 <start_firewall config:type="boolean">false</start_firewall>
 </firewall>
 <general>
 <ask-list config:type="list"/>
 <cio_ignore config:type="boolean">false</cio_ignore>
 <mode>
 <confirm config:type="boolean">true</confirm>
 </mode>
 <proposals config:type="list"/>
 <signature-handling>
 <accept_file_without_checksum
config:type="boolean">true</accept_file_without_checksum>
Appendix C. Scripts for SLES guest installation 387

 <accept_non_trusted_gpg_key
config:type="boolean">true</accept_non_trusted_gpg_key>
 <accept_unknown_gpg_key config:type="boolean">true</accept_unknown_gpg_key>
 <accept_unsigned_file config:type="boolean">true</accept_unsigned_file>
 <accept_verification_failed
config:type="boolean">false</accept_verification_failed>
 <import_gpg_key config:type="boolean">true</import_gpg_key>
 </signature-handling>
 <storage>
 <partition_alignment
config:type="symbol">align_optimal</partition_alignment>
 <start_multipath config:type="boolean">false</start_multipath>
 </storage>
 </general>
 <kdump>
 <add_crash_kernel config:type="boolean">true</add_crash_kernel>
 <crash_kernel>163M</crash_kernel>
 </kdump>
 <language>
 <language>en_US</language>
 <languages/>
 </language>
 <login_settings/>
 <networking>
 <dns>
 <dhcp_hostname config:type="boolean">false</dhcp_hostname>
 <write_hostname config:type="boolean">false</write_hostname>
 </dns>
 <ipv6 config:type="boolean">false</ipv6>
 <keep_install_network config:type="boolean">true</keep_install_network>
 <managed config:type="boolean">false</managed>
 <interfaces config:type="list">
 <interface>
 <bootproto>dhcp</bootproto>
 <device>eth0</device>
 <dhclient_set_default_route>yes</dhclient_set_default_route>
 <name>Ethernet Card 0 (virtio4)</name>
 <startmode>auto</startmode>
 </interface>
 </interfaces>
 </networking>
 <nis>
 <start_autofs config:type="boolean">false</start_autofs>
 <start_nis config:type="boolean">false</start_nis>
 </nis>
 <ntp-client>
 <start_at_boot config:type="boolean">false</start_at_boot>
 <start_in_chroot config:type="boolean">false</start_in_chroot>
 <sync_interval config:type="integer">5</sync_interval>
 <synchronize_time config:type="boolean">false</synchronize_time>
 </ntp-client>
 <partitioning config:type="list">
 <drive>
 <device>/dev/vda</device>
 <disklabel>msdos</disklabel>
388 Virtualization Cookbook for IBM Z Volume 5: KVM

 <enable_snapshots config:type="boolean">true</enable_snapshots>
 <initialize config:type="boolean">true</initialize>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">true</create>
 <crypt_fs config:type="boolean">false</crypt_fs>
 <filesystem config:type="symbol">ext2</filesystem>
 <format config:type="boolean">true</format>
 <fstopt>acl,user_xattr</fstopt>
 <loop_fs config:type="boolean">false</loop_fs>
 <mount>/boot/zipl</mount>
 <mountby config:type="symbol">uuid</mountby>
 <partition_id config:type="integer">131</partition_id>
 <partition_nr config:type="integer">1</partition_nr>
 <partition_type>primary</partition_type>
 <resize config:type="boolean">false</resize>
 <size>auto</size>
 </partition>
 <partition>
 <create config:type="boolean">true</create>
 <crypt_fs config:type="boolean">false</crypt_fs>
 <filesystem config:type="symbol">swap</filesystem>
 <format config:type="boolean">true</format>
 <fstopt>defaults</fstopt>
 <loop_fs config:type="boolean">false</loop_fs>
 <mount>swap</mount>
 <mountby config:type="symbol">uuid</mountby>
 <partition_id config:type="integer">130</partition_id>
 <partition_nr config:type="integer">2</partition_nr>
 <resize config:type="boolean">false</resize>
 <!-- Minimum of 4G of swap required for Oracle 19c installation -->
 <size>4G</size>
 </partition>
 <partition>
 <create config:type="boolean">true</create>
 <crypt_fs config:type="boolean">false</crypt_fs>
 <filesystem config:type="symbol">btrfs</filesystem>
 <format config:type="boolean">true</format>
 <fstopt>defaults</fstopt>
 <loop_fs config:type="boolean">false</loop_fs>
 <mount>/</mount>
 <mountby config:type="symbol">uuid</mountby>
 <partition_id config:type="integer">131</partition_id>
 <partition_nr config:type="integer">3</partition_nr>
 <partition_type>primary</partition_type>
 <resize config:type="boolean">false</resize>
 <size>max</size>
 </partition>
 </partitions>
 <pesize/>
 <type config:type="symbol">CT_DISK</type>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/vdb</device>
Appendix C. Scripts for SLES guest installation 389

 <disklabel>msdos</disklabel>
 <enable_snapshots config:type="boolean">false</enable_snapshots>
 <initialize config:type="boolean">true</initialize>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">true</create>
 <crypt_fs config:type="boolean">false</crypt_fs>
 <filesystem config:type="symbol">xfs</filesystem>
 <format config:type="boolean">true</format>
 <fstopt>defaults</fstopt>
 <loop_fs config:type="boolean">false</loop_fs>
 <mount>/opt/oracle</mount>
 <mountby config:type="symbol">uuid</mountby>
 <partition_id config:type="integer">131</partition_id>
 <partition_nr config:type="integer">1</partition_nr>
 <partition_type>primary</partition_type>
 <resize config:type="boolean">false</resize>
 <size>max</size>
 </partition>
 </partitions>
 <pesize/>
 <type config:type="symbol">CT_DISK</type>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/vdc</device>
 <disklabel>msdos</disklabel>
 <enable_snapshots config:type="boolean">false</enable_snapshots>
 <initialize config:type="boolean">true</initialize>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">true</create>
 <crypt_fs config:type="boolean">false</crypt_fs>
 <filesystem config:type="symbol">xfs</filesystem>
 <format config:type="boolean">true</format>
 <fstopt>defaults</fstopt>
 <loop_fs config:type="boolean">false</loop_fs>
 <mount>/opt/oracle/oradata</mount>
 <mountby config:type="symbol">uuid</mountby>
 <partition_id config:type="integer">131</partition_id>
 <partition_nr config:type="integer">1</partition_nr>
 <partition_type>primary</partition_type>
 <resize config:type="boolean">false</resize>
 <size>max</size>
 </partition>
 </partitions>
 <pesize/>
 <type config:type="symbol">CT_DISK</type>
 <use>all</use>
 </drive>
 </partitioning>
 <report>
 <errors>
 <log config:type="boolean">true</log>
 <show config:type="boolean">true</show>
390 Virtualization Cookbook for IBM Z Volume 5: KVM

 <timeout config:type="integer">0</timeout>
 </errors>
 <messages>
 <log config:type="boolean">true</log>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">0</timeout>
 </messages>
 <warnings>
 <log config:type="boolean">true</log>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">0</timeout>
 </warnings>
 <yesno_messages>
 <log config:type="boolean">true</log>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">0</timeout>
 </yesno_messages>
 </report>
 <services-manager>
 <default_target>multi-user</default_target>
 </services-manager>
 <software>
 <image/>
 <install_recommended config:type="boolean">true</install_recommended>
 <instsource/>
 <packages config:type="list">
 <package>vlan</package>
 <package>snapper</package>
 <package>sles-release</package>
 <package>openssh</package>
 <package>lvm2</package>
 <package>kexec-tools</package>
 <package>kdump</package>
 <package>grub2</package>
 <package>glibc</package>
 <package>e2fsprogs</package>
 <package>btrfsprogs</package>
 <!-- Required by ora-val-rpm-S12-DB-19c-19.0.1-1.s390x.rpm for Oracle 19c
install -->
 <package>libaio1-32bit</package>
 <package>libXp6</package>
 <package>libXp6-32bit</package>
 </packages>
 <patterns config:type="list">
 <pattern>32bit</pattern>
 <pattern>Basis-Devel</pattern>
 <pattern>Minimal</pattern>
 <pattern>base</pattern>
 <pattern>documentation</pattern>
 <pattern>oracle_server</pattern>
 <pattern>sles-Basis-Devel-32bit</pattern>
 <pattern>sles-Minimal-32bit</pattern>
 <pattern>sles-base-32bit</pattern>
 <pattern>sles-documentation-32bit</pattern>
 <pattern>sles-oracle_server-32bit</pattern>
Appendix C. Scripts for SLES guest installation 391

 <pattern>sles-x11-32bit</pattern>
 <pattern>x11</pattern>
 <pattern>yast2</pattern>
 </patterns>
 </software>
 <timezone>
 <hwclock>UTC</hwclock>
 <timezone>America/New_York</timezone>
 </timezone>
 <users config:type="list">
 <user>
 <fullname>root</fullname>
 <gid>0</gid>
 <home>/root</home>
 <password_settings>
 <expire/>
 <flag/>
 <inact/>
 <max/>
 <min/>
 <warn/>
 </password_settings>
 <shell>/bin/bash</shell>
 <uid>0</uid>
 <user_password>password</user_password>
 <username>root</username>
 </user>
 </users>
 <zfcp>
 <devices config:type="list"/>
 </zfcp>
</profile>
392 Virtualization Cookbook for IBM Z Volume 5: KVM

IS
B

N
 0738460842

S
G

24-8463-01

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Virtualization Cookbook for IBM
 Z Volum

e 5: KVM

394 Virtualization Cookbook for IBM Z Volume 5: KVM

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738460842

SG24-8463-01

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Understanding the Kernel-based Virtual Machine on IBM Z
	1.1 Kernel-based Virtual Machine on IBM Z
	1.1.1 Why on IBM Z
	1.1.2 KVM as a hypervisor on IBM Z
	1.1.3 KVM on IBM Z running in a private cloud

	1.2 KVM working on IBM Z
	1.3 Managing and monitoring KVM on IBM Z
	1.3.1 Libvirt
	1.3.2 OpenStack
	1.3.3 Virt-install
	1.3.4 Virsh
	1.3.5 Virt-manager
	1.3.6 Cockpit
	1.3.7 IBM Cloud Infrastructure Center
	1.3.8 Platform management
	1.3.9 Managing the KVM guest lifecycle
	1.3.10 KVM host and guest monitoring

	1.4 Securing KVM on IBM Z
	1.4.1 Access control
	1.4.2 IBM Secure Execution on IBM z15 and newer IBM Z systems
	1.4.3 Authentication solutions
	1.4.4 Multi-factor authentication
	1.4.5 Audit

	1.5 Availability with KVM on IBM Z
	1.6 KVM on IBM Z backup and recovery

	Chapter 2. Planning for the Kernel-based Virtual Machine host and guest
	2.1 Basic requirements for KVM hosts and guests
	2.1.1 Hardware requirements
	2.1.2 Software requirements
	2.1.3 Availability requirements
	2.1.4 Deployment architecture

	2.2 Planning resources for KVM guests
	2.2.1 Compute considerations
	2.2.2 Storage considerations
	2.2.3 Network considerations
	2.2.4 Encryption considerations
	2.2.5 KVM guest domain considerations
	2.2.6 Methods for installing Linux into a guest domain
	2.2.7 Linux virtual machine live migration

	2.3 Planning for management and monitoring
	2.3.1 KVM host management
	2.3.2 KVM host monitoring
	2.3.3 KVM guest management
	2.3.4 KVM guest monitoring

	2.4 Planning for security
	2.4.1 Access controls
	2.4.2 Authentication solutions
	2.4.3 Audit
	2.4.4 Firewalls
	2.4.5 Cryptography
	2.4.6 Multi-factor authentication

	2.5 Planning for backup and recovery
	2.5.1 KVM host backups and recovery
	2.5.2 KVM guest backup and recovery

	Chapter 3. Preparing the Red Hat Enterprise Linux Kernel-based Virtual Machine environment for virtual machine use
	3.1 Defining the target configuration
	3.1.1 Logical View
	3.1.2 Physical resources
	3.1.3 Software resources

	3.2 Preparing the infrastructure
	3.2.1 Configuring the resources in Z platform
	3.2.2 Configure the storage resources

	3.3 Collecting information
	3.3.1 Installing RHEL on an LPAR installation
	3.3.2 Virtual machine installation information

	3.4 Installing RHEL on an LPAR as KVM host
	3.4.1 Preparing the installation
	3.4.2 Installing RHEL on an LPAR
	3.4.3 Preparing the host for virtualization

	3.5 Configuring the KVM host
	3.5.1 Defining NICs
	3.5.2 Defining the bond interface
	3.5.3 Defining HiperSocket interfaces
	3.5.4 Defining HiperSocket interface to support VM guest network
	3.5.5 Defining HiperSocket KVM host interface
	3.5.6 Defining HiperSocket Converged interface
	3.5.7 Defining SMC interfaces
	3.5.8 Defining the MacVTap network
	3.5.9 Defining crypto adapters and domains

	3.6 Deploying virtual machines on KVM
	3.6.1 Creating QCOW2 disk image file
	3.6.2 Installing a new guest by using virt-install
	3.6.3 Cloning a guest by using Virsh
	3.6.4 Adding HiperSockets to the VM guest
	3.6.5 Adding space to guest from ECKD DASD
	3.6.6 Adding DASD space to guest as a VFIO device
	3.6.7 Adding LUNs if FCP SCSI storage is used
	3.6.8 Adding cryptography support to the VM guest
	3.6.9 Using the Integrated Accelerator for zEnterprise Data Compression

	Chapter 4. Preparing the SLES Kernel-based Virtual Machine environment for virtual machine use
	4.1 Defining the target configuration
	4.1.1 Logical View
	4.1.2 Physical resources
	4.1.3 Software resources

	4.2 Preparing the infrastructure
	4.3 Collecting information
	4.3.1 Required information for SLES on an LPAR installation
	4.3.2 Required information for VM installations

	4.4 Installing SUSE on an LPAR as a KVM host
	4.4.1 Preparing the installation
	4.4.2 Installing SLES on an LPAR

	4.5 Preparing the host for virtualization
	4.6 Configuring the KVM host
	4.6.1 Defining NICs
	4.6.2 Defining the bond interface
	4.6.3 Defining HiperSockets interfaces
	4.6.4 Defining the HiperSocket interface to support VM guest network
	4.6.5 Defining the HiperSocket interface of the KVM host
	4.6.6 Defining HiperSocket Converged Interface
	4.6.7 Defining SMC interfaces
	4.6.8 Defining the MacVTap network
	4.6.9 Defining the MacVTap network
	4.6.10 Defining crypto adapters and domain

	4.7 Deploying VMs on KVM
	4.7.1 Creating QCOW2 disk image file
	4.7.2 Installing a new guest by using virt-install
	4.7.3 Cloning a guest by using Virsh
	4.7.4 Adding HiperSockets to the VM guest
	4.7.5 Adding space to guest from ECKD DASD
	4.7.6 Adding DASD space to guest as a VFIO device
	4.7.7 Adding LUNs when FCP SCSI storage is used
	4.7.8 Adding cryptography support to the VM guest
	4.7.9 Using the Integrated Accelerator for zEnterprise Data Compression

	Chapter 5. Preparing the Ubuntu Kernel-based Virtual Machine environment for virtual machine use
	5.1 Defining the target configuration
	5.1.1 Logical View
	5.1.2 Physical resources
	5.1.3 Software resources

	5.2 Preparing the infrastructure
	5.2.1 Configuring resources
	5.2.2 Configuring storage resources
	5.2.3 Setting up the FTP server for the installation

	5.3 Collecting information
	5.3.1 Required information for Ubuntu on an LPAR installation
	5.3.2 Required information for virtual machine installations

	5.4 Installing Ubuntu on an LPAR as a KVM host
	5.4.1 Preparing the installation
	5.4.2 Installing Ubuntu on an LPAR

	5.5 Preparing the host for virtualization
	5.6 Configuring the KVM host
	5.6.1 Defining NICs
	5.6.2 Defining the bond interface
	5.6.3 Defining HiperSockets interfaces
	5.6.4 Defining HiperSocket interface to support VM guest network
	5.6.5 Define HiperSocket Converged Interface
	5.6.6 Defining SMC interfaces
	5.6.7 Defining the MacVTap network
	5.6.8 Defining crypto adapters and domain

	5.7 Deploying virtual machines on KVM
	5.7.1 Creating QCOW2 disk image file
	5.7.2 Installing a new guest by using virt-install
	5.7.3 Cloning a guest using Virsh
	5.7.4 Adding HiperSockets to the VM guest
	5.7.5 Adding space to guest from ECKD DASD
	5.7.6 Adding DASD space to a guest as a VFIO device
	5.7.7 Adding LUNs if you have FCP Storage
	5.7.8 Adding cryptography support to the VM guest
	5.7.9 Using the Integrated Accelerator for zEnterprise Data Compression

	Chapter 6. Managing the Kernel-based Virtual Machine environment
	6.1 Managing resources
	6.1.1 Virsh
	6.1.2 Virtual Machine Manager
	6.1.3 Cockpit
	6.1.4 OpenStack
	6.1.5 Choosing the correct tool

	6.2 Recovery management
	6.2.1 Snapshot
	6.2.2 Compressing data and backup
	6.2.3 IBM FlashCopy

	6.3 Security management
	6.3.1 FreeIPA
	6.3.2 sVirt
	6.3.3 AppArmor
	6.3.4 Linux Audit

	Chapter 7. High Availability for IBM General Parallel File System
	7.1 Environment overview
	7.2 Zoning and LUN masking
	7.3 Downloading IBM Spectrum Scale from IBM Fix Central
	7.4 Installing IBM Spectrum Scale
	7.4.1 Working with clusters and deploying protocols
	7.4.2 Configuring IBM Spectrum Scale

	7.5 Building the GPFS portability layer
	7.6 Handling Linux kernel updates
	7.7 GPFS general configuration
	7.7.1 Installing the licensing
	7.7.2 Validating or listing the cluster configuration
	7.7.3 Displaying the state of GPFS cluster
	7.7.4 Changing the range ports that are used for command execution
	7.7.5 Configuring FCP Channels to all KVM Compute (GPFS cluster) servers
	7.7.6 Using tiebreaker disks
	7.7.7 Displaying the NSD information

	7.8 Working with the General Parallel File System
	7.8.1 Creating and configuring GPFS
	7.8.2 Mounting and validating the GPFS
	7.8.3 Configuring the SELinux file’s context
	7.8.4 Starting GPFS automatically
	7.8.5 Tiebreaker disk recommendations
	7.8.6 Setting up a tiebreaker disk
	7.8.7 Enabling Persistent Reserve

	Chapter 8. Using IBM Secure Execution
	8.1 Introduction to IBM Secure Execution
	8.2 How IBM Secure Execution works
	8.3 Enabling and verifying that the CPC is Secure Execution ready
	8.3.1 Importing a key bundle into LinuxONE

	8.4 KVM host and guest software requirements
	8.5 Enabling an Ubuntu 20.04 LTS KVM host for IBM Secure Execution
	8.6 Enabling an SLES 15 SP2 KVM host for IBM Secure Execution
	8.7 Enabling an Ubuntu 20.04 KVM Guest for IBM Secure Execution
	8.7.1 Installing a standard Linux guest on encrypted disk storage
	8.7.2 Updating KVM guest /etc/crypttab to avoid entering a password at start
	8.7.3 Editing the domain.xml to include iommu=’on’
	8.7.4 Obtaining the host key documents for the CEC
	8.7.5 Validating the key material
	8.7.6 Building a secured initrd image file by using genprotimg on KVM guest
	8.7.7 Updating guest zipl to boot with secured image in IBM Secure Execution mode
	8.7.8 Removing any boot option that is not in Secure Execution mode
	8.7.9 Further Ubuntu guest hardening
	8.7.10 Removing older unencrypted artifacts from the /boot partition

	8.8 Enabling a SLES 15 SP2 KVM Guest for IBM Secure Execution
	8.8.1 Installing a standard Linux guest on encrypted disk storage
	8.8.2 Updating KVM guest /etc/crypttab to avoid entering a password at start
	8.8.3 Editing the domain.xml to include iommu=’on’
	8.8.4 Obtaining the host key documents for the CEC
	8.8.5 Validating the key material
	8.8.6 Building a secured initrd image file by using genprotimg on KVM guest
	8.8.7 Updating guest zipl to boot with secured image in IBM Secure Execution mode
	8.8.8 Updating guest grub2 to boot with secured image in IBM Secure Execution mode
	8.8.9 Removing any start option that is not Secure Execution mode
	8.8.10 Further SLES 15 guest hardening
	8.8.11 Removing unencrypted older artifacts from /boot/zipl and encrypted artifacts from /boot

	8.9 Enabling a RHEL KVM Guest for Secure Execution
	8.9.1 Installing a standard Linux guest on encrypted disk storage
	8.9.2 Updating KVM guest /etc/crypttab to avoid entering password at boot
	8.9.3 Editing the domain.xml to include iommu=’on’
	8.9.4 Obtaining the host key documents from the CEC
	8.9.5 Validating the key material
	8.9.6 Building a secured initrd image file using gemproting on KVM guest
	8.9.7 Updating guest zipl to boot with secured image in Secure Execution mode
	8.9.8 Securely removing the original unprotected kernel, initrd, and parmfile files
	8.9.9 Further RHEL guest hardening
	8.9.10 Removing unencrypted, older artifacts from /boot

	Chapter 9. IBM Cloud Infrastructure Center on Kernel-based Virtual Machines
	9.1 Installing IBM Cloud Infrastructure Center
	9.1.1 Before you install IBM Cloud Infrastructure Center

	9.2 Configuring IBM Cloud Infrastructure Center
	9.2.1 Other tasks
	9.2.2 Creating and adding images
	9.2.3 Adding storage providers
	9.2.4 Extending the root file system
	9.2.5 User tasks

	9.3 Creating a bond for KVM administration network interfaces

	Appendix A. Live Virtual Server Migration
	Introduction
	Live migration phases
	Provisioning two servers
	Performing a live migration
	Procedure
	Restriction

	Appendix B. Kernel-based Virtual Machine LPAR live migration
	Overview

	Appendix C. Scripts for SLES guest installation
	Preparing and setting up for AutoYAST installation
	AutoYAST configuration file for KVM guest

	Back cover

